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Abstract. Structure-preserving signatures are a quite recent but important building block for many
cryptographic protocols. In this paper, we introduce a new type of structure-preserving signatures, which
allows to sign group element vectors and to consistently randomize signatures and messages without
knowledge of any secret. More precisely, we consider messages to be (representatives of) equivalence
classes on vectors of group elements (coming from a single prime order group), which are determined by
the mutual ratios of the discrete logarithms of the representative’s vector components. By multiplying
each component with the same scalar, a different representative of the same equivalence class is obtained.
We propose a definition of such a signature scheme, a security model and give an efficient construction,
which we prove secure in the SXDH setting, where EUF-CMA security is proven against generic forgers
in the generic group model and the so called class hiding property is proven under the DDH assumption.

As a second contribution, we use the proposed signature scheme to build an efficient multi-show attribute-
based anonymous credential system (ABC) that allows to encode an arbitrary number of attributes. This
is – to the best of our knowledge – the first ABC system that provides constant-size credentials and
constant-size showings. To allow an efficient construction in combination with the proposed signature
scheme, we also introduce a new, efficient, randomizable polynomial commitment scheme. Aside from
these two building blocks, the credential system requires a very short and constant-size proof of knowledge
to provide freshness in the showing protocol. We present our ABC system along with a suitable security
model and rigorously prove its security.

Keywords: Public key cryptography, structure-preserving signatures, attribute-based anonymous credentials,
polynomial commitments

1 Introduction

Digital signatures are an important cryptographic primitive to provide a means for integrity protection, non-
repudiation as well as authenticity of messages in a publicly verifiable way. In most signature schemes, the
message space consists of integers in Zord(G) for some group G or consists of arbitrary strings encoded either
to integers in Zord(G) or to elements of a group G using a suitable hash function. In the latter case, the
hash function is usually required to be modeled as a random oracle (thus, one signs random group elements).
In contrast, structure-preserving signatures [36,6,1,2,23,5,4] can handle messages which are elements of two
groups G1 and G2 equipped with a bilinear map, without requiring any prior encoding. Basically, in a structure-
preserving signature scheme the public key, the messages and the signatures consist only of group elements and
the verification algorithm evaluates a signature by deciding group membership of elements in the signature
and by evaluating pairing product equations. Such signature schemes typically allow to sign vectors of group
elements (from one of the two groups G1 and G2, or mixed) and also support some types of randomization
(inner, sequential, etc., cf. [1,5]).

Randomization is one interesting feature of signatures, as a given signature can be randomized to another
unlinkable version of the signature for the same message. Besides randomizable structure-preserving signatures,
there are various other constructions of such signature schemes [26,27,20,47]. We emphasize that although these
schemes are randomizable, they are still secure digital signatures in the standard sense (EUF-CMA security).

We are interested in constructions of structure-preserving signature schemes that do not only allow ran-
domization of the signature, but also allow to randomize the signed message in particular ways. Such signature
schemes are particularly interesting for applications in privacy-enhancing cryptographic protocols.

? This is the full version of a paper appearing in the proceedings of ASIACRYPT 2014.



1.1 Contribution

This paper has three contributions: A novel type of structure-preserving signatures defined on equivalence
classes on group element vectors, a novel randomizable polynomial commitment scheme, which allows to open
factors of the polynomial committed to, and a new construction (type) of multi-show attribute-based anony-
mous credentials (ABCs), which is instantiated from the first two contributions.

Structure-Preserving Signature Scheme on Equivalence Classes: Inspired by randomizable signatures,
we introduce a novel variant of structure-preserving signatures. Instead of signing particular message vectors
as in other schemes, the scheme produces signatures on classes of an equivalence relation R defined on (G∗1)`

with ` > 1 (where we use G∗1 to denote G1 \ {0G1
}). More precisely, we consider messages to be (representa-

tives of) equivalence classes on (G∗1)`, which are determined by the mutual ratios of the discrete logarithms
of the representative’s vector components. By multiplying each component with the same scalar, a different
representative of the same equivalence class is obtained. Initially, an equivalence class is signed by signing an
arbitrary representative. Later, one can obtain a valid signature for every other representative of this class,
without having access to the secret key. Furthermore, we require two representatives of the same class with
corresponding signatures to be unlinkable, which we call class hiding. We present a definition of such a signa-
ture scheme along with game based notions of security and present an efficient construction, which produces
short and constant-size signatures that are independent of the message vector length `. We prove the security
of our construction in the generic group model against generic forgers and the DDH assumption, respectively.

Polynomial Commitments with Factor Openings: We propose a new, efficient, randomizable polyno-
mial commitment scheme. It is computationally binding, unconditionally hiding, allows to commit to monic,
reducible polynomials and is represented by an element of a bilinear group. It allows to open factors of com-
mitted polynomials and re-randomization (i.e., multiplication with a scalar) does not change the polynomial
committed to, but requires only a consistent randomization of the witnesses involved in the factor openings.
We present a definition as well as a construction of such a polynomial commitment scheme along with a
security model in which we prove the construction secure.

A Multi-Show Attribute-Based Anonymous Credential (ABC) System: We describe a new way to
build multi-show ABCs (henceforth, we will only write ABCs) as an application of the first two contributions.
From another perspective, the signature scheme allows to consistently randomize a vector of group elements
and its signature. So, it seems natural to use this property to achieve unlinkability during the showings of
an ABC system. To enable a compact attribute representation, which is compatible with the randomization
property of the signature scheme, we encode the attributes to polynomials and commit to them using the
introduced polynomial commitment scheme. During the issuing, the obtainer is, then, given a set of attributes
and the credential, which is a message (vector) consisting of the polynomial commitment and the generator of
the group plus the corresponding signature. During a showing, a subset of the issued attributes can be shown
by opening the corresponding factors of the committed polynomial. The unlinkability of showings is achieved
through the inherent re-randomization properties of the signature scheme and the polynomial commitment
scheme, which are compatible to each other. Furthermore, to provide freshness during a showing, we require
a very small, constant-size proof of knowledge. We emphasize that our approach to construct ABCs is very
different from existing approaches, as we use neither zero-knowledge proofs for proving the possession of a
signature nor for selectively disclosing attributes during showings. Recall that existing approaches rely on
signature schemes that allow to sign vectors of attributes and use efficient zero-knowledge proofs to show
possession of a signature and to prove relations about the signed attributes during a showing.

Interestingly, in our construction the size of credentials as well as the size of the showings are independent
of the number of attributes in the ABC system, i.e., a small, constant number of group elements. This is, to
the best of our knowledge, the first ABC system with this feature. We prove the proposed ABC system secure
in a security model adapted from [25,8,29,30] and, finally, we compare our system to other existing multi- and
one-show ABC approaches. We note that although we are only dealing with multi-show credentials, for the
sake of completeness, we also compare our approach to the one-show (i.e., linkable) anonymous credentials of
Brands [22] (and, thus, also its provably secure generalization [12]).

1.2 Related Work

In [18], Blazy et al. present signatures on randomizable ciphertexts (based on linear encryption [20]) using a
variant of Waters’ signature scheme [47]. Basically, anyone given a signature on a ciphertext can randomize the



ciphertext and adapt the signature accordingly, while maintaining public verifiability and neither knowing the
signing key nor the encrypted message. However, as these signatures only allow to randomize the ciphertexts
and not the underlying plaintexts, this approach is not useful for our purposes.

Another somewhat related approach is the proofless variant of the Chaum-Pedersen signature [34] which is
used to build self-blindable certificates by Verheul in [46]. The resulting so called certificate as well as the initial
message can be randomized using the same scalar, preserving the validity of the certificate. This approach
works for the construction in [46], but it does not represent a secure signature scheme (as also observed in
[46]) due to its homomorphic property and the possibility of efficient existential forgeries.

Homomorphic signatures for network coding [21] allow to sign any subspace of a vector space by producing
a signature for every basis vector with respect to the same (file) identifier. Consequently, the message space
consists of identifiers and vectors. These signatures are homomorphic, meaning that given a sequence of scalar
and signature pairs (βi, σi)

`
i=1 for vectors vi, one can publicly compute a signature for the vector v =

∑`
i=1 βivi

(this is called derive). If one was using a unique identifier per signed vector v, then such linearly homomorphic
signatures would support a functionality similar to the one provided by our scheme, i.e., publicly compute
signatures for vectors v′ = βv (although they are not structure-preserving). It is also known that various
existing constructions, e.g., [21,10] are strong context hiding, meaning that original and derived signatures are
unlinkable. Nevertheless, this does not help in our context, which is due to the following argument: If we do
not restrict every single signed vector to a unique identifier, the signature schemes are homomorphic, which
is not compatible with our unforgeability goal. If we apply this restriction, however, then we are not able to
achieve class hiding as all signatures can be linked to the initial signature by the unique identifier. We note
that the same arguments also apply to structure-preserving linearly homomorphic signatures [43].

The aforementioned context hiding property is also of interest in more general classes of homomorphic (also
called malleable) signature schemes (defined in [7] and refined in [9]). In [32], the authors discuss malleable
signatures that allow to derive a signature σ′ on a message m′ = T (m) for an ”allowable” transformation T ,
when given a signature σ for a message m. This can be considered as a generalization of signature schemes,
such as quotable [10] or redactable signatures [41] with the additional property of being context hiding. The
authors note that for messages being pseudonyms and transformations that transfer one pseudonym into an-
other pseudonym, such malleable signatures can be used to construct anonymous credential systems. They
also demonstrate how to build delegatable anonymous credential systems [15,14]. The general construction in
[32] relies on malleable-ZKPs [31] and is not really efficient, even when instantiated with Groth-Sahai proofs
[39]. Although it is conceptually totally different from our approach, we note that by viewing our scheme
in a different way, our scheme fits into their definition of malleable signatures (such that their SigEval algo-
rithm takes only a single message vector with corresponding signature and a single allowable transformation).
However, firstly, our construction is far more efficient than their approach (and in particular really practical)
and, secondly, [32] only focuses on transformations of single messages (pseudonyms) and does not consider
multi-show attribute-based anonymous credentials at all (which is the main focus of our construction).

Signatures providing randomization features [26,27,20] along with efficient proofs of knowledge of com-
mitted values can be used to generically construct ABC systems. The most prominent approaches based on
Σ-protocols are CL credentials [26,27]. With the advent of Groth-Sahai proofs, which allow (efficient) non-
interactive proofs in the CRS model without random oracles, various constructions of so called delegatable
(hierarchical) anonymous credentials have been proposed [15,14]. These provide per definition a non-interactive
showing protocol, i.e., the show and verify algorithms do not interact when demonstrating the possession of a
credential. In [37], Fuchsbauer presented the first delegatable anonymous credential system that also provides
a non-interactive delegation protocol based on so called commuting signatures and verifiable encryption. We
note that although such credential systems with non-interactive protocols extend the scope of applications of
anonymous credentials, the most common use-case (i.e., authentication and authorization), essentially relies
on interaction (to provide freshness/liveness). We emphasize that our goal is not to construct non-interactive
anonymous credentials. Nevertheless, one could generically convert our proposed system to a non-interactive
one: in the ROM using Fiat-Shamir or by replacing our single Σ-proof for freshness with a Groth-Sahai proof
without random oracles, which is, however, out of scope of this paper.

1.3 Organization

Section 2 discusses preliminaries and Section 3 presents our signature scheme. In Section 4, we propose the
polynomial commitment scheme. Section 5 shows how to build an efficient ABC system from the previously
introduced signature scheme and the previously introduced polynomial commitment scheme. Finally, we discuss
other possible applications of the proposed signature scheme and future work in Section 6.



2 Preliminaries

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime order p, where G1 and G2 are
additive and GT is multiplicative. Let P and P ′ generate G1 and G2, respectively. We call e : G1 ×G2 → GT
bilinear map or pairing if it is efficiently computable and the following conditions hold:

Bilinearity: e(aP, bP ′) = e(P, P ′)ab = e(bP, aP ′) ∀a, b ∈ Zp
Non-degeneracy: e(P, P ′) 6= 1GT

, i.e., e(P, P ′) generates GT .

If G1 = G2, then e is called symmetric (Type-1) and asymmetric (Type-2 or Type-3) otherwise. For Type-2
pairings there is an efficiently computable isomorphism Ψ : G2 → G1, whereas for Type-3 pairings no such
efficient isomorphism is assumed to exist. Note that Type-3 pairings are currently the optimal choice [33], with
respect to efficiency and security trade-off.

Definition 2 (Decisional Diffie Hellman Assumption (DDH)). Let p be a prime of bitlength κ, G be a
group of prime order p generated by P and let (P, aP, bP, cP ) ∈ G4, where a, b, c ∈R Z∗p. Then, for every PPT
adversary A distinguishing between (P, aP, bP, abP ) ∈ G4 and (P, aP, bP, cP ) ∈ G4 is infeasible, i.e., there is
a negligible function ε(·) such that

|Pr [true← A(P, aP, bP, abP )]− Pr [true← A(P, aP, bP, cP )] | ≤ ε(κ).

Definition 3 (Symmetric External Diffie Hellman Assumption (SXDH) [13]). Let G1, G2 and GT
be three distinct cyclic groups of prime order p and e : G1 × G2 → GT be a pairing. Then, the SXDH
assumption states that in both groups G1 and G2 the DDH assumption holds.

Note that the SXDH assumption formalizes Type-3 pairings, i.e., the absence of an efficiently computable
isomorphism between G1 and G2 as well as between G2 and G1.

Definition 4 (Bilinear Group Generator). Let BGGen be a PPT algorithm which takes a security param-
eter κ and generates a bilinear group BG = (p,G1, G2, GT , e, P, P

′) in the SXDH setting, where the common
group order p of the groups G1, G2 and GT is a prime of bitlength κ, e is a pairing and P as well as P ′ are
generators of G1 and G2, respectively.

Definition 5 (t-Strong Diffie Hellman Assumption (t-SDH) [19]). Let p be a prime of bitlength κ, G
be a group of prime order p generated by P ∈ G, α ∈R Z∗p and let (αiP )ti=0 ∈ Gt+1 for some t > 0. Then, for
every PPT adversary A there is a negligible function ε(·) such that

Pr

[(
c,

1

α+ c
P
)
← A((αiP )ti=0)

]
≤ ε(κ) for some c ∈ Zp \ {−α}.

This assumption turns out to be very useful in bilinear groups (Type-1 or Type-2 setting). However, in a
Type-3 setting (SXDH assumption), where the groups G1 and G2 are strictly separated, the presence of a
pairing does not give any additional benefit. This is due to the fact that the problem instance is given either
in G1 or in G2. As our constructions rely on the SXDH assumption, we introduce the following modified
assumption, which can be seen as the natural counterpart for a Type-3 setting [33]:

Definition 6 (co-t-Strong Diffie Hellman Assumption (co-t-SDH∗i )). Let p be a prime of bitlength κ,
G1 and G2 be two groups of prime order p generated by P1 ∈ G1 and P2 ∈ G2, respectively. Let α ∈R Z∗p
and let (αjP1)tj=0 ∈ G

t+1
1 and (αjP2)tj=0 ∈ G

t+1
2 for some t > 0. Then, for every PPT adversary A there is a

negligible function ε(·) such that

Pr

[(
c,

1

α+ c
Pi
)
← A((αjP1)tj=0, (α

jP2)tj=0)

]
≤ ε(κ) for some c ∈ Zp \ {−α}.

Note that for a compact representation, we make a slight abuse of notation, where it should be interpreted
as P1 = P and P2 = P ′. Obviously, we have co-t-SDH∗i ≤p t-SDH in group Gi. The t-SDH assumption was
originally proven to be secure in the generic group model in [19, Theorem 5.1] and further studied in [35]. The
proof is done in a Type-2 pairing setting, where an efficiently computable isomorphism Ψ : G2 → G1 exists.
In the proof, the adversary is given the problem instance in group G2 and is allowed to obtain encodings
of elements in G1 through isomorphism queries. As we are in a Type-3 setting, there is no such efficiently



computable isomorphism. Thus, the problem instance given to the adversary must contain all corresponding
elements in both groups G1 and G2. Then, the generic group model proof for the co-t-SDH∗i assumption can
be done analogously to the proof in [19, proof of Theorem 5.1]. The main difference is that instead of querying
the isomorphism, the adversary must compute the same sequence of computations performed in one group
in the other group, in order to obtain an element containing the same discrete logarithm, which, however,
preserves the asymptotic number of queries.

Finally, note that later on we will use the co-t-SDH∗1 assumption in a static way, as we fix the value t a
priori as a system parameter.

2.1 Proofs of Knowledge

In a proof of knowledge (PoK) [16], we consider a binary relation R = {(y, w) : y ∈ L,w ∈ W (y)}, for which
membership y ∈ L with L = {y : ∃w such that R(y, w) = 1} can be tested in polynomial time (here W (y)
denotes the set of witnesses associated to y). On common input y to a prover and a verifier, the prover with
additional secret input w can convince the verifier that it knows some w ∈W (y), such that (y, w) ∈ R holds and
without disclosing any information about w. An example for this would be RDL = {(Y, x) : Y ∈ G, Y = xP}
for group G = 〈P 〉 of a prime order p. This can be efficiently proven using three-move honest-verifier zero-
knowledge proofs of knowledge (Σ-protocols) with proofs of the form (α, β, γ). We recall the special soundness
property, which states that for two transcripts of the form t = (α, β, γ) and t′ = (α, β′, γ′) such that β 6= β′,
there is a polynomial-time knowledge extractor E that on input (t, t′) outputs w′ such that R(y, w′) = 1. As it
is common, we use the notation of [28] and denote a proof of knowledge of a discrete logarithm x = logP Y as
PoK{α : Y = αP} and a transcript as (KY , c, s), where c is the challenge, KY = kP and s = k + xc mod p.

2.2 Digital Signatures

Definition 7 (Digital Signature Scheme). A digital signature scheme is a tuple (KeyGen,Sign,Verify) of
polynomial time algorithms:

KeyGen(κ): Is a probabilistic algorithm that takes input a security parameter κ ∈ N and outputs a private
key sk and a public key pk (we assume that pk includes a description of the message space M).

Sign(M, sk): Is a (probabilistic) algorithm that takes input a message M ∈M, a secret key sk and outputs a
signature σ.

Verify(M,σ, pk): Is a deterministic algorithm that takes input a message M ∈M, a signature σ, a public key
pk and outputs true if σ is a valid signature for M under pk and false otherwise.

A digital signature scheme is secure, if it is correct and existentially unforgeable under adaptively chosen-
message attacks (EUF-CMA) [38]. We define both properties below:

Definition 8 (Correctness). A digital signature scheme (KeyGen,Sign,Verify) is called correct, if

∀κ > 0 ∀(sk, pk)← KeyGen(κ) ∀M ∈M : Verify(M,Sign(M, sk), pk) = true

Definition 9 (EUF-CMA). A digital signature scheme (KeyGen,Sign,Verify) is called existentially unforge-
able under adaptively chosen-message attacks, if for all PPT algorithms A having access to a signing oracle
O(sk,M) there is a negligible function ε(·) such that:

Pr
[
(sk, pk)← KeyGen(κ), (M∗, σ∗)← AO(sk,·)(pk) : M∗ /∈ Q ∧ Verify(M∗, σ∗, pk) = true

]
≤ ε(κ),

where Q is the set of queries which A has issued to the signing oracle O(sk, ·).

3 Structure-Preserving Signatures on Equivalence Classes

We are looking for an efficient, randomizable structure-preserving signature scheme for vectors with arbitrary
numbers of group elements that allows to randomize messages and signatures consistently in the public. It
seems natural to consider such messages as representatives of certain equivalence classes and to perform
randomization via a change of representatives. Before we can introduce such a signature scheme and give an
efficient construction, we detail these equivalence classes.



All elements of a vector (Mi)
`
i=1 ∈ (G∗1)` (for some prime order group G1, where we write G∗1 for G1\{0G1

})
share different mutual ratios. These ratios depend on their discrete logarithms and are invariant under the
operation γ : Z∗p × (G∗1)` → (G∗1)` with (s, (Mi)

`
i=1) 7→ s(Mi)

`
i=1. Thus, we can use this invariance to partition

the set (G∗1)` into classes using the following equivalence relation:

R = {(M,N) ∈ (G∗1)` × (G∗1)` : ∃s ∈ Z∗p such that N = s ·M} ⊆ (G∗1)2`.

It is easy to verify that R is indeed an equivalence relation given that G1 has prime order. When signing
an equivalence class [M ]R with our scheme, one actually signs an arbitrary representative (Mi)

`
i=1 of class

[M ]R. The scheme, then, allows to choose different representatives and to update corresponding signatures in
the public, i.e., without any secret key. Thereby, one of our goals is to guarantee that two message-signature
pairs on the same equivalence class cannot be linked. Note that such an approach only seems to work for
structure-preserving signature schemes, where we have no direct access to scalars. Otherwise, if we wanted
to sign vectors of elements of Z∗p, the direct access to the scalars would allow us to decide class membership
efficiently. This is also the reason, why we subsequently define the class hiding property with respect to a
random-message instead of a chosen-message attack.

3.1 Defining the Signature Scheme

Now, we formally define a signature scheme for the above equivalence relation and its required security prop-
erties.

Definition 10 (Structure-Preserving Signature Scheme for Equivalence Relation R (SPS-EQ-
R)). An SPS-EQ-R scheme consists of the following polynomial time algorithms:

BGGenR(κ): Is a probabilistic bilinear group generation algorithm, which on input a security parameter κ
outputs a bilinear group BG.

KeyGenR(BG, `): Is a probabilistic algorithm, which on input a bilinear group BG and a vector length ` > 1,
outputs a key pair (sk, pk).

SignR(M, sk): Is a probabilistic algorithm, which on input a representative M of an equivalence class [M ]R
and a secret key sk, outputs a signature σ for the equivalence class [M ]R (using randomness y).

ChgRepR(M,σ, ρ, pk): Is a probabilistic algorithm, which on input a representative M of an equivalence class
[M ]R, the corresponding signature σ, a scalar ρ and a public key pk, returns an updated message-signature
pair (M̂, σ̂) (using randomness ŷ). Here, M̂ is the new representative ρ ·M and σ̂ its updated signature.

VerifyR(M,σ, pk): Is a deterministic algorithm, which given a representative M , a signature σ and a public
key pk, outputs true if σ is a valid signature for the equivalence class [M ]R under pk and false otherwise.

When one does not care about which new representative is chosen, ChgRepR can be seen as consistent random-
ization of a signature and its message using randomizer ρ without invalidating the signature on the equivalence
class. The goal is that the signature resulting from ChgRepR is indistinguishable from a newly issued signature
for the new representative of the same class.

For security, we require the usual correctness property for signature schemes, but instead of single messages
we consider the respective equivalence class and the correctness of ChgRepR. More formally, we require:

Definition 11 (Correctness). An SPS-EQ-R scheme (BGGenR,KeyGenR,SignR,ChgRepR,VerifyR) is called
correct, if for all security parameters κ ∈ N, for all ` > 1, for all bilinear groups BG ← BGGenR(κ), all key
pairs (sk, pk)← KeyGenR(BG, `) and for all M ∈ (G∗1)` it holds that

VerifyR(ChgRepR(M,SignR(M, sk), ρ, pk), pk) = true ∀ρ ∈ Z∗p.

Furthermore, we require a notion of EUF-CMA security. In contrast to the standard definition of EUF-CMA
security, we consider a natural adaption, i.e., outputting a valid message-signature pair, corresponding to an
unqueried equivalence class, is considered to be a forgery.

Definition 12 (EUF-CMA). An SPS-EQ-R scheme (BGGenR,KeyGenR,SignR,ChgRepR,VerifyR) on (G∗1)`

is called existentially unforgeable under adaptively chosen-message attacks, if for all PPT algorithms A having
access to a signing oracle O(sk,M), there is a negligible function ε(·) such that:

Pr

[
BG← BGGenR(κ), (sk, pk)← KeyGenR(BG, `), (M∗, σ∗)← AO(sk,·)(pk) :

[M∗]R 6= [M ]R ∀M ∈ Q ∧ VerifyR(M∗, σ∗, pk) = true

]
≤ ε(κ),

where Q is the set of queries which A has issued to the signing oracle O.



Subsequently, we let Q be a list for keeping track of queried messages M and make use of the following oracles:

ORM (`): A random-message oracle, which on input a message vector length `, picks a message M
R← (G∗1)`,

appends M to Q and returns it.

ORoR(sk, pk, b,M): A real-or-random oracle taking input a bit b and a message M . If M 6∈ Q, it returns ⊥.

On the first valid call, it chooses R
R← (G∗1)`, computes M←

(
(M, SignR(M, sk)), (R,SignR(R, sk))

)
and

returnsM[b]. Any next call for M ′ 6= M will return ⊥ and ChgRepR(M[b], ρ, pk) otherwise, where ρ
R← Z∗p.

Definition 13 (Class Hiding). An SPS-EQ-R scheme (BGGenR,KeyGenR,SignR,ChgRepR,VerifyR) on
(G∗1)` is called class hiding, if for every PPT adversary A with oracle access to ORM and ORoR, there is
a negligible function ε(·) such that

Pr

BG← BGGenR(κ), b
R← {0, 1}, (state, sk, pk)← A(BG, `),

O ← {ORM (`),ORoR(sk, pk, b, ·)}, b∗ ← AO(state, sk, pk) :
b∗ = b

− 1

2
≤ ε(κ).

Here, the adversary is in the role of a signer, who issues signatures on random messages (in the sense of a
random message attack) and can derive signatures for arbitrary representatives of queried classes. Observe
that, if the adversary was able to pick messages on its own, e.g., knows the discrete logarithms of the group
elements or puts identical group elements on different positions of the message vectors, it would trivially be
able to distinguish the classes. Consequently, we define class hiding in a random message attack game and
the random sampling of messages makes the probability of identical message elements at different positions
negligible.

Definition 14 (Security). An SPS-EQ-R scheme (BGGenR,KeyGenR,SignR,ChgRepR,VerifyR) is secure, if
it is correct, EUF-CMA secure and class hiding.

3.2 Our Construction

In our construction, we sign vectors of ` > 1 elements of G∗1, where the public key only consists of elements
in G2 and we require the SXDH assumption to hold. The signature consists of four group elements, where
three elements are from G1 and one element is from G2. Two signature elements (Z1, Z2) are aggregates
of the message vector under ` elements of the private key. In order to prevent an additive homomorphism
on the signatures, we introduce a randomizer y ∈ Z∗p, multiply one aggregate with it and introduce two
additional values Y = yP and Y ′ = yP ′. The latter elements (besides eliminating the homomorphic property)
prevent simple forgeries, where Y ′ contains an aggregation of the public keys X ′, X ′1, . . . , X

′
` in G2. This is

achieved by verifying whether Y and Y ′ contain the same unknown discrete logarithms during verification.
Our construction lets us switch to another representative M̂ = ρM of M by multiplying M and (Z1, Z2) with
the respective scalar ρ. Furthermore, a consistent re-randomization of ρZ2, Y and Y ′ with a scalar ŷ yields a
signature σ̂ for M̂ that is unlinkable to the signature σ of M . In Scheme 1, we present the detailed construction
of the SPS-EQ-R scheme.



BGGenR(κ): Given a security parameter κ, output BG← BGGen(κ).

KeyGenR(BG, `): Given a bilinear group description BG and vector length ` > 1, choose x
R← Z∗p and (xi)

`
i=1

R← (Z∗p)`,
set the secret key as sk← (x, (xi)

`
i=1), compute the public key pk← (X ′, (X ′i)

`
i=1) = (xP ′, (xixP

′)`i=1) and output
(sk, pk).

SignR(M, sk): On input a representative M = (Mi)
`
i=1 ∈ (G∗1)` of equivalence class [M ]R and secret key sk =

(x, (xi)
`
i=1), choose y

R← Z∗p and compute

Z1 ← x
∑̀
i=1

xiMi, Z2 ← y
∑̀
i=1

xiMi and (Y, Y ′)← y · (P, P ′).

Then, output σ = (Z1, Z2, Y, Y
′) as signature for the equivalence class [M ]R.

ChgRepR(M,σ, ρ, pk): On input a representative M = (Mi)
`
i=1 ∈ (G∗1)` of equivalence class [M ]R, the corresponding

signature σ = (Z1, Z2, Y, Y
′), ρ ∈ Z∗p and public key pk, this algorithm picks ŷ

R← Z∗p and returns (M̂, σ̂), where

σ̂ ← (ρZ1, ŷρZ2, ŷY, ŷY
′) is the update of signature σ for the new representative M̂ ← ρ · (Mi)

`
i=1.

VerifyR(M,σ, pk): Given a representative M = (Mi)
`
i=1 ∈ (G∗1)` of equivalence class [M ]R, a signature σ =

(Z1, Z2, Y, Y
′) and public key pk = (X ′, (X ′i)

`
i=1), check whether

∏̀
i=1

e(Mi, X
′
i)

?
= e(Z1, P

′) ∧ e(Z1, Y
′)

?
= e(Z2, X

′) ∧ e(P, Y ′)
?
= e(Y, P ′)

and if this holds output true and false otherwise.

Scheme 1: A Construction of an SPS-EQ-R Scheme

Note that a signature resulting from ChgRepR is indistinguishable from a new signature on the same class
using the new representative (it can be viewed as issuing a signature with randomness y · ŷ).

3.3 Security of Our Construction

In our construction, message vectors are elements of (G∗1)`, public keys are only available in G2 and signatures
are elements of G1 and G2. Furthermore, we rely on the SXDH assumption, and it seems very hard (to
impossible) to analyze the EUF-CMA security of the scheme via a reductionist proof using accepted non-
interactive assumptions. Abe et al. [3] show that for optimally short structure-preserving signatures, i.e.,
three-element signatures, such reductions using non-interactive assumptions cannot exist. But right now it is
not entirely clear, how structure-preserving signatures for equivalence relation R fit into these results and if
the lower bounds from [2] also apply. Independently of this, it appears that a reduction to a (non-interactive)
assumption is not possible, since due to the class hiding property the winning condition cannot be checked
efficiently (without substantially weakening the unforgeability notion). Therefore, we chose to prove the EUF-
CMA security of our construction using a direct proof in the generic group model such as for instance the
proof of Abe et al. [2, Lemma 1].

Now, we state the security of the signature scheme. The proofs will be given in Appendix B.

Theorem 1. The SPS-EQ-R scheme in Scheme 1 is correct.

Theorem 2. In the generic group model for SXDH groups, Scheme 1 is an EUF-CMA secure SPS-EQ-R
scheme.

Theorem 3. If the DDH assumption holds in G1, Scheme 1 is a class hiding SPS-EQ-R scheme.

Taking everything together, we obtain the following corollary:

Corollary 1. The SPS-EQ-R scheme in Scheme 1 is secure.

4 Polynomial Commitments with Factor Openings

In [42], Kate et al. introduced the notion of constant-size polynomial commitments. The authors present
two distinct commitment schemes, where one is computationally hiding (PolyCommitDL) and the other one



is unconditionally hiding (PolyCommitPed). These constructions are very generic, as they allow to construct
witnesses for opening arbitrary evaluations of committed polynomials.

Yet, we emphasize that in practical scenarios (and especially in our constructions) it is often sufficient to
consider the roots of polynomials for encodings and to open factors of the polynomial instead of arbitrary
evaluations. Moreover, we need a polynomial commitment scheme that is easily randomizable. Therefore, we
introduce the subsequent commitment scheme for monic, reducible polynomials. Instead of opening evaluations,
it allows to open factors of committed polynomials. Hence, we call this type of commitment polynomial
commitment with factor openings. Our construction is unconditionally hiding, computationally binding and
more efficient than the Pedersen polynomial commitment construction PolyCommitPed of [42]. Now, we briefly
present this construction, which we denote by PolyCommitFO.

SetupPC(κ, t): It takes input a security parameter κ ∈ N and a maximum polynomial degree t ∈ N. It runs

BG← BGGen(κ), picks α
R← Z∗p and outputs sk← α as well as pp← (BG, (αiP )ti=1, (α

iP ′)ti=1).
CommitPC(pp, f(X)): It takes input the public parameters pp and a monic, reducible polynomial f(X) ∈ Zp[X]

with deg f ≤ t. It picks ρ
R← Z∗p, computes the commitment C ← ρ · f(α)P ∈ G1 and outputs (C, O) with

opening information O ← (ρ, f(X)). 1

OpenPC(pp, C, ρ, f(X)): It takes input the public parameters pp, a polynomial commitment C, the randomizer
ρ used for C and the committed polynomial f(X) and outputs (ρ, f(X)).

VerifyPC(pp, C, ρ, f(X)): It takes input the public parameters pp, a polynomial commitment C, the randomizer
ρ used for C and the committed polynomial f(X). It verifies whether

ρ
?

6= 0 ∧ C ?
= ρ · f(α)P

holds and outputs true on success and false otherwise.
FactorOpenPC(pp, C, f(X), g(X), ρ): It takes input the public parameters pp, a polynomial commitment C,

the committed polynomial f(X), a factor g(X) of f(X) and the randomizer ρ used for C. It computes

h(X)← f(X)
g(X) , the witness Ch ← ρ · h(α)P and outputs (g(X), Ch).

VerifyFactorPC(pp, C, g(X), Ch): It takes input the public parameters pp, a polynomial commitment C to a
polynomial f(X), a polynomial g(X) of positive degree and a corresponding witness Ch. It verifies that
g(X) is a factor of f(X) by checking whether

Ch
?

6= 0G1 ∧ e(Ch, g(α)P ′)
?
= e(C, P ′)

holds. It outputs true on success and false otherwise.

In analogy to the security notion in [42], a polynomial commitment scheme with factor openings is secure if it
is correct, polynomial binding, factor binding, factor sound, witness sound and hiding. The above scheme can
be proven secure under the co-t-SDH∗1 assumption. We introduce a security model and give security proofs in
Appendix A. Note that one can also define a scheme based on the co-t-SDH∗2 assumption with C ∈ G1 and
Ch ∈ G2. Although this would improve the performance of VerifyFactorPC, we define it differently to reduce
the computational complexity of the prover in the ABC system in Section 5.3. Also note that we use the
co-t-SDH∗1 assumption in a static way, as t is a system parameter and fixed a priori. Finally, observe that
sk = α must remain unknown to the committer (and, thus, the setup has to be run by a TTP), since it is a
trapdoor commitment scheme otherwise.

5 Building an ABC System

In this section, we present an application of the signature scheme and the polynomial commitment scheme
introduced in the two previous sections, by using them as basic building blocks for an ABC system. ABC
systems are usually constructed in one of the following two ways. Firstly, they can be built from blind signa-
tures: A user obtains a blind signature from some issuer on (commitments to) attributes and, then, shows the
signature, provides the shown attributes and proves the knowledge of all unrevealed attributes [22,12]. The
drawback of such a blind signature approach is that such credentials can only be shown once in an unlinkable
fashion (one-show). Secondly, anonymous credentials supporting an arbitrary number of unlinkable showings

1 Subsequently, we use f(α)P as short-hand notation for
∑deg f
i=0 fi · αiP even if α is unknown.



(multi-show) can be obtained in a similar vein using different types of signatures: A user obtains a signature
on (commitments to) attributes, then randomizes the signature (such that the resulting signature is unlinkable
to the issued one) and proves in zero-knowledge the possession of a signature and the correspondence of this
signature with the shown attributes as well as the undisclosed attributes [26,27]. Our approach also achieves
multi-show ABCs, but differs from the latter significantly: We randomize the signature and the message and,
thus, do not require costly zero-knowledge proofs (which are, otherwise, at least linear in the number of
shown/encoded attributes) for the showing of a credential.

Subsequently, we start by discussing the model of ABCs. Then, we provide an intuition for our construction
in Section 5.2 and present the scheme in Section 5.3. In Section 5.4, we discuss the security of the construction.
Finally, we give a performance comparison with other existing approaches in Section 5.5.

5.1 Abstract Model of ABCs

In an ABC system there are different organizations issuing credentials to different users. Users can then
anonymously demonstrate possession of these credentials to verifiers. Such a system is called multi-show ABC
system when transactions (issuing and showings) carried out by the same user cannot be linked. A credential
credi for user i is issued by an organization j for a set A = {(attrk, attrVk)}nk=1 of attribute labels attrk
and values attrVk. By #A we mean the size of A, which is defined to be the sum of cardinalities of all second
components attrVk of the tuples in A. Moreover, we denote by A′ v A a subset of the credential’s attributes.
In particular, for every k, 1 ≤ k ≤ n, we have that either (attrk, attrVk) is missing or (attrk, attrV

′
k) with

attrV′k ⊆ attrVk is present. A showing with respect to A′ only proves that a valid credential for A′ has been
issued, but reveals nothing beyond (selective disclosure).

We note that in some ABC system constructions, the entire key generation is executed by the Setup
algorithm. However, we split these algorithms into three algorithms to make the presentation more flexible
and convenient.

Definition 15 (Attribute-Based Anonymous Credentials System). An attribute-based anonymous cre-
dentials system consists of the following polynomial time algorithms:

Setup: A probabilistic algorithm that gets a security parameter κ, an upper bound t for the size of attribute
sets and returns the public parameters pp.

OrgKeyGen: A probabilistic algorithm that takes input the public parameters pp and j ∈ N, produces and
outputs a key pair (oskj , opkj) for organization j.

UserKeyGen: A probabilistic algorithm that takes input the public parameters pp and i ∈ N, produces and
outputs a key pair (uski, upki) for user i.

(Obtain, Issue): These (probabilistic) algorithms are run by user i and organization j, who interact during
execution. Obtain takes input the public parameters pp, the user’s secret key uski, an organization’s public
key opkj and an attribute set A of size #A ≤ t. Issue takes input the public parameters pp, the user’s
public key upki, an organization’s secret key oskj and an attribute set A of size #A ≤ t. At the end of this
protocol, Obtain outputs a credential credi for A for user i.

(Show, Verify): These (probabilistic) algorithms are run by user i and a verifier, who interact during execution.
Show takes input public parameters pp, the user’s secret key uski, the organization’s public key opkj , a
credential credi for set A of size #A ≤ t and a second set A′ v A. Verify takes input pp, the public key opkj
and a set A′. At the end of the protocol, Verify outputs true or false indicating whether the credential
showing was accepted or not.

An attribute-based anonymous credential system is called secure if it is correct, unforgeable and anonymous
(for a formal definition of these properties, we refer the reader to Appendix C).

5.2 Intuition of Our Construction

Our construction of ABCs is based on the proposed signature scheme, on polynomial commitments with
factor openings and on a single constant-size proof of knowledge for guaranteeing freshness. In contrast to
this, the number of proofs of knowledge in other ABC systems, like [25,22] and related approaches, is linear
in the number of shown attributes. Nevertheless, aside from selective disclosure of attributes, they allow
to prove statements about non-revealed attribute values, such as AND, OR and NOT, interval proofs, as
well as conjunctions and disjunctions of the aforementioned. The expressiveness that we achieve with our
construction, can be compared to existing alternative constructions of ABCs [29,30]. Namely, our construction



supports selective disclosure as well as AND statements about attributes. Thereby, a user can either open some
attributes and their corresponding values or solely prove that some attributes are encoded in the respective
credential without revealing their concrete values. Furthermore, one may associate sets of values to attributes,
such that one is not required to reveal the full attribute value, but only pre-defined ”statements” about the
attribute value such as {”01.01.1980”, ” > 16”, ” > 18”, ” > 21”} for attribute birthdate. This allows us to
emulate proving properties about attribute values and, thus, enhances the expressiveness of the system.

Credential Representation: In our construction, a credential credi of user i is a vector of two group elements
(C1, P ) together with a signature under the proposed signature scheme (see Section 3.2). During a showing,
the credential gets randomized, which is easily achieved by changing the representative. The meaning of its
values will be discussed subsequently.

Attribute Representation: We use PolyCommitFO (cf. Section 4) to commit to a polynomial, which encodes
a set of attributes A = {(attrk, attrVk)}nk=1 (where the encoding is inspired from [40]). This commitment is
represented by the credential value C1.

Now, we show how we use polynomials to encode this set of attributes and values. Thereby, we use
a collision-resistant hash function H : {0, 1}∗ → Z∗p and the following encoding function to generate the
polynomials:

enc : A 7→
n∏
k=1

∏
M∈attrVk

(
X −H(attrk‖M)

)
.

This function is used to encode the set A in the issued credential, the shown attributes A′ as well as its
complement:

A′ = {(attr, attrV \attrV′) : (attr, attrV) ∈ A, (attr, attrV′) ∈ A′}∪{(attr′, attrV) ∈ A : (attr′, ·) 6∈ A′}

in every showing. The idea is that the credential includes a commitment to the encoding of A and that showings
include a witness of the encoding of A′ (without opening it) as well as A′ in plain for which the encoding
is then recomputed by the verifier. To compute these values, we use the PolyCommitFO public parameters
pp, which allow an evaluation of these polynomials in G1 and G2 at α ∈ Z∗p (without knowing the trapdoor

α). Then, the verifier checks whether the multiplicative relationship enc(A) = enc(A′) · enc(A′) between the
polynomials is satisfied by checking the multiplicative relationship between the corresponding commitments
and witnesses via a pairing equation. More precisely, the commitment to the encoding of A is computed as
C1 = ri · enc(A)(α)P with ri being the secret key of user i. We note that since no entity knows α, we must
compute

C1 ← ri · enc(A)(α)P = ri ·
t∑
i=0

eiα
iP, with enc(A) =

t∑
i=0

eiX
i ∈ Zp[X].

The verification of a credential, when showing A′, requires checking whether the following holds:

VerifyFactorPC(pp, C1, enc(A′), CA′)
?
= true,

where CA′ = ri · enc(A′)(α)P is part of the showing. A showing, then, simply amounts to randomizing C1,
opening a product of factors of the committed polynomial (representing the selective disclosure), providing a
consistently randomized witness of the complementary polynomial and performing a small, constant-size proof
of knowledge of the randomizer for freshness, as we will see soon.

Example: For the reader’s convenience, we include an example of a set A. We are given a user with the
following set of attributes and values:

A = {(gender, {male}), (birthdate, {01.01.1980, > 18, > 21}), (drivinglicense, {#, car, truck})}.

Note that # indicates an attribute value that allows to prove the possession of the attribute without revealing
any concrete value. A showing could, for instance, involve the following attributes A′ and its hidden complement
A′:

A′ = {(birthdate, {> 21}), (drivinglicense, {#})}
A′ = {(gender, {male}), (birthdate, {01.01.1980, > 18}), (drivinglicense, {car, truck})}.



Freshness: We have to guarantee that no valid showing transcript can be replayed by someone not in
possession of the credential and the user’s secret key. To do so, we require the user to conduct a proof of
knowledge PoK{γ : C2 = γP} of the discrete logarithm of the second component C2 = ρP of a credential, i.e.,
the value ρ, in the showing protocol. This guarantees that we have a fresh challenge for every showing.

In order to prove the anonymity of the ABC system, we need a little trick. We modify the aforementioned
PoK and require that the user delivers a proof of knowledge PoK{γ : Q = γP ∨ C2 = γP}, where Q is an
additional value in the public parameters pp with unknown discrete logarithm q. Consequently, the user needs
to conduct the second part of the proof honestly, while simulating the one for Q. In the proof of anonymity,
this allows us to let the challenger know q and simulate showings without knowledge of the discrete logarithm
of C2, which is required for our reduction to work. Due to the nature of the OR proof, this cannot be detected
by the adversary.

5.3 The Construction of the ABC System

Now, we present our ABC system. Subsequently, we use the notation X ← f(X) to indicate that the value of
X is overwritten by the result of the evaluation of f(X).

Setup: Given (κ, t), run pp′ = (BG, (αiP )ti=1, (α
iP ′)ti=1) ← SetupPC(κ, t) and let H : {0, 1}∗ → Z∗p be a collision-

resistant hash function used inside enc(·). Finally, choose Q
R← G1 and output pp← (H, enc, Q, pp′).

OrgKeyGen: Given pp and j ∈ N, return (oskj , opkj)← KeyGenR(BG, 2).

UserKeyGen: Given pp and i ∈ N, pick ri
R← Z∗p, compute Ri ← riP and return (uski, upki)← (ri, Ri).

(Obtain, Issue): Obtain and Issue interact in the following way:

Issue(pp, upki, oskj ,A) Obtain(pp, uski, opkj ,A)

e(C1, P
′)

?
= e(Ri, enc(A)(α)P ′)

C1←−− C1 ← ri · enc(A)(α)P

σ ← SignR((C1, P ), oskj)
σ−→ VerifyR((C1, P ), σ, opkj)

?
= true

credi ← ((C1, P ), σ)

(Show,Verify): Show and Verify interact in the following way:

Verify(pp, opkj ,A
′) Show(pp, uski, opkj , (A,A

′), credi)

ρ
R← Z∗p, cred′i ← ChgRepR(credi, ρ, opkj)[

VerifyFactorPC(pp′, C1, enc(A′), CA′) ∧ cred′i,CA′←−−−−− CA′ ← (ρ · uski) · enc(A′)(α)P

VerifyR(cred′i, opkj)
]

?
= true

PoK{γ: Q=γP ∨ C2=γP}←−−−−−−−−−−−−−−−→

where cred′i = ((C1, C2), σ).

Scheme 2: A Multi-Show ABC System

Note that if a check does not yield true, the respective algorithm terminates with a failure and the algorithm
Verify accepts only if VerifyFactorPC and VerifyR return true as well as PoK is valid. Also note that the first
move in the showing protocol can be combined with the first move of the proof of knowledge. Therefore, the
showing protocol consists of a total of three moves. Moreover, we emphasize that in an honest issuer model the
costs for the obtainer can be made constant. This can be achieved by moving the computation of enc(A)(α)P
into the Issue algorithm (at the expense of an additional round for including ri into C1) and removing the
verification of σ.

5.4 Security

In Appendix C, we introduce a security model for attribute-based anonymous credentials and we formally
prove the following:

Theorem 4. Scheme 2 is correct.



Theorem 5. If PolyCommitFO is factor-sound, H is a collision-resistant hash function, Scheme 1 is a secure
SPS-EQ-R scheme and the DLP is hard in G1, then Scheme 2 is unforgeable.

Theorem 6. If Scheme 1 is a class hiding SPS-EQ-R scheme, then Scheme 2 is anonymous.

Taking everything together, we obtain the following corollary:

Corollary 2. Scheme 2 is a secure attribute-based anonymous credential system.

5.5 Efficiency Analysis and Comparison

We provide a brief comparison with other ABC approaches and for completeness also include the most popular
one-show approach. As other candidates for multi-show ABCs, we take the Camenisch-Lysyanskaya schemes
[25,26,27] as well as schemes from BBS+ signatures [20,11] which cover a broad class of ABC schemes from
randomizable signature schemes with efficient proofs of knowledge. Furthermore, we take two alternative multi-
show ABC constructions [29,30] as well as Brands’ approach [22] (also covering the provable secure version
[12]) for the sake of completeness, although latter only provides one-show ABCs. We omit other approaches
such as [8] that only allow a single attribute per credential. We also omit approaches that achieve more efficient
showings for existing ABC systems only in very special cases such as for attribute values that come from a very
small set (and are, thus, hard to compare). For instance, the approach in [24] for CL credentials in the strong
RSA setting (encoding attributes as prime numbers) or in a pairing-based setting using BBS+ credentials [45]
(encoding attributes using accumulators), where the latter additionally requires very large public parameters
(one F -secure BB signature [15] for every possible attribute value).

Table 1 gives an overview of these systems. Thereby, Type-1 and Type-2 refer to bilinear group settings
with Type-1 and Type-2 pairings, respectively. In a stronger sense, XDH as well as SXDH stand for bilinear
group settings, where the former requires the external Diffie-Hellman assumption and the latter requires the
SXDH assumption to hold. Furthermore, Gq denotes a group of prime order q (e.g., a subgroup of order q of
Z∗p with p = 2q + 1 or an elliptic curve group of order q). By |G|, we mean the bitlength of the representation
of an element from group G and the value c is a constant specified to be approximately 510 bits in [29]. We
emphasize that, in contrast to other approaches, such as [27,30], our construction only requires a small and
constant number of pairing evaluations in all protocol steps. Note that in the issuing step we always assume
a computation of O(L) for the user, as we assume that the user checks the validity of the obtained credential
on issuing (most of the approaches, including ours, have cost O(1) if this verification is omitted).

Table 1. Comparison of various approaches to ABC systems.

Scheme Parameter Size (L attributes) Issuing Showing (k-of-L attributes)
Setting Public Params Credential Size Issuer User Comm Verifier User Comm

CaLy [25,26] sRSA O(L) O(1) 3|ZN | O(L) O(L) O(L) O(L) O(L) O(L− k)
CaLy [27] Type-1 O(L) O(L) (2L+ 2)|G1| O(L) O(L) O(L) O(L) O(L) O(L)
BBS [20] Type-2 O(L) O(1) |G1|+ 22|Zq| O(L) O(L) O(1) O(L) O(L) O(L)
CaLe [29] Type-2 O(1) O(L) L|G1|+ c+ |G2| O(L) O(L) O(L) O(L) O(1) O(1)
CaLe [30] XDH O(L) O(L) (2L+ 2)(|G1|+ |Zp|) O(L) O(L) O(L) O(k) O(k) O(k)
Br [22] Gq O(L) O(1) 2|Gq|+ 2|Zq| O(L) O(L) O(1) O(k) O(k) O(L− k)
Scheme 2 SXDH O(L) O(1) 4|G1|+ |G2| O(L) O(L) O(1) O(k) O(L− k) O(1)

6 Future Work

The proposed signature scheme seems to be powerful and there might be other applications that could benefit,
like blind signatures or verifiably-encrypted signatures. We leave a detailed study and the analysis of such
applications as future work. Future work also includes constructing revocable and delegatable anonymous
credentials from this new approach to ABCs. Furthermore, it is an interesting question whether the proposed
construction is already optimal, whether such signatures can be built for other interesting relations and
whether it is possible to construct such signature schemes whose unforgeability can be proven under possible
non-interactive assumptions or even to show that this is impossible.
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A Security of PolyCommitFO

In this section, we discuss the security properties of polynomial commitment schemes with factor openings
and prove the security of the PolyCommitFO construction presented in Section 4.

Definition 16 (Security of Polynomial Commitment Schemes with Factor Openings). A polyno-
mial commitment scheme with factor openings is secure, if the following properties hold:

Correctness: ∀κ > 0 ∀t > 0 ∀pp← SetupPC(κ, t) ∀ monic, reducible f(X) ∈ Zp[X] ∀C ← CommitPC(pp, f(X))
(using an arbitrary ρ ∈ Z∗p), we require that

– VerifyPC(pp, C,OpenPC(pp, C, ρ, f(X))) = true, and
– VerifyFactorPC(pp, C,FactorOpenPC(pp, f(X), g(X), ρ)) = true ∀g(X) | f(X).

Polynomial Binding: For all PPT adversaries A, we require that there is a negligible function ε(·) such
that:

Pr

[
pp← SetupPC(κ, t), (C, ρ0, f0(X), ρ1, f1(X))← A(pp) :

f0(X) 6= f1(X) ∧ VerifyPC(pp, C, ρi, fi(X)) = true for i = 0, 1

]
≤ ε(κ)

Factor Binding: For all PPT adversaries A, we require that there is a negligible function ε(·) such that:

Pr

[
pp← SetupPC(κ, t), (C, Ch, g0(X), g1(X))← A(pp) :

g0(X) 6= g1(X) ∧ VerifyFactorPC(pp, C, gi(X), Ch) = true for i = 0, 1

]
≤ ε(κ)

Factor Soundness: For all PPT adversaries A, we require that there is a negligible function ε(·) such that:

Pr

[
pp← SetupPC(κ, t), (ρ, f(X), g(X), Ch)← A(pp) :

VerifyFactorPC(pp, ρf(α)P, g(X), Ch) = true ∧ g(X) - f(X) ∧ deg f > 0

]
≤ ε(κ)



Witness Soundness: For all PPT adversaries A, we require that there is a negligible function ε(·) such that:

Pr

[
pp← SetupPC(κ, t), (ρ, f(X), g(X), Ch)← A(pp) :

VerifyFactorPC(pp, ρf(α)P, g(X), Ch) = true ∧ g(X) | f(X) ∧ Ch 6= ρ · fg (α)P

]
≤ ε(κ)

Hiding: Given (pp, C, {(gi(X), Chi
) ← FactorOpenPC(pp, C, f(X), gi(X), ρ)}) for ρ ∈R Z∗p, f(X) ∈R Zp[X]

such that ∃ g(X) : g(X) | f(X) ∧ deg g > 0 ∧ gcd(g(X),
∏
i gi(X)) = 1 no computationally

unbounded adversary A obtains any information about g(X).

Now, we prove PolyCommitFO secure under the co-t-SDH∗1 assumption (cf. Section 2). As already outlined in
Section 4, one can analogously define a scheme based on the co-t-SDH∗2 assumption with C ∈ G1 and Ch ∈ G2,
if the performance of the VerifyFactorPC algorithm is important.

Theorem 7. PolyCommitFO is correct.

Proof. The correctness of the scheme is easy to see and, therefore, the proof is omitted here. ut

Theorem 8. If the co-t-SDH∗1 assumption holds, then PolyCommitFO is polynomial binding.

Proof. We show that if A is able to find a commitment C, two scalars ρ0, ρ1 ∈ Z∗p and two distinct polynomials
f0(X), f1(X) ∈ Zp[X] such that VerifyPC(pp, C, ρi, fi(X)) = true for i = 0, 1, we construct an adversary B
against the co-t-SDH∗1 problem.
B gets input an instance ((αiP )ti=0, (α

iP ′)ti=0) to the co-t-SDH∗1 problem as well as the corresponding
bilinear group description BG, sets pp ← (BG, (αiP )ti=1, (α

iP ′)ti=1) and runs A(pp). If A outputs a forgery
(C, ρ0, f0(X), ρ1, f1(X)), then we know that

ρ0f0(α)P = C = ρ1f1(α)P

ρ0f0(α)P − ρ1f1(α)P = 0G1

holds. This implies that ρ0f0(α)−ρ1f1(α) = 0. Hence, α is a root of the polynomial t(X) = ρ0f0(X)−ρ1f1(X).
As factoring of t(X) yields α, B can efficiently obtain α and by choosing c ∈R Zp \ {−α}, B can output a
solution (c, 1

α+cP ) to the co-t-SDH∗1 problem. ut

Theorem 9. If the co-t-SDH∗1 assumption holds, then PolyCommitFO is factor binding.

Proof. We show that if A outputs a commitment C, two distinct polynomials g0(X), g1(X) of positive degree
and a witness Ch such that VerifyFactorPC(pp, C, gi(X), Ch) = true for i = 0, 1, then we can construct an
adversary B against the co-t-SDH∗1 problem.

Adversary B works as follows. B obtains an instance ((αiP )ti=0, (α
iP ′)ti=0) to the co-t-SDH∗1 problem as

well as the corresponding bilinear group description BG, sets pp← (BG, (αiP )ti=1, (α
iP ′)ti=1) and runs A(pp).

If A returns a forgery (C, Ch, g0(X), g1(X)), we know that

e(Ch, g0(α)P ′) = e(C, P ′) = e(Ch, g1(α)P ′)

e(Ch, g0(α)P ′ − g1(α)P ′) = 1GT

It follows that g0(α)− g1(α) = 0. Consequently, α is a root of the polynomial t(X) = g0(X)− g1(X) ∈ Zp[X].
By factoring t(X), B can efficiently obtain α and solve the instance of the co-t-SDH∗1 problem given by pp by
choosing c ∈ Zp \ {−α} and outputting (c, 1

α+cP ). ut

Theorem 10. If the co-t-SDH∗1 assumption holds, then PolyCommitFO is factor sound.

Proof. We show that if A is able to find a polynomial f(X), a scalar ρ, a polynomial g(X) and a witness
Ch such that g(X) - f(X), deg g,deg f > 0 and VerifyFactorPC(pp, ρf(α)P, g(X), Ch) = true, we construct an
adversary B against the co-t-SDH∗1 problem.

Adversary B works as follows. B obtains an instance ((αiP )ti=0, (α
iP ′)ti=0) to the co-t-SDH∗1 problem as

well as the corresponding bilinear group description BG, sets pp← (BG, (αiP )1i=1, (α
iP ′)1i=1) and runs A(pp).

If A returns a forgery (ρ, f(X), g(X), Ch), then it holds that f(X) = g(X)ĥ(X) + ξ(X) with ξ(X) 6= 0 and Ch
must have the form Ch = ρ(ĥ(α) + ξ(α)

g(α) )P . Since B knows ρ, it can now compute

ρ−1Ch − ĥ(α)P =
ξ(α)

g(α)
P.



As deg f, deg g > 0 and the public parameters pp restrict the maximum degree of polynomials to 1, we have
deg f = 1 and deg g = 1. Hence, g(X) = X + c for some c ∈ Zp and deg ξ = 0, i.e., ξ(X) = ω ∈ Z∗p (Note that
B can compute both values c and ω from g(X) and h(X)). Therefore, we obtain

ξ(α)

g(α)
P =

ω

α+ c
P.

As the latter is a valid group element, c 6= −α must hold and (c, 1
α+cP ) is a solution to the co-t-SDH∗1 problem.

ut

Theorem 11. If the co-t-SDH∗1 assumption holds, then PolyCommitFO is witness sound.

Proof. We show that if A is able to find a polynomial f(X), a scalar ρ, a polynomial g(X) and a witness
Ch 6= ρ · fg (α)P such that g(X) | f(X), deg g > 0, VerifyFactorPC(pp, ρf(α)P, g(X), Ch) = true, we construct
an adversary B against the co-t-SDH∗1 problem.

Adversary B works as follows. B obtains an instance ((αiP )ti=0, (α
iP ′)ti=0) to the co-t-SDH∗1 problem as

well as the corresponding bilinear group description BG, sets pp← (BG, (αiP )ti=1, (α
iP ′)ti=1) and runs A(pp).

If A returns a forgery (ρ, f(X), g(X), Ch), then it holds that deg g > 0 and that

e(Ch, g(α)P ′) = e(C, P ′) = e(ρ · f
g

(α)P, g(α)P ′)

e(Ch − ρ ·
f

g
(α)P, g(α)P ′) = 1GT

As Ch 6= ρ · fg (α)P , it follows that g(α) = 0 (observe that g(X) | f(X) and, hence, f
g (α) is defined). Con-

sequently, α is a root of the polynomial g(X). By factoring g(X), B can efficiently obtain α and solve the
instance of the co-t-SDH∗1 problem given by pp by choosing c ∈ Zp \ {−α} and outputting (c, 1

α+cP ). ut

Theorem 12. PolyCommitFO is hiding.

Proof. W.l.o.g. we assume that the only unrevealed factor of f(X) is g(X) = (X − λ) ∈ Zp[X]. Therefore,
C and all the values Chi

include the values ρ 6= 0 and α − λ, where we neither know ρ nor λ (nevertheless,
observe that an unbounded adversary can obtain α). Thus, for the commitment C and all witness values Chi

,
there are p− 1 equally likely, valid pairs (ρ, λ) ∈ Z∗p×Zp. Consequently, g(X) remains unconditionally hidden
within them. ut

Corollary 3. PolyCommitFO is a secure polynomial commitment scheme with factor openings.

B Security of the Signature Scheme on Equivalence Classes

The proof of security of Scheme 1 consists of three parts, namely, correctness, unforgeability and class hiding.

B.1 Proof of Theorem 1 (Correctness)

We have to show that for all κ ∈ N, for all ` > 1, for all bilinear groups BG ← BGGenR(κ), all key pairs
(sk, pk)← KeyGenR(BG, `) and for all M ∈ (G∗1)` it holds that

VerifyR(ChgRepR(M,SignR(M, sk), ρ, pk), pk) = true ∀ρ ∈ Z∗p.

Recall that (Z1, Z2, Y, Y
′)← SignR(M, sk) is such that

Z1 ← x
∑̀
i=1

xiMi, Z2 ← y
∑̀
i=1

xiMi and (Y, Y ′)← y · (P, P ′).

and that (ρM, (ρZ1, ŷρZ2, ŷY, ŷY
′)) ← ChgRepR(M, (Z1, Z2, Y, Y

′), ρ, pk) for ρ, ŷ ∈ Z∗p. Furthermore, the
verification relations look as follows:

∏̀
i=1

e(Mi, X
′
i)

?
= e(Z1, P

′) ∧ e(Z1, Y
′)

?
= e(Z2, X

′) ∧ e(P, Y ′)
?
= e(Y, P ′).



Apparently, it suffices to consider the first two relations, since Y and Y ′ are consistently randomized using ŷ
and contain the same discrete logarithms, i.e., logP Y = logP ′ Y

′. Plugging ρM , (ρZ1, ŷρZ2, ŷY, ŷY
′) and the

public keys (X ′, (X ′i)
`
i=1) = (xP ′, (xixP

′)`i=1) into the first two relations yields:

∏̀
i=1

e(ρMi, xixP
′) = e(ρx

∑̀
i=1

xiMi, P
′) and e(ρx

∑̀
i=1

xiMi, ŷyP
′) = e(ŷρy

∑̀
i=1

xiMi, xP
′).

Due to the bilinearity of e it is now obvious that the verification relations are correct. ut

B.2 Proof of Theorem 2 (Unforgeability)

Proof. In the generic group model, an adversary only performs generic group operations (operations in G1,
G2 and GT , bilinear pairings and equality tests) by querying the respective group oracle.

In the first part of this proof, we consider all signature and message elements as formal polynomials in
x, x1, . . . , x`, y1, . . . , yq and show that in this case an adversary is unable to make existential forgeries. Then,
in the second part, we show that the probability for an adversary to produce an existential forgery by incident
is negligible.

Observe that an adversary, in possession of a signature for some previously queried representative of
some equivalence class, can obtain signatures (without additional signature queries) for other representatives
of the corresponding equivalence class as follows. Let (Mj,i)

`
i=1 be a representative of the equivalence class

[(Mj,i)
`
i=1]R with corresponding signature σj = (Z1,j , Z2,j , Yj , Y

′
j ). To obtain a signature for another represen-

tative (M̂j,i)
`
i=1 = ρ(Mj,i)

`
i=1, the adversary picks ρ, ŷ ∈ Z∗p and queries the group oracles to obtain (M̂j,i)

`
i=1

and σ̂j = (ρZ1,j , ρŷZ2,j , ŷYj , ŷY
′
j ).

Now, we argue that these are the only signatures the adversary is able to generate efficiently. Note that the
adversary is unaware of the values x, x1, . . . , x` used in the public keys (X ′, (Xi)

`
i=1) ∈ G`+1

2 and also unaware
of the values yj , 1 ≤ j ≤ q used for the computation of the signature

(Z1,j , Z2,j , Yj , Y
′
j ) = (x

∑̀
i=1

xiMj,i, yj
∑̀
i=1

xiMj,i, yjP, yjP
′)

in the j-th signature query for equivalence class [(Mj,i)
`
i=1]R. To obtain signatures (Z1,j , Z2,j , Yj , Y

′
j ) for

message queries (Mj,i)
`
i=1, the generic adversary is restricted to choosing

πz1 , πz2 , πy, πy′ , ρz1,j , ρz2,j , ρy,j , ψz1,j , ψz2,j , ψy,j , φz1,j , φz2,j , φy,j , φy′,j , χi, χ ∈ Zp
for j = 1, . . . , q and i, k = 1, . . . , `

and computing the forgery (Z∗1 , Z
∗
2 , Y

∗, Y ′∗) for message (M∗i )`i=1 as

Z∗1 = πz1P +
∑
j

ρz1,jZ1,j +
∑
j

ψz1,jZ2,j +
∑
j

φz1,jYj

Z∗2 = πz2P +
∑
j

ρz2,jZ1,j +
∑
j

ψz2,jZ2,j +
∑
j

φz2,jYj

Y ∗ = πyP +
∑
j

ρy,jZ1,j +
∑
j

ψy,jZ2,j +
∑
j

φy,jYj

Y ′∗ = πy′P
′ + χX ′ +

∑
i

χiX
′
i +
∑
j

φy′,jY
′
j .

The queries (Mj,i)
`
i=1 are computed as linear combinations of

P, P ′, X ′, X ′1, . . . , X
′
`, Z1,1, Z2,1, Y1, Y

′
1 , . . . , Z1,j−1, Z2,j−1, Yj−1, Y

′
j−1

and the message (M∗i )`i=1, for which the forgery (Z∗1 , Z
∗
2 , Y

∗, Y ′∗) is obtained, is computed similarly. By
considering all these group elements and taking their discrete logarithms to the basis P and P ′, respectively,



we obtain 1, x, xi, z1,j , z2,j , yj and, consequently, we can express these discrete logarithms as the following
linear combinations:

z∗1 = πz1 +
∑
j

ρz1,jz1,j +
∑
j

ψz1,jz2,j +
∑
j

φz1,jyj

z∗2 = πz2 +
∑
j

ρz2,jz1,j +
∑
j

ψz2,jz2,j +
∑
j

φz2,jyj

y∗ = πy +
∑
j

ρy,jz1,j +
∑
j

ψy,jz2,j +
∑
j

φy,jyj

y′∗ = πy′ + χx+ x
∑
i

χixi +
∑
j

φy′,jyj

mj,i = linear combination of 1, x, x1, . . . , x`, y1, . . . , yj−1

m∗i = linear combination of 1, x, x1, . . . , x`, y1, . . . , yq

Plugging the forgery into the verification relations yields:∏
i

e(M∗i , X
′
i) = e(Z∗1 , P

′) ∧ e(Z∗1 , Y
′∗) = e(Z∗2 , X

′) ∧ e(P, Y ′∗) = e(Y ∗, P ′).

By taking discrete logarithms to the basis e(P, P ′) in GT , we obtain the following equations:

x
∑
i

m∗i xi = z∗1 (1)

z∗1y
′∗ = z∗2x (2)

y∗ = y′∗ (3)

The values z∗1 , y′∗ and z∗2 are polynomials in x, x1, . . . , x`, y1, . . . , yq. We start by considering Equation (1):

x
∑
i

m∗i xi = z∗1

x
∑
i

m∗i xi = πz1 +
∑
j

ρz1,jz1,j +
∑
j

ψz1,jz2,j +
∑
j

φz1,jyj

and see immediately that πz1 = 0 and φz1,j = 0 for all j. By comparing coefficients in Equation (3):

πy +
∑
j

ρy,jz1,j +
∑
j

ψy,jz2,j +
∑
j

φy,jyj = πy′ + χx+ x
∑
i

χixi +
∑
j

φy′,jyj

we derive that χ = χi = ρy,j = ψy,j = 0 for all i, j. We further see that πy = πy′ and φy,j = φy′,j . This yields
the simplified representation

y′∗ = πy +
∑
j

φy,jyj .

Plugging y′∗, πz1 = 0 and φz1,j = 0 for all j into Equation (2), we obtain:

(
∑
j

ρz1,jz1,j +
∑
j

ψz1,jz2,j)(πy +
∑
j

φy,jyj) =x(πz2 +
∑
j

ρz2,jz1,j +
∑
j

ψz2,jz2,j +
∑
j

φz2,jyj)

πy
∑
j

ρz1,jz1,j + πy
∑
j

ψz1,jz2,j +
∑
j

ρz1,jz1,j
∑
j

φy,jyj+
∑
j

ψz1,jz2,j
∑
j

φy,jyj =

xπz2 + x
∑
j

ρz2,jz1,j + x
∑
j

ψz2,jz2,j + x
∑
j

φz2,jyj

It is immediate that πz2 = φz2,j = ρz2,j = 0 for all j. We obtain:

πy
∑
j

ρz1,jz1,j + πy
∑
j

ψz1,jz2,j +
∑
j

ρz1,jz1,j
∑
j

φy,jyj +
∑
j

ψz1,jz2,j
∑
j

φy,jyj = x
∑
j

ψz2,jz2,j



We know that z∗1 =
∑
j ρz1,jz1,j +

∑
j ψz1,jz2,j 6= 0 and y′∗ = πy +

∑
j φy,jyj 6= 0. By comparing coefficients,

we see that πy
∑
j ρz1,jz1,j + πy

∑
j ψz1,jz2,j = 0. As, however, z∗1 6= 0, it follows that πy = 0. Hence, we have

y′∗ =
∑
j φy,jyj 6= 0 and the equation simplifies to:∑

j

ρz1,jz1,j
∑
j

φy,jyj +
∑
j

ψz1,jz2,j
∑
j

φy,jyj = x
∑
j

ψz2,jz2,j

Note that xz2,j = yjz1,j due to Equation (2). Hence, we can rewrite the right hand-side:∑
j

ρz1,jz1,j
∑
j

φy,jyj +
∑
j

ψz1,jz2,j
∑
j

φy,jyj =
∑
j

ψz2,jyjz1,j

By comparing coefficients, we see that
∑
j ψz1,jz2,j

∑
j φy,jyj = 0 and as y′∗ =

∑
j φy,jyj 6= 0, it follows that

ψz1,j = 0 for all j. The equation simplifies to:∑
j

ρz1,jz1,j
∑
j

φy,jyj =
∑
j

ψz2,jyjz1,j

As we know that z∗2 =
∑
j ψz2,jyjz1,j 6= 0, there must be exactly one index k ∈ [q] such that:

ρz1,kz1,kφy,kyk = ψz2,kykz1,k.

It follows that ψz2,k = ρz1,kφy,k. Going back to Equation (1), we have:

x
∑
i

m∗i xi = ρz1,kz1,k

x
∑
i

m∗i xi = x
∑
i

(ρz1,kmk,i)xi

Hence, the only forgeries the adversary can produce are only representatives of classes, for which the adversary
has already made signature queries.

Now, in the second part of this proof, we show that the probability for an adversary to produce an
existential forgery by ”incident” is negligible, i.e., that two formally different polynomials evaluate to the same
value or actually that the difference polynomial evaluates to zero. All involved formal polynomials resulting
from querying the group oracles are of degree O(q), when we assume that the adversary makes O(q) queries
to the group oracles. Then, by using the Schwartz-Zippel lemma and a collision argument, we know that the

probability of such an error in the simulation of the generic group is O( q
3

p ) and is, therefore, negligible. ut

B.3 Proof of Theorem 3 (Class Hiding)

Proof. We show that any efficient adversary A against the class hiding property of the signature scheme, can
be turned into an adversary B against the DDH problem in a group G1 of a bilinear group BG. Adversary B
gets as input a description of a bilinear group BG and a DDH instance (P, aP, bP, cP ) ∈ G4

1 for G1. Then, B
runs (sk, pk)← A(BG, `) and simulates the oracle queries of A in the following way:

ORM (`): In the j-th query, B chooses kj
R← (Z∗p)`, sets Mj ← (kj [1]P, . . . ,kj [` − 1]P,kj [`]aP ) and returns

Mj to A. B stores kj into a list K. Note that the messages Mj are identically distributed to messages
chosen uniformly at random from (G∗1)`. Note that A can run SignR and ChgRepR on queried messages
an arbitrary number of times on its own.

ORoR(sk, pk, b,Mj): If A calls the real-or-random oracle ORoR with M∗j for the first time, B records M∗j .
Furthermore, B retrieves kj from the list K, computes M ← (kj [1]bP, . . . ,kj [` − 1]bP,kj [`]cP ), records
and returns (M,σ) with σ ← SignR(M, sk). In any future call to ORoR for Mj 6= M∗j , B returns ⊥.

Otherwise, B retrieves (M,σ), picks ρ
R← Z∗p and returns ChgRepR((M,σ), ρ, pk).

Note: The simulation of the oracle is only different for the first call. Moreover, simulating it this way
is necessary, as we don’t know the scalar b and, thus, a direct change of representative is not possible.
However, A will not notice the simulation, as new signatures on other representatives are indistinguishable
from signatures resulting from ChgRepR.



If A outputs b∗ = 0 at the end of the game, B returns true and false otherwise.
It remains to argue that if A is able to win the game with non-negligible probability, then B is able to solve

the DDH problem with the same success probability as A. To see this, observe that the challenge message M
can only be in class [M∗j ]R, if c ≡ ab mod p. Consequently, if A outputs 1, (P, aP, bP, cP ) can not be a valid
DH tuple and B outputs false. Otherwise, if A outputs 0, then (P, aP, bP, cP ) is such a tuple and B outputs
true. ut

C Security of the ABC System

In the following, we provide a security model for attribute-based anonymous credentials. Then, we prove
the unforgeability and the anonymity of our proposed scheme. The proof of correctness is omitted, as the
correctness of Scheme 2 can easily be verified by the construction.

C.1 Security of ABCs

The subsequent security model is adapted from [25,8,29,30]. Before we present it in all detail, we give a high-
level overview of the required security properties and we note that we consider only a single organization
(identified by j = 1) in our model of unforgeability and anonymity (since all organizations have independent
signing keys, the extension is straightforward):

Correctness: A showing of a credential with respect to a set A′ of attributes and values must always verify
if the credential was issued honestly with respect to A and it holds that A′ v A.

Unforgeability: A user can not show a valid credential for some A, unless this credential was issued to him
by an organization for A. Furthermore, it must not be possible to succeed in a showing protocol without
having access to the user’s secret key and the credential (replay).

Anonymity: Given a showing, no verifier and no organization (even if they collude) should be able to identify
the user or find anything about the user, except for the fact that he owns a valid credential. Furthermore,
different showings of a user with respect to the same credential must be unlinkable.

In the following, we provide formal definitions of these properties. To do so, we introduce several global
variables and oracles. In order to keep track of all, honest and corrupt users as well as users, whose secret keys
and credentials have leaked, we introduce the sets U, HU, CU and KU, respectively. All these sets are maintained
by the environment and available to the adversary for read access. We use the lists UPK, USK, CRED, SCRED and
ATTR to track issued user keys, credentials, shown credentials and corresponding attributes, which are only
accessible to the environment.

We introduce the subsequent oracles and assume that the public parameters pp are implicitly available to
them:

OHU+(i): It takes input a user identity i. If i ∈ U return ⊥. Otherwise, it creates a new user i by running
(USK[i], UPK[i])← UserKeyGen(pp, i), adding i to U and to HU and returning UPK[i].

OCU+(pk, i): It takes input a user public key pk and a user i. If i 6∈ U or i ∈ CU return ⊥. Otherwise, it adds
user i to the set of corrupted users CU, removes i from HU, and sets UPK[i]← pk.

OKU+(i): It takes input a user i. If i 6∈ U or i ∈ KU return ⊥. Otherwise, it reveals the credentials and the secret
key of user i by returning USK[i] and all credentials in CRED, which have been issued for i. Finally, it adds
i to KU.

OUIOO(osk, opk, i,A): It takes input the organization key pair (osk, opk), a user i and a set of attributes A. If
i 6∈ HU return ⊥. Otherwise, it issues a credential credi on A for an honest user i ∈ HU. Here, the oracle
plays the role of the user as well as the organization. It runs

(credi, ∅)← (Obtain(pp, USK[i], opk,A), Issue(pp, UPK[i], osk,A)).

Finally, it appends (credi,A) to (CRED, ATTR), where the caller does not get any output.
OUI(osk, opk, i,A): It takes input the organization key pair (osk, opk), a user i and a set of attributes A. If

i 6∈ HU return ⊥. Otherwise, it plays the role of an honest user who gets issued a credential for A. It runs

(credi, ∅)← (Obtain(pp, USK[i], opk,A), Issue(pp, UPK[i], osk,A)),

where Obtain is run on behalf of honest user i and Issue is executed by the caller (the dishonest organiza-
tion). Finally, it appends (credi,A) to (CRED, ATTR).



OOO(osk, opk, i, uski,A): It takes input the organization key pair (osk, opk), a user i, a user secret key uski and
a set of attributes A. If i 6∈ CU return ⊥. Otherwise, it plays the role of the organization when interacting
with a dishonest user, i.e., a corrupted user whose public key has been replaced (thus the corresponding
secret key uski is not stored in USK). It runs

(credi, ∅)← (Obtain(pp, uski, opk,A), Issue(pp, UPK[i], osk,A)),

where Obtain is executed by the caller. Finally, it appends (credi,A) to (CRED, ATTR).
OUV(opk, j,A′): It takes input the organization public key opk, an index of an issuance j and a set of attributes

A′ certified to the user ij . If ij 6∈ HU return ⊥. Otherwise, it plays the role of an honest user ij and runs

(∅, b)← (Show(pp, USK[ij ], opk, (ATTR[j],A′), CRED[j]),Verify(pp, opk,A′)),

where Verify is executed by the caller (the dishonest verifier). If b = true, then it appends the shown
credential cred to SCRED[j].

ORoR(osk, opk, b, j0,A′): It takes input the organization key pair (osk, opk), a bit b, an index of an issuance
j0 and a set of attributes A′. If this oracle has already been queried for some j′0 6= j0, or if CRED[j0] = ⊥,
ij0 6∈ HU or A′ 6v ATTR[j0] return ⊥. Otherwise, on the first call, it generates a credential for some new,
random user ij1 and the attribute set ATTR[j0]. It plays the role of user ijb and interacts with the adversary
during an execution of the (Show,Verify) protocol for the attributes A′.

Now, we are ready to give an exact definition of a secure attribute-based anonymous credential system:

Definition 17 (Correctness). An anonymous credential system is correct, if

∀κ > 0 ∀t > 0 ∀A : #A ≤ t ∀j ∀i ∀pp← Setup(κ, t),

(oskj , opkj)← OrgKeyGen(pp, j), (uski, upki)← UserKeyGen(pp, i),

(credi, ∅)← (Obtain(pp, uski, opkj ,A), Issue(pp, upki, oskj ,A)) it holds that

(∅, true)← (Show(pp, uski, opkj , (A,A′), credi),Verify(pp, opkj ,A′)) ∀A′ v A.

Definition 18 (Unforgeability). We call an attribute-based anonymous credential system unforgeable, if
for all PPT-adversaries A there is a negligible function ε(·) such that

Pr


pp← Setup(κ, t), (osk, opk)← OrgKeyGen(pp, 1),

O ← {OHU+(·),OCU+(·, ·),OKU+(·),OUIOO(osk, opk, ·, ·),OOO(osk, opk, ·, ·, ·),OUV(opk, ·, ·)},
(A′∗, state)← AO(pp, opk), (∅, b∗)← (A(state),Verify(pp, opk,A′∗)) :

b∗ = true ∧(
j∗ = ⊥ ∨

(
j∗ 6= ⊥ ∧

(
A′∗ 6v ATTR[j∗] ∨ (i∗j∗ ∈ HU \ KU ∧ cred∗ ∈ SCRED[j∗])

)))

 ≤ ε(κ),

where cred∗ is the credential shown by the adversary, i∗j∗ is the user, who obtained the corresponding credential
in the j∗-th issuing query. Thereby, ⊥ indicates that no such index j∗ exist. We note that the reduction needs
to be able to efficiently determine j∗ given the shown credential.

The winning conditions in the unforgeability game are chosen following the subsequent rationale. The first
condition (j∗ = ⊥) captures showings of credentials, which have never been issued (existential forgeries). The
second condition (j∗ 6= ⊥∧A′∗ 6v ATTR[j∗]) captures showings with respect to existing credentials, but invalid
attribute sets. The third condition (j∗ 6= ⊥ ∧ i∗j∗ ∈ HU \ KU ∧ cred∗ ∈ SCRED[j∗]) covers replays of showings
with respect to users, where the adversary does neither know the credentials nor the respective secrets.

Definition 19 (Anonymity). We call an attribute-based anonymous credential system anonymous, if for
all PPT-adversaries A there is a negligible function ε(·) such that

Pr


pp← Setup(κ, t), b

R← {0, 1}, (state, osk, opk)← A(pp)
O ← {OHU+(·),OUI(osk, opk, ·, ·),OUV(opk, ·, ·),ORoR(osk, opk, b, ·, ·)}

b∗ ← AO(state, pp, osk, opk) :
b∗ = b

− 1

2
≤ ε(κ).

Definition 20 (Security). An attribute-based anonymous credential system is secure, if it is correct, un-
forgeable and anonymous.



We emphasize that we do not consider non-transferability of credentials in our model, since this is typically
achieved by other means. This could, for instance, be achieved by requiring users to use an already existing
valuable secret as secret key in order to prevent them from sharing the credential (PKI-assured [44]). Other
approaches are that sharing the credential of one organization implies sharing all credentials (all-or-nothing
[25]) or to require the presence of biometric features in order to use credentials (biometrics based [17]). In
practice, a standard way to achieve non-transferability is to embed the user’s secrets into a tamper proof
hardware such as a smart card.

C.2 Proof of Theorem 5 (Unforgeability)

Proof. We assume that there is an efficient adversary A winning the unforgeability game with non-negligible
probability, then we are able to use A for reductions in the following way.

Type 1: Adversary A manages to conduct a showing protocol accepted by the verifier such that j∗ = ⊥ holds.
Then, we construct an adversary B that uses A to break the unforgeability of the SPS-EQ-R scheme.

Type 2: Adversary A manages to conduct a showing protocol accepted by the verifier using the j∗-th issued
credential of user i∗ with respect to A′∗ such that A′∗ 6v ATTR[j∗] holds. Then, we construct an adversary
B that uses A to break
Type 2A: the hash function used in the encoding of attributes.
Type 2B: the factor soundness property of PolyCommitFO.

Type 3: Adversary A manages to conduct a showing protocol accepted by the verifier reusing a showing
based on the j∗-th issued credential of user i∗ with i∗ ∈ HU \ KU, whose secret uski∗ and issued credentials
it does not know. This means that in any case A is able to produce a valid PoK. Then, we construct an
adversary B that uses A to break
Type 3A: the DLP in G1 (with respect to Q).
Type 3B: the DLP in G1 (with respect to C2).

In the following, B guesses A’s strategy, i.e., the type of forgery A will conduct. We are now going to describe
the setup, the initialization of the environment, the reduction and the abort conditions for each type.

Type 1: Here, B consists of adversary A playing the unforgeability game with a challenger S. B is interacting
with the challenger C in the unforgeability game of the SPS-EQ-R scheme. Here, B runs algorithm A and plays
the challenger S for A in the unforgeability game. Subsequently, we describe how S simulates the environment
for A and interacts with the challenger C for the EUF-CMA game.
C is in possession of (sk, pk) for the signature scheme with ` = 2 and gives pk to B. Then, S sets opk← pk

and generates pp in way compatible to opk (note that S has no direct access to sk and therefore must access
the signing oracle of C). Next, S runs A(pp, opk) and simulates the environment and the oracles. All oracles
are as in the real game, except for the oracles OUIOO and OOO , which are simulated as follows:

OUIOO(osk, opk, i,A): S runs this oracle as in the real game, with the only difference that whenever S requires
a signature during the issuing protocol, it calls the signing oracle O(osk, ·) of C with respective message
(C1, P ).

OOO(osk, opk, i, uski,A): S runs this oracle as in the real game, with the only difference that whenever S
requires a signature during the issuing protocol, it calls the signing oracle O(osk, ·) of C with respective
message (C1, P ).

If A outputs (A′∗, state), then S runs A(state) and interacts with A as verifier in a showing protocol. Now,
if A delivers a valid showing using a credential cred′∗ and, thus, wins the game, then S rewinds A to the
step after sending the commitments (KQ,KC2) in PoK and restarts A with a new challenge c′ 6= c. Then, by
the knowledge extractor of PoK, S obtains ρ (such that C2 = ρP ). S now computes cred∗ ← ρ−1 · cred′∗. If
cred∗ ∈ CRED then S and, in further consequence, B abort. In this case, the credential was honestly computed
and a signing query was issued to the signing oracle O of C. Otherwise, B outputs cred∗ = ((C∗1 , C

∗
2 ), σ∗) as a

forgery to C and B wins the unforgeability game.

Type 2A: Here, B plays the role of the challenger for A. B runs the setup by generating public parameters pp,
generates the organization key pair (osk, opk), runs A(pp, opk) and simulates the oracles as in the real game.

If A outputs (A′∗, state), then B runs A(state) and interacts with A as verifier in a showing protocol.
Now, if A delivers a valid showing using a credential cred′∗, then B rewinds A to the step after sending the
commitments (KQ,KC2

) in PoK and restarts A with a new challenge c′ 6= c. Then, by the knowledge extractor



of PoK, B obtains ρ (such that C2 = ρP ). B now computes cred∗ ← ρ−1 ·cred′∗. If cred′∗ 6∈ CRED, then B aborts.
Otherwise, we know that cred∗ was the result of the j∗-th issue step during the simulation. Consequently, B
knows the set of attributes A∗ = ATTR[j∗] corresponding to cred∗. If A′∗ v A∗, then B aborts. Otherwise, B can
now compute the corresponding polynomial enc(A∗). If enc(A′∗) - enc(A∗), then B aborts. Otherwise, we have
that enc(A′∗) | enc(A∗), but A′∗ 6v A∗. Therefore, there is at least one factor X−H(attr∗`‖M∗) of enc(A′∗) and
one factor X−H(attr`‖M) of enc(A∗) such that H(attr∗`‖M∗) = H(attr`‖M) and attr∗`‖M∗ 6= attr`‖M .
Consequently, B outputs the pair (attr∗`‖M∗, attr`‖M) as a collision for H.

Type 2B: Here B, consists of adversary A playing the unforgeability game with a challenger S. B is interacting
with the challenger C in the factor soundness game of the PolyCommitFO scheme.

C chooses the public parameters pp′ of PolyCommitFO and runs B on pp′. Then, S completes the setup
by generating public parameters pp based on pp′ and generates the organization key pair (osk, opk). S runs
A(pp, opk) and simulates the oracles as in the real game.

If A outputs (A′∗, state), then S runs A(state) and interacts with A as verifier in a showing protocol.
Now, if A delivers a valid showing using a credential cred′∗, then S rewinds A to the step after sending the
commitments (KQ,KC2) in PoK and restarts A with a new challenge c′ 6= c. Then, by the knowledge extractor
of PoK, S obtains ρ (such that C2 = ρP ). S now computes cred∗ ← ρ−1 ·cred′∗. If cred∗ 6∈ CRED, then S and, in
further consequence, B abort. Otherwise, we know that cred∗ was the result of the j∗-th issue step during the
simulation. Consequently, S knows the set of attributes A∗ = ATTR[j∗] corresponding to cred∗. If A′∗ v A∗,
then B aborts. Otherwise, S can now compute the corresponding polynomial enc(A∗). If enc(A′∗) | enc(A∗),
then S and, in further consequence, B abort. Otherwise, B outputs (ρ, enc(A∗), enc(A′∗), CA′∗). It is easy to
verify that this is a valid output to win the factor soundness game of PolyCommitFO.

Type 3A: Here, B plays the role of the challenger for A. B obtains the instance (P, aP ) to the DLP in G1.
Then, B runs the setup by generating public parameters pp and setting Q ← aP , generates the organization
key pair (osk, opk), runs A(pp, opk) and simulates the oracles as in the real game.

If A outputs (A′∗, state), then B runs A(state) and interacts with A as verifier in a showing protocol. Now,
if A delivers a valid showing, then B rewinds A to the step after sending the commitments (KQ,KC2

) in PoK
and restarts A with a new challenge c′ 6= c. Then, by the knowledge extractor of PoK (for the Q-part of the
proof), B obtains a value a′ ∈ Z∗p. If a′P 6= aP , then B aborts. Otherwise B outputs (a′, aP ) as a solution to
the DLP in G1.

Type 3B: Here, B plays the role of the challenger for A. B obtains the instance (P, aP ) to the DLP in G1.

Then, B runs the setup by generating public parameters pp, where it chooses q
R← Z∗p and sets Q← qP . Next,

B generates the organization key pair (osk, opk), runs A(pp, opk) and initializes the environment. Additionally,
B creates two secret lists CRED′ and CRED′′. Furthermore, B simulates the oracles as in the real game, except
for the oracles OUIOO , OUV and OOO , which are simulated as follows:

OUIOO(osk, opk, i,A): B runs this oracle as in the real game and produces a credential credi = ((C1, P ), σ).
Additionally, B computes ((C1, aP ), σ′) with σ′ ← SignR((C1, aP ), osk) and appends it to CRED′.

OUV(opk, j,A′): B runs this oracle as in the real game, with the difference that B performs the showing
with respect to the credentials stored in the list CRED′. It computes the shown credential as cred′ ←
ChgRepR(CRED′[j], ρ, opk) (for some ρ

R← Z∗p) and appends the tuple (cred′, ρ) to CRED′′. Note that under
the class hiding property of Scheme 1, A will not detect that the showings are performed with respect to a
different obtained credential. Finally, B also performs PoK with respect to the known discrete logarithm q
of Q and simulates the remainder. This produces a valid showing, since by the witness indistinguishability
of the OR proof PoK, A cannot distinguish whether the honest part of the proof was conducted for C2 or
Q = qP .

OOO(osk, opk, i, uski,A): B runs this oracle as in the real game, with the only difference that B appends ⊥ to
CRED′ (in order to preserve the same order as in CRED).

If A outputs (A′∗, state), then B runs A(state) and interacts with A as verifier in a showing protocol. Now, if A
delivers a valid showing using a credential cred′∗, then B rewinds A to the step after sending the commitments
(KQ,KC2

) in PoK and restarts A with a new challenge c′ 6= c. Then, by the knowledge extractor of PoK (for
the C2-part of the proof), B obtains ρ′ ∈ Z∗p. If cred′∗ 6∈ SCRED, then B aborts. Otherwise, let j∗ be the index

such that cred′∗ ∈ SCRED[j∗]. Then, B retrieves the pair (cred′, ρ) from CRED′′ such that cred′∗ = cred′ and
computes a′ ← ρ′ρ−1 ∈ Z∗p. If a′P 6= aP or i∗j∗ /∈ HU \ KU, then B aborts. Otherwise B outputs (a′, aP ) as a
solution to the DLP in G1.



We emphasize that we do not consider re-randomized replays, i.e., replays, whose credentials and polynomial
commitment witnesses have been re-randomized by the adversary, as this cannot be considered as an attack
being easier than simple replays of showings.

In front of an adversary A, we randomly pick an adversary of type 1, 2A, 2B, 3A or 3B with equal probability.
Thus, the global security loss is 1/5. ut

C.3 Proof of Theorem 6 (Anonymity)

Proof. For the sake of contradiction, we assume that there is an efficient adversary A winning the anonymity
game with non-negligible probability and we assume that the used SPS-EQ-R scheme is class hiding. We will
show that this implies an efficient adversary against the class hiding property of the SPS-EQ-R scheme for
message length ` = 2 giving the desired contradiction.

We construct an adversary B, consisting of adversary A playing the anonymity game with a challenger S.
B is interacting with the challenger C in the class hiding game. Subsequently, we describe how S simulates the
environment for A and interacts with the challenger of the class hiding game.

Initially, C runs BG← BGGenR(κ), chooses b
R← {0, 1} and runs B(BG, `), who internally runs (state′, osk, opk)←

A(pp), and outputs (state, sk, pk) with (sk, pk)← (osk, opk). Here, the public parameters pp were generated by

B (respectively S) based on BG and by choosing q
R← Z∗p to compute Q← qP (instead of picking Q at random).

Note that state includes (state′, osk, opk), pp as well as the trapdoors α and q. Then, C runs B(state, sk, pk) and
S initializes the environment (i.e., the lists and sets) and runs A(state′, pp, osk, opk). S simulates A’s oracle
calls as follows:

OHU+(i): S runs the oracle as in the real game.
OUI(osk, opk, i,A): S runs the oracle as in the real game, but discards the so obtained credential. Additionally,

on the j-th call, S calls the random message oracle ORM (`) from C, gets in response a message vector
(M1,M2) and sets credi ← ((M1,M2), σ), where it computes σ ← SignR((M1,M2), osk). Finally, it appends
(credi,A) to (CRED, ATTR).

OUV(opk, j,A′): S runs the oracle as in the real game and follows the Show algorithm, except for the compu-
tation of the value CA′ and the PoK. Let ((C1, C2), σ) ← CRED[j]. Then, in the case of CA′ , S knows the
trapdoor α and computes CA′ ←

1
enc(A′)(α)C1, whereas in the latter case S simulates the proof part for C2

and conducts an honest proof for the knowledge of q. This produces a valid showing, since by the witness
indistinguishability of the OR proof PoK, A cannot distinguish whether the honest part of the proof was
conducted for C2 or Q = qP .

ORoR(osk, opk, b, j0,A′): S runs the oracle as in the real game, but in order to obtain a credential, it obtains
((C1, C2), σ)← CRED[j0] and calls the oracle ORoR(osk, opk, b, (C1, C2)) of C. Then, it simulates a showing
using this response and the trapdoor information (similar to the oracle OUV).

Note that under the class hiding property of the signature scheme, A will not recognize that the credentials
presented in an interaction with the oracle OUV consist of random messages (obtained from the oracle ORM )
and not randomized versions of the discarded credentials obtained in the interaction with OUI . Also note
that CA′ does not leak any information on attributes (except for the shown attributes), as it is derived from
the random, fake commitment value C1 in a way that only the verification relations work out. Since this
value has the same distribution as the corresponding value in the real game, this part of the simulation is
indistinguishable from the respective part of the real game.

If A outputs b∗ to S, then B outputs b∗ to C. It is now obvious that if A wins the anonymity game played
with S with non-negligible probability, then also B wins the class hiding game played with C with the same
probability, which contradicts the assumed hardness of the class hiding property. ut


