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Abstract: Enlightened by the IDEA block cipher, the authors put forward a symmetric key 
cryptosystem called REESSE3+ based on three group arithmetics: addition modulo 2 (bit 
XOR), addition modulo 2 ^ 16, and multiplication modulo 2 ^ 16 + 1. Different from IDEA, 
REESSE3+ uses a 128-bit block, a 256-bit key, and a renovative round function. The authors 
describe the REESSE3+ cipher algorithm in the graph, and expound the encryption subkeys, 
encryption operation, decryption subkeys, and decryption operation. Further, demonstrate the 
correctness of the REESSE3+ cipher algorithm, and analyze the security of REESSE3+ from 
four aspects. The measures for assuring the security of REESSE3+ cover those for assuring 
the security of IDEA, which indicates that the ability of REESSE3+ in resisting differential 
cryptanalysis should be at least equivalent to that of IDEA. Moreover, experiments show that 
a mini-version of REESSE3+ is immune to differential cryptanalysis, thus it may be expected 
that REESSE3+ is secure against differential attack after 8 rounds. 

Keywords: Block cipher algorithm; Symmetric key; Round function; Group arithmetic; 
Security; Markov cipher 

1  Introduction 

In April 1997, America National Institute of Standard Technology (NIST) began to collect 

symmetrical key cryptosystems for the advanced encryption standard (AES) in the concerned 

countries. NIST required the candidates of the AES algorithm to have faster speed, security 

no less than that of the triplicate DES, blocks of 128 bits, and a key of 128, 192 or 256 bits. It 

is well known that the several schemes were submitted to NIST.  

Although the IDEA block cipher (a symmetric key cryptosystem) for 64-bit plaintext block 

encryption announced in 1990 [1][2] does not satisfy the NIST′s requirements, the thought 

and structure of IDEA is still enlightening cryptographic researchers. 

An opportune block cipher called REESSE3+ is proposed in this paper. It is the extension 

and renovation of IDEA. The block length of REESSE3+ is 128 bits being double that of 

IDEA, the key length of REESSE3+ is 256 bits being also double that of IDEA, the round 

function of REESSE3+ has 26 operations individually in three groups, and the security of 

REESSE3+ inherits all the good characteristics of IDEA. The 16 rounds of iteration will be 

needed in the renovated cipher. 

2  Description of the Renovated Cryptosystem 

2.1  Cipher Algorithm 

The renovated block cipher is a symmetric key cryptosystem, and it employs one single 

algorithm called a cipher algorithm for encryption and decryption as well as one key called a 

session key for encryption and decryption. There are differences between the encryption 
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subkeys and the decryption subkeys, but the decryption subkeys can be derived from the 

encryption subkeys. The cipher algorithm consists of 8 rounds of the iteration followed by an 

output transformation (see Fig. 1). 

Assume that X is a 128-bit plaintext block which is partitioned into 8 subblocks X1, X2, X3, 

X4, X5, X6, X7, and X8. Every Xi as an input is 16 bits long. 

Assume that Y is a related 128-bit ciphertext block which consists of 8 subblocks Y1, Y2, Y3, 

Y4, Y5, Y6, Y7, and Y8. Every Yi as an output is 16 bits long. 

Assume that Z is a 256-bit initial key from which the encryption subkeys or decryption 

subkeys Zi
( j)

s are derived, and every Zi
( j)

 is a 16-bit subkey, where i (1  i  8) represents the 

ordinal number of a subkey, and j (1  j  9) represents the ordinal number of a round. 

In Fig. 1, the operation (a  b) represents the bitwise XOR of two 16-bit subblocks a and b, 

the operation (a [+] b) represents the addition modulo 216 of two 16-bit subblocks a and b, and 

the operation (a  b) represents the multiplication modulo (216 + 1) of two 16-bit subblocks 

a and b with 0 corresponding to 216  216 + 1. 

    X1         X2         X3         X4         X5          X6        X7         X8 

 

  Z1
(1)        Z2

(1)       Z3
(1)         Z4

(1)       Z5
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                 [+]        [+]                [+]                        [+] 
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                                                 [+] 

                                

 

                                 [+]                 

 

                                                              

                       [+] 

 

                                                              

                                                                        

                     

 

 

 

 

 

 

   Z1
(9)       Z2

(9)       Z3
(9)       Z4

(9)        Z5
(9)      Z6

(9)        Z7
(9)        Z8

(9) 

                 [+]        [+]                 [+]                       [+] 

 

 

         Y1         Y2   Y3          Y4         Y5        Y6         Y7      Y8 

 

Fig.1  REESSE3+ Cipher Structure 
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In Fig. 1, the symbol  denotes that two straight lines are not intersectant. 

2.2  Explanation of Encryption and Decryption 

2.2.1 Encryption Subkeys 

The leftmost 128 bits of the 256-bit key Z are divided into 8 blocks in sequence, and the 8 

blocks are assigned directly to the 8 subkeys Z1
(1)

, Z2
(1)

, Z3
(1)

, Z4
(1)

, Z5
(1)

, Z6
(1)

, Z7
(1)

, and Z8
(1)

, 

of which each is 16 bits long, and regarded as one key input element of the first round of the 

iteration. When beginning the second round of the iteration, we shift cyclically Z left 25 bits 

(note that 25 = 16 + 9 and 16  8 = 256 – 128), partition the leftmost 128 bits of Z into 8 

blocks, and assign these blocks to the next 8 subkeys Z1
(2)

, Z2
(2)

, Z3
(2)

, Z4
(2)

, Z5
(2)

, Z6
(2)

, Z7
(2)

, 

and Z8
(2)

. The rest subkeys may be deduced by analogy. Resultantly, we obtain the 72 

subkeys for the 8-round iteration and the output transformation as follows: 

    Round   Encryption subkeys 

    1   Z1
(1)

   Z2
(1)

   Z3
(1)

   Z4
(1)

   Z5
(1)

   Z6
(1)

   Z7
(1)

   Z8
(1)

  

    2   Z1
(2)

   Z2
(2)

   Z3
(2)

   Z4
(2)

   Z5
(2)

   Z6
(2)

   Z7
(2)

   Z8
(2)

  

    3   Z1
(3)

   Z2
(3)

   Z3
(3)

   Z4
(3)

   Z5
(3)

   Z6
(3)

   Z7
(3)

   Z8
(3)

  

    4   Z1
(4)

   Z2
(4)

   Z3
(4)

   Z4
(4)

   Z5
(4)

   Z6
(4)

   Z7
(4)

   Z8
(4)

  

    5   Z1
(5)

   Z2
(5)

   Z3
(5)

   Z4
(5)

   Z5
(5)

   Z6
(5)

   Z7
(5)

   Z8
(5)

  

    6   Z1
(6)

   Z2
(6)

   Z3
(6)

   Z4
(6)

   Z5
(6)

   Z6
(6)

   Z7
(6)

   Z8
(6)

  

    7   Z1
(7)

   Z2
(7)

   Z3
(7)

   Z4
(7)

   Z5
(7)

   Z6
(7)

   Z7
(7)

   Z8
(7)

  

    8   Z1
(8)

   Z2
(8)

   Z3
(8)

   Z4
(8)

   Z5
(8)

   Z6
(8)

   Z7
(8)

   Z8
(8)

 

 Output Tra   Z1
(9)

   Z2
(9)

   Z3
(9)

   Z4
(9)

   Z5
(9)

   Z6
(9)

   Z7
(9)

   Z8
(9)

. 

2.2.2 Encryption Operation 

At the beginning, the 128-bit plaintext block X is partitioned into 8 16-bit subblocks X1, X2, 

X3, X4, X5, X6, X7, and X8 which are regarded as the input elements of the first round of the 

iteration. 

Every round of the iteration performs three types of operations between the plaintext 

subblocks and the encryption subkeys: addition mod 216 denoted by [+], multiplication mod 

(216 + 1) denoted by , and addition mod 2, namely bitwise XOR denoted by . The 

operation order is described in Section 3. 

The output elements of each of the previous 7 rounds, where the 2nd subblock and 3rd 

subblock are exchanged for each other, and the 6th subblock and 7th subblock are exchanged 

for each other, are regarded as the input elements of the next round. The exchange between 

some two output elements of Round 8 is not needed (See Fig.1). 

After finishing the 8-round iteration, we do an extra output transformation, and then 

acquire 8 output subblocks Y1, Y2, Y3, Y4, Y5, Y6, Y7, and Y8, which are joined to a 128-bit 

ciphertext block Y. 

2.2.3 Decryption Subkeys 

The decryption subkeys are deduced from the encryption subkeys while the encryption 

subkeys are derived directly from the 256-bit initial key Z. In terms of the inverse operation 
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rules, the 72 decryption subkeys corresponding to the 8-rounds iteration and the output 

transformation are as follows:  

    Round  Decryption subkeys 

    1   Z1
(9) -1

   -Z2
(9)

  -Z3
(9)

   Z4
(9) -1

   -Z5
(9)

   Z6
(9) -1

   Z7
(9) -1

   -Z8
(9)

 

    2   Z1
(8) -1

   -Z3
(8)

  -Z2
(8)

   Z4
(8) -1

   -Z5
(8)

   Z7
(8) -1

   Z6
(8) -1

   -Z8
(8)

 

    3   Z1
(7) 1

   -Z3
(7)

  -Z2
(7)

   Z4
(7) -1

   -Z5
(7)

   Z7
(7) -1

   Z6
(7) -1

   -Z8
(7)

 

    4   Z1
(6) -1

   -Z3
(6)

  -Z2
(6)

   Z4
(6) -1

   -Z5
(6)

   Z7
(6) -1

   Z6
(6) -1

   -Z8
(6)

 

    5   Z1
(5) -1

   -Z3
(5)

  -Z2
(5)

   Z4
(5) -1

   -Z5
(5)

   Z7
(5) -1

   Z6
(5) -1

   -Z8
(5)

 

    6   Z1
(4) -1

   -Z3
(4)

  -Z2
(4)

   Z4
(4) -1

   -Z5
(4)

   Z7
(4) -1

   Z6
(4) -1

   -Z8
(4)

 

    7   Z1
(3) -1

   -Z3
(3)

  -Z2
(3)

   Z4
(3) -1

   -Z5
(3)

   Z7
(3) -1

   Z6
(3) -1

   -Z8
(3)

 

    8   Z1
(2) -1

   -Z3
(2)

   -Z2
(2)

   Z4
(2) -1

   -Z5
(2)

   Z7
(2) -1

   Z6
(2) -1

   -Z8
(2)

 

    Output Tra  Z1
(1) -1

   -Z2
(1)

   -Z3
(1)

   Z4
(1) -1

   -Z5
(1)

   Z6
(1) -1

   Z7
(1) -1

   -Z8
(1)

, 

where Zi
( j) -1

 denotes the multiplication inverse of Zi
( j)

 mod (216 + 1), namely Zi
( j)

  Zi
( j) -1

  

1 (mod 216 + 1), and -Zi
( j)

 denotes the addition inverse of Zi
( j)

 mod 216, namely Zi
( j)

 [+] (-Zi
( j)

) 

 0 (mod 216). 

In particular, for multiplication mod (216 + 1), the inverse of 216 is still 216, and because the 

lower 16 bits of 216 are all zero, we use the 16-bit zero subblock to represent 216 or its inverse, 

that is, the multiplication inverse of 0 is still 0. 

2.2.4 Decryption Operation 

Decryption is the reverse operation of encryption.  

The decryption employs the same cipher structure: the 8-round iteration and the output 

transformation as what is illustrated by Fig.1. This cipher structure is just the cipher 

algorithm. 

The 128-bit ciphertext block Y and the decryption subkeys are the inputs of the cipher 

algorithm. Refer to the next section for the operation order. 

3  Proof of Correctness of the Cipher Algorithm 

Assume that there is only one round of the iteration before the output transformation. This 

does not influence the correctness of the algorithm because we only need to show that the 

round function is reversible. 

The plaintext subblocks Xi and the subkeys Zi
(1)

 and Zi
(2)

 (i = 1, , 8) are regarded as 

inputs, and according to Fig. 1, the encryption operation is as follows: 

    (01) A = X1  Z1
(1)

        (02) B = X2 [+] Z2
(1)

  

    (03) C = X3 [+] Z3
(1)

        (04) D = X4  Z4
(1)

  

    (05) E = X5 [+] Z5
(1)

        (06) F = X6  Z6
(1)

  

    (07) G = X7  Z7
(1)

        (08) H = X8 [+] Z8
(1)

  

    (09) I = A  C         (10) J = B  D  

    (11) K = E  G         (12) L = F  H  

    (13) M = I  J         (14) N = K [+] M  

    (15)  = L  N         (16) P = M [+]   

    (17)  = I [+]          (18)  = L  P  

    (19) Q = A  P         (20) R = C  P  
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    (21) S = E           (22) T = G    

    (23) U = B           (24) V = D    

    (25) W = F           (26)  = H    

Notice that exchange is not done between some two subblocks of the iteration output. 

Further, doing the output transformation:  

    (01) Y1 = Q  Z1
(2)

        (02) Y2 = U [+] Z2
(2)

  

    (03) Y3 = R [+] Z3
(2)

        (04) Y4 = V  Z4
(2)

  

    (05) Y5 = S [+] Z5
(2)

        (06) Y6 = W  Z6
(2)

  

    (07) Y7 = T  Z7
(2)

        (08) Y8 =  [+] Z8
(2)

  

The decryption employs the same algorithm as what is illustrated by Fig 1. The ciphertext 

subblocks Yi and the inverses of the subkeys Zi
(2)

 and Zi
(1)

 (i = 1, , 8) are regarded as inputs. 

According to Fig 1, the decryption operation is as follows: 

(01) A' = Y1  (Z1
(2)

)-1 = Q  

(02) B' = Y2 [+] (-Z2
(2)

) = U 

(03) C' = Y3 [+] (-Z3
(2)

) = R 

(04) D' = Y4  (Z4
(2)

)-1 = V 

(05) E' = Y5 [+] (-Z5
(2)

) = S 

(06) F' = Y6  (Z6
(2)

)-1 = W 

(07) G' = Y7  (Z7
(2)

)-1 = T 

(08) H' = Y8 [+] (-Z8
(2)

) =  

(09) I' = A'  C' = Q  R = A  C = I 

(10) J' = B'  D' = U  V = B  D = J  

(11) K' = E'  G' = S  T = E  G = K 

(12) L' = F'  H' = W   = F  H = L 

    (13) M' = I'  J' = I  J = M  

(14) N' = K' [+] M' = K [+] M = N  

(15)  ' = L'  N' = L  N =  

(16) P' = M' [+]  ' = M [+]  = P  

(17) ' = I' [+]  ' = I [+]  =  

(18) ' = L'  P' = L  P =  

    (19) Q' = A'  P' = Q  P = A  P  P = A 

    (20) R' = C'  P' = R  P = C  P  P = C  

    (21) S' = E'  ' = S   = E     = E  

    (22) T' = G'  ' = T   = G     = G  

    (23) U' = B'  ' = U   = B     = B  

    (24) V' = D'  ' = V   = D     = D  

    (25) W' = F'   ' = W   = F     = F  

    (26) ' = H'   ' =    = H     = H  

  Notice that exchange is not done between some two subblocks of the iteration output. 

  Further, doing the output transformation of the decryption operation: 

    (01) Y1' = Q'  (Z1
(1)

)-1 = A  (Z1
(1)

)-1 = X1 

    (02) Y2' = U' [+] (-Z2
(1)

) = B [+] (-Z2
(1)

) = X2 

    (03) Y3' = R' [+] (-Z3
(1)

) = C [+] (-Z3
(1)

) = X3 

    (04) Y4' = V'  (Z4
(1)

)-1 = D  (Z4
(1)

)-1 = X4 
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    (05) Y5' = S' [+] (-Z5
(1)

) = E [+] (-Z5
(1)

) = X5 

    (06) Y6' = W'  (Z6
(1)

)-1 = F  (Z6
(1)

)-1 = X6 

    (07) Y7' = T'  (Z7
(1)

)-1 = G  (Z7
(1)

)-1 = X7 

    (08) Y8' = ' [+] (-Z8
(1)

) = H [+] (-Z8
(1)

) = X8 

Through the decryption operation, the original plaintext block X is obtained. Therefore the 

cipher algorithm illustrated by Fig.1 can decrypt a ciphertext correctly. 

4  Security Analysis of the Renovated Cryptosystem 

4.1  Inheriting the Some Characteristic of IDEA in Security 

The design of the renovated cipher complies with the principle of “confusion” and 

“diffusion”, and inherits the some characteristic of IDEA in security [3]. 

The confusion is implemented through the mixing operations over the three different 

groups of which any two cannot construct a field due to the inconsistency of the sets or the 

dissatisfaction of the distribution law. The diffusion is implemented through the extended 

Multiplication-Addition structure which makes the output of every operator be regarded as 

the input of another distinct operator, and each of output subblocks be involved in every 

input subblock and every subkey [2]. 

Besides, the exchange of the output subblock 2 and 3 as well as the output subblock 6 and 

7 makes the mutual infiltration of the input subblocks and the subkeys faster. 

Therefore, REESSE3+ bears the confusion and diffusion. 

4.2  More Complex Round Function  

In Fig.1, we see that the round function of the renovated cipher contains seven modular 

multiplications, seven modular additions, and twelve XOR operations. Evidently it is more 

complex than that of IDEA. 

The more complex the round function is, then the more expeditious diffusion of the bits in 

a block is, the more irregular confusion of the bits is, and the more ineffective the differential 

analysis method is [4][5]. 

4.3  More Extensive Variation Range 

From Fig.1, it is not difficulty for us to understand that the confusion and diffusion in the 

renovated cipher are performed within the new range of 128 bits instead of the old range of 

64 bits.  

As a result of the range extension, the round trail of the iteration will be diluted, which 

indicates that differential analysis approach will become more futile [6]. 

4.4  Resisting Differential Cryptanalysis 

4.4.1 Surveying from the Improved MA Structure  

There exists the remarkable distinction between REESSE3+ and IDEA, that is, REESSE3+ 

bears an improved MA structure that has no the subkey inputs Z5 and Z6 which are substituted 

with the middle values I and L obtained respectively through the three different group 
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computations (see Fig.2). Even, it may be said that the improved MA structure is similar to the 

S box in the DES cipher [4]. 

 

                            J                 K 

 

              I (Z5)                          [+] 

 

 

                              [+]                                          L (Z6) 

 

                              P                  

Fig.2  Improved MA Structure 

 

Assume that we define an appropriate difference [4], and then we can see that cryptanalysis 

needs a differential distribution table with four 16-bit inputs and two 16-bit outputs, which will 

take about (2(4 * 16))2 = 2128 arithmetic operations. This effort is equivalent to that effort which is 

needed by an exhaustive search attack on REESSE3+. 

The original MA structure has only two 16-bit inputs (for the fixed subkeys Z5 and Z6 do not 

affect analysis) and two 16-bit outputs. We see that it will take roughly (2(2 * 16))2 = 264 arithmetic 

operations which is equivalent to the exhaustive search effort to acquire the corresponding 

differential distribution table. 

4.4.2 Surveying from a Markov Cipher 

According to [7] and [8], the Markov chain technique can be used to analyze the efficacy 

of differential cryptanalysis. If the maximal probability in the involution of a differential 

probability matrix is less than or approximately equal to 1 / 2n, where n is the bit-length of a 

plaintext block, the differential cryptanalysis of a related Markov cipher with sufficiently 

many rounds will be ineffective. 

A Markov cipher is an iterated cipher whose round function makes the differential 

probabilities independent of the choice of one of the component plaintexts under an 

appropriate definition of a difference. Hence, a Markov chain may be formed by the sequence 

of round differentials of a Markov cipher with independent round subkeys [7][8]. 

IDEA is a Markov cipher as DES is [7][8]. Similarly, REESSE3+ is a Markov cipher. A 

differential cryptanalysis of an r-round Markov cipher may be reduced to the analysis of the 

transition probabilities created by its round function [7][8]. The transition probabilities can 

be computed through the involution of a differential probability matrix. 

Because the involution of a differential probability matrix will take great effort, a 

mini-version of a Markov cipher is considered. 

It is not difficulty to understand that the mini-versions of IDEA with block bit-length 8, 16 

and 32 are also Markov ciphers. It is shown that IDEA(8) and IDEA(16) are immune to 

differential cryptanalysis after sufficiently many rounds [7][8].  

Similarly, a mini-version of REESSE3+ with block bit-length 16 is a Markov cipher. Our 

experiments in which the asymmetry, aperiodicity, and completely nonzero columns of the 

related probability matrix are detected show that REESSE3+(16) is immune to differential 
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 8 
 

cryptanalysis after 8 rounds. Further, it may be expected that REESSE3+ is secure against 

differential attacks after 8 rounds. 

5  Conclusions 

The block cipher 128-bit in length will be securer against attacks and fitter for interfaces 

of the future cryptographic applications. 

To encrypt 128-bit plaintext block, the IDEA algorithm needs to be called two times, and 

executes 28 operations in total while the renovated REESSE3+ algorithm needs to be called 

only one time, and executes 26 operations. 

Although the round function of the renovated cipher is some more complex, realizing the 

round function with hardware or software is still convenient. 

Obviously, if we change the arrangement of the operators  and [+] at the two terminals of 

Fig.1 to ( [+] [+]   [+] [+] ) or ([+]   [+] [+]   [+]), then the correctness of the 

algorithm will be not influenced, but the security of the algorithm will probably be 

influenced. Increased, decreased, or intact? 
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