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Abstract. Impossible differential cryptanalysis has shown to be a very powerful form of cryptanalysis against
block ciphers. These attacks, even if extensively used, remain not fully understood because of their high
technicality. Indeed, numerous are the applications where mistakes have been discovered or where the attacks
lack optimality. This paper aims in a first step at formalizing and improving this type of attacks and in
a second step at applying our work to block ciphers based on the Feistel construction. In this context, we
derive generic complexity analysis formulas for mounting such attacks and develop new ideas for optimizing
impossible differential cryptanalysis. These ideas include for example the testing of parts of the internal state
for reducing the number of involved key bits. We also develop in a more general way the concept of using
multiple differential paths, an idea introduced before in a more restrained context. These advances lead to the
improvement of previous attacks against well known ciphers such as CLEFIA-128 and Camellia, while also to
new attacks against 23-round LBlock and all members of the Simon family.
Keywords. block ciphers, impossible differential attacks, CLEFIA, Camellia, LBlock, Simon.

1 Introduction

Impossible differential attacks were independently introduced by Knudsen [22] and Biham et al. [7]. Unlike
differential attacks [8] that exploit differential paths of high probability, the aim of impossible differential
cryptanalysis is to use differentials that have a probability of zero to occur in order to eliminate the key
candidates leading to such impossible differentials.

The first step in an impossible differential attack is to find an impossible differential covering the
maximum number of rounds. This is a procedure that has been extensively studied and there exist
algorithms for finding such impossible differentials efficiently [21, 20, 12]. Once such a maximum-length
impossible differential has been found and placed, one extends it by some rounds to both directions. After
this, if a candidate key partially encrypts/decrypts a given pair to the impossible differential, then this
key certainly cannot be the right one and is thus rejected. This technique provides a sieving of the key
space and the remaining candidates can be tested by exhaustive search.

Despite the fact that impossible differential cryptanalysis has been extensively employed, the key
sieving step of the attack does not seem yet fully understood. Indeed, this part of the procedure is
highly technical and many parameters have to be taken into consideration. Questions that naturally arise
concern the way to choose the plaintext/ciphertext pairs, the way to calculate the necessary data to
mount the attack, the time complexity of the overall procedure as well as which are the parameters that
optimize the attack. However, no simple and generalized way for answering these questions has been
provided until now and the generality of most of the published attacks is lost within the tedious details
of each application. The problems that arise from this approach is that mistakes become very common
and attacks become difficult to verify. Errors in the analysis are often discovered and as we demonstrate
in the next paragraph, many papers in the literature present flaws. These flaws include errors in the
computation of the time or the data complexity, in the analysis of the memory requirements or of the
complexity of some intermediate steps of the attacks. We can cite many such cases for different algorithms,
as shown in Table 1. Note however, that the list of flaws presented in this table is not exhaustive.
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Algorithm # rounds Reference Type of error Gravity of error Where discovered

CLEFIA-128 14 [40] data complexity higher attack does not work [32]
(without whit. layers) than codebook

CLEFIA-128 13 [33] cannot be verified - [10]
without implementation

Camellia 12 [38] big flaw in computation attack does not work this paper
(without FL/FL−1 layers) as in [37]

Camellia-128 12 [37] big flaw in computation attack does not work [26]

Camellia-128/192/256 11/13/14 [24] small complexity flaws corrected attacks work [38]
(without FL/FL−1 layers)

LBlock 22 [27] small complexity flaw corrected attack works [28]

Simon (all versions) 14/15/15/16/16/ [4] data complexity higher attacks do not work Table 1 of [4]
19/19/22/22/22 than codebook

Simon (all versions) 13/15/17/20/25/ [1, 2] big flaw in computation attacks do not work Appendix A.2
Table 1. Summary of flaws in previous impossible differential attacks on CLEFIA-128, Camellia, LBlock and Simon.

Instances of such flaws can for example be found in analyses of the cipher CLEFIA. CLEFIA is a
lightweight 128-bit block cipher developed by SONY in 2007 [29] and adopted as an international ISO/IEC
29192 standard in lightweight cryptography. This cipher has attracted the attention of many researchers
and numerous attacks have been published so far on reduced round versions [34, 35, 33, 25, 31, 11]. Most
of these attacks rely on impossible differential cryptanalysis. However, as pointed out by the designers of
CLEFIA [30], some of these attacks seem to have flaws, especially in the key filtering phase. We can cite
here a recent paper by Blondeau [10] that challenges the validity of the results in [33], or a claimed attack
on 14 rounds of CLEFIA-128 [40], for which the designers of CLEFIA showed that the necessary data
exceeds the whole codebook [32]. Another extensively analyzed cipher is the ISO/IEC 18033 standard
Camellia, designed by Mitsubishi and NTT [5]. Among the numerous attacks presented against this
cipher, some of the more successful ones rely on impossible differential cryptanalysis [38, 37, 23, 26, 24].
In the same way as for CLEFIA, some of these attacks were detected to have flaws. For instance, the
attack from [37] was shown in [26] to be invalid. We discovered a similar error in the computation that
invalidated the attack of [38]. Also, [38] reveals small flaws in [24]. Errors in impossible differential attacks
were also detected for other ciphers. For example, in a cryptanalysis against the lightweight block cipher
LBlock [27], the time complexity revealed to be incorrectly computed [28]. Another problem can be found
in [4], where the data complexity is higher than the amount of data available in the block cipher Simon,
or in [1, 2], where some parameters are not correctly computed. During our analysis, we equally discovered
problems in some attacks that do not seem to have been pointed out before. In addition to all this, the
more the procedure becomes complicated, the more the approach lacks optimality. To illustrate this lack
of optimality presented in many attacks we can mention a cryptanalysis against 22-round LBlock [19],
that could easily be extended to 23 rounds if a more optimal approach had been used to evaluate the
data and time complexities, as well as an analysis of Camellia [23] which we improve in Section 4.

The above examples clearly show that impossible differential attacks suffer from the lack of a unified
and optimized approach. For this reason, the first aim of our paper is to provide a general framework
for dealing with impossible differential attacks. In this direction, we provide new generic formulas for
computing the data, time and memory complexities. These formulas take into account the different
parameters that intervene into the attacks and provide a highly optimized way for mounting them.
Furthermore, we present some new techniques that can be applied in order to reduce the data needed or
to reduce the number of key bits that need to be guessed. In particular we present a new method that
helps reducing the number of key bits to be guessed by testing instead some bits of the internal state
during the sieving phase. This technique has some similarities with the methods introduced in [15, 17],
however important differences exist as both techniques are applied in a completely different context. In
addition to this, we apply and develop the idea of multiple impossible differentials, introduced in [35], to
obtain more data for mounting our attacks. To illustrate the strength of our new approach we consider
Feistel constructions and we apply the above ideas to a number of lightweight block ciphers, namely
CLEFIA, Camellia, LBlock and Simon.



More precisely, we present an attack as well as different time/data trade-offs on 13-round CLEFIA-128
that improve the time and data complexity of the previous best known attack [26] and improvements
in the complexity of the best known attacks against all versions of Camellia [23]. In addition, in order
to demonstrate the generality of our method, we provide the results of our attacks against 23-round
LBlock and all versions of the Simon block cipher. The attack on LBlock is the best attack so far in the
single-key setting 3, while our attacks on Simon are the best known impossible differential attacks for
this family of ciphers and the best attacks in general for the three smaller versions of Simon.

Summary of our attacks. We present here a summary of our results on the block ciphers CLEFIA-128,
Camellia, LBlock and Simon and compare them to the best impossible differential attacks known for
the four analyzed algorithms. This summary is given in Table 2, where we point out with a ‘*’ if the
mentioned attack is the best cryptanalysis result on the target cipher or not, i.e. by the best known
attack we consider any attack reaching the highest number of rounds, and with the best complexities
among them.

Algorithm # Rounds Time Data (CP) Memory (Blocks) Reference

CLEFIA-128 13 2121.2 2117.8 286.8 [25]
using state-test technique 13 2116.90 2116.33 283.33 Section 3

using multiple impossible differentials 13 2122.26 2111.02 282.60 Section 3*
combining with state-test technique 13 2116.16 2114.58 283.16 Section 3*

Camellia-128 11 2122 2122 298 [23]
11 2118.43 2118.4 292.4 Section 4*

Camellia-192 12 2187.2 2123 2155.41 [23]
12 2161.06 2119.7 2150.7 Section 4*

Camellia-256 13 2251.1 2123 2203 [23]
13 2225.06 2119.71 2198.71 Section 4*

Camellia-256† 14 2250.5 2120 2120 [23]
14 2220 2118 2173 Section 4

LBlock 22 279.28 258 272.67 [19]
22 271.53 260 259 Appendix B,[13]
23 275.36 259 274 Appendix B,[13]*

Simon32/64 19 262.56 232 244 Appendix A*

Simon48/72 20 270.69 248 258 Appendix A*

Simon48/96 21 294.73 248 270 Appendix A*

Simon64/96 21 294.56 264 260 Appendix A

Simon64/128 22 2126.56 264 275 Appendix A

Simon96/96 24 294.62 294 261 Appendix A

Simon96/144 25 2190.56 2128 277 Appendix A

Simon128/128 27 2126.6 294 261 Appendix A

Simon128/192 28 2190.56 2128 277 Appendix A

Simon128/256 30 2254.68 2128 2111 Appendix A
Table 2. Summary of the best impossible differential attacks on CLEFIA-128, Camellia, LBlock and Simon and presentation
of our results. The presence of a ‘*’ mentions if the current attack is the best known attack against the target cipher. Note
here that we provide only the best of our results with respect to the time complexity. Other trade-offs can be found in the
following sections. † see Section 4.1 for details.

The rest of the paper is organized as follows. In Section 2 we present a generic methodology for
mounting impossible differential attacks, provide our complexity formulas and show new techniques
and improvements for attacking a Feistel-like block cipher using impossible differential cryptanalysis.
Section 3 is dedicated to the details of our attacks on CLEFIA and Section 4 presents our applications to
all versions of Camellia. Finally, our attacks on the other ciphers can be found in Appendix A and B.

3In [14], an independent and simultaneous result on 23-round LBlock with worse time complexity was proposed.



2 Complexity analysis

We provide in this section a comprehensive complexity analysis of impossible differential attacks against
block ciphers as well as some new ideas that help improving the time and data complexities. We derive
in this direction new generic formulas for the complexity evaluation of such attacks. The role of these
formulas is twofold; on the one hand we aim at clarifying the attack procedure by rendering it as general
as possible and on the other hand help at optimizing the time and data requirements. Establishing generic
formulas should help mounting as well as verifying such attacks by avoiding the use of complicated
procedures often leading to mistakes.

An impossible differential attack consists mainly of two general steps. The first one deals with the
discovery of a maximum-length impossible differential, that is an input difference ∆X and an output
difference ∆Y such that the probability that ∆X propagates after a certain number of rounds, r∆, to
∆Y is zero. The second step, called the key sieving phase, consists in the addition of some rounds to
potentially both directions. These extra added rounds serve to verify which key candidates partially
encrypt (resp. decrypt) data to the impossible differential. As this impossible differential is of probability
zero, keys showing such behavior are clearly not the right encryption key and are thus removed from the
candidate keys space.

We start by introducing the notation that will be used in the rest of the paper. As in this work
we are principally interested in the key sieving phase, we start our attack after a maximum impossible
differential has been found for the target cipher.

The differential (∆X → ∆in) (resp. (∆Y → ∆out)) occurs with probability 1 while the differential
(∆X ← ∆in) (resp. (∆Y ← ∆out)) is verified with probability 1

2cin (resp. 1
2cout ), where cin (resp. cout) is

the number of bit-conditions that have to be verified to obtain ∆X from ∆in (resp. ∆Y from ∆out).
It is important to correctly determine the number of key bits intervening during an attack. We call

this quantity information key bits. In an impossible differential attack, one starts by determining all the
subkey bits that are involved in the attack. We denote by kin the subset of subkey bits involved in the
attack during the first rin rounds, and kout during the last rout ones. However, some of these subkey bits
can be related between them. For example, two different subkey bits can actually be the same bit of the
master key. Alternatively, a bit in the set can be some combination, or can be easily determined by some
other bits of the set. The way that the different key bits in the target set are related is determined by
the key schedule. The actual parameter that we need to determine for computing the complexity of the
attacks is the information key bits intervening in total, that is from an information theoretical point of
view, the log of the entropy of the involved key bits, that we denote by |kin ∪ kout|.

∆X

∆Y

∆in

∆out

rin

rout

r∆

(cin, kin)

(cout, kout)

– ∆X , ∆Y : input (resp. output) differences of the
impossible differential.

– r∆: number of rounds of the impossible differen-
tial.

– ∆in, ∆out: set of all possible input (resp. output)
differences of the cipher.

– rin: number of rounds of the differential
path(∆X , ∆in).

– rout: number of rounds of the differential
path(∆Y , ∆out).

We continue now by describing our attack scenario on (rin + r∆ + rout) rounds of a given cipher.

2.1 Attack scenario

Suppose that we are dealing with a block cipher of block size n parametrized by a key K of size |K|.
Let the impossible differential be placed between the rounds (rin + 1) and (rin + r∆). As already said,
the impossible differential implies that it is not feasible that an input difference ∆X at round (rin + 1)



propagates to an output difference ∆Y at the end of round (rin + r∆). Thus, the goal is, for each given
pair of inputs (and their corresponding outputs), to discard the keys that generate a difference ∆X at
the beginning of round (rin + 1) and at the same time, a difference ∆Y at the output of round (rin + r∆).
We need then enough pairs so that the number of non-discarded keys is significantly lower than the a
priori total number of key candidates.

Suppose that the first rin rounds have an input truncated difference in ∆in and an output difference
∆X , which is the input of the impossible differential. Suppose that there are cin bit-conditions that need
to be verified so that ∆in propagates to ∆X and |kin| information key bits involved.

In a similar way, suppose that the last rout rounds have a truncated output difference in ∆out and
an input difference ∆Y , which is the output of the impossible differential. Suppose that there are cout
bit-conditions that need to be verified so that ∆out propagates to ∆Y in the backward direction and
|kout| information key bits involved.

We show next how to determine the amount of data needed for an attack.

2.2 Data complexity

The probability that for a given key, a pair of inputs already satisfying the differences ∆in and ∆out

verifies all the (cin + cout) bit-conditions is 2−(cin+cout). In other words, this is the probability that for a
pair of inputs having a difference in ∆in and an output difference in ∆out, a key from the possible key
set is discarded. Therefore, by repeating the procedure with N different input (or output) pairs, the
probability that a trial key is kept in the candidate keys set is P = (1− 2−(cin+cout))N .

There is not a unique strategy for choosing the amount of input (or output) pairs N . This choice
principally depends on the overall time complexity, which is influenced by N , and the induced data
complexity. Different trade-offs are therefore possible. A popular strategy, generally used by default is to
choose N such that only the right key is left after the sieving procedure. This amounts to choose P as

P = (1− 2−(cin+cout))N <
1

2|kin∪kout|
.

In this paper we adopt a different approach that can help reducing the number of pairs needed for the
attack and offers better trade-offs between the data and time complexity. More precisely, we permit
smaller values of N . By proceeding like this, we will be probably left with more than one key in our
candidate keys set and we will need to proceed to an exhaustive search among the remaining candidates,
but the total time complexity of the attack will probably be much lower. In practice, we will start
considering values of N such that P is slightly smaller than 1

2 so to reduce the exhaustive search by at
least one bit. The smallest value of N , denoted by Nmin, verifying

P = (1− 2−(cin+cout))Nmin ' e−Nmin×2−(cin+cout)
<

1

2

is approximately Nmin = 2cin+cout . Then we have to choose N ≥ Nmin.

We provide now a solution for determining the cost of obtaining N pairs such that their input
difference belongs to ∆in and their output difference belongs to ∆out. To the best of our knowledge, this
is the first generic solution to this problem.

Finding N pairs verifying a given truncated differential. Gilbert and Peyrin gave in [16] a
solution to the so-called limited birthday problem that searches for a pair of inputs whose difference
lies in an input space ∆in and whose output (ciphertext) difference lies in an output space ∆out (see
Figure 1). According to this solution, prooved in [18], the cost for finding one such pair is given by

C1 = max

{
min

∆∈{∆in,∆out}

{√
2n+1−|∆|

}
, 2n+1−(|∆in|+|∆out|)

}
.
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∆in

n− |∆out|
∆out

|∆in|

n

Fig. 1. A pair of inputs to the encryption function can differ in the subspace ∆in and the difference of the ciphertext values
can lie in the subspace ∆out.

In our attack we search for a solution to a generalization of this problem, i.e. we want to determine
the cost of finding not just one but N pairs lying in the given input and output spaces ∆in and ∆out.
A direct way to treat this problem would be to estimate this cost by N × C1. However, this solution is
not always optimal. In particular, as we will explain in a while, when the input space ∆in is relatively
large, the number of inputs that we will need, which determines the data complexity of the attack and at
the same time the cost for constructing N pairs, can be lower than N × C1. We denote, the number of
necessary inputs as CN , as this quantity corresponds equally to the cost of constructing N pairs.

We can distinguish between two cases, depending on the dimension of the input space, |∆in|, the
dimension of the output space, |∆out| and the value of N . More precisely, the cost for constructing N
pairs will depend on the value of

2|∆in|2|∆in|−1

2n−|∆out|

compared to N . The quantity 2|∆in|2|∆in|−1 corresponds to the number of pairs that can be constructed
if the values in ∆in can take all possible values. On the other hand, the quantity n− |∆out| stands for
the size of the partial collision, as we permit the output of these pairs to vary only in the subspace ∆out.

– If N ≤ 2|∆in|2|∆in|−1

2n−|∆out|
, this means that |∆in| is large enough to allow us to build CN inputs belonging

to the same structure (CN ≤ 2|∆in|). For the sake of clarity, we define a structure, as the set of inputs
that can take all possible values in the subspace ∆in and whose remaining n− |∆in| bits are fixed to

a constant value. Therefore N =
CN · CN/2
2n−|∆out|

, which means that we need CN =
√
N2n−|∆out|+1 inputs.

– Otherwise, if N >
2|∆in|2|∆in|−1

2n−|∆out|
which means that |∆in| is not large enough, we will need to consider

several structures of size 2|∆in|. Let 2y be the number of these extra structures chosen in a way that

N = 2y
2|∆in|2|∆in|−1

2n−|∆out|
. The number of inputs is in this case given by:

CN = 2y2|∆in| = N2n−|∆out|−|∆in|+1.

By taking all of this into account together with the fact that we are dealing with a permutation
(having thus a symmetry in both directions) and by considering the attacker to be able to choose the
ciphertexts as well as the plaintexts, we can conclude that the cost of obtaining the N pairs will be:

CN = max

{
min

∆∈{∆in,∆out}

{√
N2n+1−|∆|

}
, N2n+1−|∆in|−|∆out|

}
. (1)

We can observe thus that we gain a factor of
√
N in the first of the two above cases compared to the

trivial solution of taking CN = N × C1. As we’ve already mentioned the cost CN represents the amount
of data needed for the attack. Obviously, as the size of the state is equal to n, the following inequality,
should hold:

CN ≤ 2n.



This inequality simply states that the total amount of data used for the attack cannot exceed the
codebook. These conditions are not verified in several cases from [4], as well as in the corrected version
of [40] which invalidates the corresponding attacks.

2.3 Time and memory complexity

We are going to detail now the computation of the time complexity of the attack. Note that the formulas
that we are presenting in this section are the first generic formulas given for estimating the complexity of
impossible differential attacks.

By following the early abort technique [24], the attack consists in storing the N pairs and testing
out step by step the key candidates, by reducing at each time the size of the remaining possible pairs.
The time complexity is then determined by three quantities. The first term is the cost CN , that is the
amount of needed data (see Formula (1)) for obtaining the N pairs, where N is such that P < 1/2. The
second term corresponds to the number of candidate keys 2|kin∪kout|, multiplied by the average cost of
testing the remaining pairs. For all the applications that we have studied, this cost can be very closely
approximated by

(
N + 2|kin∪kout| N

2cin+cout

)
C ′E , where C ′E is the ratio of the cost of partial encryption to

the full encryption. Finally, the third term is the cost of the exhaustive search for the key candidates still
in the candidate keys set after the sieving. By taking into account the cost of one encryption CE , we
conclude that the time complexity of the attack is

Tcomp =

(
CN +

(
N + 2|kin∪kout|

N

2cin+cout

)
C ′E + 2|K|P

)
CE , (2)

where CN = max
{

min∆∈{∆in,∆out}
{√

N2n+1−|∆|
}
, N2n+1−|∆in|−|∆out|

}
, with N such that P = (1 −

1/(2cin+cout))N < 1/2 and where the last term corresponds to 2|K|−|kin∪kout|P2|kin∪kout|. Obviously, as
we want the attack complexity to be smaller than the exhaustive search complexity, the above quantity
should be smaller than 2|K|CE .

It must be noted here that this is a minimum estimation of the complexity, that, in practice, and
thanks to the idea of Section 2.4, it approximates really well the actual time complexity, as it can be seen
in the applications, and in particular, in the tight correspondance shown between the LBlock estimation
that we detail in Appendix B and the exact calculation from [13]. The precise evaluation of C ′E (that is
always smaller than 1) can only be done once the attack parameters are known. However, C ′E can be
estimated quite easily by calculating the ratio between the active SBoxes during a partial encryption and
the total number of SBoxes (thought it is not always the best approximation, it is a common practice).

Memory complexity. By using the early abort technique [24], the only elements that need to be stored
are the N pairs. Therefore, the memory complexity 4 of the attack is determined by N .

2.4 Choosing ∆in, ∆out, cin and cout.

We explain now, the two possible ways for choosing ∆in, ∆out, cin and cout. For this, we introduce the
following example that can be visualized in Figure 2 and where we consider an Sbox-based cipher. In this
example, we will only talk about ∆in and cin, however the approach for ∆out and cout is identical.

Suppose that the state is composed of two branches of four nibbles each. The round function is
composed of a non-linear layer S, seen as a concatenation of four Sboxes S0, S1, S2 and S3, followed by a
linear layer M . There exist two different ways for choosing |∆in| and cin:

1. The most intuitive way is to consider |∆in| = 4 + 4 and cin = 4, as the size of α and of β is 4 bits,
and in the first round we want 4 bits to collide. In this case, for a certain key, the average probability
that a pair taken out of the 24+424+4−1 pairs belonging to ∆in leads to ∆X is 2−4.

4If N > 2|kin∪kout| we could store the discarded key candidates instead, but in practice this is rarely the case. We can
therefore consider a memory complexity of min{N, 2|kin∪kout|}.



S M

(α, 0, 0, 0) M(β, 0, 0, 0)
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(α, 0, 0, 0)

∆X

K0

(0, 0, 0, 0)

Fig. 2. Choosing ∆in and cin

2. In general, the difference α can take 24 − 1 different values. However, each value can be associated
by the differential distribution table of the Sbox S0 to 23 output differences on average5, so the
possibilities for the difference β are limited to 23. Therefore, we can consider that |∆in| ≈ 4 + 3. But,
in this case cin = 3, as for each input pair belonging to the 24+324+3−1 possible ones, there exist on
average 2 values that make the differential transition α → β possible (instead of 1 in the previous
case).

We can see, by using the generic formulas provided in Section 2.3, that both cases induce practically
the same time complexity, as the difference in N compensates with the difference in cin+cout. However, the
memory complexity, given by N , is slightly better in case 2. Furthermore, case 2, in which a preliminary
filtering of the pairs is done, allows to reduce the average cost of using the early abort technique [24].

In several papers, for example in [37] and [24], the second case is followed. However, its application is
partial (either for the input or the output part) and this with no apparent reason. Note however, that
in these papers, the associated cout was not always correctly computed and sometimes, 8-bit conditions
were considered when 7-bit conditions should have been accounted for. For reasons of simplicity, we will
consider case 1 in our applications and check afterwards the actual memory needed.

2.5 Using multiple impossible differentials to reduce the data complexity

We explain in this section a method to reduce the data complexity of an attack. This method is inspired
by the notion of multiple impossible differentials that was introduced by Tsunoo et al. [35] and applied
to 12-round CLEFIA-128. The idea in this technique is to consider simultaneously several impossible
differentials, instead of taking just one. We assume, as done in [16], that the differences in ∆in (and in
∆out) lie in a closed set. We can mention two ways in which this can be a priori done:

1. Take rotated versions of a certain impossible differential. We call nin the number of different input
pattern differences generated by the rotated versions of the chosen impossible differential.

2. When the middle conditions have several impossible combinations, we can consider the same first half
of the differential path together with a rotated version of the second one, in a way to get a different
impossible differential. We call nout the number of different output pattern differences generated by
the rotated versions of the second part of the path that we will consider. For the sake of simplicity
and without loss of generality we will only consider the case of rotating the second half of the path.

It is important to point out that for our analysis to be valid, in both cases the number of conditions
associated to the impossible differential attack should stay the same. Both cases can be translated into a
higher amount of available data by redefining two quantities, |∆′in| and |∆′out|, that will take the previous
roles of |∆in| and |∆out|,

|∆′in| = |∆in|+ log2(nin) and |∆′out| = |∆out|+ log2(nout).

|∆′in| is the log of the total size of the set of possible input differences, and |∆′out| is the log of the total
size of the set of possible output differences.

5This quantity depends on the Sbox. In this example, we consider that all four Sboxes have good cryptographic properties.



In this case, the data complexity CN is computed with the corrected values for the input sizes and is,
as can be easily seen, smaller than if only one path had been used. The time complexity remains the
same, except for the CN term. Indeed, the middle term of Formula (2) remains the same, as for a given
pair, the number of key bits involved stays 2|kin∪kout|. Equally, as the number of partial possible keys
involved in the attack is ninnout2

|kin∪kout|, the last term of Formula (2) is now

2|K|

nin · nout2|kin∪kout|
(P · nin · nout · 2|kin∪kout|) = 2|K|P

and so also stays the same.
In Section 3 we present our attacks on CLEFIA. In part of these attacks, we use multiple impossible

differentials to reduce the data complexity. Besides, this technique shows particularly useful for mounting
attacks on some versions of the Simon family for which there is not enough available data to mount a
valid attack with the traditional method.

2.6 Introducing the state-test technique

We introduce now a new method that consists in making a test for some part of the internal state instead
of guessing the necessary key bits for computing it. This somewhat reminds the techniques presented
in [15, 17] in the context of meet-in-the-middle attacks. However, the technique that we present in this
section, and that we call the state-test technique is different since it consists in checking the values of the
internal state to verify if we can discard all the involved candidates.

Very often during the key filtering phase of impossible differential attacks, the size of the internal
state that needs to be known is smaller than the number of key bits on which it depends. As we will see,
focusing on the values that a part of the state can take permits to eliminate some key candidates without
considering all the values for the involved key bits. The state-test technique works by fixing s bits of the
plaintexts, something which allows us to reduce the number of information key bits by s. We will explain
how this method works by a small example.

Consider a 32-bit Feistel construction, where each branch can be seen as a concatenation of four
nibbles (see Figure 3). Suppose that the round function is composed of a non-linear layer S, seen as a
concatenation of four 4-bit invertible Sboxes (S0, S1, S2, S3) and of a linear layer M on F24 . We suppose
for this example that the branch number of M , that is the minimal number of active Sboxes in any two
consecutive rounds, is less than 5. Let ∆X = (α, 0, 0, 0)|(0, 0, 0, 0) be the input difference of the impossible
differential, placed at the end of the second round and let ∆in = (∗, ∗, ∗, 0)|(∗, ∗, ∗, ∗) be the difference at
the input of the block cipher. Note however that in reality, the leftmost side of ∆in only depends on a
4-bit non-zero difference δ, i.e. ∆in = M(δ, 0, 0, 0)|(∗, ∗, ∗, ∗).

As can be seen in Figure 3, there are in total 4 active Sboxes and thus there are cin = 16 conditions
that have to be verified in order to have a transition from ∆in to ∆X . Therefore, the first step is to
collect N pairs such that P = (1 − 2−(cin+cout))N = (1 − 2−cin)N = (1 − 2−16)N < 1

2 . The exact value
of N will be chosen in a way to obtain the best trade-off for the complexities. Before describing the
new method, we start by explaining how this attack would have worked in the classical way. As we can
see in Figure 3, there are 3 × 4 bits that have to be guessed (K0,0, K0,1 and K0,2) in order to verify
the conditions on the first round and there are 2 × 4 bits that have to be guessed (K0,3 and K1,0) in
order to verify the conditions on the second round. Therefore, for all N pairs, one starts by testing all
the 24 possible values for the first nibble of K0. After this first guess, N × 2−4 pairs remain in average,
as there are 4-bit conditions that need to be verified by the guess through the first round. Then one
continues by testing the second and the third nibble of K0 and finally the last nibble of K0 and the
first nibble of K1. At each step, the amount of data remaining is divided by 24. To summarize, we have
|kin ∪ kout| = |kin| = 20 and 2cin+cout = 2cin = 24242424. Then Formula (2) can be used to evaluate the
time complexity of the attack as(

CN +

(
N + 220

N

216

)
C ′E + 220P2|K|−20

)
CE . (3)
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Fig. 3. Grey color stands for nibbles with non-zero difference. Hatched key nibbles correspond to the part of the subkeys
that have to be guessed. The nibble x is the part of the state on which we apply the state-test technique.

We will see now how the state-test technique applies to this example and how it permits to decrease
the time complexity. Consider the first nibble of the left part of the state after the addition of the subkey
K1. We denote this nibble by x. Note that mathematically, x can be expressed as

x = K1,0 ⊕ P1,0 ⊕M(S(K0 ⊕ P0))0

x⊕ P1,0 = K1,0 ⊕m0S0(K0,0 ⊕ P0,0)⊕m1S1(K0,1 ⊕ P0,1)⊕m2S2(K0,2 ⊕ P0,2)⊕m3S3(K0,3 ⊕ P0,3),
(4)

where the mi’s are coefficients in F4
2.

Suppose now that for all pairs, we fix the last s = 4 bits of P0 to the same constant value. One can
verify that this is a reasonable assumption, as by fixing this part of the inputs we still have enough data
to mount the attack. Then one starts as before, by guessing the first three nibbles of K0. After this 12-bit
guess, approximately N × 2−12 pairs remain. We know for each pair the input and output differences of
the Sbox of the second round as the needed part of K0 has been guessed. Therefore, by a simple lookup
at the differential distribution table of the involved Sbox, we obtain one value for x that verifies the
second round conditions in average per pair (about half of the time the transition is not possible, whereas
for the other half we find two values). Equation (4) becomes

x⊕P1,0⊕m0S0(K0,0⊕P0,0)⊕m1S1(K0,1⊕P0,1)⊕m2S2(K0,2⊕P0,2) = K1,0⊕m3S3(K0,3⊕P0,3), (5)

where the left side of Equation (5), that we denote by x′, is known for each pair.
Thus, for each guess of (K0,0,K0,1,K0,2), we construct a table of size N × 2−12, where we store these

values of x′. The last and more important step consists now in looking if all 24 possible values of x′ appear
in the table. Note here, that as N ≥ 216, the size of the table is necessarily greater than or equal to 24.

Since P0,3 is fixed, the only unknown values in Equation (5) are K1,0 and K0,3. If all values for x′

are in the table and since S3 is a permutation, for any choice of K1,0 and any choice of K0,3, there will
always exist (at least) one pair such that K1,0 ⊕m3S3(K0,3 ⊕ P0,3) is in the table, leading thus to the
impossible differential. As a conclusion, we know that if x′ takes all the possible values in the table, we
can remove the keys composed by the guessed value (K0,0,K0,1,K0,3) from the candidate keys set, as for
all the values of (K1,0,K0,3), they would imply the impossible differential. If instead, x′ does not take all
the possible values for a certain value of (K0,0,K0,1,K0,3), we can test this partial key combined to all
the possibilities of the remaining key bits that verify Equation (5) for the missing x′, as they belong to
the remaining key candidates.

The main gain of the state-test technique is that it decreases the number of information key bits and
therefore the time complexity. For instance, in this example, the variable x′ can be seen as 4 information



key bits 6 instead of 2× 4 key bits we had to guess in the classic approach (the bits of K0,3 and of K1,0).
We have s = 4 less bits to guess thanks to the s = 4 bits of the plaintext that we have fixed. Thus the
time complexity in this case becomes(

CN +

(
N + 220−4

N

216

)
C ′E + 220−4P2|K|−(20−4)

)
CE . (6)

One can see now by comparing Equations (6) and (3) that the time complexity is lower with the state-test
technique, than with the trivial method. Indeed, the first and the third term of the Equations (6) and (3)
remain the same, while the second term is lower in Equation (6). Finally, note that the probability P
for a key to be still in the candidate keys set remains the same as before. Indeed, during the attack we
detect all and the same candidate keys for which none of the N pairs implies the impossible differential,
which are the same candidate keys that we would have detected in a classic attack.

We would like to note here that we have implemented the state-test technique on a toy cipher, having
a structure similar to the one that we introduced in this section, and we have verified its correcteness.

Application of the state-test technique in parallel for decreasing the probability P . An issue that could
appear with this technique is that as we have to fix a part of the plaintexts, s bits, the amount of
data available for computing the N pairs is reduced. The probability P associated to an attack is the
probability for a key to remain in the candidate keys set. When the amount of available data is small, the
number of pairs N that we can construct is equally small and thus the probability P is high. In such a
situation, the dominant term of the time complexity (Formula (2)), is in general the third one, i.e. 2|K|P .

More precisely, we need the sum of log2(CN ) and s, the number of plaintext bits that we fix, to be
less than or equal to the block size. This limits the size of N that we can consider, leading to higher
probabilities P , and could lead, sometimes, to higher time complexities. To avoid this, one can repeat
the attack in parallel for several different values, say Y , of the fixed part of the plaintext. In this case,
the data and memory needed are multiplied by Y . On the other hand, repeating the attack in parallel
permits to detect more efficiently if a guessed key could be the right one. Indeed, for a guessed key, only
if none of the tables constructed as described above contains all the values for x′, one can test if this
guessed key is the correct one.

To summarize, by repeating the state-test technique in parallel, we multiply the available data by Y ,
as well as the available pairs, and since the attack is done Y times in parallel, the probability P becomes
P Y . The probability decreases much faster than the data or the other terms of the time complexity
increase. Therefore, the Formula (2) becomes in this case:(

CN × Y +

(
N × Y + 2|kin∪kout|−s

N × Y
2cin+cout

)
C ′E + 2|K|P Y

)
CE . (7)

In Section 3, we are going to see an application of this technique to 13-round CLEFIA-128, and at
the end of Section 4.1 we show an application on Camellia-256.

3 Application to CLEFIA

CLEFIA is a lightweight 128-bit block cipher designed by Shirai et al. in 2007 [29] and based on a
4-branch generalized Feistel network. We provide here a short description of the algorithm specifications.
See [29] for a more complete description.

6Note that we could, equivalently, consider all possible values of x′ in the last step, and consider the associated remaining
pairs table, that would have a size of N2−16 (empty if the key is a good candidate, not empty otherwise), obtaining the
same key candidates of 16 bits, 12 from (K0,0,K0,1,K0,3) and 4 information key bits from x′, with the same complexity as
in the previously described method.



3.1 Description of CLEFIA

Encryption algorithm. Denote by P = P0|P1|P2|P3 a 128-bit plaintext, where each Pi, i = 0, 1, 2, 3, is a
32-bit vector. Denote by C be the corresponding ciphertext. CLEFIA supports keys of size 128, 192 or
256 bits and the total number of iterations, say R, depends on the key size. More precisely, R = 18 for
the 128-bit version, while R = 22 and R = 26 for the two following variants. A key-scheduling algorithm,
whose description we omit, is used to generate 2R round keys RK0, . . . , RK2R−1 and 4 whitening keys
WK0, . . . ,WK3. The encryption is performed as follows:

– P 0
0 |P 0

1 |P 0
2 |P 0

3 = P0|P1 ⊕WK0|P2|P3 ⊕WK1

– For i = 1, 2, . . . , R do
• P i0 = F0(P

i−1
0 , RK2i−2)⊕ P i−11

• P i1 = P i−12

• P i2 = F1(P
i−1
2 , RK2i−1)⊕ P i−13

• P i3 = P i−10

– C = PR0 |PR1 ⊕WK2|PR2 |PR3 ⊕WK3.

F0

P i
0 P i

1 P i
2 P i

3

F1

P i−1
0 P i−1

1 P i−1
2 P i−1

3
RK2i−2 RK2i−1

Fig. 4. A round of CLEFIA.

Round functions F0, F1. Each round of CLEFIA is composed of two 32-bit round functions F0 and
F1 (see Figure 4) that have the same structure. The first step in the function F0 (resp. F1) is an XOR
between the 32-bit subkey RK2i−2 (resp. RK2i−1) and P i−10 (resp. P i−12 ). Then, two 8× 8-bit SBoxes S0
and S1 compose a layer which is applied to the result. Finally, the four obtained bytes are mixed by a
4× 4-byte matrix, M0 (resp. M1) that has a maximal branch number, i.e. 5. A detailed description of the
SBoxes S0, S1 while also the matrices M0, M1 can be found in [29].

We are going to describe now an impossible differential cryptanalysis of 13-round CLEFIA-128.

3.2 Impossible Differential Cryptanalysis of 13-round CLEFIA-128

The authors of [34] noticed that a difference on the internal state of CLEFIA of the form P i = 032|032|032|A
cannot lead to a difference P i+9 = 032|032|B|032 after 9 rounds, where A and B are 4-byte vectors for
which only one byte in a different position is active (e.g. A = (α, 08, 08, 08) and B = (08, β, 08, 08)). We
use this same 9-round impossible differential and place it between rounds 3 and 11. Therefore, for our
attack, rin = rout = 2 and r∆ = 9, as in [25].

RK0

WK0

F0

RK1

WK1

F1

RK2

F0

RK3

F1

RK22

F0 F1

F0 F1

∆in

∆X

∆Y

∆out

x

RK23

RK25RK24

WK2 WK3

Fig. 5. The attack on CLEFIA-128. Grey color stands for bytes with a non-zero difference, while hatched bytes are the
subkey bytes that have to be guessed.

The differential placed on the top and at the bottom of the impossible differential are depicted in
Figure 5. We describe now the parameters for our cryptanalysis of 13-round CLEFIA-128. As can be seen



in Figure 5 there are cin + cout = 40 + 40 bit-conditions that need to be verified so that the difference in
the plaintexts ∆in = 032|(∗8, 08, 08, 08)|M0(∗8, 08, 08, 08)|∗32 propagates to ∆X = 032|032|032|(α, 08, 08, 08)
and the difference in the ciphertexts ∆out = 032|(08, ∗8, 08, 08)|M1(08, ∗8, 08, 08)|∗32 propagates to ∆Y =
032|032|(08, β, 08, 08)|032. In this way, |∆in| = |∆out| = 48.

Following the complexity analysis of Section 2, we need to construct at least Nmin = 280 pairs whose
input difference is in ∆in and whose output difference is in ∆out. The cost to construct these pairs is

CNmin = max
{√

2802129−48, 2802129−48−48
}

= 2113.

Using the state-test technique. We use now the state-test technique, described in Section 2.6 to test the 8
bits of the internal state denoted by x in Figure 5, instead of guessing the whole subkey RK0 and the
XOR of the leftmost byte of RK2 and WK0. For doing this, we need to fix part of the 32 leftmost bits of
the plaintexts. As the number of needed data is CNmin = 2113, we can fix at most 128− 113 = 15 bits.
However, as each Sbox is applied to 8 bits, we will only fix one byte of this part of the plaintexts. We will
guess then 24 bits of the subkey RK0 which are situated on the other bytes.

During a classical attack procedure, we would need to guess 32 bits of RK1, 32 bits of RK0 and 8
bits of RK2 ⊕WK0, thus kin = 72. We would also need to guess 8 bits of RK23 ⊕WK2, 32 bits of RK24

and 32 bits of RK25, therefore kout = 72. However, the subkeys RK1 and RK24 share 22 bits in common.
As a consequence, the number of information key bits would be |kin ∪ kout| = 72 + 72− 22 = 122. As we
will fix 8 bits of the plaintexts, with respect to Section 2 on the state-test technique, it is the same to
say that there will be |kin ∪ kout| − 8 = 122− 8 = 114 bits to test. The time complexity of our attack,
computed using Formula (2) is then(

CN +

(
N + 2114

N

280

)
18

104
+ 2128P

)
CE ,

where the fraction 18/104 is the ratio of the cost of partial encryption to the full encryption, that we
noted C ′E . Since our attack needs at least 2113 plaintexts and since we fixed 8 bits out of them, we have
128− 113− 8 = 7 bits of freedom for building structures. Among all the possible trade-offs with respect
to the amount of data, the best time complexity we obtained is 2116.90CE with 283.33 pairs built from
2116.33 plaintexts.

Using multiple impossible differentials. The authors of [34] noticed that there exist several different
9-round impossible differentials, see [34, Table 1]. In [35], the authors used these multiple impossible
differentials to attack 12 rounds of CLEFIA-128. Here, we will apply our formalized approach of this idea
presented in Section 2.5, to reduce the data complexity of the attack on 13 rounds of CLEFIA-128.

We use the nin = 2 × 4 different inputs to the impossible differentials, that is P i = 032|A|032|032
and P i = 032|032|032|A, where A can take a difference on only one of the four possible bytes. For each
one of them, there are nout = 3 different output impossible differences P i+9 = 032|032|B|032 after 9
rounds, where B has only one byte active in a different position than the active byte in A. We have now
|∆′in| = |∆in|+ log2(8) = 48 + 3 and |∆′out| = |∆out|+ log2(3) = 48 + 1.58. Since the bit-conditions remain
unchanged, cin + cout = 80, the minimal number of pairs needed for the attack to work is Nmin = 280.
For this number of pairs, we need CNmin = 2113−4.58 = 2108.42 plaintexts. The number of information key
bits is |kin ∪ kout| = 122. We have then

(
CN +

(
N + 2122 N

280

)
18
104 + P2128

)
CE . Among all the possible

trade-offs with respect to the amount of data, the best time complexity we obtained is 2122.26CE with
282.6 pairs built from 2111.02 plaintexts. Recall here that the aim of this approach was to reduce data
complexity. Thus, in this attack the gain on the data complexity is the important part7.

Combining the state-test technique with multiple impossible differentials. We can combine now both
previous approaches in order to reduce at the same time the time and the data complexity.

We consider here only 2 out of the 3 different nout presented in the previous paragraph for one fixed
first half of the impossible differential. We have now |∆′out| = |∆out|+log2(2) = 48 + 1 while |∆in| remains

7In [25], the authors used a loose approximation for a partial encryption as C′E = 1/104.



48. Since the bit-conditions remain unchanged, i.e. cin + cout = 80, the minimal number of pairs needed
for the attack to work is Nmin = 280. For this number of pairs, we need CNmin = 2113−1 = 2112 plaintexts
which allow us to fix 16 bits on the plaintexts in order to use the state-test technique. Fixing 16 bits on
the plaintexts means that we only have to guess 16 bits of the subkey RK0.

As we are fixing s = 16 bits of the plaintexts, the number of information key bits is then |kin ∪ kout| =
122− 16 = 106. Then, by combining multiple impossible differentials and the state-test technique we have(

CN +

(
N × 27 + 2106

N × 27

280

)
18

104
+ P2128

)
CE ,

where the second term is multiplied by 27, which is the cost for checking the table combinations of the
different output impossible differentials. If we consider N = 280+3.16 pairs, we need CN = 2115 plaintexts
to construct them and thus the time complexity is 2116.16CE .

4 Applications to Camellia

Camellia is a 128-bit block cipher designed by Aoki et. al. in 2000 [5]. It is a Feistel-like construction where
two key-dependent layers FL and FL−1 are applied every 6 rounds to each branch. There exist three
different versions of the cipher, that we note Camellia-128, Camellia-192 and Camellia-256, depending on
the key size used. The number of iterations, say R, is R = 18 for the 128-bit version and R = 24 rounds
for the other two versions. We give here a brief description of the algorithm specifications. For more
details, one can refer to [5].

4.1 Description of Camellia.

We briefly describe the encryption process for Camellia. A 128-bit plaintext P is first XORed with the
prewhitening key kw1|kw2. The encryption process, is as follows:

– L0|R0 = P ⊕ (kw1|kw2)

– For i = 1, 2, . . . , R and i 6= 6, 12, 18 do
• Lr = Rr−1 ⊕ F (Lr−1, kr) , Rr = LR−1

– For i = 6, 12 and 18 do
• L′r = Rr−1 ⊕ F (LR−1, kr), R′r = Lr−1;
• Lr = FL(L′r, klr/3−1), Rr = FL−1(L′r, klr/3).

– C = (R24|L24)⊕ kw3|kw4, Fig. 6. Round function of Camellia.

where kw3 and kw4 are the two postwhitening keys, klr are the keys parametrizing the FL-layers and
kr are the round subkeys. The round function F can be visualized in Figure 6.

Previous Cryptanalysis. Camellia is since 2005 an international ISO/IEC standard and has therefore
attracted a lot of attention from the cryptographic community. Since Camellia has a particular design,
involving the so-called FL/FL−1 layers, its cryptanalysis can be classified in several categories. Some
attacks consider the FL/FL−1 functions, while others do not take them into consideration. Equally,
some attacks take into account the whitening keys, whereas others don’t and finally all attacks do not
start from the same round. The best attacks on Camellia in terms of the number of rounds and the
complexities are those presented in [23, Section 4.2]. In this section we first present improvements of the
best attacks that include the FL/FL−1 layers and the whitening keys. Next we build an attack using the
state-test technique on 14-round Camellia-256 starting from the first round but without the FL/FL−1

layers and the whitening keys.



Improvements. We improve here the complexities of the previous attacks that take into account the
FL/FL−1 layers and the whitening keys on all three versions of Camellia. By using the complexity
analysis introduced in Section 2, we can optimize the complexities of the corresponding attacks from [23].
Note that we use for this the same parameters as in [23]. The parameters of our attacks on 11-round
Camellia-128, 12-round Camellia-192 and 13-round Camellia-256 are depicted in Table 3. As can be
seen in Table 2, the time complexity of our improved attack on Camellia-128 is 2118.43CE , with data
complexity 2118.4 and memory complexity 292.4. For Camellia-192, the time, data and memory complexities
are 2161.06CE , 2119.7 and 2150.7 respectively, while for Camellia-256 the corresponding complexities are
2225.06CE , 2119.71 and 2198.71.

Algorithm |∆in| |∆out| rin rout r∆ cin cout |kin ∪ kout|
Camellia-128 23 80 1 2 8 32 57 96

Camellia-192 80 80 2 2 8 73 73 160

Camellia-256 80 128 2 3 8 73 121 224
Table 3. Attack parameters against all versions of Camellia

Using the state-test technique on Camellia-256. We provide here an impossible differential attack
on Camellia-256 without FL/FL−1 layers and without whitening keys by using the state-test technique.
Note here, that unlike all previous attacks of this kind that do not start from the first round in order
to take advantage of the key schedule asymmetry, our attack starts from the first round of the cipher.
This attack covers 14 rounds of Camellia-256 which is, based on our knowledge, the highest number
of rounds attacked for this version of the cipher. In [23] another attack on 14 rounds of Camellia-256
without FL/FL−1 and whitening keys is presented, however, as said before, it does not start from the
first round, and it equally uses a specific property of the key schedule in the rounds where it is applied.

In this attack, we consider the same 8-round impossible differential as in [26] and we add 4+2
rounds such that rin = 4, rout = 2 and r∆ = 8. We have |∆in| = 128, |∆out| = 56, cin = 120 and
cout = 48. Then we need at least Nmin = 2168 plaintext pairs for our attack to work. The amount of data

needed to construct these pairs is CNmin = max
{√

21682129−128, 21682129−184
}

= 2113. There remain then

128− 113 = 15 bits of freedom. Thus, we can fix s = 8 bits on the ciphertexts to apply the state-test
technique on the 8 bits of the internal state at the penultimate round. The number of information key
bits is |kin ∪ kout| = 227− 8 = 219 since there are 45 bits shared between the subkeys with respect to the
key schedule of Camellia-256. The best attack is obtained with N = 2118 pairs. In this case, the time
complexity is 2220CE , the data complexity is 2118 plaintexts and the memory is 2118.

5 Conclusion

To start with, we have proposed in this paper a generic vision of impossible differential attacks with the
aim of simplifying and helping the construction and verification of this type of cryptanalysis. Until now,
these attacks were very tedious to mount and even more to verify, and so, very often flaws appeared in
the computations. We believe that our objective has been succesfully reached, as it can be seen by the
high amount of new improved attacks that we have been able to propose, as well as by all the different
possible trade-offs for each one of them, something that would be near to unthinkable prior to our work.

Next, the generic and clear vision of impossible differental attacks has allowed us to discover and
propose new ideas for improving these attacks. In particular, we have proposed the state-test technique,
that allows to reduce the number of key bits involved in the attack, and so to reduce the time complexity.
We have also formalized and adapted to our generic scenario the notion introduced in [35] of multiple
impossible differentials. This option allows reducing the data complexity. Finally, we have proposed
several applications to different variants of the Feistel block ciphers CLEFIA, Camellia, LBlock and
Simon, providing in most of the cases, the best known attack on reduced-round versions of these ciphers.



We hope that these results will simplify and improve future impossible attacks on Feistel ciphers, as
well as their possible combination with other attacks. For instance, in [39] a combination of impossible
differential with linear attacks is proposed. We have not been able to verify these results, but this direction
could be promising.
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A Application to the Simon family of block ciphers

Simon is a family of lightweight block ciphers, optimized for performance on hardware devices, recently
proposed by the NSA [6]. Though its very recent appearance and the fact that nothing is said about its
resistance against cryptanalysis in the description document, several results on reduced versions have
already appeared [4, 2, 3, 9]. We apply here our method on Simon and come out with the best impossible
differential attacks for all versions of the algorithm, as well as with the best known attacks on the smaller
variants.

A.1 Brief description of the Simon family

The Simon family of block ciphers is based on a classical Feistel construction operating on two n-bit
branches. Therefore, the total block size is equal to 2n bits. The round function is composed of very
simple operations consisting of rotations, XORs and the AND operation. More precisely, at each round, a
nonlinear function F : Fn2 → Fn2 transforms the left branch in the following way:

F (Li−1) = ((Li−1 ≪ 8)&(Li−1 ≪ 1))⊕ (Li−1 ≪ 2).

The output of F is then XORed with the round subkey and with the right branch Ri−1 to form the left
input of the next round. The round function is iterated r times, where the exact number of iterations
r depends on the cipher’s version. There exist in total ten members of the Simon family, each one
characterized by different block and key sizes. We denote a member of the Simon family by Simonx/x’,
where x denotes the block size and x’ the key size. All versions can be seen in column 1 of Table 2. For
the key schedule description, we refer to the description document [6].

A.2 Previous cryptanalysis and comparison to our results

Since its recent publication, Simon has received a remarkable amount of analysis from the community. Most
of these works [4, 2, 3, 9] analyze the resistance of the cipher against differential, impossible differential,
linear and rectangle attacks. The best current results are due to differential cryptanalysis [2, 9], while



the number of attacked rounds with impossible differential attacks is much lower for all versions. Also,
proposed impossible differential attacks on Simon present flaws. In [4], the data complexity is too high
for the attack to work, while in [1, 2] the computed cin is not correct, as we can check from our Figure 7,
where the input rounds are the same as in their case, and cin should be 22, instead of 10.

We provide here impossible differential attacks for all members of the Simon family. With these
results we attack, for all versions, much more rounds than the previous best impossible differential attacks.
Furthermore, our attacks constitute the best known cryptanalysis results for the three smaller versions.

A.3 Impossible differential attacks on Simon

We provide here our attacks on the Simon family. As the approach used in our analysis is the same for
all the versions except of Simon96/96 and 128/128, we will only present the details of the attack on
Simon32/64 and give briefly the attack parameters for the other versions.

Without using the improvements of Section 2.5, it would not have been possible to mount impossible
differential attacks on any version of Simon, as the data available from the obtained patterns would not
have been enough. Indeed, for all versions of Simon, it holds that cin = |∆in| and cout = |∆out| implying
that CN ≥ 2n+1 for all N ≥ 2cin+cout . This is why we mount our attacks by rotating the second part of
the impossible differential while keeping the same first part (see Section 2.5) so that another impossibility
in the middle is produced. If we rotate the output pattern by 2 bits (see Table 4), it is possible to generate
a second impossible differential with the same first part of the differential. More precisely, for each version
of Simon, there exist at least two output patterns that give the longest impossible differential for a given
input pattern. Therefore, for all versions |∆′out| = |∆out|+ 1. This method ensures enough data to attack
all versions of the Simon family except for Simon96/96 and 128/128.

In Section A.5 we present an example of how to simultaneously apply both ideas from Section 2.5. This
approach does not change the number of attacked rounds but it permits to improve the data complexity
for all versions and to provide valid attacks against Simon96/96 and 128/128.

Attack on Simon32/64. By following the previous approach we found that the longest impossible
differentials (32 in total) are covering 11 rounds. The impossible differentials that we used for our attack
can be visualized in Table 4. However, we note here, that any other maximum-length differential would
have led to an equivalent attack. This differential was placed between rounds 5 and 16 and extended by
rin = 4 rounds and rout = 4 rounds to both directions. In such a way, the first 19 (= 4 + 11 + 4) rounds of
the cipher were attacked. It can be seen in Figure 7 that the number of bit-conditions is cin + cout = 44,
with cin = cout = 22. We can equally see that |∆in| = 22 and |∆′out| = 23. Determining the number of
information key bits |kin∪kout| in the case of Simon is straightforward. Indeed, in this case, the number of
information key bits is simply the sum of the different subkey bits intervening in the attack. These bits are
marked in blue in Figure 7, from where we can easily verify that |kin∪kout| = 2 ∗ 27 = 54. The complexity
of our attack can be seen in Table 5. Notice that for this attack on Simon32/64, C ′E = 54

16·19 = 2−2.49.

r Left branch Lr Right branch Rr

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 1 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 ∗ ∗ 0 0 0 0 1 ∗ ∗ 0 ∗ 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 1 ∗ 0
8 0 0 0 ∗ ∗ ∗ 0 ∗ 0 1 ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ 0 0 0 0 1 ∗ ∗ 0 ∗
9 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ 0 0 0 ∗ ∗ ∗ 0 ∗ 0 1 ∗ ∗ ∗ ∗ ∗ 0
10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗
10 ∗ 0 1 ∗ ∗ ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ 0 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗
11 0 0 0 0 1 ∗ ∗ 0 ∗ 0 0 0 0 0 ∗ ∗ ∗ 0 1 ∗ ∗ ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ 0
12 ∗ 0 0 0 0 0 1 ∗ 0 0 0 0 0 0 0 0 0 0 0 0 1 ∗ ∗ 0 ∗ 0 0 0 0 0 ∗ ∗
13 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 1 ∗ 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4. Impossible differential for the attack on Simon32/64. 0 denotes a bit without difference, 1 denotes a bit with a
difference, and ∗ denotes a bit for which we do not know whether there is a difference or not.
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Fig. 7. The initial rounds (on the left) and the final rounds (on the right) of the attack on Simon32/64.

A.4 Attacks on the other versions

We used the same strategy to attack the other versions of the Simon family. The results for all versions
except for Simon96/96 and 128/128 are summarized in Table 5.

Simon Simon Simon Simon Simon Simon Simon Simon

32/64 48/72 48/96 64/96 64/128 96/144 128/192 128/256

Rounds 19 20 21 21 22 25 28 30

Time 262.56 270.69 294.73 294.56 2126.56 2142.59 2190.56 2254.68

Data 232 248 248 264 264 296 2128 2128

Memory 244 258 270 260 275 277 277 2111

Table 5. Complexity summary of our attacks on the majority of Simon versions.

A.5 Using multiple impossible differentials for attacking Simon32/64-96/96 and 128/128

Example on Simon32/64. When considering both possibilities from Section 2.5, we can easily find
4 rotated input patterns (by 0,7,8,31 to the left), independent one from another. We can then define
|∆′in| = 22 + log 4 = 24 and |∆′out| = 22 + log 2 = 23. All the remaining parameters stay the same as
in the attack described in Section A.3. The best complexities for the attack are given by considering
N = 245, with CN = 231 and a time complexity of 261.12CE , or by using the whole codebook giving a
time complexity of 258.28CE .

Example on Simon96/96 and 128/128. In the 96/96 case, we consider an attack on 24 rounds
(4+16+4), where we can find 8 independent input patterns generated by rotations of an original one
(by 0,7,8,16,19,25,31,37 to the left). With |∆′in| = 33 and |∆′out| = 31, if we consider N = 261, we



have CN = 294 and a time complexity of 294.62CE . The same can be done with 128/128 and 27 rounds
(4+19+4), obtaining a time complexity of 2126.6CE .

B Application to LBlock

LBlock is a lightweight block cipher designed by Wu and Zhang in 2011 [36]. It is an iterated construction
that can be seen as a variant of a Feistel network. The total number of iterations is equal to 32. The
cipher operates on a 64-bit state and encrypts messages by using a 80-bit key.

We start by providing a short description of the algorithm specifications. For a more complete
description one can refer to [36].

B.1 Description of LBlock

Encryption algorithm. Denote by P = L0|R0 a 64-bit plaintext, where L0 and R0 are 32-bit vectors. The
encryption procedure is as follows.

– For i = 1, 2, . . . , 31 do

• Ri = Li−1

• Li = F (Li−1,Ki)⊕ (Ri−1 ≪ 8).

– L32 = L31

– R32 = F (L31,K32)⊕ (R31 ≪ 8).

– Output the ciphertext C = L32|R32.

<<< 8

Li−1 Ri−1

Li Ri

Ki

S0 S1 S2 S3 S4 S5 S6 S7

Fig. 8. A round of LBlock

Round function F . A round of LBlock is depicted in Figure 8. The round function F can be divided into
three steps. First, the 32-bit subkey Ki is added to Li−1 by a simple XOR. Then, a nonlinear layer applies
to the result. This nonlinear layer consists of the application nibble by nibble of eight different 4-bit
Sboxes S0, . . . , S7. The description of these Sboxes can be found in [36]. Finally, the resulting nibbles are
permuted as seen in Figure 8.

We are going now to describe our attack against 23 rounds of LBlock. To our knowledge, this is so far
the best known attack against this cipher. We will equally present an improved impossible differential
attack of the one published so far on 22 rounds. Here, we show how to build the attack using the generic
attack strategy and the time complexity estimation, and it can be seen in [13] how this generic estimation
perfectly corresponds to the detailed and careful time complexity computation.

B.2 Impossible differential attack on 23 rounds of LBlock

First, we notice that a difference P i = 032|(04, 04, 04, 04, α, 04, 04, 04) cannot lead to a difference P i+14 =
(04, 04, 04, 04, 04, β, 04, 04)|032 after 14 rounds. We set this impossible differential between the rounds 5
and 19 of the cipher. Note that this impossible differential is different from both impossible differentials
used to attack 21 and 22 rounds of LBlock in [19].

We extend this impossible differential by adding rin = 5 rounds to the input and rout = 4 rounds to
the output and attack therefore the 23 first rounds of the cipher. As can be seen in Figure 9, the number
of input bit-conditions is cin = 4× 11 = 44 and the number of output bit-conditions cout = 4× 7 = 28. In
the same way, |∆in| = 12× 4 = 48 and |∆out| = 8× 4 = 32.

As cin + cout = 72, we see that we need at least Nmin = 272 pairs for the attack to work. By trying
different values for N , we found out that the best time complexity is given when choosing N = 274. The
amount of data we need to construct these pairs is

CN = max
{√

274265−48, 274265−48−32
}

= 259.
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Fig. 9. The initial rounds (on the left) and the final rounds (on the right). Different colors stand for the round that these
key bits intervene.

When analyzing the key schedule of LBlock, whose detailed description can be found in [36], we
noticed that the amount of information key bits in our attack is |kin ∪ kout| = 73 bits.

We briefly recall in Figure 10 the parameters of our attack on 23 rounds.

∆in (∗0 ∗ 0 ∗ ∗ ∗ 0, ∗ ∗ ∗ ∗ ∗ ∗ ∗0)

∆out (∗ ∗ 0 ∗ ∗ ∗ 00, 0 ∗ ∗0000∗)
∆X (00000000, 0000α000)

∆Y (00000β00, 00000000)

|∆in| |∆out| rin rout r∆ cin cout |kin ∪ kout|
48 32 5 4 14 44 28 73

Fig. 10. Parameters of our impossible differential cryptanalysis of 23-round LBlock.

By using the Formula (2) we compute the time complexity of our 23-round attack on LBlock with
259 chosen plaintexts, to be 275.36CE . The memory complexity, determined by N , is 274. It is important
to point out that this estimated complexity perfectly correspond to the carefully computed one that is
detailed in [13], showing that our time complexity estimation is indeed very tight.

B.3 Improvement of the Impossible Differential Cryptanalysis of 22-round LBlock

The previous best known attack against LBlock was an impossible differential attack on 22 rounds [19],
of time complexity 279.28CE . We show here that it is possible to mount an 22-round attack with an
improved time complexity. More precisely, by applying the formulas of Section 2, we obtain an attack
of data complexity 260, time complexity 271.53CE and memory complexity 259. The parameters of our
attack are depicted in Figure 11.

∆in (∗ ∗ ∗00000, ∗0 ∗ 0 ∗ ∗ ∗ 0)

∆out (∗ ∗ 0 ∗ ∗ ∗ 00, 0 ∗ ∗0000∗)
∆X (00000000, 0000α000)

∆Y (00000β00, 00000000)

|∆in| |∆out| rin rout r∆ cin cout #(kin ∪ kout)
32 32 4 4 14 28 28 71

Fig. 11. Parameters of our impossible differential cryptanalysis of 22 rounds of LBlock.


