
HIMMO: A Lightweight Collusion-Resistant
Key Predistribution Scheme

Oscar Garćıa-Morchón1, Domingo Gómez-Pérez2, Jaime Gutiérrez2, Ronald
Rietman2, Berry Schoenmakers3, and Ludo Tolhuizen1

1 Philips Group Innovation, Research, Eindhoven, The Netherlands
oscar.garcia,ronald.rietman,ludo.tolhuizen@philips.com

2 University of Cantabria, Santander, Spain
domingo.gomez,jaime.gutierrez@unican.es

3 Eindhoven Universtiy of Technology, Eindhoven, The Netherlands
berry@win.tue.nl

Abstract. In this paper we introduce HIMMO as a truly practical and
lightweight collusion-resistant key predistribution scheme. The scheme
is reminiscent of Blundo et al’s elegant key predistribution scheme, in
which the master key is a symmetric bivariate polynomial over a finite
field, and a unique common key is defined for every pair of nodes as
the evaluation of the polynomial at the finite field elements associated
with the nodes. Unlike Blundo et al’s scheme, however, which completely
breaks down once the number of colluding nodes exceeds the degree of
the polynomial, the new scheme is designed to tolerate any number of
colluding nodes.
Key establishment in HIMMO amounts to the evaluation of a single
low-degree univariate polynomial involving reasonably sized numbers,
thus exhibiting excellent performance even for constrained devices such
as 8-bit CPUs, as we demonstrate. On top of this, the scheme is very
versatile, as it not only supports implicit authentication of the nodes
like any key predistribution scheme, but also supports identity-based
key predistribution in a natural and efficient way. The latter property
derives from the fact that HIMMO supports long node identifiers at a
reasonable cost, allowing outputs of a collision-resistant hash function to
be used as node identifiers. Moreover, HIMMO allows for a transparent
way to split the master key between multiple parties.
The new scheme is superior to any of the existing alternatives due to
the intricate way it combines the use of multiple symmetric bivariate
polynomials evaluated over “different” finite rings. We have analyzed
the security of HIMMO extensively, identifying the Hiding Information
(HI) problem and the Mixing Modular Operations (MMO) problem as
the underlying hard problems. These problems are closely related to some
well-defined lattice problems, and therefore the best attacks on HIMMO
are dependent on lattice-basis reduction. Based on these connections
we propose concrete values for all relevant parameters, for which we
conjecture that the scheme is secure.

Keywords: Key predistribution scheme, collusion attack, identity, lattice anal-
ysis

1 Introduction

Background Efficient and practical pairwise key establishment is of extreme
importance for industrial deployment of large networks of resource-constrained
devices, such as wireless sensors. The nodes in these networks are severely lim-
ited with respect to computational power, energy, and bandwidth. In this paper
we propose an innovative method for pairwise key establishment. We do so by
addressing a longstanding open problem regarding the existence of key predis-
tribution schemes, as introduced by Matsumoto and Imai [14], which are both
highly secure and highly efficient. Here, highly secure means that large collusions
of corrupted nodes are tolerated, and highly efficient means that the running time
for key establishment takes a fraction of a second only, even for very constrained
devices such as 8-bit CPUs, and that the memory footprint is low.

The starting point for our work is Blundo et al.’s elegant key predistribution
scheme [5]. Key predistribution schemes allow for the establishment of pairwise
keys in a large network of nodes, where each node uses its so-called keying
material as secret input [14]. In Blundo et al.’s scheme, a master key consisting
of a symmetric bivariate polynomial over a finite field is generated by a trusted
party, and each node’s keying material consists of the univariate polynomial
obtained as the evaluation of the master key at a field element associated with
the node.

Key establishment in Blundo et al.’s scheme is very efficient, as it amounts
to the evaluation of a polynomial over a finite field. The scheme is secure against
collusions whose size does not exceed the degree of the polynomial. For larger
collusions, however, the security of Blundo et al.’s scheme breaks down com-
pletely.

The challenge is to find a key predistribution scheme that achieves efficiency
comparable to Blundo et al.’s scheme but with much better security, basically
tolerating collusions of practically any size. The potential of such an efficient
and collusion-resistant scheme is huge, as it enables secure communication in
large networks of wireless sensors, for example. Moreover, key predistribution
schemes naturally have benefits such as implicit authentication (ruling out man-
in-the-middle attacks) and identity-based modes (avoiding the need for public
keys).

Related work We motivate our approach by discussing related work covering
three alternative approaches to key establishment.

The first approach is to use any Diffie-Hellman based scheme, involving a
one-way function defined for a discrete log setting (including elliptic curve cryp-
tography). The main drawback of these schemes is simply that evaluation of the
one-way function is too costly, and this drawback extends to schemes involv-
ing pairings. Some relevant examples are the schemes and related constructions
in [6,8,9,10,12,17,19].

The second approach is to use a simpler one-way function. For instance,
[13] proposes a key exchange protocol based on the NTRU one-way function.
Basically, two nodes establish a common key by exchanging NTRU encryptions
of their private keys, which is computationally efficient. However, several serious
drawbacks remain. In the first place, there is no protection against man-in-the-
middle attacks as the corresponding public keys of the nodes are not certified.
Secondly, the communication complexity of such a key establishment protocol
is high, as it involves an exchange of public key encryptions; hence the protocol
is too costly for resource-constrained devices. And, finally such a scheme lacks
identity-based modes.

The third approach is to actually build a key predistribution scheme. All
pairwise keys are determined by a master key, and one gets all the benefits
mentioned above. Clearly, the main challenge is to achieve collusion resistance.
In the literature there has only been one attempt at constructing an efficient
scheme with collusion-resistance against arbitrary collusions [21]. However, the
collusion resistance claims turned out to be flawed [1].

Contributions The HIMMO scheme introduced in this paper is the first efficient
key predistribution scheme tolerating large collusions of corrupted nodes. Key
establishment between two nodes amounts to the evaluation of a single low-
degree univariate polynomial for each node. The numbers involved are reasonably
sized, allowing for excellent performance even on constrained devices such as 8-
bit CPUs. The performance of the scheme is thus comparable to the performance
of an NTRU-based scheme, except that HIMMO requires a minimal amount of
information exchange only (taking full advantage of the fact that pairwise keys
are predetermined). The only information that needs to be exchanged serves to
reconcile the keys computed by both nodes, which in general will differ slightly.
Allowing a small discrepancy between the keys computed by the respective nodes
turns out be an important degree of freedom, giving us just enough leeway to
find a successful solution.

Being a key predistribution scheme, HIMMO automatically provides implicit
authentication of the nodes, hence protection against man-in-the-middle attacks.
Furthermore, the parameters can be set such that key establishment becomes
identity-based. Identities may be bit strings of arbitrary length. The identities
are simply hashed to a relatively small range of identifiers, for which the trusted
party holding the master key may generate key material.

We have extensively analyzed the security of our scheme. In particular, we
have identified two hard problems, namely the Hiding Information (HI) prob-
lem and the Mixing Modular Operations (MMO) problem. These problems are
closely related to some well-defined lattice problems (see [15,11], respectively),
and therefore our best attacks on HIMMO are dependent on lattice-basis reduc-
tion. We have formulated the relevant lattices, and we have performed numerous
experiments to estimate the complexity of solving the (approximate) closest vec-
tor problem for these lattices. Based on our analysis we propose concrete values
for all relevant parameters, for which we conjecture that the scheme is secure.

Finally, as a bonus we note that HIMMO is resistant to quantum computing
as the cryptanalysis is entirely lattice-based.

Roadmap The paper is organized as follows. In Section 2, we describe key pre-
distribution schemes and provide some basic examples. Section 3 introduces the
HIMMO scheme, followed by a brief performance analysis in Section 4. In Sec-
tion 5, we discuss the security model, review the HI and MMO problems and
security assumptions, also showing connection between the HI and MMO prob-
lems and the structure of the keying material and keys. In Section 6, we describe
experimental results supporting our security analysis of the HI problem, and
present parameters for which we consider HIMMO to be secure. Section 7 details
further HIMMO-based schemes. In Section 8, we draw conclusions and indicate
directions for further research. In the appendix, we validate the HIMMO scheme
in that we show that the generated keys indeed are pairwise the same.

2 Key Predistribution Schemes

Key predistribution schemes have been introduced by Matsumoto and Imai [14],
generalizing earlier work of Blom [4]. In a key predistribution scheme, a trusted
party provides nodes in a system with information enabling any pair of nodes
to establish a common key. A key predistribution scheme comprises three com-
ponents:

- A setup algorithm, executed by the trusted party, that on input of a security
parameter κ generates system parameters σ and secret root keying material R.
- A keying material extraction algorithm, executed by the trusted party,
which on input R, σ and a node identifier ξ generates secret keying material Gξ.
- A key establishment protocol applied by two nodes ξ and η for generating
a pre-determined key K(ξ, η), using ξ, η and σ as common input, in which ξ and
η use their secret keying material Gξ and Gη, respectively.

The pre-determined key K(ξ, η) is the same for all executions of the key estab-
lishment protocol, and may depend on which node initiates the key establishment
protocol, that is, K(ξ, η) and K(η, ξ) need not be equal.

The key predistribution schemes from [14] and [4] are non-interactive: in the
key establishment protocol, each node ξ can compute the common key with
any other node η without any communication. Such key predistribution schemes
have recently been studied under the name of ID-based non-interactive key es-
tablishment (ID-NIKE), usually employing variations of the Diffie-Hellman key
exchange, pairings, bilinear or multilinear functions that are costly to implement
[6,8,9,10,12,17,19]. Note that for the HIMMO scheme from this paper, the key
establishment protocol will be one-pass: the initiator of the protocol sends a
message to the other node involved in the protocol, but no reply is required.

In a very simple key predistribution scheme [14], the secret root keying ma-
terial R is a random symmetric function, so R(ξ, η) = R(η, ξ) for all nodes ξ and

η, the keying material Gξ is a table of pairs (η,R(ξ, η)), and as its common key
with node η, node ξ uses R(ξ, η) that it obtains from its look-up table. As R is
symmetric, node ξ and η obtain a common key without interaction. Because of
the random choice of R, no information on the key between nodes ξ and η can be
obtained from the keys between all other pairs of nodes. For systems involving
many nodes, however, the tables get large and it is preferable that Gξ specifies
a function to be applied in the key establishment protocol.

A straightforward and efficient key predistribution scheme was described by
Blundo et al. [5] in 1992. In this scheme, which we will call Blundo’s scheme,
the trusted party first randomly generates a symmetric bivariate polynomial
R(x, y) of degree α in each of the variables with coefficients from Zp, the ring
of integers modulo p. Next, the trusted party provides, in a secure manner, to
any node ξ in the network the keying material R(ξ, y) ∈ Zp[y]. The key K(ξ, η)
that node ξ uses in order to communicate with node η equals R(ξ, η) (computed
modulo p). As R is symmetric, K(ξ, η) = K(η, ξ). Blundo’s scheme is fast and
requires little storage. Other advantages are that it allows for any network of
size at most p, so that it scales well, e.g., to the Internet, and that nodes can
be added to a running network without the need to update already deployed
nodes. Blundo’s scheme offers information-theoretic security if at most α nodes
are compromised. However, simple interpolation using the keying material of any
α+1 nodes allows to retrieve the root keying material [5], thereby compromising
the complete system. Also, the keying material of a single node ξ can be obtained
by simple interpolation of the keys of any α+ 1 colluding nodes with ξ.

3 Description of HIMMO for Key Establishment

In this section, we describe the HIMMO scheme for key establishment. HIMMO
has been designed to achieve fast key computation, low bandwidth needs, small
memory footprint and low energy consumption. This is the reason why our
scheme relies on simple polynomials. In order to achieve collusion resistance,
we apply two novel design principles. First, polynomials in different finite rings
are mixed to obtain the secret keying material of a device, that is again a simple
polynomial. Second, in the key establishment protocol, part of the polynomial
evaluation is hidden. Our analysis shows that these two design principles enable
an operating and secure scheme.

We use the following notation: for each integer x and positive integer M , we
denote by 〈x〉M the unique integer y ∈ {0, 1, . . . ,M−1} such that x ≡ y mod M .

Following the general description of key predistribution schemes from Sec-
tion 2, HIMMO comprises three components.

The setup algorithm which, on input of a security parameter κ, results in
the following system parameters:

– B, the bit length of the identifiers to be used in the system
– b, the bit length of the generated keys
– α, the degree of polynomials to be used in the system
– m ≥ 2

– the public modulus N , an odd integer of length exactly (α+ 1)B + b bits

and the following secret randomly generated root keying material:

– m distinct random moduli q1, q2, . . . , qm of the form qi = N − 2bβi, where
where 0 ≤ βi < 2B and at least one of β1, . . . , βm is odd.

– for 1≤ i ≤ m and 0 ≤ j ≤ k ≤ α, a random integer R
(i)
j,k with 0 ≤ R

(i)
j,k ≤

qi − 1, and for k < j ≤ α,R(i)
j,k = R

(i)
k,j

The keying material extraction algorithm, which computes for each
node ξ in the system, with 0 ≤ ξ < 2B , the coefficients of the key generating
polynomial Gξ:

Gξ(y) =

α∑
k=0

Gξ,ky
k where Gξ,k =

〈 m∑
i=1

〈
α∑
j=0

R
(i)
j,kξ

j〉qi
〉
N
. (1)

The key establishment protocol, in which a node ξ wishing to communi-
cate with node η with 0 ≤ η < 2B , computes

Kξ,η =
〈
〈Gξ(η)〉N

〉
2b

(2)

and provides η with the helper data h(ξ, η) defined as

h(ξ, η) = 〈Kξ,η〉2s , where s = dlog2(4m+ 1)e. (3)

Node η obtains Kξ,η as
Kξ,η = 〈Kη,ξ + jN〉2b , (4)

where j is the unique integer such that

|j| ≤ 2m and jN ≡ h(ξ, η)−Kη,ξ mod 2s. (5)

The common key K(ξ, η) for nodes ξ and η is

K(ξ, η) = b2−sKξ,ηc. (6)

Due to the mixing of modular operations, 〈Gξ(η)〉N and 〈Gη(ξ)〉N can differ
much from each other. The judicious combination of the system parameters,
however, implies that the b last bits of these evaluations, that is, Kξ,η and Kη,ξ,
although not necessarily equal, are close to each other. As shown in Theorem 1
in the appendix, if 0 ≤ ξ, η ≤ 2B , then

Kξ,η ∈ {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ 2m}. (7)

Node η can compute Kη,ξ and use Equation (7) to determine a candidate set
C of 4m + 1 keys that contains Kξ,η. In some use cases, η can obtain Kξ,η by
decrypting messages encrypted with Kξ,η with all keys from C, and discarding
keys that yield invalid messages. In these cases, no helper data needs to be sent
and the b-bits key Kξ,η can be used as common key between ξ and η.

If discarding keys is infeasible, the helper data h(ξ, η) assists η to determine
Kξ,η. As h(ξ, η) reveals the s least significant bits of Kξ,η, only the b − s most
significant bits Kξ,η, that is, the number b2−sKξ,ηc, are used as common key. In
order to not reduce the key length too much, s, and thus m, should not be too
large; in particular, b should be larger than s.
We now show that application of Equations (4) and (5) indeed results in Kξ,η.
Let 0 ≤ ξ, η ≤ 2B . According to Equation (7), there is an integer j such that
|j| ≤ 2m and Kξ,η ≡ Kη,ξ + jN mod 2b. As s ≤ b and Kξ,η ≡ h(ξ, η) mod 2s,
it follows that jN ≡ h(ξ, η) −Kη,ξ mod 2s, so node η can compute 〈jN〉2s . As
N and 2s are relatively prime, node η thus can compute 〈j〉2s . As j is in the set
{−2m,−2m+ 1, . . . , 2m} which contains 4m+ 1 ≤ 2s consecutive integers, node
η can obtain j from 〈j〉2s .

4 HIMMO Performance

HIMMO has been designed keeping in mind that it has to enable very efficient
performance. From Equation (2) we observe that obtaining a symmetric key
just requires the evaluation of a polynomial of degree α modulo N and taking
the b least significant bits. This means that only α+ 1 modular multiplications
are required to compute the key. In each multiplication, the B bit identifier
multiplies the (α + 1)B + b bit coefficient and the result is reduced modulo N .
These modular operations can be implemented in a very efficient manner for
appropriate choices for N , e.g. for N = 2(α+1)B+b − 1.

In order to evaluate the performance of the HIMMO scheme, we have imple-
mented it on a very resource-constrained 8-bit CPU ATMEGA128L running at
8 MHz, on the 32-bit NXP LPC1769 LPCXpresso Board running at 120 MHz,
and on an Intel i3 3120M (64-bit) running at 2.50 GHz running Xubuntu 14.04.
The implementations for the NXP LPC1769 and Intel i3 3120M are based on
a C library including the big integer arithmetic for addition and multiplication.
Other operations are not required. Our implementation for the ATMEGA128L
is optimized in assembler and fits in just 428B of Flash memory. This shows that
HIMMO can fit even in very resource constrained devices. We also note that the
RAM consumption is linear with α since we have to keep in memory a term that
is (α+2)B+b bits. Tables 1 and 2 provide a brief summary of the performance of
the HIMMO scheme implemented in the above CPUs. For instance, for security
parameter α = 26 and B = b = 128, the execution of the HIMMO algorithm in
the very resource-constrained ATMEGA128L only takes 223 milliseconds. This
time is around 3000 times slower than on the much more powerful Intel i3 3120M
(64-bit) due to the different in clock speed, CPU word size, and fact than the
algorithm for the ATMEGA128L is optimized in assembler and the algorithm
in the Intel is in plain C. Finally, note that the tables include a row specifying
the lattice dimension required in the identify attack to the HI problem that is
further explained in Sections 5.3 and 6.2.

Table 1. HIMMO performance for B = b = 128 as a function of α.

α
26 34 40 50

Keying material size (KB) 6.90 11.18 15.07 22.83

Lattice dimension 405 665 902 1377

ATMEGA128L (8-bit @ 8 MHz) 223 367 497 743
CPU time (msec) NXP LPC1769 (32-bit @ 120 MHz) 18.38 30.59 41.77 64.25

Intel i3 3120M (64-bit @ 2.5 GHz) 0.067 0.109 0.147 0.225

Table 2. HIMMO performance for α = 26 as a function of b = B.

b = B
64 128 192 256

Keying material size (KB) 3.45 6.90 10.34 13.79

ATMEGA128L (8-bit @ 8 MHz) 63 223 393 632
CPU time (msec) NXP LPC1769 (32-bit @ 120 MHz) 5.55 18.39 40.34 71.41

Intel i3 3120M (64-bit @ 2.5 GHz) 0.023 0.067 0.134 0.224

5 Security Model, Assumptions, and Analysis

This section is outlined as follows: in Section 5.1 we present a computational
security model for a generic key predistribution scheme. In Section 5.2 we present
the two interpolation problems that form the basis upon which HIMMO is built,
and present evidence why these problems are difficult, for suitable parameter
choices in HIMMO. In Section 5.3 we consider the possible strategies that the
adversary has for winning the game that constitutes the security model in the
case that the key predistribution scheme is HIMMO. We show how winning the
game depends on being able to solve either the HI or the MMO problem.

5.1 Security Model

We formalize the notion of collusion resistance, namely that an attacker who has
obtained the keying materials of any number of different identifiers should not
be able to calculate the key of a pair of uncompromised identifiers.

We consider a security model that is a game between a challenger and an
adversary. The challenger has full knowledge of the key predistribution scheme
and all secret parameters that the trusted party used in setting it up; the adver-
sary only knows the public parameters of the system. The adversary can present
queries to the challenger. In a query, the adversary randomly picks a valid iden-
tifier ζ and the challenger responds with the keying material Gζ .
After presenting c queries and receiving the corresponding responses, the ad-
versary chooses a pair of identifiers (ξ, η), guesses the key Kξ,η, and presents

these results to the challenger, who checks if the key guess for the pair (ξ, η) was
correct. The adversary wins if and only if the following holds:

1. neither ξ nor η was used as the input to any query;
2. the adversary guessed the key Kξ,η correctly.

These conditions are similar to the winning condition in the computational
COMP-SK security model which is used in the security analysis of ID-NIKE
in [17].

5.2 The HI and MMO Problems

We present the two mathematical interpolation problems upon which the HIMMO
system is built. The first of these problems is the Hiding Information problem.

Problem 1 (Hiding Information (HI) problem).
Let f ∈ Z[x] be of degree at most α, and let xi ∈ Z and yi = 〈〈f(xi)〉N 〉r for
0 ≤ i ≤ c.
HI problem: given α, N , r, (x1, y1), . . . , (xc, yc), and x0, find y0.

This problem was studied in [15], where it was shown to be equivalent to a
lattice problem in dimension α+ 1 + c, and that c must be large enough for the
solution y0 to be unique. For the instances of the HI problem that pertain to
the HIMMO system, the resulting lattice dimension and structure are such that
the known techniques for finding y0 fail to give the correct answer for α & 20.
A more detailed exposition is given in Section 6.

The second interpolation problem deals with interpolation of a function that
is the sum of multiple polynomials, each evaluated modulo a different number.
We distinguish two versions of this problem, depending on whether the moduli
are given or unknown.

Problem 2 (Mixing Modular Operations (MMO) Problems).
Let m ≥ 2, g1, . . . , gm ∈ Z[x], all of degree at most α, and let xi ∈ Z and
yi =

∑m
j=1〈gj(xi)〉qj , for 0 ≤ i ≤ c.

MMO problem with known moduli: given α,m, q1, . . . , qm, (x1, y1), . . . , (xc, yc),
and x0, find y0.
MMO problem: given α, m, (x1, y1), . . . , (xc, yc), and x0, find y0.

In [11], it was shown that the MMO problem with known moduli and c
colluding nodes can be reduced to finding a vector in a lattice with dimension
m(α + 1 + c), and that c must be at least m(α + 1) to find a unique solution.
Thus the adversary has to solve a lattice problem in a lattice of dimension at
least m(m+ 1)(α+ 1), which quickly becomes infeasible if m grows.

Setting up the lattice requires knowledge of the secret moduli q1, . . . , qm.
When the moduli are unknown, there appears to be no efficient way to recon-
struct them from any c observations. For these reasons, we consider solving the
MMO problem to be infeasible.

5.3 Security Analysis

An adversary playing the game described in Section 5.1 can follow two strategies
to find Kξ,η from the keying materials Gζi(y), 1 ≤ i ≤ c. These two types of
attack are in line with related security models used in other key predistribution
schemes such as Matsumoto and Imai [14] and attacks on Blundo’s scheme and
Zhang’s scheme.

The first strategy to calculate Kξ,η is to calculate Gξ from the keying materi-
als Gζi , and then to use Equation (2). Turning to the definition of the Gζi(y) in
terms of the root keying material, see Equation (1), we see that finding the coeffi-
cient Gξ,k of the polynomial Gξ(y) from the coefficients Gζi,k of the polynomials
Gζi(y) amounts to solving an instance of the MMO problem with unknown mod-
uli, which we consider infeasible. In fact, the adversary has to solve a somewhat
more complex problem, because the definition of the keying material coefficients
in Equation (1) has an additional mod N operation.

In the second strategy, which avoids determining the moduli, the adversary
evaluates 〈Gζi(ξ)〉N , and takes the b least significant bits thereof, the key Kζi,ξ.
This key is used as an approximation to Kξ,ζi . Finding Kξ,η from the set Kξ,ζi

amounts to solving the HI problem with r = 2b. For such a low value of r,
compared to N , solving the HI problem is infeasible if α is large enough.

Using r > 2b, e.g., the whole output of 〈Gζi(ξ)〉N , in the HI problem to find
Kξ,η is not feasible since Gξ(ζi)and Gζi(ξ) only show symmetry in the b least
significant bits. The (α+1)B most significant bits are related through the moduli
qi.

To show this, from Lemma 1 in the appendix, 〈Gξ(η)〉N is the sum of three
terms. The first term is invariant under the exchange of ξ and η, the second
term is a small multiple of N and the third a multiple of 2b. We consider the
effect of the last term in the difference between 〈Gξ(η)〉N and 〈Gη(ξ)〉N , i.e.,
(µη(ξ)− µξ(η))2b, where according to Lemma 1,

µξ(η) =

m∑
i=1

βi

⌊Ai(ξ, η)

qi

⌋
,

with Ai(ξ, η) =

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk, and R

(i)
k (ξ) =

α∑
j=0

R
(i)
j,kξ

j .

Although each R(i) is symmetric, the function Ai(ξ, η) is not, as R
(i)
k is evaluated

modulo qi, while the evaluation of Ai in η is performed over the integers (as is the
summation and multiplication with the βi’s). If η is large, then Ai(ξ, η) influences
all bits, including the highest order bits; if the β′is are large, µξ(η) affects all bits,
including the highest order bits. Indeed, assume that the coefficients of Ai(ξ, η),

i.e., the integers
〈
R

(i)
k (ξ)

〉
qi

are uniformly distributed in {0, 1, . . . , qi − 1} then

the expected value of Ai(ξ, η) equals 1
2qi
∑α
k=0 η

k ≈ 1
2qiη

α. We further assume
that each βi is uniformly chosen from the integers in [0, 2B). Then the expected
value of µξ(η) is m2B−2ηα. Hence, if we take

η > 2B(2/m)1/α, (8)

then we expect that 2bµξ(η) is larger than 2bm2B−2ηα > 2(α+1)B+b−1, so that
2bµξ(η) affects all bits of 〈Gξ(η)〉N . Since the µξ(η) and µη(ξ) are affected by
the mixing of modular operations, we conjecture that with identifiers η satisfying
Equation (8), no information on the (α+ 1)B most significant bits of 〈Gξ(η)〉N
can be obtained from 〈Gη(ξ)〉N .

The requirement on η expressed in Equation (8) reduces the number of identi-
fiers that we can use from 2B to 2B

(
1−(2/m)1/α

)
. In other words, the “effective

bit length” of the identifiers is reduced by
⌈
− log2

(
1− (2/m)1/α

)⌉
bits. For rea-

sonable parameters, this is not a very big number, e.g., for m = 10 and α = 26,
the loss is just over four bits in the identifier space.

6 Experimental Results and HIMMO Parameters

This section provides describes experiments and provides further background
supporting the results in Section 5.3. We also propose specific configuration pa-
rameters for which we believe HIMMO to be secure based on these experimental
results.

6.1 Experimental Results in the Structure of 〈Gξ(η)〉N

In Figure 1 we show experimental evidence for the claim that the (α + 1)B
most significant bits of 〈Gξ(η)〉N and 〈Gη(ξ)〉N are uncorrelated if the identifier
interval is restricted according to Equation (8).

Fig. 1. The probability that the i-th bit of 〈Gξ(η)〉N equals the i-th bit of 〈Gη(ξ)〉N
when Kξ,η = Kη,ξ as a function of i in a HIMMO system with α = 6, b = B = 32 and
m = 5. In the plot on the left, ξ and η are averaged over the interval [0, 2B), in the
plot on the right ξ and η are averaged over the interval [2B(2/m)(1/α), 2B).

Note that this property does not appear to hold for a few most significant
bits, which are equal with probability significantly above 0.5. This is because
in our simulations some coefficients or identifiers might be slightly smaller so
that the effect of the mixing of modular operations does not propagate to the

very most significant bits. These few bits may thus be used in an attack as well
if way to find correlations between them is figured out. Currently, this remains
an open problem. Effectively, the attacker would then solve a HI problem with
a somewhat larger value of r, say r = 2b+δb, which is still much smaller than
N , and hence does not lead to much improvement in the second attack strategy
discussed in Section 5.3.

6.2 HIMMO and the HI Problem

Minimum Value of c: The HI problem is analyzed in [15]. It is shown that
the HI problem is equivalent to a noisy polynomial interpolation problem, which
in turn is shown to be related to an approximation problem in a certain lattice
of which the dimension is α + 1 + c. The approximation problem is to find a
lattice vector that lies close enough to a target vector, i.e., it is a relaxed version
of the well-known closest vector problem. It is shown that there are many lattice
vectors that solve the approximation problem, each of these vectors gives an
estimate for y0.
It is also shown that because of the structure of this lattice, there is a cross-over
value cmin, which depends on the distribution of the xi, such that when c < cmin

the lattice vectors that solve the close vector problem give rise to many different
estimates for y0, whereas for c > cmin, all solutions to the close vector problem
give rise to one, or at most a few different estimates for y0.
The value cmin is found as the zero of the function S, defined as

S(c) = log

(
2b+1

√
c

)
+

1

2(c− α− 1)

(α∑
i=1

(
log((α+ 1 + i)!)− log(i!)

)
− log

(
c

α+ 1

)
− α(α+ 1) log(L)

)
, (9)

where we correct an error in the result from [15] and adapt their notation to the
one used in this paper.
In the derivation of this formula, it is assumed that the c points xi are uniformly
chosen from an interval of length L. Numerical experiments in [15] confirm the
validity of using this indicator. When B = b and L = 2B , an approximation to
cmin is cmin ≈ (α+1)(α+2)/2. In Table 3 we give cmin(α, b,B) for several values
of α and b = B, and compare its value to (α+ 1)(α+ 2)/2.

For a moderately large value of α = 40 the attacker must solve a lattice
problem in about 900 dimensions, which lies above the upper limit for practical
lattice reduction algorithms. We point out that the record in the Ideal Lattice
Challenge is in dimension 825, see [7]. Increasing α makes this lattice attack
even more infeasible. In fact, our experiments described further below show that
even for α = 16 the approximate methods for finding a close lattice vector fail.

The above analysis holds when the identifiers are uniformly distributed in
[0, 2B). When the attacker can choose the identifiers x1, . . . , xc, then he can
pick them from a smaller interval containing the identifier x0 of the node under

attack, improving his chances to attack the system. For instance, in the previous
case with α = 40, b = B = 32 and L = 256, the indicator function is positive for
c ≥ 120. Simulations confirm this lower bound for a successful attack.
In a practical deployment of HIMMO such a small L attack can be prevented
by making it infeasible for the adversary to choose the xi freely, e.g., by letting
the HIMMO identifier xi be a secure B-bit hash of a node’s identity.

Table 3. The value cmin for B = b as a function of α and b and compared with
f(α) := (α+ 1)(α+ 2)/2.

b
α f(α) 8 16 32 64 128

20 231 178 212 223 228 230
24 325 243 297 313 320 323
28 435 317 396 419 428 432
32 561 398 508 539 551 556
36 703 487 635 675 690 697
40 861 582 775 825 845 853

Performance of Lattice Attack on HI Problem The close vector problem
can be solved as if it were the closest vector problem for the same target vector.
There exist exact algorithms for the closest vector problem, these have running
times and memory requirements that grow exponentially in the lattice dimen-
sion and turn out to become infeasible if the lattice dimension is larger than
about 100. For example, the algorithm from [3] is reported to require 3TB of
memory and 2080 hours of computation time for a lattice of dimension 90. These
algorithms are thus not suitable for solving the HI problem for α > 12. There ex-
ist approximate algorithms with more modest memory requirements and faster
running time, polynomial in the lattice dimension. These are based on lattice
reduction and rounding. The downside is that for these algorithms the upper
bound for the error grows exponentially in the lattice dimension, so they can
break down when the lattice dimension becomes too large. This is investigated
experimentally for the lattices we encounter in solving the HI problem.

We first choose a value for b, the number of key bits, B, the number of ID
bits, and α, the polynomial degree. We then choose a random odd integer N in
the interval (2(α+1)B+b−1, 2(α+1)B+b) and α+1 random integer polynomial coef-
ficients f0, . . . , fα from [0, N). With these coefficients we construct a polynomial
f(x) =

∑α
j=0 fjx

j . We choose a number c and pick c different numbers x1, . . . , xc
from the interval [0, 2B) and calculate the numbers yi = 〈〈f(xi)〉N 〉2b , 1 ≤ i ≤ c.
The numbers α, b,B,N and the c pairs (xi, yi) are input to the reconstruction al-
gorithm. This algorithm outputs a set of integer coefficients g0, . . . , gα in [0, N).

We say that the algorithm has produced a perfect fit to the observed values if

yi = 〈〈
α∑
j=0

gjx
j
i 〉N 〉2b for 1 ≤ i ≤ c.

For an integer x 6∈ {x1, . . . , xc}, we say that the algorithm has produced a correct
interpolation in x if 〈〈

∑α
j=0 gjx

j〉N 〉2b = 〈〈f(x)〉N 〉2b .
The algorithm for obtaining the coefficients gj , makes use of the equivalence

of this reconstruction problem to a lattice problem, as described in [15]. The
lattice is spanned by the rows of the block matrix(

NIc 0
V 2−bIα+1

)
,

where Ic and Iα+1 denote unit matrices of size c × c and (α + 1) × (α + 1)
respectively, and V denotes the (α+ 1)× c Vandermonde matrix with elements
Vi,j = xij , 0 ≤ i ≤ α, 1 ≤ j ≤ c. The problem is to find a lattice vector that lies

inside a hypercube of edge length N/2b around a target vector that is constructed
with the values yj , 1 ≤ j ≤ c.
This is a relaxed version of the Closest Vector Problem, and we use a standard
technique for finding a lattice vector that is expected to be close to a target
vector. The procedure uses two steps:

1. We perform a basis reduction, in order to make the lattice basis more orthog-
onal, for that we use LLL, see [16], with default parameters, as implemented
in Sage [18].

2. With the LLL-reduced basis, we use Babai’s nearest plane algorithm [2] to
find a lattice vector close to the target vector.

The coefficients gj are obtained from the corresponding components of the re-
sulting lattice vector. We refer to [15] for details.

We thus want to choose c ≥ cmin in order to obtain a good interpolation.
For smaller c, the probability for obtaining a good interpolation is expected
to decrease very rapidly to zero. To test this, we performed experiments for
c = b0.9cmine and c = cmin.
Approximate algorithms do not necessarily give a perfect fit. The quality of the
fit is expected to decrease as c, and thus the lattice dimension, grows. We can
only obtain a good interpolation if the lattice algorithm still gives a good fit for
c = cmin. Table 4 summarizes our results. We did 10 runs for each case, counting
the number of good fits and interpolations. So, for example, for B = b = 16 and
α = 8, and c = 39, the notation 10,0 means that we obtained a good fit 10 times,
and a good interpolation 0 times. Perfect fits and interpolations turned out to
be very rare, which is why we relax the definition somewhat: we call a fit good,
if for all i, 1 ≤ i ≤ c it holds that〈〈 α∑

j=0

gjx
j
i

〉
N

〉
2b

=
〈
yi + λiN

〉
2b

with λi ∈ {−1, 0, 1},

and we call an interpolation good if for many of 1000 randomly chosen η the
interpolation at η is correct.
With this definition, our experiments show that, if c ≥ cmin, a good fit leads
to a good interpolation. They also show that no good interpolation is obtained
from a fit that is not good. Finally, they show that the number of good fits goes
down as c grows. For α = 16 the lattice algorithm we use cannot produce a
good fit for values of c that we expect to be such that a good fit yields a good
interpolation as well. We thus conclude that our attack breaks down for lattice
dimension larger than 150. This result is in line with literature in which it is
reported that the LLL algorithm breaks at some point of time when the lattice
dimension grows, e.g., in average in dimension ≈ 180 according to [20].

Table 4. Number of good fits and interpolations out of 10 runs for c = b0.9cmine and
c = cmin.

b = B = 16 b = B = 32

α = 8 (c = 39) 10, 0 (c = 43) 10, 10 (c = 40) 10, 0 (c = 44) 10, 10
α = 12 (c = 77) 2, 0 (c = 85) 7, 7 (c = 80) 10, 0 (c = 89) 10, 10
α = 16 (c = 128) 0, 0 (c = 142) 0, 0 (c = 133) 10, 0 (c = 148) 0, 0

6.3 HIMMO Security Parameters

For security reasons, the HIMMO parameters advantageously have the following
characteristics:

– a large value of b so that keys cannot be guessed by brute-force.
– a large value α so that attacking a keying material Gξ(y) requires solving a

lattice of big dimension.
– keeping the qi’s secret and optionally taking a relatively high value of m to

ensure that attacking the root keying material R(i)(x, y) involves solving a
lattice of big dimension.

A set of parameters that the authors consider to lead to a complexity-theoretic
secure HIMMO instance is b = B = 80, α = 26, and m = 10. With these
parameters, attacking the 80-bit keys generated by a specific device would require
solving a lattice of dimension 406 for the HI problem once enough nodes have
been compromised. Attacking HIMMO through the MMO problem is hopeless
since the qi’s are secret, and even if they were known, an attacker would have
to deal with a lattice of dimension 40600. Attacking a key by means of a brute
force attack is also not feasible due to the chosen key length.

As described in next section, HIMMO enables practical applications that
require mapping a bit-string of arbitrary length to a B bit identifier. In this
case, B should be equal the output size of a collision-free hash function. In order
that birthday attacks on the hash function and brute force attacks on the key

have approximately equal complexity, we choose B = 2b. For such applications,
the authors thus consider the following set of parameters to lead to a complexity
-theoretic secure HIMMO instance: b = 80, B = 160, α = 26 and m = 10.

7 Practical Protocols and Schemes Enabled by HIMMO

HIMMO’s collusion resistance and its excellent performance provides us with a
new primitive to enable very practical security protocols. Building on HIMMO’s
pairwise key agreement, any pair of devices in a network of any size can securely
communicate with each other. With HIMMO, the system remains flexible since
nodes can be added to a running network without the need to update already
deployed nodes.

We now describe a simple protocol that allows a node ξ to directly send a
message M to node η without incurring any round trip delays. Node ξ computes
its key Kξ,η, the helper data h(Kξ,η) and the common key K(ξ, η) as explained
Section 3. It protects M by using K(ξ, η) and some authenticated encryption
algorithm e, and sends to node η the helper data h(Kξ,η) and the encrypted mes-
sage E = e(M,K(ξ, η)). Upon reception, node η computes Kη,ξ and combines it
with the helper data h(Kξ,η) to obtain K(ξ, η), as explained in Section 3. Node
η subsequently obtains M by by decrypting and verifying the authenticity of the
received message E.

The fact that the HIMMO scheme can efficiently use long B-bit identifiers
allows us to design further identity-based protocols providing more functionality.
These protocols are built by mapping an input bit string of arbitrary length to a
B-bit HIMMO identifier by means of a collision resistant hash function H. For
instance, we can enable implicit certification and verification of creden-
tials between any pair of entities, as follows.
In a registration phase, a node Ξ that wants to register with the system provides
the trusted party with its set of identifiers, e.g., in the case of a device: type,
manufacturing date, etc. The trusted party can add further parameters for better
node identification, such as the issue date of the keying material and its expira-
tion date. The concatenation of all these identifiers constitutes Credentials(Ξ),
the credentials of Ξ. The trusted party obtains the node’s HIMMO identity as
ξ = H(Credentials(Ξ)). This HIMMO identity is used in the keying material
extraction algorithm to compute the secret keying material Gξ of Ξ. We observe
that Credentials(Ξ) are linked to the secret keying material by means of H(·)
and the keying material extraction algorithm.
In the operational phase, two devices can execute a protocol that allows not
only for direct secure communication of a message M but also for implicit cer-
tification and verification of the credentials of the sender Ξ because the key
generating polynomial assigned to a node is linked to its credentials by means of
H. The protocol builds on the protocol for direct secure sending of a message as
described above. In fact, node Ξ with HIMMO identity ξ uses the above proto-
col to send to the node with HIMMO identity η the message M ′ defined as the

concatenation of ξ,M and Credentials(Ξ). After η has obtained M ′, it verifies
the credentials of Ξ by checking whether ξ = H(Credentials(Ξ)).

If the output size of H(·) is long enough, e.g., 256 bits, and equal to B, then it
is infeasible for an attacker to find any other set of credentials leading to the same
output ξ. The fact that credential verification might be prone to birthday attacks
motivates the choice B = 2b for the relation between identifier and key sizes in
the HIMMO scheme. In this way, the scheme provides an equivalent security
level for credential verification and key generation. The capability for credential
verification enables applications such as the verification of the expiration date of
the credentials (and the keying material) of a node, the verification of the access
roles of the sender node ξ encoded in its credentials, or the capability of using
any bit-string as the identity of the nodes.

The previous protocols have the key escrow capability since the trusted
party keeps the secret root keying material that allows for the generation of
any key in the system. In some settings, we would like to have this capability
shared between several trusted parties to enhance the security of the sys-
tem. HIMMO supports such an extension supporting l different trusted parties
in the following way. The setup algorithm consists of two steps: in a first step,
parameters (b, B,m, α,N) are centrally determined and published; in a second
step, for 1 ≤ j ≤ l, trusted party j independently generates m secret qj,i and the
corresponding m secret symmetric bivariate polynomials R(j,i)(x, y) over Zqj,i .
In the keying material extraction phase, each node ξ securely receives from each

of the l trusted parties a key generating polynomial G
(j)
ξ (y) ∈ ZN [y]. Node η

computes the coefficients of its final key generating polynomial Gξ by adding

the corresponding coefficients of G
(1)
ξ , . . . , G

(l)
ξ , so

Gξ(y) =
〈 l∑
j=1

G
(j)
ξ (y)

〉
N
. (10)

Key generation in the key establishment protocol is done as in HIMMO. Note
that the scheme operates exactly as a scheme with a single trusted party which
generates the m · l root keying material polynomials R(j,i)(x, y) ∈ Zqj,i [x, y] for
1 ≤ i ≤ m, 1 ≤ j ≤ l. Clearly, if j > 1, a single trusted party cannot determine
the key generating polynomial of individual nodes.

8 Conclusions

We have put forth a completely new approach to key predistribution schemes,
avoiding the use of any costly one-way functions (and pairings) in a discrete log
setting. Rather, we have used an approach remotely akin to NTRU, involving an
intricate combination of polynomials evaluated over different “finite rings.” We
believe that this approach is of high potential and may spark further research
into related primitives.

The performance of the HIMMO key agreement protocol is very competitive,
allowing for lightweight implementations needed for applications such as wireless

sensor networks and the Internet of Things. We have also shown that the best
(collusion) attacks currently known are based on lattice-basis reduction, and
that these attacks are bound to fail for the proposed parameter selection using
state-of-the-art algorithms, viz. the LLL algorithm followed by Babai’s nearest
plane algorithm. Future work may address the use of more accurate algorithms
than LLL in the attack.

References

1. Martin Albrecht, Craig Gentry, Shai Halevi, and Jonathan Katz. Attacking Cryp-
tographic Schemes Based on ”Perturbation Polynomials”. In CCS09, Proc. 16th
ACM Conference on computer and communications security, pages 1–10. ACM,
2009.

2. L. Babai. On Lovász lattice reduction and the nearest lattice point problem.
Combinatorica, 6:1–13, 1986.

3. Anja Becker, Nicolas Gama, and Antoine Joux. Solving shortest and closest vec-
tor problems: The decomposition approach. Cryptology ePrint Archive, Report
2013/685, 2013. http://eprint.iacr.org/.

4. R. Blom. An optimal class of symmetric key generation systems. In T. Beth,
N. Cot, and I. Ingemarsson, editors, EUROCRYPT ’84, LNCS 209, pages 335–
338. Springer, 1985.

5. C. Blundo, A. de Santis, A.Herzberg, S. Kutten, U. Vaccaro, and M. Yung. Per-
fectly secure key distribution for dynamic conferences. Information and Computa-
tion, 146:1–23, 1998.

6. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Advances in Cryptology-ASIACRYPT 2013, pages 280–300. Springer,
2013.

7. TU Darmstadt. Welcome to the ideal lattice challenge. Web repository, 2014.
http://www.latticechallenge.org.

8. Régis Dupont and Andreas Enge. Provably secure non-interactive key distribution
based on pairings. Discrete Applied Mathematics, 154(2):270–276, 2006.

9. Eduarda S.V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-
interactive key exchange. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
Public-Key Cryptography PKC 2013, volume 7778 of Lecture Notes in Computer
Science, pages 254–271. Springer Berlin Heidelberg, 2013.

10. Eduarda SV Freire, Dennis Hofheinz, Kenneth G Paterson, and Christoph
Striecks. Programmable hash functions in the multilinear setting. In Advances
in Cryptology–CRYPTO 2013, pages 513–530. Springer, 2013.

11. Oscar Garćıa-Morchón, Domingo Gómez-Pérez, Jaime Gutiérrez, Ronald Rietman,
and Ludo Tolhuizen. The MMO problem. In Proc. ISSAC’14, pages 186–193. ACM,
2014.

12. Rosario Gennaro, Shai Halvei, Hugo Krawczyk, Tal Rabin, Steffen Reidt, and
Stephen D. Wolthusen. Strongly-resilient and non-interactive hierarchical key-
agreement in manets. In ESORICS 2008, volume 5283 of Lecture Notes in Com-
puter Science, pages 49–65. Springer, 2008.

13. Xinyu Lei and Xiaofeng Liao. NTRU-KE: A lattice-based public key exchange
protocol. Cryptology ePrint Archive, Report 2013/718, 2013.

14. T. Matsumoto and H. Imai. On the key predistribution system: a practical solution
to the key distribution problem. In C. Pomerance, editor, Advances in Cryptology
– CRYPTO’87, LNCS 293, pages 185–193. Springer, 1988.

15. Oscar Garćıa Morchon, Ronald Rietman, Igor E. Shparlinski, and Ludo Tolhuizen.
Interpolation and approximation of polynomials in finite fields over a short interval
from noisy values. Experimental mathematics, 23:241–260, 2014.

16. Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm - Survey and
Applications. Information Security and Cryptography. Springer, 2010.

17. Kenneth G Paterson and Sriramkrishnan Srinivasan. On the relations between
non-interactive key distribution, identity-based encryption and trapdoor discrete
log groups. Designs, Codes and Cryptography, 52(2):219–241, 2009.

18. Sage. http://www.sagemath.org.

19. Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on
pairing. In The 2000 Symposium on Cryptography and Information Security, Oki-
nawa, Japan, pages 135–148, 2000.

20. Daniel Stehle. Floating-point lll: Theoretical and practical aspects. In The LLL
Algorithm, Survey and Applications. Springer-Verlag, 2010.

21. W. Zhang, M. Tran, S. Zhu, and G. Cao. A Random Perturbation-based Scheme
for Pairwise Key Establishment in Sensor Networks. In 8th ACM Int. Symp. on
Mobile Ad Hoc Networking and Computing (MobiHoc) 2007, pages 90–99, 2007.

Appendix: validation of HIMMO

As stated in Section 3, the key Kξ,η generated by node ξ for communicating with
node η need not equal Kη,ξ. In this appendix, we validate HIMMO by showing
a relationship between those keys.

Lemma 1 For all integers ξ and η we have that

〈
Gξ(η)

〉
N

=

m∑
i=1

〈
R(i)(ξ, η)

〉
qi

+ λξ(η)N − µξ(η)2b, with

λξ(η) =

m∑
i=1

⌊Ai(ξ, η)

qi

⌋
−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋
and µξ(η) =

m∑
i=1

βi

⌊Ai(ξ, η)

qi

⌋
, where

Ai(ξ, η) =

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk and R

(i)
k (ξ) =

α∑
j=0

R
(i)
j,kξ

j .

Proof. We clearly have that

〈
Gξ(η)

〉
N

=
〈
Hξ(η)

〉
N

where Hξ(η) =

α∑
k=0

m∑
i=1

〈
R

(i)
k (ξ)

〉
qi
ηk.

As a consequence,

Hξ(η) =

m∑
i=1

(〈 α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk
〉
qi

+ qi

⌊ 1

qi

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk
⌋)

.

Using the definition of Ai(ξ, η), we find that

Hξ(η) =

m∑
i=1

〈
R(i)(ξ, η)

〉
qi

+N

m∑
i=1

⌊Ai(ξ, η)

qi

⌋
−

m∑
i=1

(N − qi)
⌊Ai(ξ, η)

qi

⌋
.

As
〈
Hξ(η)

〉
N

= Hξ(η)−N
⌊
Hξ(η)/N

⌋
, and Hξ(η) =

∑m
i=1Ai(ξ, η), we infer that

〈
Hξ(η)

〉
N

=

m∑
i=1

〈
R(i)(ξ, η)

〉
qi

+N

(
m∑
i=1

⌊Ai(ξ, η)

qi

⌋
−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋)
−

m∑
i=1

(N − qi)
⌊Ai(ξ, η)

qi

⌋
. �

Theorem 1 Let 0 ≤ ξ, η ≤ 2B − 1. We have that

Kη,ξ ∈
{〈
Kξ,η + jN

〉
2b

∣∣∣ j ∈ Z, |j| ≤ 2m}.

Proof. Using the notation from Lemma 1, we have

Kξ,η =
〈〈
Gξ(η)

〉
N

〉
2b

=
〈 m∑
i=1

〈
R(i)(ξ, η)

〉
qi

+Nλξ(η)
〉
2b
, and

Kη,ξ =
〈 m∑
i=1

〈
R(i)(η, ξ)

〉
qi

+Nλη(ξ)
〉
2b
.

As each root keying polynomial R(i) is symmetric,

Kξ,η =
〈
Kη,ξ +N(λξ(η)− λη(ξ))

〉
2b
.

We now give an upper bound to the absolute value of λξ(η)− λη(ξ).
By definition, 〈Ai(ξ, η)〉qi = Ai(ξ, η)− qi

⌊
Ai(ξ, η)/qi

⌋
for each i, whence

λξ(η) =

m∑
i=1

Ai(ξ, η)

qi
−

m∑
i=1

〈Ai(ξ, η)〉qi
qi

−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋

= λ̃ξ(η)−
m∑
i=1

〈
R(i)(ξ, η)

〉
qi

qi
, where λ̃ξ(η) =

m∑
i=1

Ai(ξ, η)

qi
−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋
.

The symmetry of the root keying polynomials implies that

λξ(η)− λη(ξ) = λ̃ξ(η)− λ̃η(ξ). (11)

We continue with providing upper and lower bounds on λ̃ξ(η).
As bxc ≤ x for all x, and for all i, Ai(ξ, η) ≥ 0 and qi ≤ N , it follows that

λ̃ξ(η) ≥ 0.
We clearly have that

λ̃ξ(η) ≤
m∑
i=1

Ai(ξ, η)

qi
+
(

1− 1

N

m∑
i=1

Ai(ξ, η)
)

= 1 +

m∑
i=1

N − qi
Nqi

Ai(ξ, η).

Moreover, for each i we have that

Ai(ξ, η) =

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk ≤

α∑
k=0

(qi − 1)ηk ≤ (qi − 1)

α∑
k=0

(2B − 1)k

< qi

α∑
k=0

(
α

k

)
(2B − 1)k = qi2

αB .

We conclude that 0 ≤ λ′ξ(η) < 1 +
∑m
i=1(N − qi)2αB/N . As 0 ≤ N − qi = βi2

b ≤
2B+b, and N > 2(α+1)B+b−1, we have that

0 ≤ λ′ξ(η) < 1 + 2m.

Of course, the same bounds are valid for λ̃ξ(η). Combining these bounds with
(11), and the fact λξ(η)− λη(ξ) is an integer number, the theorem follows. �

It can be shown that under reasonable conditions, the bound from Theorem 1
cannot be significantly improved.

