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Abstract: Enlightened by the IDEA block cipher, the authors put forward the REESSE3+ 
block cipher (a symmetric key cryptosystem) based on three group arithmetics: addition 
modulo 2 (bit XOR), addition modulo 2 ^ 16, and multiplication modulo 2 ^ 16 + 1. Different 
from IDEA, REESSE3+ uses 128-bit block inputs, a 256-bit key, and a renovative round 
function. The authors describe the REESSE3+ cipher algorithm in the graph, and expound 
the encryption subkeys, encryption operation, decryption subkeys, and decryption operation. 
Further, demonstrate the correctness of the REESSE3+ cipher algorithm, and analyze the 
security of REESSE3+ from three aspects. The measures for assuring the security of 
REESSE3+ cover those for assuring the security of IDEA, and thus, the ability of REESSE3+ 
in resisting differential analysis is at least equivalent to that of IDEA. 
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1  Introduction 

In April 1997, America National Institute of Standard Technology (NIST) began to collect 
symmetrical key cryptosystems for the advanced encryption standard (AES) in the concerned 
countries. NIST required the candidates of the AES algorithm to have faster speed, security 
no less than the triplicate DES, blocks of 128 bits, and a key of 128, 192 or 256 bits. 

Although the IDEA block cipher (a symmetric key cryptosystem) for 64-bit blocks 
announced in 1990 [1][2] does not satisfy the NIST′s requirements, the thought and structure 
of IDEA are still of enlightening effects. 

The REESSE3+ block cipher (a symmetric key cryptosystem) proposed in this paper is the 
extension and renovation of IDEA. The block length is extended to 128 bits from old 64 bits, 
the key length is extended to 256 bits from old 128 bits, the round function is changed greatly, 
and the security inherits all the original good characteristics. Because 26 operations but not 
28 operations are executed in encryption of a 128-bit plaintext block, the encryption speed of 
REESSE3+ is faster than IDEA. 

2  Description of the REESSE3+ Cryptosystem 

2.1  Cipher Algorithm  

The REESSE3+ cryptosystem employs an identical algorithm called a cipher algorithm for 
encryption and decryption and an identical key called a session key for encryption and 
decryption. There are differences between the encryption subkeys and the decryption subkeys, 
but the decryption subkeys can be derived from the encryption subkeys. The cipher algorithm 
consists of 8 rounds of the iteration followed by an output transformation (see Fig. 1). 

Assume that X is a 128-bit plaintext block, which is partitioned into 8 subblocks X1, X2, X3, 
X4, X5, X6, X7, and X8, and every X i as an input is 16 bits long. 

Assume that Y is a related 128-bit ciphertext which consists of 8 subblocks Y1, Y2, Y3, Y4, 
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Y5, Y6, Y7, and Y8, and every Y i as an output is 16 bits long. 
Assume that Z is a 256-bit session key from which the encryption subkeys and decryption 

subkeys are derived, and every Zi
( j)

 is a 16-bit subkey, where 1 ≤ i ≤ 8, 1 ≤ j ≤ 9, and j 
represents a round number. 

In Fig. 1, the operation (a ⊕ b) represents the bitwise XOR of two 16-bit subblocks a and b, 
the operation (a [+] b) represents the addition modulo 216 of two 16-bit subblocks a and b, and 
the operation (a  b) represents the multiplication modulo (216 + 1) of two 16-bit subblocks 
a and b with 0 corresponding to 216 ∈ 216 + 1. 
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Fig.1  REESSE3+ Cipher Structure 

2.2  Explanation of the REESSE3+ Cryptosystem 

2.2.1 Encryption Subkeys 

The leftmost 128 bits of the 256-bit key Z are divided into 8 blocks in sequence, and the 8 
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blocks are assigned directly to the 8 subkeys Z1
(1), Z2

(1), Z3
(1), Z4

(1), Z5
(1), Z6

(1), Z7
(1), and Z8

(1), 
of which each is 16 bits long, and regarded as one key input element of the first round of the 
iteration. When beginning the second round of the iteration, we shift cyclically Z left 25 bits 
(note that 25 = 16 + 9 and 16 × 8 = 256 – 128), partition the leftmost 128 bits of Z into 8 
blocks, and assign these blocks to the next 8 subkeys Z1

(2), Z2
(2), Z3

(2), Z4
(2), Z5

(2), Z6
(2), Z7

(2), 
and Z8

(2). The rest may be deduced in analogy. Thereby, we obtain the 72 subkeys for the 8 
rounds of the iteration and the output transformation as follows: 

    Round   Encryption subkeys 
    1   Z1

(1)  Z2
(1)  Z3

(1)  Z4
(1)  Z5

(1)  Z6
(1)  Z7

(1)  Z8
(1)  

    2   Z1
(2)  Z2

(2)  Z3
(2)  Z4

(2)  Z5
(2)  Z6

(2)  Z7
(2)  Z8

(2)  
    3   Z1

(3)  Z2
(3)  Z3

(3)  Z4
(3)  Z5

(3)  Z6
(3)  Z7

(3)  Z8
(3)  

    4   Z1
(4)  Z2

(4)  Z3
(4)  Z4

(4)  Z5
(4)  Z6

(4)  Z7
(4)  Z8

(4)  
    5   Z1

(5)  Z2
(5)  Z3

(5)  Z4
(5)  Z5

(5)  Z6
(5)  Z7

(5)  Z8
(5)  

    6   Z1
(6)  Z2

(6)  Z3
(6)  Z4

(6)  Z5
(6)  Z6

(6)  Z7
(6)  Z8

(6)  
    7   Z1

(7)  Z2
(7)  Z3

(7)  Z4
(7)  Z5

(7)  Z6
(7)  Z7

(7)  Z8
(7)  

    8   Z1
(8)  Z2

(8)  Z3
(8)  Z4

(8)  Z5
(8)  Z6

(8)  Z7
(8)  Z8

(8) 
    Output Tra  Z1

(9)  Z2
(9)  Z3

(9)  Z4
(9)  Z5

(9)  Z6
(9)  Z7

(9)  Z8
(9). 

2.2.2 Encryption Operation 

At the beginning, the 128-bit plaintext block X is partitioned into 8 16-bit subblocks X1, X2, 
X3, X4, X5, X6, X7, and X8 which are regarded as the input elements of the first round of the 
iteration. 

Every round of the iterations performs three types of operations between the (interim) 
plaintext subblocks and the encryption subkeys: addition mod 216, multiplication mod (216 + 
1), and addition mod 2, namely bitwise XOR. The operation order is described in the next 
section. 

The output elements of each of the previous 7 rounds, where the 2nd subblock and 3rd 
sub-block are exchanged for each other, the 4th subblock and 5th subblock are exchanged for 
each other, and the 6th subblock and 7th subblock are exchanged for each other, are regarded 
as the input elements of the next round. The exchange between some two outputs of Round 8 
is not needed (See Fig.1). 

After finishing the 8 rounds of the iteration, we do an extra output transformation, and then 
acquire 8 output subblocks Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8, which are combined into a 
128-bit ciphertext block Y. 

2.2.3 Decryption Subkeys 

The decryption subkeys are deduced from the encryption subkeys, while the encryption 
subkeys are derived directly from the 256-bit session key Z. In terms of the inverse operation 
rules, the decryption subkeys corresponding to the 8 rounds of the iteration and the output 
transformation are as follows:  

    Round  Decryption subkeys 
    1   Z1

(9) -1  -Z2
(9)  -Z3

(9)  Z4
(9) -1  -Z5

(9)  Z6
(9) -1  Z7

(9) -1  -Z8
(9) 
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    2   Z1
(8) -1  -Z3

(8)  -Z2
(8)  Z5

(8) -1  -Z4
(8)  Z7

(8) -1  Z6
(8) -1  -Z8

(8) 
    3   Z1

(7) −1  -Z3
(7)  -Z2

(7)  Z5
(7) -1  -Z4

(7)  Z7
(7) -1  Z6

(7) -1  -Z8
(7) 

    4   Z1
(6) -1  -Z3

(6)  -Z2
(6)  Z5

(6) -1  -Z4
(6)  Z7

(6) -1  Z6
(6) -1  -Z8

(6) 
    5   Z1

(5) -1  -Z3
(5)  -Z2

(5)  Z5
(5) -1  -Z4

(5)  Z7
(5) -1  Z6

(5) -1  -Z8
(5) 

    6   Z1
(4) -1  -Z3

(4)  -Z2
(4)  Z5

(4) -1  -Z4
(4)  Z7

(4) -1  Z6
(4) -1  -Z8

(4) 
    7   Z1

(3) -1  -Z3
(3)  -Z2

(3)  Z5
(3) -1  -Z4

(3)  Z7
(3) -1  Z6

(3) -1  -Z8
(3) 

    8   Z1
(2) -1  -Z3

(2)  -Z2
(2)  Z5

(2) -1  -Z4
(2)  Z7

(2) -1  Z6
(2) -1  -Z8

(2) 
    Output Tra  Z1

(1) -1  -Z2
(1)  -Z3

(1)  Z4
(1) -1  -Z5

(1)  Z6
(1) -1  Z7

(1) -1  -Z8
(1), 

where Zi
( j) -1 denotes the multiplication inverse of Zi

( j) mod (216 + 1), namely Zi
( j)  Zi

( j) -1 ≡ 
1 (mod 216 + 1), and -Zi

( j) denotes the addition inverse of Zi
( j) mod 216, namely Zi

( j) [+] (-Zi
( j)) 

≡ 0 (mod 216). 
In particular, for multiplication mod (216 + 1), the inverse of 216 is still 216, and because the 

lower 16 bits of 216 are all zero, we use the 16-bit zero subblock to represent 216 or its inverse, 
that is, the multiplication inverse of 0 is still 0. 

2.2.4 Decryption Operation 

Decryption is the reverse operation of encryption.  
The decryption employs the same structure: 8 rounds of the iteration and the output 

transformation as what is illustrated by Fig.1.  
The 128-bit ciphertext block Y and the decryption subkeys are the inputs of the cipher 

algorithm. Refer to the next section for the operation order. 

3  Proof of Correctness of the Cipher Algorithm 

Assume that there is only one round of the iteration before the output transformation. This 
does not influence the correctness of the algorithm because we only need to show that the 
round function is reversible. 

The plaintext subblocks Xi and the subkeys Zi
(1) (i = 1, …, 8) are regarded as inputs, and 

according to Fig. 1, the encryption operation is as follows: 
    (01) A = X1  Z1

(1)        (02) B = X2 [+] Z2
(1)  

    (03) C = X3 [+] Z3
(1)        (04) D = X4  Z4

(1)  
    (05) E = X5 [+] Z5

(1)        (06) F = X6  Z6
(1)  

    (07) G = X7  Z7
(1)        (08) H = X8 [+] Z8

(1)  
    (09) I = A ⊕ C         (10) J = B ⊕ D  
    (11) K = E ⊕ G         (12) L = F ⊕ H  
    (13) M = I  J         (14) N = K [+] M  
    (15) Γ = L  N         (16) P = M [+] Γ  
    (17) Φ = I [+] Γ         (18) Ω = L  P  
    (19) Q = A ⊕ P         (20) R = C ⊕ P  
    (21) S = E ⊕ Ω         (22) T = G ⊕ Ω  
    (23) U = B ⊕ Φ         (24) V = D ⊕ Φ  
    (25) W = F ⊕ Γ         (26) Λ = H ⊕ Γ  

Notice that exchange is not done between some two subblocks of the iteration output. 
The output transformation is as follows:  
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    (01) Y1 = Q  Z1
(2)        (02) Y2 = U [+] Z2

(2)  
    (03) Y3 = R [+] Z3

(2)        (04) Y4 = V  Z4
(2)  

    (05) Y5 = S [+] Z5
(2)        (06) Y6 = W  Z6

(2)  
    (07) Y7 = T  Z7

(2)        (08) Y8 = Λ [+] Z8
(2)  

The decryption operation employs the same algorithm as what is illustrated by Fig 1. The 
ciphertext sub-blocks Yi and the inverses of the subkeys Zi

(2) (i = 1, …, 8) are regarded as 
inputs. According to Fig 1, the decryption operation is as follows: 
    (01) A' = Y1  (Z1

(2))-1 = Q      (02) B' = Y2 [+] (-Z2
(2)) = U 

    (03) C' = Y3 [+] (-Z3
(2)) = R      (04) D' = Y4  (Z4

(2))-1 = V 
    (05) E' = Y5 [+] (-Z5

(2)) = S      (06) F' = Y6  (Z6
(2))-1 = W 

    (07) G' = Y7  (Z7
(2))-1 = T      (08) H' = Y8 [+] (-Z8

(2)) = Λ 
(09) I' = A' ⊕ C' = Q ⊕ R = A ⊕ C = I        
(10) J' = B' ⊕ D' = U ⊕ V = B ⊕ D = J  
(11) K' = E' ⊕ G' = S ⊕ T = E ⊕ G = K          
(12) L' = F' ⊕ H' = W ⊕ Λ = F ⊕ H = L  

    (13) M' = I'  J' = I  J = M       (14) N' = K' [+] M' = K [+] M = N  
    (15) Γ ' = L'  N' = L  N = Γ     (16) P' = M' [+] Γ ' = M [+] Γ = P  
    (17) Φ' = I' [+] Γ ' = I [+] Γ = Φ     (18) Ω' = L'  P' = L  P = Ω 
    (19) Q' = A' ⊕ P' = Q ⊕ P = A ⊕ P ⊕ P = A 
    (20) R' = C' ⊕ P' = R ⊕ P = C ⊕ P ⊕ P = C  
    (21) S' = E' ⊕ Ω' = S ⊕ Ω = E ⊕ Ω ⊕ Ω = E  
    (22) T' = G' ⊕ Ω' = T ⊕ Ω = G ⊕ Ω ⊕ Ω = G  
    (23) U' = B' ⊕ Φ' = U ⊕ Φ = B ⊕ Φ ⊕ Φ = B  
    (24) V' = D' ⊕ Φ' = V ⊕ Φ = D ⊕ Φ ⊕ Φ = D  
    (25) W' = F' ⊕ Γ ' = W ⊕ Γ = F ⊕ Γ ⊕ Γ = F  
    (26) Λ' = H' ⊕ Γ ' = Λ ⊕ Γ = H ⊕ Γ ⊕ Γ = H  
  Notice that exchange is not done between some two subblocks of the iteration output. 
  The output transformation of the decryption operation is as follows: 
    (01) Y1' = Q'  (Z1

(1))-1 = A  (Z1
(1))-1 = X1 

    (02) Y2' = U' [+] (-Z2
(1)) = B [+] (-Z2

(1)) = X2 
    (03) Y3' = R' [+] (-Z3

(1)) = C [+] (-Z3
(1)) = X3 

    (04) Y4' = V'  (Z4
(1))-1 = D  (Z4

(1))-1 = X4 
    (05) Y5' = S' [+] (-Z5

(1)) = E [+] (-Z5
(1)) = X5 

    (06) Y6' = W'  (Z6
(1))-1 = F  (Z6

(1))-1 = X6 
    (07) Y7' = T'  (Z7

(1))-1 = G  (Z7
(1))-1 = X7 

    (08) Y8' = Λ' [+] (-Z8
(1)) = H [+] (-Z8

(1)) = X8 
Through the decryption operation, the original plaintext block X is obtained. Therefore the 

cipher algorithm illustrated by Fig.1 can decrypt a ciphertext correctly. 

4  Analysis of Security of REESSE3+ 

4.1  Inheriting the Some Characteristic of IDEA in Security 

The design of the REESSE3+ complies with the principle of “confusion” and “diffusion”, 
and inherits the some characteristic of IDEA in security [3]. 
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The confusion is implemented through the mixing operations over the three different 
groups of which any two cannot construct a field due to the inconsistency of the sets or the 
dissatisfaction of the distribution law. The diffusion is implemented through the extended 
Multiplication-Addition structure which makes the output of every operator be regarded as 
the input of another distinct operator, and each of output subblocks be involved in every 
input subblock and every subkey [2]. Besides, the exchange of output subblock 4 and 5 
makes the mutual infiltration of the leftmost 64 bits and the rightmost 64 bits faster. 

Hence, the ability of REESSE3+ in resisting differential analysis [4] is at least equivalent 
to that of IDEA. 

4.2  More Complex Round Function  

The round function of REESSE3+ contains seven modular multiplications and seven 
modular additions, and it is more complex than that of IDEA.  

The more complex the round function is, the more expeditious diffusion of the bits in a 
block is, the more irregular confusion of the bits is, and the more ineffective the differential 
analysis method is [4][5]. 

4.3  More Extensive Variation Range 

The confusion and diffusion in REESSE3+ are made within the range of 128 bits instead of 
the old range of 64 bits.  

As a result of extending the range, the round trail of the iteration will be diluted. Therefore, 
differential analysis approach will become more ineffective [6]. 

5  Conclusions 

The block length of 128 bits will be securer and fitter for the future trends and the 
interfaces of the most application systems. 

For encrypting 128-bit plaintext block, the IDEA algorithm needs to be called two times, 
and contains 28 operations in all while the REESSE3+ algorithm needs to be called only one 
time, and contains 26 operations. Thus, the latter saves one multiplication and one addition, 
and is faster than the former. 

The round function of REESSE3+ is some more complex, but realizing the round function 
with hardware or software is still convenient. 

Obviously, if we change the arrangement sequence of the operators “ ” and “[+]” at the 
two terminals of Fig.1, then the correctness of the algorithm will be not influenced, but the 
security of the algorithm will probably be influenced, increased or decreased.  

Interested readers may make a deep comparison analysis of the security of the REESSE3+ 
cryptosystem. 
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