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Abstract

The problem of securely outsourcing computation to an untrusted server gained momentum with the
recent penetration of cloud computing services. The ultimate goal in this setting is to design efficient
protocols that minimize the computational overhead of the clients and instead rely on the extended
resources of the server. In this paper, we focus on the outsourced database search problem which is
highly motivated in the context of delegatable computing since it offers storage alternatives for massive
databases, that may contain confidential data. This functionality is described in two phases: (1) setup
phase and (2) query phase. The main goal is to minimize the parties workload in the query phase so that
it is proportional to the query size and its corresponding response.

Our starting point is the semi-honest protocol from [FHV13] (ICALP 2013) that offers a simula-
tion based secure protocol for outsourced pattern matching in the random oracle setting with optimal
workload. In this work we study whether the random oracle is necessary for protocols with minimal in-
teraction that meet the optimal communication/computation bounds in the query phase. We answer this
question positively and demonstrate a lower bound on the communication or the computational overhead
in this phase. We further abstract the security properties of the underlying cryptographic primitive that
enables to obtain private outsourced database search with minimal interaction. For a large class of search
functionalities the communication complexity of our protocol meets the above lower bound.
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tational Complexities, Minimal Interaction

∗Faculty of Engineering, Bar-Ilan University, Israel. Email: carmit.hazay@biu.ac.il
†Department of Computer Science, Bar-Ilan University, Israel. Email: zarosih@cs.biu.ac.il.



1 Introduction

Background on outsourced secure computation. The problem of securely outsourcing computation to
an untrusted server gained momentum with the recent penetration of cloud computing services, where clients
can lease computing services on demand rather than maintaining their own infrastructure. The ultimate goal
in this setting is to design efficient protocols that minimize the computational overhead of the clients and
instead rely on the extended resources of the server. Of course, the amount of work invested by the client
in order to verify the correctness of the computation needs to be substantially smaller than running the
computation by itself. Another ambitious challenge of delegatable computation is to design protocols that
minimize the communication between the cloud and the client. This becomes of particular importance
with the proliferation of smartphone technology and mobile broadband internet connections, as for mobile
devices communication and data connectivity is often the more severe bottleneck.

The study of delagatable computation was initiated with the study of a restricted scenario where a single
client outsources its computation to an external server. Two main approaches are examined in this context.
In the first setting there is only one phase of interaction between the client and the server such that the overall
amount of work performed by the client is smaller than performing the computation on its own. Correctness
in this setting is achieved by succinct zero-knowledge proofs [GLR11, BCCT12, DFH12] with the aim
of minimizing the number of rounds between the client and the server. In the amortized setting [GGP10,
AIK10] the computational complexity of the client is analyzed in an amortized sense. Namely, the client
can perform some expensive preprocessing (also known as the offline phase). After this phase is completed,
it is required to run very efficient computations in the online phase.

Recent results also study an extended setting with multiple r clients that mutually distrust each other
and wish to securely outsource a joint computation on their inputs with reduced costs [KMR11, KMR12,
LATV12, AJLA+12, CKKC13]. In particular, it is required that the communication between the clients
and the server, as well as the communication between the clients, will be sufficiently smaller than running
a secure computation in the standard setting. This more complex setting is strictly harder than the single
client setting since one must handle potential corruptions of any (proper) subset of the clients, that might
collude with the server. It is worth noting that in case only correctness is required then security in the multi
clients setting is reduced to security in the single client setting. This is due to the fact that we can consider
a protocol where r − 1 clients send their inputs to the rth client, that communicates with the server using
all inputs. It then forwards the server’s proof to the other clients who can verify its correctness. Generally
speaking, outsourced secure computation in the presence of collusion between any t clients and the server
implies secure computation in the standard setting with r − t+ 1 parties. Thus, the problem of delegatable
computation with multiple clients focuses on achieving privacy (with or without imposing correctness).

Modeling outsourced database search. To move towards more practical schemes, recent results give up
on outsourcing arbitrary computation to the cloud, and instead focus on particularly efficient constructions
for specific important functionalities. This approach has the potential to achieve improved complexities
by exploiting the structure of the particular problem that is intended to solve. Some recent works have
considered this question and proposed schemes for polynomial evaluation and keywords search [BGV11],
set operations [PTT11], linear algebra [Moh11] and pattern matching [FHV13]. In this paper, we focus on
the database search problem in the cloud. This problem, denoted by outsourced database search, is highly
motivated in the context of delegatable computing since it offers storage alternatives for massive databases
that may contain confidential data (e.g., health related data about patient history).

We consider a reactive database search functionality where one client has a database, and another set of
clients search the database using a sequence of queries. To simplify the presentation we denote the former
client by the sender and the other set of clients by the receiver (for simplicity, we focus on a single receiver
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asking for multiple queries). The input of the sender is a database of size n.1 The input queries of the receiver
{qi}i∈[t] are picked from a predefined set Qn where Qn is a set of queries that correspond to a database of
size n. This functionality can be described in two phases. In the setup phase the sender uploads a function of
its database to the server. This phase is run only once, where the sender’s state after this phase is independent
of n. Next, in the query phase the receiver picks a search query and obtains from the server the answer to
this query (denoted by record). To restrict the number of queries, the sender must approve each query by
providing a trapdoor that depends on the content of the query (however, recall that this cannot be solved in
the trivial way since the sender maintains a small amount of state now and in particular does not hold the
database any more). This formalization captures a large class of search functionalities. Two known examples
are oblivious transfer (OT) with adaptive queries [NP99, GH11] and secure pattern matching [HT10]. In the
former functionality the record size is bounded to a single element from the database, whereas in the latter
functionality it is unbounded and might be O(n).

Security is formalized using the ideal/real paradigm, considering the server as a separate entity that does
not contribute any input to the computation. As in the standard static modeling, a corrupted party is either
passively or actively controlled by an adversarial entity. In the passive case (a.k.a. the semi-honest case) a
corrupted party follows the protocol’s instructions and tries to gain additional information about the honest
parties’ inputs from its view; in the active case (a.k.a. the malicious case) a corrupted party is allowed to
follow an arbitrary polynomial-time strategy. This modeling also captures a collusion between the server
and one of the clients.2 In order to take some advantage from this modeling, we would like the setup phase
to require O(n) workload, yet the overall cost of issuing a query should only grow linearly with the size
of the query’s response (which is as optimal as one can obtain). For some search functionalities, without a
fixed bound on the database records, this optimization comes at the price of revealing some leakage about
the database.

We are further interested in studying protocols with minimal interaction. That is, in the setup phase we
require a single message sent from the sender to the server, whereas in the query phase we require that the
sender and receiver exchange only two messages (one in each direction), and finally, one message in each
direction between the receiver and the server (see Figure 1).3 In this paper we focus on semi-honest security
and study the feasibility of the outsourced database search functionality with minimal interaction and using
minimal resources of communication and computation.

Figure 1: A graphical description of our modeling.

1We remark that the internal structure of the database is not important for our lower bounds proofs, whereas we require a
concrete structured database in our feasibility result; see below for further information.

2As in the two-party setting, a collusion between the two clients is not interesting.
3We prove that if the order of communication between the receiver and the sender/server is swapped then our lower bounds

follow more easily. We further note that our lower bounds are not restricted to a minimal interaction between the server and the
receiver; we only impose this restriction in our construction.
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The [FHV13] construction. This paper presents the first concrete protocols for the pattern matching prob-
lem in the cloud, where a text T that is outsourced to the cloud by a sender. In the query phase, the receiver
learns the positions at which a pattern of length m matches the text (and nothing beyond that). This is
called the outsourced pattern matching problem. These constructions offer simulation-based security in the
presence of semi-honest and malicious adversaries and limit the communication in the query phase to O(m)
bits plus the number of occurrences – which is optimal (where the semi-honest protocol is with minimal
interaction). Faust et al. use novel ideas based on a reduction to the subset sum problem, which do not rely
on the hardness of the problem, but rather require instances that are solvable in polynomial-time.

Specifically, assume that in the setup phase the text is encoded by a random vector where each substring
of length m is replaced by a random element. Moreover, in the query phase the sender hands the receiver
the sum of elements that are in positions for which the corresponding substrings match the query, such that
a solution to the subset sum instance reveals the positions in which the pattern appears. In order to avoid
a blowup of the sender’s state, the random vector is generated so that the sum of each set of positions that
match a substring p equals fk(p) (where f is a PRF). In addition, in order to keep the communication in the
setup phase small, Faust et al. rely heavily on the programmability property of the random oracle, and use it
to equivocate a fake text. In this work we study whether the random oracle is essential for achieving optimal
overhead in the query phase. Namely,

Does there exist a private protocol with minimal interaction for the outsourced search functionality in
the plain model, that meets the optimal communication/computation bounds in the query phase?

We prove that the answer for this question is negative. Namely, there exists a large class of search
functionalities that cannot be realized privately with optimal resources in the query phase.

1.1 Our Results

Infeasibility of outsourced database search in the plain model. We prove that using the power of the
random oracle is essential in order to reduce the resources of the receiver within protocols with minimal
interaction, even if the sender’s state in o(n) and the number of rounds between the server and the receiver
is arbitrary. This result has the consequence that for certain search functionalities (e.g, pattern matching
and all its variants, and the indexing problem), the communication complexity or the number of steps made
by the receiver must be as large as the size of the database. We examine both non-private and private
channels scenarios (where in the latter setting corrupted parties do not see the communication between
the honest parties), and prove that our lower bound holds in both settings. More formally, let ANSn,q
denote the set of all potential responses for the query q when ranging over all databases T of size n, and
let Hn,Q = maxq∈Qn log |ANSn,q| (intuitively, Hn,Q is the logarithm of the number of potential query
responses when ranging over all databases of size n and all queries in Qn; see Definition 3.3). We prove,

Theorem 1.1 (informal) For any protocol with minimal interaction that securely implements the outsourced
database search functionality in the presence of semi-honest adversaries, one of the following holds:

1. The communication complexity in the query phase is O(Hn,Q).

2. The number of random bits used by the receiver is O(Hn,Q).

Our proof follows a similar intuition of the proof from [Nie02] when showing the impossibility of
constructing non-interactive non-committing encryption schemes without a random oracle. Nevertheless,
formalization is more challenging since our protocols are interactive and moreover, the number of involved
parties is three. One consequence that we need to take into account is the order of rounds of which the
receiver interacts with the other parties. This is because when we consider security in the private channels
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setting we need to focus on a scenario where the server and the receiver collude. In this case, the view of
the adversary contains both the randomness of the receiver and the server, as well as the message from the
sender to the receiver. Thus, we must distinguish between the randomness of the receiver and that of the
server and rely on the fact that the random tape of the server is uniformly independent of the receiver’s view.
Specifically, we need to show that when we fix a partial view of the receiver, then for almost all random tapes
of the server, the receiver outputs the correct value. Note that if the receiver communicates with the server
first then this independence no longer holds since the communication between the receiver and the sender
may depend on the random tape of the server. On the other hand, if the receiver communicates with the
sender first then independence follows, as semi-honest adversaries cannot pick their randomness arbitrarily.
This subtlety is in contrast to the proof for non-committing encryption that allows to rely on the correctness
of the non-interactive decryption algorithm of the underlying encryption scheme.

Intuitively, we consider the two possible orders of rounds in the query phase. If the receiver first com-
municates with the server and then with the sender, we show that the communication complexity of the
protocol must be large because at the time the receiver communicates with the server, the server does not
know anything about the database. It therefore does not know which information to send back, and es-
sentially must send as much information as the maximal amount of information sent within any response
to query q (when ranging over all databases of size n). If the receiver first communicates with the sender
and then with the server, we consider the case where the receiver and the server are corrupted. Then in the
simulation of the setup phase, the simulator must commit to a setup message independently of the sender’s
database. This message is fixed and cannot be later changed. Next in the query phase, the receiver makes
a query q and learns the answer for this query. The simulator then has to simulate a view for the corrupted
parties, so that it yields the correct output of the receiver. We show that this means that for every possible
answer there must exist a view (rRec,m2) for the receiver (where rRec is the random tape of the receiver and
m2 the message form the sender to the receiver) such that with a high probability (over the random coins of
the server), the receiver outputs the correct query response. This implies that the number of views (rRec,m2)
must be proportional to the number of potential query responses when ranging over all databases (and hence
the length of (rRec,m2) is linear in Hn,Q), which can be as large as the size of the database for certain search
functionalities even when the receiver’s output size is small. Interestingly, as shown in [FHV13], the random
oracle allows for communication complexity and randomness that are proportional to the size of the query’s
response, in the non-private channel.

It is important to note that our lower bounds hold for any protocol with minimal interaction. Therefore,
we can always focus on a protocol that makes use of a minimal number of random coins. Saying differently,
our lower bounds consider the effective number of bits used by the receiver and even cover scenarios where
the receiver’s random tape is very large, for which the receiver ignores some portion of it. The reason for this
is that for every such protocol, we can consider an equivalent protocol where the receiver’s random tape does
not contain any unused bits and apply our lower bounds to the new protocol. This further implies a lower
bound on the number of steps of the receiver since these random bits are incorporated in the computation of
the receiver. Moreover, our lower bounds hold even if the receiver maintains no privacy since they follow
from the non-committing property that we require in the simulation.4 Also, any attempt to replace the
uniform randomness of the receiver by an output of a pseudorandom generator (PRG) in order to strengthen
our lower bounds fails since it requires finding a preimage relative to the PRG; see more details in Section 4.

Finally, we note that our lower bounds also apply in the two-party setting for reactive search functional-
ities (with a preprocessing phase), which implies the infeasibility of private reactive pattern matching with
optimal query response and minimal interaction in the plain model. This is in contrast to the non-private
setting, where suffix trees [Wei73] are useful to store the text in a way that allows fast string operations. In

4We note that when privacy is not considered we prove that there exists a query for which our lower bounds hold. For private
protocols this implies that these lower bounds hold for all queries or else some information about the query leaks.
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particular, it illustrates that private pattern matching cannot be optimized in the preprocessing setting.

Efficient outsourced database search in the plain model. We further construct a private and efficient
outsourced database search with minimal interaction and abstract the security properties of the underlying
cryptographic primitive that enables to obtain this. Our framework implies that the sender’s state in the query
phase is independent of the database size. In addition, the communication complexity and the receiver’s
workload in the query phase depend only on its input and (worst case) output sizes. For a large class of
search functionalities this communication complexity meets our lower bounds.

Our formulation uses an encryption scheme with a master secret key that produces multiple secret sub-
keys, where the goal is to associate a query with such a subkey that encrypts its record. This formalization
is in the spirit of identity based encryption schemes (IBE) and functional encryption, where secret subkeys
are associated with some functionality. Nevertheless, in our setting, queries (that can be interpreted as IBE
identities) must be kept privately, which implies that the sender produces the secret keys obliviously. In ad-
dition, the sender generates both the database (plaintext) and the trapdoors (secret keys), which is different
than the asymmetric scenario captured by IBE where one party holds the identity secret key whereas the
other party holds the plaintext. This implies that our primitive can be designed based on weaker symmetric
building blocks, such as PRFs, in contrast to more “expensive” primitives such as IBE.

A prime difficulty in proving security in this setting is due to the fact that the simulator must equivocate
the fake database when simulating the view of a corrupted receiver (as it is committed to the database before
observing any query). In order to capture this property we extend our notion of encryption and require
secret keys equivocation, for secret keys that were generated in a fake (simulated) mode. This additional
property has a flavour of adaptive security (as in the case of non-committing encryptions), but is strictly
weaker since it does not enable security in the presence of adaptive corruptions of neither the receiver nor
the sender. Nevertheless, this notion is still meaningful in our context. Combining these two properties
of multiple secret keys and secret keys equivocation implies an encryption scheme for outsourced database
search functionalities with communication complexity that depends on the largest query response size.

Note that the master secret key encodes all the information about the query secret keys succinctly, and
thus the sender can avoid storing a key per query. It is also helpful in minimizing the communication between
the sender and the receiver in the query phase, since it implies a mechanism that enables secret key transfer
with communication that depends on the query size, but independent of the entire size of |Qn|. Finally, we
note that the design of OT with adaptive queries from [FIPR05], when executed in the outsourced setting, is
captured by our abstraction. To conclude, we prove

Theorem 1.2 (informal) Assume the existence of a semi-honest OT. Then, there exists a protocol that se-
curely implements the outsourced database search functionality in the presence of semi-honest adversaries
with minimal interaction and communication complexity that is proportional to the largest query response.

Our construction is also secure in the presence of collusion between the receiver and the server and leaks
the search pattern to the server. As a sanity check, we note that fully homomorphic encryption is not useful
for our setting since the receiver must interact with the sender twice: once to obtain the public key and once
to engage in a secure two-party protocol in order to decrypt the ciphertext returned from the server.

Symmetric searchable encryption (SSE). A related line of work regarding symmetric searchable encryp-
tion [CGKO11, KPR12, KP13, JJK+13] allows a party to privately outsource its data to another party while
maintaining the ability to search it, where the main focus of this primitive is typically on the search time.
We note that SSE that supports adaptive queries, simulation-based security and query privacy can be applied
in a setting with a single sender and multiple receivers, by letting the receivers learn their trapdoors using a
secure two-party computation protocol that is engaged with the sender.
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Importantly, our infeasibility result also applies to SSE with adaptive queries, where the user adaptively
asks its queries after the preprocess phase is completed. Namely, we prove that there exists a class of
search problems (e.g., the indexing problem), where there exists no SSE with adaptive queries, minimal
interaction and communication that is proportional to the query’s response. Finally, our framework regarding
the feasibility of database search with no random oracles is also useful for SSE and provides an abstraction
of the security properties of this primitive with minimal interaction, as well as a simplified instantiation
based on PRFs.

2 Preliminaries

Basic notations. We denote the security parameter by κ and by Un the uniform distribution over strings
of length n. We say that a function µ : N → N is negligible if for every positive polynomial p(·) and
all sufficiently large κ it holds that µ(κ) < 1

p(κ) . We use the abbreviation PPT to denote probabilistic
polynomial-time and the notation [n] to denote the set of integers {1, . . . , n}.

We specify the definition of computational indistinguishability.

Definition 2.1 (Computational indistinguishability by circuits) Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y =
{Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution ensembles. We say that X and Y are computationally indistin-

guishable, denoted X
c≈ Y , if for every PPT machine D, every a ∈ {0, 1}∗, every positive polynomial p(·)

and all sufficiently large κ:∣∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣∣ < 1

p(κ)
.

2.1 Secret Key Encryption (SKE)

We specify the definitions of secret key encryption and indistinguishability under chosen plaintext attacks.

Definition 2.2 (SKE) We say that Π = (Gen,Enc,Dec) is a secret key encryption scheme if Gen,Enc,Dec
are polynomial-time algorithms specified as follows:

• Gen, given a security parameter κ (in unary), outputs key SK, where SK is a secret key. We denote
this by SK ← Gen(1κ).

• Enc, given the secret key SK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncSK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncSK(m; r).

• Dec, given the secret key SK and a ciphertext c, outputs a plaintext message m s.t. there exists
randomness r for which c = EncSK(m; r) (or ⊥ if no such message exists). We denote this by
m← DecSK(c).

For a secret key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform adversary A = (A1,A2), we
consider the following indistinguishability game:

SK ← Gen(1κ).

(m0,m1, history)← AEncSK(·)
1 (1κ), s.t. |m0| = |m1|.

c← EncSK(mb), where b ∈R {0, 1}.
b′ ← AEncSK(·)

2 (c, history).

A wins if b′ = b.
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Denote by AdvINDΠ,A(κ) the probability that A wins in the indistinguishability game.

Definition 2.3 (SKE IND-CPA) A secret key encryption scheme Π = (Gen,Enc,Dec) has indistinguish-
able encryptions under chosen plaintext attacks (IND-CPA), if for every non-uniform adversaryA = (A1,A2)
there exists a negligible function negl such that AdvINDΠ,A(κ) ≤ 1

2 + negl(κ).

2.2 Oblivious Pseudorandom Function Evaluation

Informally speaking, a pseudorandom function (PRF) is an efficiently computable function that looks like a
truly random function to any PPT observer. Namely,

Definition 2.4 (Pseudorandom function ensemble) Let F = {fκ}κ∈N where for every κ, fκ : {0, 1}κ ×
{0, 1}m → {0, 1}l be an efficiently computable ensemble of keyed functions. We say that F = {fκ}κ∈N is
a pseudorandom function ensemble if for all PPT distinguishers D, there exists a negligible function negl
such that for every κ:

|PrDfκ(k,·)(1κ) = 1− PrDfκ(1κ) = 1| ≤ negl(κ),

where k is picked uniformly from {0, 1}κ and fκ is chosen uniformly at random from the set of functions
mapping m-bit strings into l-bit strings. We sometimes omit κ from our notation when it is clear from the
context.

In our protocols, we consider a protocol πPRF that obliviously evaluates a pseudorandom function in
the presence of semi-honest adversaries. Specifically, let k ∈ {0, 1}κ be a key sampled as above. Then
the oblivious PRF evaluation functionality FPRF is defined by (k, x) 7→ (−, fk(x)). An oblivious PRF
protocol can be designed based on the Naor-Reingold pseudorandom function [NR97] and implemented
by the protocol presented in [FIPR05], which involves running an oblivious transfer protocol [EGL85] for
every bit of the input x. This function is defined by

f((a0, . . . , am), x) = ga0
∏m

i=1 a
x[i]
i ,

where g is a generator for a group G of prime order p, a1, . . . , am ∈ Zp and x = (x[1], . . . , x[m]) ∈ {0, 1}m.
We remark that both the key and the range are not bit strings, as required by Definition 2.4, but they can be
interpreted as such in a natural way.

More generally, a two rounds oblivious PRF protocol can be implemented in the semi-honest setting for
any PRF, based on the garbling technique of Yao [Yao86] assuming a semi-honest oblivious transfer.

3 Our Modeling

In this section we model the reactive database search functionality where one client has a database, and
another set of clients search the database using a sequence of queries. To simplify the presentation we
denote the former client by the sender and the other set of clients by the receiver. (For simplicity, we focus
on a single receiver asking for multiple queries).

Inputs and outputs. The input of the sender is a database T of size n. The input queries of the receiver
{qi}i∈[t] are picked from a predefined set Qn where Qn is a set of queries that correspond to a database
of size n. Specifically, we let the set of queries {Qn}n∈N depend on the database size. This formalization
captures search functionalities where Qn changes with the database size, such as in oblivious transfer with
adaptive queries. It further covers search functionalities where the same set of queries is used for databases
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Functionality FODBS

Let m, t ∈ N and Q = {Qn}n. Functionality FODBS sets a table B initially to be empty and proceeds as follows,
running with sender Sen, receiver Rec, server Ser and ideal adversary SIM.

1. Upon receiving a message (DB, T,m) from Sen, send (preprocess, |T |,m) to Ser and SIM, and record
(DB, T ) and n = |T |.

2. Upon receiving a message (query, qi) from Rec (for i ∈ [t]), where message (DB, ·) has been recorded,
|qi| ≤ m and qi ∈ Qn, check if the table B already contains an entry of the form (qi, ·). If not, then pick
the next available identifier id from {0, 1}∗ and add (qi, id) to B. Send (query, Rec) to Sen and SIM.

(a) Upon receiving (approve, Rec) from Sen send (response, Rec, |Ti|, id) to server Ser. Otherwise, if
no (approve, Rec) message has been received from Sen, send ⊥ to Rec and abort.

(b) If there exists a matched record Ti send (response, qi, Ti, id) to Rec. Otherwise, send “no match”.

Figure 2: The outsourced database search functionality

of different sizes by fixing the same set of queries for all n, such as in pattern matching, (see Section 3.3 for
the formal definitions of these functionalities).

The queries made by the receiver are determined adaptively by a PPT algorithm M that takes the re-
ceiver’s initial input and the outputs of prior search results. Whenever we say that the honest receiver picks
a search query qi ∈ Qn, we assume that the receiver applies its input selection algorithm M as specified
above. Queries that do not have a suitable answer in the database will be responded with a “no match”
message whenever queried by the receiver. Finally, we assume that |q| ≤ m for all q ∈ Qn and some fixed
parameter m = m(κ). We further assume that n is polynomial in the security parameter κ. We let Tq denote
the response of the functionality on database T and query q ∈ Qn.

The reactive search functionality. The reactive search functionality can be described in two phases.

1. In the setup phase the sender sends a message a(T ) to the server, where a(·) is some polynomial-time
algorithm. This phase is run only once, such that the size of the sender’s state s upon completion is
bounded by poly(κ).5

2. In the query phase The receiver picks a search query and obtains from the server the answer to this
query. Note that this definition is meaningful only if we restrict the number of queries made by the
receiver. Otherwise, no notion of privacy is guaranteed for the sender, since the receiver (or even
the server) can potentially search the database for as many queries as they wish. This requirement
is formalized by asking the sender’s “permission” whenever a query is made, and is an important
feature of payment-based search applications where the receiver pays per search. Looking ahead, we
implement this restriction using a secure protocol between the sender and the receiver that allows the
receiver to learn the answer to its search query.

The formal definition of outsourced database search functionality appears in Figure 2.

Complexities. In order to take some advantage from this modeling, we would like the setup phase to
require O(n) workload, yet the overall cost of issuing a query should only grow linearly with the size

5For this to be meaningful, we requite that the size of the sender’s state is strictly less than n. This is formalized by assuming
the existence of two polynomials p1(·) and p2(·) such that n ≤ p1(κ), s ≤ p2(κ) and s ∈ o(n).
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of the query’s response (which is as optimal as one can obtain). As mentioned before, for some search
functionalities, where there is no fixed bound on the database records, this optimization comes with the price
of revealing some leakage about the database. We further allow leaking the search pattern, where the server
recognizes whether the same query already asked before. Finally, we require that the round complexity of
any protocol implemented in this setting is minimal. I.e., in the setup phase we require a single message
sent from the sender to the server, whereas in the query phase we require the receiver exchange only two
messages (one in each direction) with each of the other clients.

Security definition. Security is formalized using the ideal/real paradigm, considering the server as a sep-
arate entity that does not contribute any input to the computation. In the ideal setting, such an entity is
also communicating with the functionality and upon corruption, decides whether the functionality sends the
outcome of the computation to the receiver. As in the standard static modeling a corrupted party is either
semi-honest or malicious, where in the semi-honest setting the attacker follows the protocol’s instructions
but tries to gain additional information about the honest parties’ inputs, whereas in the malicious setting the
attacker follows an arbitrary efficient strategy. This modeling also captures collusion between some of the
parties, when the adversary corrupts more than one party and the corrupted parties share a joint state. In this
work we only consider collusion between the server and the receiver. In particular, collusion between the
sender and the receiver is not interesting as the server has no input and no output, whereas the question of
collusion between the server and the sender remains open. Intuitively, it is not clear how to protect the re-
ceiver’s privacy when the adversary sees the sender’s private information and the message from the receiver
to the server.6 We say that a protocol is secure in the presence of (P1/P2)-collusion if security holds against
collusion between parties P1 and P2 (in addition to individual corruptions). In this work we consider both
the private channels setting (where the communication between honest parties is not seen by the adversary)
and the non-private channels setting. Note that any protocol in the private channels setting can be executed
in a non-private channels environment by encrypting the communication between any pair of parties. This
transformation increases the number of rounds as the parties need to exchange their public keys, where this
additional message is sent only once at the beginning of the query phase.

Formally, denote by IDEALFODBS,SIM(z)(κ, (−, T, (q1, . . . , qt))) the output of an ideal adversary
SIM, server Ser, receiver Rec and sender Sen in the above ideal execution of FODBS upon given inputs
(−, (T, (q1, . . . , qt))) and auxiliary input z to SIM. Functionality FODBS is implemented via a protocol
π = (πPre, πQuery) consisting of a pair of protocols specified as follows. A two-party protocol πPre that is run
in the setup phase by Sen, that preprocesses database T and forwards the outcome a(T ) to Ser. During the
query phase protocol πQuery is run between Rec (holding a query q) and Sen, Ser, where Rec communicates
with each party separately. We denote by REALπ,A(z)(κ, (−, T, (q1, . . . , qt))) the output of a non-uniform
PPT adversary A, server Ser, sender Sen and receiver Rec in a real execution of π = (πPre, πQuery) on
inputs (−, (T, (q1, . . . , qt))) and auxiliary input z given to A.

Definition 3.1 (Security of outsourced database search) We say that π securely implements FODBS with
respect to queries Q = {Qn}n∈N in the presence of (Ser/Rec)-collusion and semi-honest (respectively,
malicious) adversaries, if for any PPT semi-honest (respectively, malicious) adversaryA there exists a PPT
semi-honest (respectively, malicious) simulator SIM such that for any tuple of inputs (T, (q1, . . . , qt)) such
that q1, . . . , qt ∈ Q|T |, and auxiliary input z,

{IDEALFODBS,SIM(z)(κ, (−, T, (q1, . . . , qt)))}κ∈N
c≈ {REALπ,A(z)(κ, (−, T, (q1, . . . , qt)))}κ∈N.

6Notably, our lower bounds also apply to settings where all type of collusion are allowed since this only strengthens the model.
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Functionality FDBS

Let m, t ∈ N and Q = {Qn}n. Functionality FDBS sets a table B initially to be empty and proceeds as follows,
running with sender Sen, receiver Rec, and ideal adversary SIM.

1. Upon receiving a message (DB, T,m) from Sen, send (preprocess, |T |,m) to SIM, and record (DB, T )
and n = |T |.

2. Upon receiving a message (query, qi) from Rec (for i ∈ [t]), where message (DB, ·) has been recorded,
|qi| ≤ m and qi ∈ Qn, check if the table B already contains an entry of the form (qi, ·). If not, then pick
the next available identifier id from {0, 1}∗ and add (qi, id) to B. Send (query, Rec) to Sen and SIM.

• Upon receiving (approve, Rec) from Sen check if there exists a matched record Ti and send
(response, qi, Ti, id) to Rec if so. Otherwise, send “no match” to Rec.

• Otherwise, if no (approve, Rec) message has been received from Sen, send ⊥ to Rec and abort.

Figure 3: The database search functionality

The F-hybrid model. In the constructive part of this paper we will use secure two-party protocols as
subprotocols. The standard way of doing this is to work in a “hybrid model” where parties both interact with
each other (as in the real model) and use trusted help (as in the ideal model). Specifically, when constructing
a protocol π that uses a subprotocol for securely computing some functionality F , we consider the case that
the parties run π and use “ideal calls” to a trusted party for computingF . Upon receiving the inputs from the
parties, the trusted party computes F and sends all parties their output. Then, after receiving these outputs
back from the trusted party the protocol π continues.

Let F be a functionality and let π be a two-party protocol that uses ideal calls to a trusted party com-
puting F . Furthermore, let A be a non-uniform probabilistic polynomial-time machine. Then, the F-
hybrid execution of π on inputs (T, (q1, . . . , qt)), auxiliary input z to A and security parameter κ, denoted
HYBRIDπF ,A(z)(κ, (−, T, (q1, . . . , qt))), is defined as the output vector of the honest parties and the ad-
versary A from the hybrid execution of π with a trusted party computing F . By the composition theorem
of [Can00] any protocol that securely implements F can replace the ideal calls to F .

3.1 Outsourced Database Search and the Two-Party Setting

We prove that security of database search in our outsourced model implies secure two-party computation
under certain corruption cases. We specify the definition of database search functionality in the standard
two-party setting in Figure 3 (where no server is involved in the computation). The proof follows by the
observation that a collusion between Ser and Rec can be reduced to a single player playing the role of the
receiver in a two-party protocol implementing FDBS. The role of Sen remains unchanged. Note that the
following statement is independent of the corruption model (i.e., semi-honest/malicious) and the communi-
cation/round complexities.

Theorem 3.2 Let π be a protocol securely implementing FODBS with respect to queries Q = {Qn}n in the
presence of (Ser/Rec)-collusion. Then π securely implements FDBS.

Proof Sketch: Let π be a protocol computing FODBS with sender Sen, receiver Rec and server Ser. We
first adjust π into the two-party setting by defining a new pair of polynomial-time algorithms (Sen′, Rec′)
as follows. Define Sen′ first; given input T and 1κ, Sen′ internally initializes Sen(T, 1κ). Then, whenever
Sen′ receives a message from Rec′, it invokes Sen on this message (and its internal state) and forwards
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Sen’s response to Rec′. (Sen′ is essentially identical to Sen only that it is communicating with a single party
instead of two). Next, we define Rec′ as follows. Given the description of an input selection algorithm M
and 1κ, Rec′ internally initializes Rec(M, 1κ) and Ser(1κ). Whenever Rec′ needs to generate a message to
Sen′, Rec′ invokes Rec and Sen according to the specification of π and simulates the interaction between
them if needed. Specifically, Rec′ mimics the behaviour of a dummy adversary that controls Ser and Rec

but acts honestly and follows the instructions of π.
Security follows from the security of π. Namely, let A denote a polynomial-time adversary corrupting

Sen, and let SIM denote a polynomial-time simulator guaranteed by the simulation-based security of π.
Then for every adversary corrupting Sen′ define the same simulator SIM for which security straightfor-
wardly follows, as Sen′ and Sen follow the same instructions. In addition, let A denote a polynomial-time
dummy adversary corrupting both Ser and Rec, and let SIM denote a polynomial-time simulator guaran-
teed by the simulation-based security of π with respect to this collusion. Then for every adversary corrupting
Rec′ define a new simulator SIM′ that is hardwired with the code of SIM, which internally simulates both
Ser and Rec. Upon completing the simulation, SIM′ outputs the view returned by SIM.

Note that Theorem 3.2 implies that our construction from Section 5 is also secure in the two-party setting.

3.2 Useful Notations

Let n be a natural number denoting the size of the database and let Q = {Qn}n∈N be such that Qn is a set
of appropriate queries for databases of size n.7 We introduce important notations next.

Definition 3.3 For every q ∈ Qn, we let ANSn,q denote the set of all potential responses Tq for the query
q when ranging over all databases T of size n. Formally, ANSn,q = {Tq | T ∈ {0, 1}n} . Furthermore,
let Hn,Q = maxq∈Qn log |ANSn,q| , which intuitively captures the maximal amount of information that a
response for any query q ∈ Qn provides.

For instance, consider the oblivious transfer with adaptive queries functionality where every entry in the
database is of size ℓ. In this case, ANSn,q is the set of all ℓ-length binary strings.

Definition 3.4 We specify the following definitions:

1. Denote by ccn,qSer(κ) = ccSer(κ, n, q) the communication complexity of the interaction between Rec

and Ser within πQuery such that the receiver’s input is the query q and the database is of size n.
Namely, the number of bits being transferred between the receiver and the server in the query phase
with parameters κ and q.

2. Analogically, denote by ccn,qSen(κ) = ccSen(κ, n, q) the communication complexity of the interaction
between the receiver and the sender within πQuery such that the receiver’s input is the query q and the
database is of size n.

3. Denote by ccn,q(κ) = cc(κ, n, q) the overall communication complexity within πQuery. Namely, the
overall number of bits being transferred during the execution of πQuery such that the receiver’s input
is the query q and the database is of size n.

4. Finally, denote by randn,qRec(κ) = randRec(κ, n, q) the size of the receiver’s random tape within πQuery

such that the receiver’s input is the query q and the database is of size n.
7We emphasize that the infeasibility proof holds for any database of length n (regardless of its internal structure).
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3.3 Concrete Functionalities

We specify the description of two important functionalities in the context of database search.

3.3.1 Outsourced Oblivious Transfer with Adaptive Queries

The basic t-out-of-n oblivious transfer functionality between a sender and a receiver is denoted by FOT :
((x1, . . . , xn), (q1, . . . , qt)) 7→ (−, (xq1 , . . . , xqt)), where xi ∈ {0, 1}ℓ for all i ∈ [n], and ℓ = ℓ(κ), n =
n(κ) are polynomials in κ. Namely, the receiver learns t elements from the input vector of the sender
while the sender learns nothing. Note that by definition the receiver decides on the elements it wishes to
obtain in advance. Alternatively, we can modify the description of FOT so that the receiver picks its input
adaptively. This functionality is denoted by oblivious transfer with adaptive queries and is a special case of
pattern matching defined next, where the queries are indices from [n] and the outcome is the record in the
ith database entry. To this end, we denote by FOT the oblivious transfer functionality with adaptive queries.
We further denote the outsourced variant of this problem by FOOT where the server uploads its database to
an external server.

3.3.2 Outsourced Pattern Matching

The inputs for the basic pattern matching problem are a text T of length n and a pattern p (i.e., keyword) of
length m; the goal is to find all the text locations in which the pattern matches the text. A private distributed
variant of this problem is defined in the two-party setting, where party P1 holds a text T and party P2 holds
a pattern p. The goal of P2 is to learn the positions in which p matches the text without revealing anything
about the pattern to P1; at the same time, P2 should not learn anything else about the text. The outsourced
variant of the problem which is specified in two phases, following the notation of Faust et al. [FHV13]. In
the setup phase the sender uploads a (preprocessed) text a(T ) to an external server Ser. In the query phase
the receiver queries the text by searching patterns and learns the matched text locations. The reader can
think of each record in the pattern matching database as a sequence of indices from [n]. In comparison with
oblivious transfer, implementing this functionality is much more involved, since the database records are
strongly related. This makes simulation (for the case the receiver is corrupted) much more challenging. To
this end, we denote by FPM the pattern matching functionality. We further denote the outsourced variant of
this problem by FOPM where the server uploads its pattern to an external server.

4 Infeasibility of Outsourced Database Search in the Plain Model

In this section we introduce our infeasibility result of outsourced database search in the plain model. We
introduce our lower bound in two settings: (1) In Section 4.1 we prove the private channels case where
corrupted parties do not see the communication between the honest parties. (2) In Section 4.2 we prove a
similar theorem in the non-private case. In the later proof the adversary can observe the messages between
the honest parties, which implies that a corrupted receiver observes the setup message. This simplifies our
proof since the simulator does not need to generate the internal state of the server. The proof in the former
setting holds only for protocols secure against (Ser/Rec)-collusion and is slightly more involved.

4.1 The Private Channels Case

Our proof is shown in the presence of collusion between the receiver and the server and crucially relies
on the assumption that the receiver communicates with the sender first. This ordering enables to split the
randomness of an adversary controlling these parties into two distinct and independent sets. In Theorem 4.1
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we show that this ordering in necessary, proving that if this order of rounds is modified then the communi-
cation complexity between the server and the receiver must be proportional to Hn,Q, that might be as large
as the database size for some functionalities (see Lemma 4.6). Informally, this statement follows since at
the time the receiver communicates with the server, the server does not know anything about the database.
It therefore does not know the correct response to the receiver’s query, and essentially must send as much
information as the maximal amount of information sent within any response to query q (with respect to all
possible databases of size n). Recall that we assume that the receiver communicates with each party only
once. Formally,

Theorem 4.1 Fix n and m, and let π = (πPre, πQuery) be a protocol with minimal interaction that securely
implements FODBS with respect to queries Q = {Qn}n in the presence of (Ser/Rec)-collusion and semi-
honest adversaries. Then, if πQuery is defined such that Rec communicates with Ser first, for every n there
exists q ∈ Qn such that it holds that ccn,qSer(κ) ≥ Hn,Q − s.8

Proof: Fix n and assume by contradiction that ccn,q
′

Ser (κ) < Hn,Q − s for every q′ ∈ Qn and consider the
case that only the server is corrupted. Note that the sender can transmit at most s bits of information about
the database since this is the state size it keeps after the setup phase is completed. Intuitively, this implies
that if the receiver needs to learn more than s bits about the database it must receive them from the server.
Yet, since the server does not know which bits to transfer, it will just transmit everything.

Formally, recall that Hn,Q = maxq∈Qn log |ANSn,q| and let q∗ ∈ Qn be such that log |ANSn,q∗ | =
Hn,Q. By the above assumption, we have that the overall length of the incoming communication to Rec

on input q∗ is strictly less than Hn,Q = log |ANSn,q∗ |. However, to obtain the correct output, the receiver
must learn which of the elements in ANSn,q∗ is the correct response with respect to the sender’s input T
and hence for the very least, it must learn an overall of log |ANSn,q∗ | bits of information. This implies that
the receiver does not learn Tq∗ correctly.

We stress that for every q, |ANSn,q| is independent of the actual size of Tq for a concrete T , since it counts
the number of potential responses when ranging over all databases of length n. Thus, the above lower bound
is meaningful in the sense that it shows that the communication complexity might be large even if |Tq| is
small for some concrete T .

We are now ready to prove the following theorem.

Theorem 4.2 Fix n and m, and let π = (πPre, πQuery) be a protocol with minimal interaction that securely
implements FODBS with respect to queries Q = {Qn}n in the presence of (Ser/Rec)-collusion and semi-
honest adversaries in the private channels setting, such that Rec communicates with Sen first. Then one of
the following holds:

1. For every query q ∈ Qn the communication complexity ccn,qSen(κ) ≥
Hn,Q−3

2 or

2. There exists a query q ∈ Qn such that randn,qRec(κ) ≥
Hn,Q−3

2 .

Proof: Let π = (πPre, πQuery) be as in Theorem 4.2, let ASer,Rec be a real-world semi-honest adversary
controlling the server and the receiver, and let SIMSer,Rec be an ideal-world adversary guaranteed to exist
by the security of π = (πPre, πQuery). By definition, upon given a message (preprocess, |T |,m) in the setup
phase SIMSer,Rec outputs a string aSim. Moreover, upon given a message (response, q, Tq, id) in the query
phase it outputs a valid view forASer,Rec (recall that Tq represents the correct output for query q with respect
to database T ). This view is a triple (rRec,m2, rSer), where rRec and rSer are the respective random tapes of
Rec and Ser and m2 is a simulated message from Sen to Rec.

8Recall that s denotes the size of the sender’s state in the query phase and that s ∈ o(n).
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For a security parameter κ and a pair of query/record (q, Tq), let PrSIMSer,Rec,κ[aSim] denote the proba-
bility distribution over the simulated message of πPre and let PrSIMSer,Rec,κ,q,Tq [aSim, rRec,m2, r

∗
Ser] denote

the probability distribution on the values (aSim, rRec,m2, r
∗
Ser) where aSim is generated by SIMSer,Rec in

the simulation of πPre, (rRec,m2) are generated by SIMSer,Rec in the simulation of πQuery and r∗Ser is a
uniformly random string. Moreover, let Prπ,ASer,Rec,κ,T,q[a(T ), rRec,m2, rSer] denote the probability dis-
tribution on the values (a(T ), rRec,m2, rSer) that are generated in a real execution of π with ASer,Rec, on
inputs T for the sender and q of the receiver. We further denote by πOutput(aSim, rRec,m2, rSer) the output
of the receiver in an execution of π with a message aSim from Sen to Ser in πPre, and a message m2 from
Sen to Rec in πQuery, where rRec and rSer denote the respective random tapes of the receiver and the server.

We begin with a claim that states that whenever (aSim, rRec,m2, r
∗
Ser) are sampled according to the distri-

bution PrSIMSer,Rec,κ,q,Tq [aSim, rRec,m2, r
∗
Ser], then the receiver outputs the correct output with probability

at least 3/4. Intuitively, this claim follows by the correctness of the real protocol and the indistinguishability
of the ideal and real executions. That is, by the correctness of the protocol it holds that most of the real views
(rSer,m2) yield the correct output, when rSer is randomly chosen (recall that by the order of the rounds,
rSer is independent of (rRec,m2) in the real protocol). By the security of the protocol this must also hold
in the simulation. Therefore, the simulated views must have the property that with a high probability the
receiver returns the correct output when r∗Ser is picked at random.

Claim 4.3 There exists a κ0 such that for all κ > κ0, T ∈ {0, 1}n and q ∈ Qn,

Pr
SIMSer,Rec,κ,q,Tq

[πOutput(aSim, rRec,m2, r
∗
Ser) = Tq] ≥

3

4
. (1)

Proof Sketch: Assume that for infinitely many κ’s there exists T ∈ {0, 1}n and q ∈ Qn such that

Pr
SIMSer,Rec,κ,q,T q

[πOutput(aSim, rRec,m2, r
∗
Ser) = T q] <

3

4
. (2)

By the correctness of π, we are guaranteed that for all sufficiently large κ, every T ∈ {0, 1}n and every
q ∈ Qn, there exists a negligible function negl(·) such that

Pr
π,ASer,Rec,κ,T,q

[πOutput(a(T ), rRec,m2, rSer) = T q] > 1− negl(κ). (3)

Therefore, we can construct a PPT distinguisher D that distinguishes between a real execution of π with
ASer,Rec and an ideal execution of FODBS with SIMSer,Rec as follows. Given input T , q and a view
(a, rRec,m2, rSer) that is either generated by SIMSer,Rec or by the honest parties in a real execution of
π, D chooses a uniform random string r∗Ser and outputs 1 if and only if πOutput(a, rRec,m2, r

∗
Ser) = T q.

It is easy to see that if (aSim, rRec,m2, rSer) were generated by SIMSer,Rec, then D outputs 1 with prob-
ability that equals to PrSIMSer,Rec,κ,q,T q [πOutput(aSim, rRec,m2, r

∗
Ser) = T q], whereas if (aSim, rRec,m2, rSer)

were generated in a real execution of π with ASer,Rec, then D outputs 1 with probability that equals to
Prπ,ASer,Rec,κ,T,q[πOutput(a(T ), rRec,m2, rSer) = T q]. Hence, by Equations. (3) and (2), D distinguishes the
views with overwhelming probability.

To this end, we fix κ and q. Then, for every aSim and Tq let

GoodView(aSim, Tq) =

{
(rRec,m2)| Pr

SIMSer,Rec,κ,q,Tq

[πOutput(aSim, rRec,m2, r
∗
Ser) = Tq | aSim, rRec,m2] >

1

2

}
.

Note that the above probability is only taken over the choice of r∗Ser which is a uniformly random string.
Next, for a fixed Tq we let E(Tq) denote the expected value of |GoodView(aSim, Tq)| when aSim is generated
by SIMSer,Rec in the simulation of πPre. That is,
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E(Tq) = EaSim [|GoodView(aSim, Tq)|] =
∑
aSim

Pr
SIMSer,Rec,κ

[aSim] · |GoodView(aSim, Tq)| .

Then, we prove the following claim,

Claim 4.4 For every Tq, it holds that E(Tq) ≥ 1
4 .

Proof: Let Tq be such that E(Tq) < 1/4, we show that this contradicts Claim 4.3. First, recall that
E(Tq) = EaSim [|GoodView(aSim, Tq)|] . By the Markov inequality it holds that

Pr
SIMSer,Rec,κ

[|GoodView(aSim, Tq)| ≥ 1] <
1

4
. (4)

Then, by the total probability theorem it holds that

Pr
SIMSer,Rec,n,q,Tq

[πOutput(aSim, rRec,m2, r
∗
Ser) = Tq]

= Pr
[
πOutput(aSim, rRec,m2, r

∗
Ser) = Tq

∣∣∣ |GoodView(aSim, Tq)| ≥ 1
]
· Pr [|GoodView(aSim, Tq)| ≥ 1]

+Pr
[
πOutput(aSim, rRec,m2, r

∗
Ser) = Tq

∣∣∣ |GoodView(aSim, Tq)| = 0
]
· Pr [|GoodView(aSim, Tq)| = 0]

≤ Pr [|GoodView(aSim, Tq)| ≥ 1] + Pr
[
πOutput(aSim, rRec,m2, r

∗
Ser) = Tq

∣∣∣ |GoodView(aSim, Tq)| = 0
]

<
1

4
+

1

2
=

3

4
.

The last inequality is due to Eq. (4) and the definition of GoodView(aSim, Tq). This contradicts Eq. (1).

Let Xn,q denote the sum of the expected value E(Tq) when ranging over all possible Tq’s. Then, by Claim 4.4
it holds that Xn,q ≥ 1

4 · |ANSn,q|. Moreover, it holds that

Xn,q =
∑

Tq∈ANSn,q

E(Tq) =
∑

Tq∈ANSn,q

∑
aSim

Pr
SIMSer,Rec

[aSim] · |GoodView(aSim, Tq)|

=
∑
aSim

Pr
SIMSer,Rec

[aSim] ·
∑

Tq∈ANSn,q

|GoodView(aSim, Tq)| .

Note that for a fixed aSim, every pair (rRec,m2) belongs to only one set GoodView(aSim, Tq). This is due
to the fact that if (rRec,m2) ∈ GoodView(aSim, Tq) for some Tq then by definition the following probability
Pr[πOutput(aSim, rRec,m2, r

∗
Ser) = Tq | aSim, rRec,m2] >

1
2 . This implies that if a pair (rRec,m2) belongs

to two distinct sets T 0
q ̸= T 1

q , then Pr[πOutput(aSim, rRec,m2, r
∗
Ser) ∈

{
T 0
q , T

1
q

}
| aSim, rRec,m2] > 1.

Therefore, for every aSim the sum
∑

Tq
|GoodView(aSim, Tq)| is over disjoint sets. We conclude that∑

Tq∈ANSn,q

|GoodView(aSim, Tq)| ≤ |{(rRec,m2)}| =
∑

i≤ccn,q
Sen (κ)+randn,q

Rec (κ)

2i = 2cc
n,q
Sen (κ)+randn,q

Rec (κ)+1 − 1

where the second to the last equality is implied by the fact that ccn,qSen(κ) is a bound on the length of m2 and
randn,qRec(κ) is a bound on the length of rRec. We therefore conclude that

Xn,q ≤
∑
aSim

Pr
SIMSer,Rec

[aSim] ·
(
2cc

n,q
Sen (κ)+randn,q

Rec (κ)+1 − 1
)
≤ 2cc

n,q
Sen (κ)+randn,q

Rec (κ)+1 − 1.
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Combining this with the observation that Xn,q ≥ 1
4 · |ANSn,q|, we obtain 2cc

n,q
Sen (κ)+randn,q

Rec (κ)+1 − 1 ≥
1
4 · |ANSn,q| and hence for every query q,

ccn,qSen(κ) + randn,qRec(κ) ≥ log

(
1

4
|ANSn,q|

)
− 1 = log |ANSn,q| − 3.

Therefore for every query q, it either holds that ccn,qSen(κ) ≥
log|ANSn,q |−3

2 or randn,qRec(κ) ≥
log|ANSn,q |−3

2 .
Recall that Hn,Q = maxq∈Qn log |ANSn,q|. We conclude that there exists a query q ∈ Qn for which either
ccn,qSen(κ) ≥

Hn,Q−3
2 or randn,qRec(κ) ≥

Hn,Q−3
2 . Note that if the former inequality holds, then by the security

of π the communication complexity is at least Hn,Q−3
2 for all queries q ∈ Qn (otherwise, the sender can

learn the receiver’s input by just looking at the length of the messages sent in πQuery, thus breaking privacy).
This concludes the proof of Theorem 4.2.

Lemma 4.6 below demonstrates that for the pattern matching functionality there exists a family of queries
Q such that Hn,Q = n for every n. Combining this with Theorems 4.1-4.2, the following holds,

Corollary 4.5 There exists a family of queries Q = {Qn}n such that for any protocol with minimal interac-
tion that implements the outsourced pattern matching functionality securely with respect to Q in the private
channels setting, for every n one of the following holds:

1. There exists q ∈ Qn such that the communication complexity in the query phase is at least n−3
2 − s;

2. There exists q ∈ Qn such that the length of the receiver’s random tape is at least n−3
2 − s.

A bound on Hn,Q for pattern matching. We prove the following simple observation relative to the pattern
matching functionality; see Section 3.3 for the definition of this functionality.

Lemma 4.6 For the pattern matching functionality there exists a family of queries Q such that Hn,Q = n
for every n.

Proof: We prove the existence of a family of queries Q = {Qn}n such that Hn,Q = n for every
n. Fix n and let Qn = {0} denote the single-bit pattern q = 0. In addition, recall that Hn,Q =
maxq∈Qn log |ANSn,q| where ANSn,q = {T q | T ∈ {0, 1}n}. Note that ANSn,q=0 includes all subsets
of [n] and thus, |ANSn,q=0| = 2n and log |ANSn,q=0| = n, implying that Hn,Q ≥ log |ANSn,q=0| = n.

4.2 The Non-Private Channels Case

In this setting a corrupted party observes the communication between the honest parties. In our context this
implies that a corrupted receiver sees the setup message sent from the sender to the server. Consequently,
we only need to consider the corruption of the receiver, and the order of communication in the query phase
does not matter as in the private channels case. We continue with our main theorem for this section.

Theorem 4.7 Fix n and m, and let π = (πPre, πQuery) be a protocol with minimal interaction that securely
implements FODBS with respect to queries Q = {Qn}n in the presence of semi-honest adversaries in the
non-private channels setting. Then one of the following holds:

1. For every query q ∈ Qn the communication complexity ccn,q ≥ Hn,Q−2
2 or

2. There exists a query q ∈ Qn such that randn,qRec(κ) ≥
Hn,Q−2

2 .
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Proof: The proof of Theorem 4.7 is very similar to the proof of Theorem 4.2. We present the outline of
the proof. Let π = (πPre, πQuery) be as in Theorem 4.7, let ARec be a real-world semi-honest adversary
controlling the receiver (note that since we do not assume private channels, ARec sees all communication
between the honest parties and in particular the message within πPre), and let SIMRec be an ideal-world
adversary guaranteed to exist by the security of π = (πPre, πQuery). By definition, upon given a mes-
sage (preprocess, |T |,m) in the setup phase SIMSer,Rec outputs a string aSim. Moreover, upon given a
message (response, q, Tq, id) in the query phase it outputs a valid view for ASerwhich consists of a triple
(rRec,m2,m4), where rRec is the random tape of Rec, m2 is a simulated message from Sen to Rec and m4

is a simulated message from Ser to Rec.
For a security parameter κ and a pair of query/record (q, Tq), let PrSIMRec,κ[aSim] denote the probability

distribution over the simulated message of πPre and let PrSIMRec,κ,q,Tq [aSim, rRec,m2,m4] denote the prob-
ability distribution on the values (aSim, rRec,m2,m4) where aSim is generated in the simulation of πPre, and
rRec,m2,m4 are generated in the simulation of πQuery. Moreover, let Prπ,ARec,κ,T,q[a(T ), rRec,m2,m4] de-
note the probability distribution over the values (a(T ), rRec,m2,m4) that are generated in a real execution of
π withARec, on inputs T for the sender and q for the receiver. We further denote by πOutput(aSim, rRec,m2,m4)
the output of the receiver in an execution of π with a message aSim from Sen to Ser in πPre, a message m2

from Sen to Rec in πQuery and a message m4 from Ser to Rec, where rRec denotes the random tape of the
receiver.

We continue with the following claim,

Claim 4.8 There exists a κ0 such that for all κ > κ0 and T ∈ {0, 1}n, q ∈ Qn,

Pr
SIMRec,κ,q,Tq

[πOutput(aSim, rRec,m2,m4) = Tq] ≥
1

2
. (5)

Proof Sketch: Assume that for infinitely many κ’s there exists T ∈ {0, 1}n and q ∈ Qn such that

Pr
SIMRec,κ,q,Tq

[πOutput(aSim, rRec,m2,m4) = Tq] <
1

2
.

By the correctness of protocol π, it is guaranteed that for all sufficiently large κ, every T ∈ {0, 1}n and
every q ∈ Qn, there exists a negligible function negl(·) such that

Pr
π,ARec,κ,T,q

[πOutput(a(T ), rRec,m2,m4) = Tq] > 1− negl(κ)

Therefore we can construct a PPT distinguisher D that distinguishes a real execution of π with ARec and an
ideal execution of FODBS with SIMRec as follows. Given input T , q and view a, rRec,m2,m4, output 1 if
and only if the receiver’s output is Tq. It is easy to verify that there is a non-negligible gap relative to the
real and the simulated views, and thus D distinguishes the executions with this gap.

To this end, we fix κ and q. Then, for every aSim and Tq let

GoodView(aSim, Tq) = {(rRec,m2,m4) | πOutput(aSim, rRec,m2,m4) = Tq} .

For a fixed Tq, we let E(Tq) denote the expected value of |GoodView(aSim, Tq)| when aSim is generated by
SIMRec in the simulation of πPre. The following claim is proved similarly to the proof of Claim 4.4:

Claim 4.9 For every Tq, it holds that

E(Tq) ≥
1

2
.
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Let Xn,q denote the sum of the expected value E(Tq) when ranging over all possible Tq’s. We have that

Xn,q =
∑
aSim

Pr
SIMRec

[aSim] ·
∑

Tq∈ANSn,q

|GoodView(aSim, Tq)| .

Then by Claim 4.9, we have that Xn,q ≥ 1
2 · |ANSn,q|.

Note that for a fixed aSim, every triple (rRec,m2,m4) belongs to only one set GoodView(aSim, Tq). This
is due to the fact that a triple (rRec,m2,m4) fixes the output of Rec. Therefore, for every aSim the sum∑

Tq
|GoodView(aSim, Tq)| is of disjoint sets. We conclude that∑

Tq∈ANSn,q

|GoodView(aSim, Tq)| ≤ |{(rRec,m2,m4)}| ≤
∑

i≤ccn,q(κ)+randn,q
Rec (κ)

2i = 2cc
n,q(κ)+randn,q

Rec (κ)+1−1

where the second to the last inequality is implied by the fact that ccn,q(κ) is a bound on the overall com-
munication complexity in πQuery and randn,qRec(κ) is a bound on the length of rRec. We therefore conclude
that

Xn,q ≤
∑
aSim

Pr
SIMRec

[aSim] ·
(
2cc

n,q(κ)+randn,q
Rec (κ)+1 − 1

)
≤ 2cc

n,q(κ)+randn,q
Rec (κ)+1 − 1.

Combining this with the observation that Xn,q ≥ 1
2 · |ANSn,q|, we obtain

2cc
n,q(κ)+randn,q

Rec (κ)+1 − 1 ≥ 1

2
· |ANSn,q|

and hence for every query q,

ccn,q(κ) + randn,qRec(κ) ≥ log

(
1

2
|ANSn,q|

)
− 1 = log |ANSn,q| − 2.

We conclude the proof of Theorem 4.7 similarly to the proof of Theorem 4.2.

Applying Lemma 4.6 we obtain he following corollary,

Corollary 4.10 There exists a family of queries Q = {Qn}n such that for any protocol with minimal in-
teraction that securely implements the outsourced pattern matching functionality with respect to Q in the
non-private channels setting and for every n one of the following holds:

1. The communication complexity between the sender and the receiver in πQuery for any q ∈ Qn is at
least (n− 2)/2;

2. There exists q ∈ Qn such that the length of the receiver’s random tape is at least (n− 2)/2.

Difficulties with proving a communication complexity lower bound. Recall that our infeasibility result
provides a lower bound on either the communication complexity of an outsourced protocol or the size of
the receiver’s random tape. Clearly, it would be preferable if we could give a strict lower bound on each of
these complexities separately. Towards achieving this goal, it seems very appealing to use a pseudorandom
generator G that shortens the length of the receiver’s random tape. Namely, replace the uniform randomness
of the receiver in an outsourced protocol π by an output of a pseudorandom generator, computed on a shorter
seed of length κ; thus obtaining a new protocol π′ where the length of the random tape of the receiver is
bounded by κ. It is simple to observe that the communication complexity of π′ is exactly the same as the
communication complexity of π. We can then apply our lower bound on π′ in order to claim that either the
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random tape of Rec′ in π′ is large or the communication complexity of π′ is large. Now, since we already
know that the random tape of Rec′ is of length κ, we conclude that the communication complexity of π′

must be large; hence obtaining that the communication complexity of π is large as well.
Unfortunately, this intuition fails when trying to formalize it. We demonstrate why it fails as follows.

Let π = (πPre, πQuery) be a protocol for securely computing FODBS in the presence of (Ser/Rec)-collusion
and semi-honest adversaries, and let π′ be a protocol obtained from π by having the receiver Rec′ pick a
random seed s ∈ {0, 1}κ and invoke Rec with randomness G(s). Our goal is to show that π′ is also secure
in the presence of (Ser′/Rec′)-collusion and semi-honest adversaries by reducing its security to the security
of π. Namely, we need to simulate the view of the corrupted parties in π′ using the simulators constructed in
the security proof of π. Consider the corruption case of the receiver Rec in π. Then, in order to construct a
simulator SIM′ for the corrupted receiver Rec′ in π′ we need to invoke simulator SIM and use its output
in order to produce a simulated view for Rec′.

Recall that a valid view of Rec consists of a pair (rRec, trans), where rRec is a random string of length
randn,qRec(κ) and trans are the incoming messages that Rec observes during the execution of πQuery with
randomness rRec, whereas a valid view for Rec′ consists of a pair (s, trans) where s is a random seed
of length κ and trans are the incoming message that Rec′ observes during the execution of πQuery with
randomness G(s). Then, it is not clear how to use the output (rRec, trans) of SIM in order to construct a
simulated view (s, trans) for Rec′ within π′. Specifically, the difficulty is mainly because it might be that
SIM outputs only views for which rRec is not in the range of G, and hence obtaining a corresponding s
(that is part of SIM′’s output) is not even possible.

Finally, we remark that any attempt to relax the security definition in a way that forces SIM to only
output strings rRec that have preimages relative to G, fails as well. This is because in this case the real and
the ideal ensembles that correspond to Rec′’s view must consist of the seed s to the pseudorandom generator.
This implies that the security argument cannot be based on the indistinguishability of G(s) from a random
string of the appropriate length.

5 Efficient Outsourced Database Search

In this section we demonstrate the feasibility of securely realizing functionality FODBS in the outsourced
setting in the presence of (Ser/Rec)-collusion and semi-honest adversaries in the private channels setting
(we refer to Section 3 regarding a discussion of transforming a protocol in this setting into the non-private
setting). Our construction assumes that database T is ordered by a sequence of pairs (qi, Ti), where a record
Ti is the corresponding answer to search query qi. In some cases it may be useful to think of the pairs based
database as a restructured database. Namely, we begin with some initial n bits database and then extract
from it information according to some fixed set of queries. We further assume that the number of records
n′ can be extracted from the size of the database. The main underlying idea is to let the receiver learn a
trapdoor for each query that is split into two parts; one is forwarded to the server that uses it to identify the
corresponding (encrypted) record, and a second part that is used by the receiver to extract the content of the
returned encrypted record. We formalize this intuition in the following section.

Ideally, we would like to work with databases with overall O(polylog(n) · n) number of bits, since
larger blowups do not make sense in the outsourced setting (even though our solution is not restricted in
that sense). Nevertheless, it is important to note that such reconstructed databases are not necessarily the
most concise way to represent a database, and may cause a significant blowup in the preprocessing phase.
For instance, the structure of the pattern matching database implies O(n2) overhead and size since the
upper bound of each record is O(n). Alternative database reconstructions do exist. Specifically, for pattern
matching one can encode every substring of length m separately, given that m is the length of the searched
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pattern.9 This implies O(nm) preprocessing overhead. On the other hand, our goal in this section is to
present a general framework that captures all database search functionalities, rather than presenting the most
efficient construction for any particular functionality. In particular, we view this as a conceptual contribution
that aims to abstract the cryptographic properties needed in order to achieve security in the outsourced
setting. Moreover, our construction meets the lower bound from the prior section for functionalities with a
fixed upper bound on the record size, and achieves optimal communication complexity bounds both in the
preprocessing and query phases.

5.1 Encryption Scheme with Multiple Secret Keys

We define first a slightly modified notion of encryption scheme that captures the security properties needed
for implementing reactive database functionalities securely and efficiently. Here we have a master secret key
that produces multiple secret subkeys, where the goal is to have each subkey associated with a query q ∈ Q.
We denote these subkeys by query secret keys. For such an encryption scheme Π = (MGen,Gen,Enc,Dec),
correctness is satisfied as follows: for all qi ∈ Q and m ∈ M, DecSKqj

(EncSKqi
(m)) = m if and only if

i = j, where query secret key SKq is generated using a key generation algorithm (Gen) that takes a master
secret key (generated by MGen) and a query q ∈ Q, andM is the message space.

Security is also defined in the spirit of IBE security. Namely, the adversary asks its oracle for query secret
keys. It then outputs two equal length messages m0,m1 and a query q∗, and is given back an encryption of
one of these messages under SKq∗ . The only requirement is that the adversary does not ask for SKq∗ in the
query phase. The adversary then needs to guess which message was encrypted. It is important to note the
differences between our primitive and IBE (and also functional encryption). First, although queries can be
interpreted as IBE identities, secret keys must be generated obliviously. This requirement is crucial for the
privacy of the receiver in our protocol. In addition, the fact that the sender holds both the data and the secret
trapdoors implies that our primitive can be designed based on weaker symmetric building blocks in contrast
to more “expensive” primitives such as IBE; see below for a concrete example based on PRFs. This is in
contrast to IBE that is, by definition, a public-key primitive.

Definition 5.1 (Encryption scheme with multiple secret keys) We say that Π = (MGen,Gen,Enc,Dec),
parameterized by a family of queries Q = {Qκ}κ,10 is an encryption scheme with multiple secret keys if
MGen,Gen,Enc,Dec are polynomial-time algorithms specified as follows:

1. MGen, given the security parameter κ, outputs a master secret key MSK.

2. Gen, given the master secret key MSK and a query qi ∈ Q, outputs a secret key SKqi .

3. Enc, given a query secret key SKqi for some qi ∈ Q and a message m ∈ M, outputs a ciphertext c
encrypting m. We denote this by c← EncSKqi

(m); and when emphasizing the randomness r used for
encryption, we denote this by c← EncSKqi

(m; r).

4. Dec, given a query secret key SKqi for some qi ∈ Q and a ciphertext c ← EncSKqi
(m), outputs a

plaintext message m. We denote this by m← DecSKqi
(c).

For a query based encryption scheme Π = (MGen,Gen,Enc,Dec) and a non-uniform adversary A, we
consider the following indistinguishability game:

9Note that it is an open problem to design an outsourced protocol for pattern matching for all potential pattern lengths, with
preprocessing overhead o(n2).

10Note that while in Protocol 1 we index the queries by the database size n, in this definition we index members in Q by the
security parameter κ. This makes no difference since n is a fixed polynomial of κ, which implies that the two notations are
interchangeable.
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• Stage 1: The master secret key MSK ← MGen(1κ) is generated.

• Stage 2: The adversary obtains query secret keys. Whenever the adversary queries its challenger on
query qi ∈ Q the challenger responds with SKqi . This stage repeats as long as the adversary desires.

• Stage 3: The adversary outputs to the challenger two equal length messages m0,m1 and a query q∗,
and receives as a challenge an encryption of mb computed under query secret key SKq∗ and denoted
by c← EncSKq∗ (mb), for a uniformly random b← {0, 1}. The only requirement is that the adversary
does not ask for SKq∗ in the query phase.

• Stage 4: The adversary continues to issue secret key queries. This stage repeats as long as the adver-
sary desires.

• Stage 5: The adversary makes a guess b′ ← {0, 1}, and wins iff b′ = b.

Denote by AdvQueryΠ,Q,A(κ) the probability that A wins the indistinguishability game.

Definition 5.2 (Security for encryption scheme with multiple secret keys) An encryption scheme with mul-
tiple secret keys Π = (MGen,Gen,Enc,Dec) is secure if for every non-uniform adversary A there exists a
negligible function negl such that AdvQueryΠ,Q,A(κ) ≤ 1

2 + negl(κ).

Next, we recall that in the security proof of database search functionalities, the simulator must be able to
equivocate the database when simulating the view of a corrupted receiver (as it is committed to the database
before observing any query). In order to capture this property we extend our notion of encryption, allowing
secret keys equivocation for secret keys that were generated in a fake mode. More formally,

• Secret key equivocation: We require the existence of a PPT algorithm Sim = (Sim1, Sim2) that
takes the master secret key MSK and outputs a fake ciphertext c and a trapdoor, such that for every
m ∈ M it can generate a secret key that decrypts c into m. Formally, the following ensembles are
computationally indistinguishable for every m ∈M and q ∈ Q:

{(q, SKq, c)}SKq←Gen(MSK,q),c←EncSKq (m)

{(q, SK, c)}(c,td)←Sim1(1κ),SK←Sim2(c,td,m).

This implies that the number of potential secret keys must be (at least) of the size ofM, since for each m ∈
M there should be a different secret key that equivocates c into m, and since fake keys are indistinguishable
from real keys, they must be of the same size. In addition, we require that the query be part of the ensemble
since this captures the corrupted receiver’s view more accurately. Specifically, we need to enure that a real
query secret key is indistinguishable from a fake key, even in the presence of the input query held by the
receiver. Consequently, this implies that a query secret key does not reveal any information about the query
it is associated with, in the sense that it is infeasible to associate between a secret key SKq and a query
q. Saying differently, the triples (q, q′, SKq) and (q, q′, SKq′) are computationally indistinguishable for any
two distinct queries q, q′ ∈ Q. This holds because for any q, q′ and m,

{(q, q′, SKq, c)}SKq←Gen(MSK,q),c←EncSKq (m)
c≈ {(q, q′, SK, c)}(c,td)←Sim1(1κ),SK←Sim2(c,td,m)

c≈ {(q, q′, SKq′ , c)}SKq′←Gen(MSK,q′),c←EncSKq′
(m)

where the indistinguishability arguments follow due to our definition above. This property of query hiding
is essential in order to enable the simulator to generate fake secret keys independently of the query (as the
simulator is committed to a fake database that is independent of the real database). We denote our notion
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of encryption by equivocal encryption scheme with multiple secret keys. Similarly, we claim that the tuples
(q, q′,m,m′, cq) and (q, q′,m,m′, cq′) are indistinguishable, for cq ← EncSKq(m) and cq′ ← EncSKq′ (m

′).
This holds because for any q, q′ and m,m′,

{(q, q′,m,m′, c)}SKq←Gen(MSK,q),c←EncSKq (m)
c≈ {(q, q′,m,m′, c∗)}SKq←Gen(MSK,q),c∗←EncSKq (m

′)

c
≈ {(q, q′,m,m′, c′)}SKq′←Gen(MSK,q′),c′←EncSKq′

(m′)

where the first indistinguishability follows due to IND-CPA and the second due to query hiding.

A concrete instantiation based on PRFs. One potential efficient instantiation is fixing the master secret
key to be a PRF key k, such that SKi = fk(i) and encryption is performed in a one-time pad style by
masking the message with the secret key, yielding c = m ⊕ SKq. Moreover, Sim1(1

κ) outputs a random
string c of the same length and an empty td. Equivocation is achieved by returning a uniform string r, such
that m = c ⊕ r (note that query hiding follows from the security of the PRF). Looking ahead, to maintain
the sender’s privacy the receiver must only learn the individual random strings for the queries it asks. To
maintain the receiver’s privacy, the sender should not learn the values of the queries asked by the receiver.
We therefore implement this secret key transfer using a secure two-party protocol, which boils down to a
two rounds oblivious PRF evaluation protocol (see more about this functionality in Section 2.2).

A note about the message space. Note that for some functionalities, such as in pattern matching related
functionalities, there is no constant upper bound on the record size, and in fact, the worst case bound grows
linearly with the size of the database. To this end, whenever we assume the existence of a secure encryption
scheme with query secret keys, we implicitly assume that this scheme is associated with message space
{0, 1}ℓ. Note that any such encryption scheme with a fixed message space {0, 1}ℓ can be used to encrypt
messages from larger spaces {0, 1}ℓ·poly(κ) by first splitting the message into poly(κ) blocks, and then gen-
erating poly(κ) independent query secret keys. Moreover, the distinct secret keys for a receiver’s query qi
are generated for queries (qi∥1, . . . , qi∥poly(κ)).11 In the outsourced setting the receiver must also retrieve
a tag that is handed to the server in order to identify the appropriate record. Thus, the receiver learns an
additional trapdoor defined by a query secret key for query qi∥0. Informally, security follows by a standard
hybrid argument moving from a single challenge to multiple challenges. In the concrete PRF instantiation
above we can invoke the PRF multiple times, generating secret keys by Fk(i, j) where j is the block’s index.

5.2 Our Protocol

Formally, let (MGen,Gen,Enc,Dec, Sim) be an equivocal encryption scheme with multiple secret keys
for message space {0, 1}ℓ (see Section 5.1), and denote by FOQUERY(MSK, q) 7→ (−, SKq) the oblivious
query functionality that obliviously implements algorithm Gen such that MSK ← MGen(1κ). Namely, the
receiver privately learns the secret key that corresponds to its query q ∈ Qn. Nevertheless, it might be the
case that the database record space is much larger than {0, 1}ℓ, requiring that the receiver learns multiple
trapdoors to extract the entire record. We assume that the parties receive as an auxiliary information a
parameter ℓ′n which indicates the largest respone Tq when ranging over all databases of size n and all
q ∈ Qn, and fix τ = ⌈ℓ′n/ℓ⌉. We thus consider an extended functionality for multiple query secret keys
that is defined by FOMQUERY((MSK, τ), (q, τ)) 7→ (−, (SKq1 , . . . , SKqτ )) for obliviously learning multiple
secret key queries. Our protocol is presented in the FOMQUERY-hybrid model, where a trusted party realizes
this functionality; efficient two rounds implementations can be designed based on particular instantiations
(see the prior section for one example). We denote by qj = q||j; the details of our protocol follow.

11This follows our assumption that a family of queries is represented by {0, 1}m; alternative formulations can be also considered.
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Protocol 1 (Protocols π = (πPre, πQuery) for computing FODBS.)

Protocol πPre: Let 1κ and T = {qi, Ti}i∈n′ be the input of Sen. Let ℓ′n be an auxiliary information.

1. Sen first picks a random key MSK ← MGen(1κ) for the encryption scheme with multiple secret keys.

2. For all i ∈ n′, Sen generates a pair (ti, ci) as follows:

(a) Let τ = ⌈ℓ′n/ℓ⌉ and let ρi = Tag∥SKq1i
∥ . . . ∥SKqτi

, where Tag ← Gen(MSK, qi∥0) and SKqji
←

Gen(MSK, qi∥j) for independent invocations of Gen, all j ∈ [τ ], and ∥ for denoting concatenation.
(b) Fix ti = Tag. Next, for every j ∈ [τ ], encrypt the jth block Ti[j] of Ti under secret key SKqji

12. Let

ci = c1i . . . c
τ
i where cji = EncSK

q
j
i

(Ti[j]).

3. Finally, Sen picks a permutation ω over n′ and sends Ser the vector a(T ) =
{(

tω(i), cω(i)

)}n′

i=1
.

Protocol πQuery: Let q ∈ Qn be a query of the receiver Rec. Let ℓ′n be an auxiliary information.

1. Sen and Rec make a call to functionality FOMQUERY with inputs (MSK, τ) for Sen and (q, τ) for Rec.
Let ρq = denote the output obtained by Rec and denote by ρq = Tagq∥SKq1∥ . . . ∥SKqτ .

2. Rec sends Tagq to Ser.

3. For every entry (ti, ci) in a(T ), Ser compares ti with Tagq . If there is a match for some index k, Ser
sends ck to Rec. Otherwise, Ser sends “no match”.

4. Upon receiving a database entry ck = c1 . . . cτ from Ser, Rec does the following:

(a) Rec uses SKqj to decrypt cj for all j ∈ [τ ]. Let Tk[j]← DecSKqj
(cj).

(b) Rec outputs Tk[1], . . . , Tk[τ ]. The sender and the server output an empty string.

We prove that Protocol 1 is secure in the presence of semi-honest (Ser/Rec)-collusion.

Theorem 5.3 Protocol 1 securely implements FODBS with respect to queries Q = {Qn}n in the presence of
(Ser/Rec)-collusion and semi-honest adversaries, in the private channels setting. Moreover, let ccnPre(κ)
denote the overall communication complexity within πPre and ccn,qQuery(κ) denote the overall communication
complexity within πQuery on a query q, then it holds that for every q ∈ Qn, ccnPre(κ) ∈ O(n′ℓ′n) and
ccn,qQuery(κ) ∈ O(ℓ′n).

Proof: Note first that the communication complexity of our protocol in the preprocessing phase is upper
bounded by n′ entries, each of size ℓ′n. Furthermore, the communication complexity in the query phase
relative to both interactions with the sender and the server is upper bounded by the maximum length of
a query response, which is ℓ′n. We now prove the security of Protocol 1 by separately considering each
corruption case. We denote by notation Tq the corresponding response of the server to query q. That is, Tq

is either the record Ti or the message “no-match”. In addition, Tagq denotes the tag that is associated with
query q and ρq denotes the receiver’s output with respect to functionality FOMQUERY when entering query q.

The sender is corrupted. This corruption case is simple to prove since the sender receives no messages
within πPre and πQuery. It is therefore immediate that a semi-honest adversary ASen controlling Sen learns
no information about the receiver’s queries within the executions of (πPre, πQuery).

12If Ti contains less than τ blocks, we use any standard padding technique to obtain τ blocks of length ℓ.
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The server is corrupted. LetASer be a PPT real adversary that controls the server. We show the existence
of a PPT ideal adversary SIMSer such that the real execution of π with ASer is computationally indistin-
guishable from an ideal execution with FODBS and SIMSer. Construction 1 describes the ideal adversary
SIMSer. For the sake of generality, assume that ASer outputs its entire view at the end of the protocol
execution.

Construction 1 (Ideal adversary SIMSer)

Input: 1κ, z.

Initialization:

• SIMSer invokes ASer on input 1κ, z.

Simulating πPre:

1. Upon receiving a message (preprocess, |T |,m) fromFODBS, fix n′ as the number of records in the restruc-
tured database and τ = ⌈ℓ′n/ℓ⌉.13 Then define a database T 0 with n′ records (T 0

1 , . . . , T
0
n′) of length ℓ′n

each, such that T 0
i = 0ℓ

′
n for all i.

2. SIMSer picks a master secret key MSK ← MGen(1κ).

3. For every index i ∈ [n′], SIMSer generates a pair (ti, ci) as follows:

(a) SIMSer picks a new arbitrary query qi ∈ Qn (that was not picked thus far).
(b) Let ρi = Tag∥SKq1i

∥ . . . ∥SKqτi
, where Tag ← Gen(MSK, qi∥0) and SKqji

← Gen(MSK, qi∥j)
for independent invocations of Gen, such that j ∈ [τ ] and ∥ denote concatenation.

(c) Fix ti = Tag.
(d) For every j ∈ [τ ], encrypt the jth block T 0

i [j] of T 0
i under secret key SKqji

. Let ci = c1i . . . c
τ
i where

cji = EncSK
q
j
i

(T 0
i [j]).

4. Finally, SIMSer sends ASer the vector a(T 0) = {(ti, ci)}n
′

i=1 on behalf of Sen.

Simulating πQuery:

• Upon receiving a message (response, Rec, |Ti|, id) from FODBS, and |Ti| denotes a no match message,
SIMSer picks a new query q ∈ Qn that was not used in the simulation of protocol πPre and hands ASer

the tag Tag← Gen(MSK, q∥0).14

Otherwise, SIMSer chooses a new random query qi from the set of queries used in the simulation of
protocol πPre and sends ti to ASer on behalf of Rec.

Output: SIMSer outputs whatever ASer does.

We now prove the following claim.

Claim 5.4 For any tuple of inputs (T, (q1, . . . , qt)) and auxiliary input z,

{IDEALFODBS,SIMSer(z)(κ, (−, T, (q1, . . . , qt)))}κ∈N
c≈ {HYBRID

π
FOMQUERY ,ASer(z)

(κ, (−, T, (q1, . . . , qt)))}κ∈N.

13Recall that ℓ′n is a worst case upper bound on the record size that depends on the particular functionality and the database size,
and that we assume that the parties receive it as an auxiliary information.

14We assume that given |Ti| it is possible to tell whether query qi is answered by the no match message or not.
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Proof: We assume that the distribution REALπ,ASer(z)(κ, (−, T, (q1, . . . , qt))) contains the internal view
of ASer together with the input/output of Rec in an execution of π = (πPre, πRec), whereas distribution
IDEALFODBS,SIMSer(z)(κ, (−, T, (q1, . . . , qt))) contains the output of SIMSer and the input/output of
Rec in the ideal execution with FODBS.

More concretely, we prove that the following ensembles are computationally indistinguishable,(
a(T ) =

{(
tω(i), cω(i)

)}n′

i=1
,
(
Tagq1 , . . . ,Tagqt

)
,
(
(q1, T̃q1), . . . , (qt, T̃qt)

))
and (

a(T 0) =
{
(t0i , c

0
i )
}n′

i=1
,
(
Tagq̃01 , . . . ,Tagq̃0t

)
, ((q1, Tq1) . . . , (qt, Tqt))

)
where q̃01, . . . , q̃

0
t are the queries picked by the simulator during protocol πQuery and T̃q1 , . . . T̃qt are the

database records the receiver learns in the hybrid execution.
We first claim that the honest real receiver learns the exact same records from database T as in the ideal

execution, with overwhelming probability. This follows from the correctness of the encryption scheme used
to encrypt the text and the fact that the real receiver learns the correct trapdoor for each input query q. We
further note that the positions within the preprocessed text in which the server finds a match, are identically
distributed in both executions. This is because in the real execution the sender randomly permutes its records
using a random permutation ω. Moreover, in the simulation, the simulator picks the “matched” queries at
random which implies the same distribution on the positions.

Next, note that the difference between the two ensembles is with respect to the preprocessed simulated
database and the tags. Namely, a(T 0) is a fake database that only contains zero entries, as opposed to the
real database T that is input by the sender in the real execution. We further recall that a(T 0) is comprised
of tags/encrypted records pairs, associated with arbitrary queries. We claim that a corrupted server cannot
detect this change and cannot link between a ciphertext to the query associated with it. Informally, this is
due to the fact that by the security definition of our encryption scheme, the query secret keys do not leak any
information about the query. Also, two ciphertexts encrypting different records under two different secret
key queries are indistinguishable as well. These arguments follow from the text in Section 5.1.

More formally, the proof boils down to proving that the following preprocessed database given to the
real server and real tags

{SKqω(i)∥0,EncSKqω(i)∥1
(Tqω(i)

), . . . ,EncSKqω(i)∥τ
(Tqω(i)

)}i∈n′ ,
(
SKq1∥0, . . . , SKqt∥0

)
are indistinguishable from the sets

{SKq0i ∥0
,EncSK

q0
i
∥1
(T 0

i ), . . . ,EncSK
q0
i
∥τ
(T 0

i )}i∈n′ ,
(

SKq̃01∥0, . . . , SKq̃0t ∥0

)
given to a corrupted server in the ideal execution with respect to a fake database T 0 and an arbitrary set of
queries {q0i }i∈n′ . In fact, indistinguishability holds even if the adversary is also given both the real and the
simulated set of queries associated with each set. Specifically, SKqω(i)∥0 and SKq0i ∥0

are indistinguishable
due to the query hiding property, whereas, the ciphertexts are indistinguishable due to IND-CPA and query
hiding. Security follows by a sequence of standard hybrid arguments by replacing the secret keys associated
with q0i with the secret keys associated with qi and then replacing T 0 with T .

The receiver is corrupted. Let ARec be a PPT semi-honest adversary controlling Rec. We show the
existence of a PPT ideal adversary SIMRec such that for any tuple of inputs (T, (q1, . . . , qt)) and auxiliary
input z, the hybrid execution of π with ARec is indistinguishable from an ideal execution with FODBS and
SIMRec. Construction 2 describes the ideal adversary SIMRec. For the sake of generality, assume that
ARec outputs its entire internal view at the end of the protocol execution.
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Construction 2 (Ideal adversary SIMRec)

Input: 1κ, z.

Initialize: SIMRec invokes ARec on input 1κ, z.

Simulating πPre:

• Upon receiving a message (preprocess, |T |,m) from FODBS, fix n′ as the number of records in the
database and let τ = ⌈ℓ′n/ℓ⌉.. SIMRec further picks a master secret key MSK ← MGen(1κ).

Simulating πQuery on input q (obtained by employing the input selection algorithm M ):

1. SIMRec sends a message (query, q) to FODBS.

2. Upon receiving a message (response, q, Tq, id) from the ideal functionality FODBS, SIMRec does the
following:

(a) It invokes ARec and obtains q as the input to FOMQUERY.
(b) It emulates FOMQUERY by sending ρq = Tag∥SKq1∥ . . . ∥SKqτ , where Tag← Gen(MSK, q∥0) and

SKqj ← Gen(MSK, q∥j) for all j ∈ [τ ].
(c) If Tq denotes a no match message, then upon receiving Tag from ARec, SIMRec forwards the

adversary a “no match” message on behalf of the server.
Otherwise, SIMRec uses SKq1 , . . . , SKqτ to generate ciphertexts c1, . . . , cτ for encrypting Tq as
would have done by the honest sender. SIMRec then forwards the adversary ciphertexts c1, . . . , cτ
on behalf of the server.

Output: SIMRec outputs whatever ARec does.

We now prove the following claim:

Claim 5.5 For any tuple of inputs (T, (q1, . . . , qt)) and auxiliary input z,

{IDEALFODBS,SIMRec(z)(κ, (−, T, (q1, . . . , qt)))}κ∈N
≡ {HYBRID

π
FOMQUERY ,ARec(z)

(κ, (−, T, (q1, . . . , qt)))}κ∈N.

Proof: The proof is straightforward. Namely, it is easy to observe that SIMRec perfectly simulates the
honest players in π. It first picks a random master secret key MSK and perfectly simulates FOMQUERY

by sending ρq for every real query q. It then generates the receiver’s response exactly as done by the
honest sender. Hence, the simulated view of ARec in the ideal execution of is identically distributed to the
adversary’s view in a hybrid execution of π.

The server and the receiver are corrupted. Let ASer,Rec be a PPT semi-honest adversary controlling
both Ser and Rec. We show the existence of a PPT ideal adversary SIMSer,Rec such that for any tuple
of inputs (T, (q1, . . . , qt)) and auxiliary input z, the hybrid execution of π with ASer,Rec is indistinguish-
able from an ideal execution with FODBS and SIMSer,Rec. Construction 3 describes the ideal adversary
SIMSer,Rec. For the sake of generality, assume that ASer,Rec outputs its entire internal view at the end of
the protocol execution. Note that the difficulty in this case is that SIMSer,Rec has to simulate a set-up mes-
sage for ASer,Rec without knowing the actual database T . Then, once given a pair of query/record (q, Tq),
it should be able to simulate sender messages that are consistent both with the simulated message and with
(q, Tq). To do this, we use the equivocation property of our encryption scheme. That is, SIMSer,Rec uses
Sim1 to generate fake ciphertexts in the simulation of πPre and then uses Sim2 in the simulation of πQuery

to obtain secret keys that are consistent with the actual query/record (q, Tq). This idea is formalized in
Construction 3.
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Construction 3 (Ideal adversary SIMSer,Rec)

Input: 1κ, z.

Initialize: SIMSer,Rec invokes ASer,Rec on input 1κ, z.

Simulating πPre:

1. Upon receiving a message (preprocess, |T |,m) from FODBS, fix n′ as the number of records in the re-
structured database and let τ = ⌈ℓ′n/ℓ⌉.

2. SIMSer,Rec picks a master secret key MSK ← MGen(1κ).

3. For all i ∈ [n′], SIMSer,Rec generates a pair (ti, ci) as follows:

(a) SIMSer,Rec picks a new random query qi ∈ Qn (that was not picked thus far).

(b) Let Tag← Gen(MSK, q∥0) and (cji , td
j
i )← Sim1(1

κ) for independent invocations of Sim1 and all
j ∈ [τ ].

(c) SIMSer,Rec fixes ti = Tag and ci = c1i . . . c
τ
i .

4. Finally, SIMSer,Rec sends ASer,Rec the vector a(T 0) = {(ti, ci)}n
′

i=1 on behalf of Sen.

Simulating πQuery on input q:

1. SIMRec,ser sends a message (query, q) to FODBS.

2. Upon receiving a message (response, q, Tq, id) from FODBS, SIMSer,Rec does the following:

(a) It invokes ASer,Rec and obtains q as the input to FOMQUERY.
(b) If Tq is a no match message SIMSer,Rec picks a new query q′ that was not used in the simulation of

protocol πPre, and emulates FOMQUERY by sending ρq′ = Tag∥SKq′1∥ . . . ∥SKq′τ toASer,Rec, where
ρq′ is computed as if ASer,Rec’s input to FOMQUERY is q′.

(c) Otherwise, SIMSer,Rec picks a new query q′ from the set of queries used in the simulation of
protocol πPre (say q′ is associated with the ith record (ti, ci = c1i , . . . , c

τ
i ) in the fake database),

and uses Sim2 to equivocate ci as an encryption of Tq . Namely, for every j ∈ [τ ] computes
SKj ← Sim2(c

j
i , td

j
i , Tq[j]). Let ρq′ = ti∥SK1∥ . . . ∥SKτ .

SIMSer,Rec emulates FOMQUERY by sending ρq′ to ASer,Rec.

Output: SIMSer,Rec outputs whatever ASer,Rec does.

We now prove the following claim:

Claim 5.6 For any tuple of inputs (T, (q1, . . . , qt)) and auxiliary input z,

{IDEALFODBS,SIMSer,Rec(z)(κ, (−, T, (q1, . . . , qt)))}κ∈N
c≈ {HYBRID

π
FOMQUERY ,ASer,Rec(z)

(κ, (−, T, (q1, . . . , qt)))}κ∈N.

Proof: We assume that the distribution HYBRID
π
FOMQUERY ,ASen,Rec(z)

(κ, (−, T, (q1, . . . , qt))) contains
the internal view of real adversary ASer,Rec that controls both the server and the receiver, whereas the
distribution IDEALFODBS,SIMSen,Rec(z)(κ, (−, T, (q1, . . . , qt))) contains the output of SIMSer,Rec which
simulates the view of the server and the receiver in the ideal execution with FODBS.

More concretely, we prove that the following ensembles are computationally indistinguishable,(
a(T ) =

{(
tω(i), cω(i)

)}n′

i=1
, (ρq1 , . . . , ρqt) ,

(
(q1, T̃q1), . . . , (qt, T̃qt)

))
and (

a(T 0) =
{
(t0i , c

0
i )
}n′

i=1
,
(
ρq̃01 , . . . , ρq̃0t

)
, ((q1, Tq1) . . . , (qt, Tqt))

)
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where q̃01, . . . , q̃
0
t are the queries picked by the simulator during the simulation of protocol πQuery and

T̃q1 , . . . T̃qt are the database records the receiver learns in the hybrid execution.
Note first that the positions within the preprocessed text in which the server finds a match, are identically

distributed in both executions. This is because in the hybrid execution the sender randomly permutes its
records using a random permutation ω. Moreover, in the simulation, the simulator picks the queries for the
fake database at random.

Next, note that the difference between the two ensembles is with respect to the preprocessed simu-
lated database, and the receiver’s outputs with respect to functionality FOMQUERY. Namely, a(T 0) is a
fake database that only contains simulated ciphertexts, as opposed to the real database T that is input by
the sender in the hybrid execution. We further recall that a(T 0) is comprised of tags/encrypted records
pairs, associated with arbitrary queries. Finally, note that the receiver’s output with respect to functionality
FOMQUERY distributes differently in the simulation since the simulator picks arbitrary queries to compute the
trapdoors of the receiver and the server.

Similarly to the case that the server is corrupted, we claim that a corrupted server and receiver cannot
detect this change, and cannot link between a ciphertext (even a fake one) to the query associated with it.
Informally, this is due to the fact that by the security definition of our encryption scheme, the query secret
keys do not leak any information about the query. Also, a real ciphertext is indistinguishable from a fake
one, even in the presence of the corresponding secret key. These arguments follow directly from Section 5.1.

More formally, the proof boils down to proving that the following preprocessed database and trapdoors
given to the real server and receiver

{SKqω(i)∥0,EncSKqω(i)∥1
(Tqω(i)

[1]), . . . ,EncSKqω(i)∥τ
(Tqω(i)

[τ ])}i∈n′ ,(
SKq1∥0, SKq1∥1, . . . , SKq1∥τ

)
, . . . ,

(
SKqt∥0, SKqt∥1, . . . , SKqt∥τ

)
are indistinguishable from the set

{SKq0i ∥0
, c1i , . . . , c

τ
i }i∈n′ ,

(
SKq̃1∥0, SKq̃1∥1, . . . , SKq̃1∥τ

)
, . . . ,

(
SKq̃t∥0, SKq̃t∥1, . . . , SKq̃t∥τ

)
given to a corrupted server in the ideal execution with respect to a fake database T 0 and a set of queries
{q0i }i∈n′ that the simulator uses in the simulation of πQuery to produce the trapdoors for the receiver.

We define a sequence of hybrid games {GAMEj}j∈n′ with simulator Simj
Ser,Rec for each such game

as follows. In game GAMEj
Ser,Rec, given database T , simulator Simj preprocesses the first j records as

would have done by the real sender, whereas the remaining records are preprocessed as would have done
by SimSer,Rec. Namely, for the first j records {(q1, T1), . . . , (qj , Tj)}j , Simj

Ser,Rec uses their real values
to generate the query secret keys and ciphertexts, whereas for the rest of the records it invokes algorithm
Sim1 to generate the fake ciphertexts. Simj

Ser,Rec then permutes the preprocessed database and hands it
to the corrupted server. Next, in the query phase, the simulator produces the appropriate response to the
corrupted receiver. That is, if the receiver inputs q ∈ {q1, . . . , qj} the simulator hands the receiver the
response as was generated in a hybrid execution. Otherwise, it invokes algorithm Sim2 and continues as
SimSer,Rec would have done. Clearly, the difference between every two subsequent games is computationally
indistinguishable. This is due to the fact that tags SKqj+1∥0 and SKq0j+1∥0

are indistinguishable due to
query hiding. Furthermore, the ciphertexts associated with these queries are indistinguishable due to the
equivocation property (which holds even in the presence of the secret keys).

Note that the view produced in game GAMEn′ is almost as in the hybrid execution except that we
still handle not matched queries as in the simulation with SimSer,Rec. We claim that the views in the game
and in the hybrid execution are computationally indistinguishable due to the query hiding of our encryption
scheme. Namely, the adversary cannot conclude any information about the (not found) query by observing
its secret key. This concludes the proof.

28



This concludes the proof of Theorem 5.3.

Summary. To summarize, we recall that our lower bound is related to the parameter Hn,Q while our upper
bound is related to ℓ′n. We emphasize that while for some functionalities, these two parameters coincide, they
are not equal in general. Specifically, Hn,Q denotes the maximal amount of information within a response
of some query when ranging over all databases of size n, whereas ℓ′n implies the largest record length when
ranging over all databases of the same size. For functionalities where Hn,Q = O(ℓ′n), the communication
complexity of our construction meets the lower bound from Section 4. Intuitively, this follows when there
exists a query with exponentially many potential answers of size O(ℓ′n), as for OT with adaptive queries
and keyword search. Note that for functionalities with a fixed upper bound on the record size as above, the
communication bounds introduced by Protocol 1 are optimal since for ℓ′n the upper bound on the size of
each record and n′ the number of records, n′ℓ′n = n.

References
[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification

via secure computation. In ICALP (1), pages 152–163, 2010.
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