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Abstract. This paper introduces Side-Channel Analysis results obtained
on an unprotected circuit characterized by a surprisingly non-linear leak-
age. While in such a case, Correlation Power Analysis is not adapted,
we show that a more generic attack, based on the Analysis Of Variance
(AOV) outperfoms CPA. It has the advantage of detecting non-linear
leakage, unlike Correlation Power Analysis, and of providing similar or
much better results in all cases, with a similar computation time.
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1 Introduction

Since the works of Kocher et al. [9], new Side Channel Attacks (SCA) or tech-
niques to increase their e�ciency have been proposed in the literature. E. Brier,
C. Clavier and F. Olivier proposed the use of Pearson correlation instead of
the Di�erence of Means (DoM) to exploit the dependency between power con-
sumption and processed data [5]. This leads to the so called CPA which looks
for a linear relation between these two variables. Mutual Information Analysis
(MIA) was introduced by S. Aumonier [3] and B. Gierlichs [8] who have proposed
the use of the Mutual Information index, a more generic distinguisher able to
detect any kind of relation between these variables. This proposal was then fur-
ther enhanced in [15, 10, 14]. However, even if the MI index is theoretically the
most generic distinguisher, its use raises several di�culties. Indeed, the choice
of hyper-parameters to obtain an e�cient analysis is crucial [6].
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Within this context, little attention has been paid to the Analysis Of Variance
(AOV). Its �rst use in the context of SCA was introduced by F. Standaert
and B. Gierlichs [12], and further analyzed in [4]. In [12], AOV is applied to
di�erent sets of traces in order to experimentally compare its e�ciency to that
of di�erent distinguishers, namely: the Di�erence of Means (DoM), the Pearson
correlation (ρ) and the Mutual Information (MI) index. However, no general
conclusion could be drawn from these results except that an Hamming Weight
(HW) partitioning seemed to be the best choice. Indeed, this paper does not
provide any decisive information about the superiority of AOV over CPA and
MIA. In [4], it is however argued that AOV and CPA give similar results in
practice. The resulting question is then: what kind of practice ? This question
is especially important as AOV can also detect non-linear relations between two
variables and can easily be extended to multivariate analyses.

The main goal of this paper is to highlight that in the case of a linear leakage
with the Hamming Weight (HW) or Distance (HD), the AOV gives similar re-
sults as the Pearson correlation. To proceed toward this goal, we �rst present a
theoretical analysis of the di�erence between a distinguisher based on AOV and
CPA. These theoretical results indicate that AOV provides at least the same e�-
ciency as CPA in most cases and better results in uncommon cases characterized
by a non-linear leakage model. The AOV appears thus superior to CPA because
it o�ers a kind of theoretical warranty of capturing more complex leakages than
CPA, while providing similar results in case (the most common one) of a linear
leakage. This aspect is of prime importance while evaluating a design. Indeed,
CPA could fail to recover the key in some cases and AOV could succeed, while
the reverse is theoretically impossible.

To assess the impact of these theoretical results in realistic situations, we
secondly present experimental results con�rming that, while the AOV performs
similar results to CPA in the case of a linear leakage, it can provide much better
results with an unusual leakage, and, results similar to MIA with the same
computational burden as CPA.

The rest of the paper is organized as follows. In section 2, a reminder of
SCA principles is presented. Section 3 reminds the basics of AOV which is then
compared to CPA. Experimental results are presented in section 4, starting by
the description of the devices under study. The leakage of these unprotected
devices is pro�led using Akaike Information Criterion (AIC) and the e�ciency
of CPA and AOV are then compared. Finally a conclusion is drawn from the
obtained results.

2 SCA principle

A SCA aims at recovering secret information by exploiting a physical leakage
(e.g. power consumption) which depends on the data and the secret (e.g. a
cryptographic key) processed by the circuit under analysis. Among all possible
SCA, vertical SCA requires multiple executions of the algorithm implemented
on the targeted device to recover the key.
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A univariate and non-pro�led di�erential SCA is usually performed following
three steps. First, the adversary acquires a set of power traces, corresponding
to the encryption or decryption of messages. Second he makes guesses on the
key to predict a targeted intermediate binary word processed by the algorithm,
and sorts traces according to its values. The sorting is done according to, one,
several or all bits of this word, or also to its Hamming Weight value, and to
a given model of the power consumption. In practice, two models have been
proved e�cient: the HammingWeight Model (HWM) and the Hamming Distance
Model (HDM). According to the �rst one, the consumption is greater when
a target bit is equal to 1, while according to the second, the consumption is
higher when the bit toggles during the calculation. Third, the adversary applies
a distinguisher between the traces and the predicted values to get a score for each
key guess. Finally, he identi�es the secret key as the key guess corresponding to
the maximum score. Indeed this is the one corresponding to the best prediction
of the power consumption.

In this context, the choice of the distinguisher is important as it is used to
detect the dependency between the two variables: the traces and the predicted
values. A very popular distinguisher in SCA is the Pearson correlation. However,
it has some limitations: it only detects an eventual linear dependency between
two variables and does not detect other kinds of relations. The use of another
distinguisher has been proposed in [12, 4]; it is based on AOV. It presents many
advantages over the Pearson correlation. In the next section we propose to re-
visit the theoretical advantages of this distinguisher leading to a more favorable
conclusion for AOV.

3 Analysis Of Variance : AOV

The one-way AOV allows to study the behavior of a random variable of interest,
noted L, according to the values of one discrete explanatory variable or factor,
noted H, taking H distinct values that we generically denote by h ∈ {1, . . . ,H}.
AOV achieves this by partitioning the variance of L into components that are
expected to be responsible of di�erent sources of variation.

3.1 Total sum of squares decomposition for AOV

A sample of nh values of L, noted {Lh,1, . . . Lh,nh
}, is observed at each value

h ∈ {1, . . . ,H} of factor H. These observations are assumed independent and
identically distributed with expected value µh = E(Lh,1). We regroup these ob-
servations into L = (L1,1, . . . , L1,n1 , L2,1, . . . , LH,nH

)T (here �T ” denotes trans-
position), the vector of length n = n1 + · · · + nH of all observations, where
Lh,i = µ + εh,i. The noise εh,i ≈ N(0, σ2) is usually assumed Gaussian with
mean 0 and constant variance σ2.
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AOV seeks to determine if the factor H has an e�ect on L by assessing the
assumption µ1 = µ2 = · · · = µH . The total sum of squares is de�ned as :

SStot =

H∑
h=1

nh∑
i=1

(Lh,i − L̄)2 (1)

where L̄ = n−1
∑H
h=1

∑nh

i=1 Lh,i is the global mean of all components of L. Using
the centering matrix Kn = n−11n1Tn , where 1n ∈ Rn is the vector of �ones�, this
can be written as the quadratic form SStot = LT (In−Kn)L , where In denotes
the identity matrix of order n. For any n × n matrix A, we obviously have the
�decomposition� : LT (In − Kn)L = LT (In − A)L + LT (A − Kn)L. The AOV
uses for A the matrix composed of the H2 blocks of size nh × nh′

Ah,h′ =

{
1
nh

1h1Th if h = h′

0 otherwise

where now 1h ∈ Rnh . We will write Aaov for this matrix. The ensuing decompo-
sition can then be written as

SStot = LT (In −Aaov)L+LT (Aaov −Kn)L

=

H∑
h=1

nh∑
i=1

(Lh,i − L̄h·)2 +

H∑
h=1

nh(L̄h· − L̄)2

= SSerr + SStreat

(2)

with L̄h·, the mean of {Lh,1, . . . Lh,nh
}, being an estimator of µh. The term

SSerr is the �error sum of squares� and re�ects the variation of the data about
their mean L̄h· within each values h of H; when the values {Lh,1, . . . Lh,nh

} are
close to their respective L̄h·, SSerr will be close to zero. The second term, the
�treatment sum of squares�, captures the weighted variations of L̄h· as H varies
: if the L̄h· are close to the global mean L̄, SStreat will be close to zero and
support the assumption µ1 = µ2 = · · · = µH .

A unitless measure of the support o�ered by the data toward this assumption
(which has been used as a distinguisher in [12] in a SCA context) is:

R2
aov = 1− SSerr

SStot
=
SStreat
SStot

. (3)

R2
aov, which lies in [0, 1], will tend to be in the neighborhood of zero when the

assumption µ1 = µ2 = · · · = µH is true and increases toward 1 as the data
departs more strongly. In classical AOV, the usual F-test for the null hypothesis
H0 : µ1 = µ2 = · · · = µH is based on the test statistic ((n−H)R2

aov/((H−1)(1−
R2
aov)) which, under H0 (and Gaussian noise) follows a Fisher distribution with

degrees of freedom (H − 1, n−H). It is important to stress that any departures
from H0 can be detected via R2

aov. Thus AOV tries to answer the question �Is

the e�ect of H on L signi�cantly di�erent across its values ?�, e.g. are there at
least two values µh, µh′ such that µh 6= µh′?
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3.2 Total sum of squares decomposition for Regression

When trying to relate a factor to a variable of interest, another possible question
is "Do the values of H a�ect L ?" An answer to this question can be obtained via
regression analysis where it is implicitly assumed that, if such an e�ect exists,
increasing the value of H modi�es linearly (approximately) the values of L. To
answer this question, we assume Lh,i = a + b × h + εh,i , where the �noise� εh,i
is again usually assumed Gaussian with mean 0 and constant variance σ2, noted
εh,i ∼ N(0, σ2). The question can then be recasted as �is b = 0 ?�.

To answer this, regression analysis uses the matrix

Areg = X(XTX)−1XT

where XT is a 2× n matrix with blocks XT
h =

(
1 · · · 1
h · · · h

)
of dimension 2× nh.

The matrix Areg is composed of the nh × nh′ blocks ch,h′1h1Th′ with ch,h′ =

1
n + (h−h̄)(h′−h̄)

nS2
H

where S2
H = n−1

∑H
h=1 nhh

2−
(
n−1

∑H
h=1 nhh

)2

= h̄2− h̄2 and

h̄ = n−1
∑H
h=1 nhh. The decomposition LT (In − Kn)L = LT (In − Areg)L +

LT (Areg − Kn)L can also be written as SStot= SSerr + SSreg and a unitless
measure of the validity of the assumption b = 0 is obtained through

R2
reg = 1− SSerr

SStot
=
SSreg
SStot

.

Again R2
reg, which lies in [0, 1], will tend to be in the neighborhood of zero when

b = 0 and increases toward 1 as the data cluster more closely about the line
a + b × h. In classical linear regression analysis, the usual F-test for the null
hypothesis H0 : b = 0 is based on (n − 2)R2

reg/(1 − R2
reg)) which, under H0

(and Gaussian noise) follows a Fisher F-distribution with degrees of freedom
(1, n − 2). In the present context where H takes only H distinct values, the
null hypothesis H0 : b = 0 of regression is equivalent to the null hypothesis
H0 : µ1 = µ2 = · · · = µH of AOV. It is important to stress however that in
contrast to AOV, all departures from Lh,i = a+ b× h+ εh,i cannot be detected
with R2

reg. Indeed if the true model is a perfect quadratic polynomial centered

on h̄ = n−1
∑K
h=1 nhh , R2

reg will be close to zero, whereas R
2
aov should be much

greater. Also important to stress is the fact that R2
reg is the square of Pearson's

correlation coe�cient ρPearson, which is the distinguisher used in CPA.

3.3 Linking Pearson's Correlation Coe�cient with AOV

From the above decompositions, we have

R2
aov = R2

reg +
LT (Aaov −Areg)L
LT (In −Kn)L

,

so the above stated di�erences in the behavior of R2
aov with respect to R2

reg are
caused by the di�erence term
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R2
dif =

LT (Aaov −Areg)L
LT (In −Kn)L

=
LT (Aaov −Areg)L/n
LT (In −Kn)L/n

=
Zn
S2
L

where S2
L is the empirical variance of the data in L and converges toward the

variance σ2
L of the marginal distribution of L. Thus we need only to study the

term Zn = LT (Aaov−Areg)L/n which is a quadratic form in the matrix Aaov−
Areg composed of the H2 blocks of size nh × nh′

Bh,h′ =

{(
1
nh
− ch,h′

)
1h1Th if h = h′

−ch,h′1h1Th′ otherwise
.

It is easy to see that Aaov − Areg is idempotent and symmetric. Hence it is
semi-de�nite positive and, by standard results on extrema of quadratic forms,
0 ≤ LT (Aaov −Areg)L ≤ LTL . Hence, we always have

R2
aov ≥ R2

reg.

To better understand the behavior of Zn = LT (Aaov − Areg)L/n, and its
e�ect on the genericity of R2

aov in the context of SCA, we now look into its
expectation and variance. Write E(L) = µL with the �rst n1 components being
µ1, the n2 following being µ2 etc. We have, conditional on the values of H,

E(LT (Aaov −Areg)L) = tr(Aaov −Areg)E(LLT )

= tr(Aaov −Areg)
(
V(L) + µLµ

T
L
)

= σ2
Ltr(Aaov −Areg) + µTL(Aaov −Areg)µL,

because by assumption the variance-covariance matrix V(L) of L is σ2
LIn. Now

tr(Aaov) =

H∑
h=1

nh∑
i=1

1

nh
= H,

tr(Areg) =

n∑
i=1

1

n
+

H∑
h=1

nh(h− h̄)2

n(h̄2 − h̄2)
= 2,

so that

E(Zn) =
σ2
L(H − 2)

n
+
µTLAaovµL

n
− µ

T
LAregµL

n
.

Now
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µTLAaovµL =

H∑
h=1

H∑
h′=1

µh1ThAh,h′µh1h′ =

H∑
h=1

µ2
h1ThAh,h′1h′ =

H∑
h=1

nhµ
2
h

Similarly

µTLAregµL =

H∑
h=1

H∑
h′=1

µh1Th ch,h′1h1Th′1h′µh

=
1

n

H∑
h=1

H∑
h′=1

µhµh′nhnh′ +

H∑
h=1

H∑
h′=1

µhµh′
(h− h̄)(h′ − h̄)

nS2
H

nhnh′

=
1

n

(
H∑
h=1

µhnh

)2

+
1

nS2
H

(
H∑
h=1

µh(h− h̄)nh

)2

Thus, upon noticing that n−1
∑H
h=1 µh(h−h̄)nh is the weighted (by nh) empirical

covariance SH,µ of the points (h, µh)h=1,...,H , we get

E(Zn) =
σ2
L(H − 2)

n
+

 H∑
h=1

nh
n
µ2
h −

(
1

n

H∑
h=1

µhnh

)2
− 1

S2
H

(SH,µ)
2

=
σ2
L(H − 2)

n
+ S2

µ − S2
µ

(SH,µ)
2

S2
HS

2
µ

=
σ2
L(H − 2)

n
+ S2

µ

(
1− ρ2

H,µ
)

where S2
µ is the empirical variance of the terms in µL and ρ2

H,µ is the empirical
weighted (by nk) Pearson correlation coe�cient for the points (h, µh)h=1,...,H .

Hence the expectation of the term R2
dif is approximately

E(R2
dif ) ' σ2

L
E(S2

L)

(H − 2)

n
+

S2
µ

E(S2
L)

(
1− ρ2

H,µ
)
. (4)

As for the variance of this term, we need only its order so that we consider the
particular case where the errors εh,i are Gaussian, for which the calculations are
easy. In this case, standard results on the variance of a quadratic form show that
(recall that Aaov −Areg is idempotent)

V(Zn) =
2

n2
σ4
Ltr (Aaov −Areg)−

4

n2
(µ′L(Aaov −Areg)µL)

2
= O(n−1).

Hence, by Tchebychev's inequality, we get that the dominant terms in R2
dif (as

n increases) is

R2
dif =

S2
µ

σ2
L

(
1− ρ2

H,µ
)

+
(H − 2)

n
+ op(n

−1).
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This expression allows the analysis of the term R2
dif . First, when H = 2, and

because the correlation between a pair of points is always ±1, we have that
R2
dif ' 0 + op(n

−1), so that an SCA based on AOV will give results similar to
the corresponding CPA. Actually here, in view of the fact that AOV with H = 2
is the same as a squared student t test, the equality holds exactly and the student
version of Kocher's DPA is equivalent to a CPA, a fact already noticed by [11].

WhenH > 2, then R2
aov is equivalent up to the constant term

(H−2)
n +op(n

−1)
to R2

reg if the points {(h, µh), h = 1, . . . ,H} fall on a strait line where then
ρH,µ = 1.
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As an experimental demonstration, Fig. 1 and 2 show the evolution of R2
reg

andR2
aov obtained on the DPAv2 traces, with a leakage assumed close to linearity.

This point will be discussed later in the paper. Fig. 1 only shows R2
reg and R

2
aov

for the correct key guess and one wrong guess, while 2 show them for all key
values. As expected R2

aov is always above R
2
reg.

Considering this fact, it appears that an SCA using the AOV should be
preferred over Pearson correlation because it has the advantage of being more
generic and provides theoretically the same results (up to the order op(n

−1) in
the case of a linear leakage. Indeed, when the leakage is unknown, which is often
the case, it is rather a risky choice to perform a CPA. The use of a more generic
distinguisher like the distinguisher based on AOV, appears thus a reasonable
choice, because it enables to cover cases where the leakage is not linear.

However, it should be noted that, theoretically, AOV is not as general as
MIA because it works on means and is therefore not able to detect links hidden
in higher statistical moments. Nonetheless, this loss of genericity with respect
to MIA is compensated by a drastic reduction in the computational burden,
burden which is comparable to that of CPA. At this point, the question is to
decide if leakages can be brought by higher moments than the mean in practice.
Whatever the answer, to con�rm our theoretical results about CPA and AOV,
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experiments were conducted on two di�erent testcases characterized by radically
di�erent leakage models.

4 Experimental Results

To compare CPA and AOV, attacks on the last two rounds of the AES-128
were coded in C language. To get deeper insights, we also compared the results
obtained with these two analyses with those provided by a MIA [8] based on
kernel density estimation with adaptive bandwidth selection [6]. These attacks
were applied to two di�erent testcases.

4.1 First testcase

As the �rst testcase, denoted DPAv2-AES in the rest of the paper, we select
the traces from the DPA contest v2, which are publicly available traces. They
correspond to power traces of a AES-128, implemented on a SASEBO GII board
[2], its design being the one from AIST and Tohoku University. More information
about these traces can be found in [1].

4.2 Second testcase

The second testcase, denoted by 65nm-AES afterward, is an AES-128 designed
with a 65nm Low Power High Threshold Voltage CMOS technology. This circuit
presents some speci�c characteristics with respect to smartcards. First, it inte-
grates an in-house communication protocol and second it is supplied by 16 pads
so that the power consumed by the AES is not drawn from a single power pad.
A picture of the IC showing the location of the AES on the die is given Fig. 3.
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Fig. 4. Measurement Setup
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The experiment set-up used to collect power traces is given Fig. 4. A Xilinx
Spartan 3 FPGA board is used to drive the IC via a state machine while a serial
port transfers from a PC to the FPGA the plain texts, the secret key and the
con�guration commands such as the encryption start and reset signals. The state
machine manages the bidirectional communication with the circuit and sets the
controls signals with the right timing according to the circuit speci�cations.

Power traces are acquired with a di�erential probe measuring the variations
of Vdd and Gnd, and a oscilloscope with a 20GS/s sampling rate. The bandwidth
of the whole acquisition setup was 1Mhz-4GHz.

4.3 Leakage Pro�ling
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Before performing any attack on these testcases, one key point was to pro�le
the leakage of both testcases. The goal was to verify our engineering intuition
according to which the �rst testcase (65nm-AES) is leaking according to a non-
linear leakage model. Even if it was not crucial, the same pro�ling step was
applied to the second testcase, the DPAv2-AES.

This pro�ling step was conducted as follows. Traces were sorted for each S-box
according to a Hamming Distance model (HD), with a Hamming Weight (HW)
partitioning i.e. were sorted according to the value of HW (T9(i)⊕T10(i)), where
T9(i) is the ith byte of the message before the last Subbyte and Addroundkey
operations, T10(i) is the ith byte of the ciphertext at the end of round 10, and
HW () is the Hamming Weight of the byte.

The solid lines of Fig. 5 and 6 show, for the DPAv2-AES and the 65nm-
AES respectively, the mean values of a leaking sample extracted from traces
according to the aforementioned partitioning for S-box 2. It is therefore possible
to observe the leakage evolutions with HW (T9(i)⊕T10(i)). For the DPAv2-AES,
this evolution seems linear while it is far from being linear for the 65nm-AES.
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At that stage, we could have applied a weighted least squares method directly
on the mean of each partition to �nd the polynomials �tting the data, namely
the sample amplitude with respect to HW (T9(i) ⊕ T10(i)). However, because
the cardinality of each partition is not balanced, we used the Akaike Criterion
(AIC), with the weighted least squares method to �nd these polynomials. The
AIC is a trade-o� between goodness of �t and the complexity of the model. Its
expression is:

AIC = 2(N + 1) + n× ln
(
SSreg
n

)
(5)

with N the degree of the polynomial, n the number of points, and SSreg the
residual sum of squares. With such a tool, we found the polynomials with the
minimum degree, that best �t the two leakages, by searching the degrees of the
polynomials that minimize the AIC criterion.

The dotted lines of Fig. 5 show that for S-box 2 the best polynomial is of
degree 1 while it is of degree 5 in Fig. 6. We are therefore facing a linear leakage
when analysing the S-box 2 of the DPAv2-AES and a non linear model in case
of the 65nm-AES.

This procedure was applied to all remainder S-boxes. The degrees of the best
�tting-polynomial are reported for all S-boxes in Table 1. For the 65nm-AES
testcase, the degree of the polynomials ranges between 4 and 8 while for the
DPAv2-AES it ranges between 1 and 3. It may be noted that, in the 65nm-AES
case, the degree of this polynomial for S-box 5 is 0, as the subkey cannot be
retrieved, suggesting that there is no leakage.

Table 1. Degree of polynomials found for each sbox according to the AIC

Sbox 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DPAv2-AES 2 1 1 2 1 1 2 1 3 1 1 2 3 1 1 1
65nm-AES 4 5 6 5 0 5 6 6 4 8 5 5 8 5 5 5

In order to con�rm these results, and to make the link with section 3, the R2
aov

and R2
reg coe�cients were computed for all S-boxes in both testcases. Results

are shown in Table 2. As proved in section 3, R2
aov is always greater than R2

reg.
Moreover it may be noticed that in the DPAv2-AES case, R2

aov and R2
reg are,

as expected from the theoretical results of section 3.3, very close to each other,
con�rming that the leakage is linear. On the contrary, much lower values are
obtained for R2

reg on the 65nm-AES case, and there is a great di�erence between
R2
aov and R

2
reg. This also con�rms that the leakage is not linear in this case.

According to the results listed in the Tables 1 and 2, and to the conclusion
we drew in section 3, we were expecting, before launching further analyses, that:

� CPA and AOV give similar results when applied to the DPAv2-AES testcase
(except maybe for the S-box 9 and 13)

� AOV outperforms CPA when applied to the 65nm-AES testcase.
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Table 2. Comparison between R2
aov and R2

reg for both testcases.

DPAv2-AES 65nm-AES
Sbox R2

reg R2
aov R2

reg/R
2
aov R2

reg R2
aov R2

reg/R
2
aov

1 0.00248 0.00335 0.74061 0.00001 0.00143 0.00840
2 0.00254 0.00426 0.59540 0.00005 0.00241 0.01952
3 0.00188 0.00306 0.61584 0.00019 0.00190 0.10026
4 0.00291 0.00475 0.61391 0.00014 0.00268 0.05108
5 0.00117 0.00353 0.33012 0.00002 0.00023 0.09829
6 0.00377 0.00508 0.74183 0.00006 0.00287 0.02022
7 0.00283 0.00544 0.51940 0.00011 0.00256 0.04225
8 0.00230 0.00458 0.50306 0.00031 0.00282 0.11068
9 0.00524 0.00710 0.73869 0.00006 0.00398 0.01408
10 0.00504 0.00738 0.68247 0.00008 0.00333 0.02432
11 0.00148 0.00286 0.51766 0.00017 0.00312 0.05479
12 0.00303 0.00575 0.52750 0.00011 0.00278 0.03846
13 0.00380 0.00610 0.62219 0.00012 0.00243 0.04768
14 0.00139 0.00327 0.42603 0.00015 0.00216 0.06812
15 0.00303 0.00438 0.69196 0.00043 0.00243 0.17763
16 0.00134 0.00311 0.43115 0.00003 0.00261 0.01304

4.4 Results obtained with CPA and AOV and MIA

CPA, MIA and AOV were applied to the two cases. Results from these attacks
are presented in this section. They were carried out on the last round of the
AES with a HD model, this is to say by partitioning according to the value:
HW (T9(i)⊕T10(i)). The MIA used here is based on kernels [15], and the choice
of the bandwidth is made according to the method proposed in [6].

In order to compare the results of these attacks, a metric presented in [13]
was used, namely the Guessing Entropy (GE). It represents the mean position
of the correct key among the guesses, after a given number of traces. It should
be noticed that the Mean Guessing Entropy (MGE) is also used; it represents
the mean position of all the 16 correct sub-keys. To compute these metrics on a
given set of traces, a same attack is applied several times with traces processed
in di�erent and random orders.

Fig. 7 shows the evolution of the Mean Guessing Entropy obtained with these
attacks applied to the DPAv2-AES. All attacks provide similar results and no
distinguisher enables to recover the key with signi�cantly less traces than the
others. This result was expected because the leakage is linear for most S-boxes.
Note however, that in that case, CPA and AOV are more interesting than MIA
because they are easier to apply (no hyper-parameter needs to be �xed) and
faster to compute. Indeed, with our PC, the time spent by CPA, AOV and MIA
to process 1000 traces was respectively equal to 3 s, 5 s and 6 min.

Fig. 8 also shows the evolution of the Mean Guessing Entropy but for the
65nm-AES. CPA clearly provides the worst results while MIA and AOV give the
same results. Indeed, after the processing of 50000 traces with CPA, only 3 good
subkeys are ranked �rst and 8 are ranked among the ten best hypotheses while
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Fig. 7. Mean Guessing Entropy ob-
tained with CPA, AOV and MIA af-
ter the processing of 20000 traces of the
DPAv2-AES
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Fig. 8. Mean Guessing Entropy ob-
tained with CPA, AOV and MIA after
the processing of 60000 traces collected
above the 65nm-AES
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ter the processing of 20000 traces of the
DPAv2-AES, depending on the compu-
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AOV and MIA are able to disclose 14 subkeys among 16 after the processing of
only 10000 traces. It is to notice that the 2 last subkeys cannot be retrieved with
a HD or a HW model, neither with AOV nor with MIA. However, because AOV
requires a much reduced computational e�ort compared to MIA, it follows that
AOV leads to the best trade o� between e�ciency, genericity and computational
burden. Note also that because the leakage related to most S-boxes is far from
being linear, all these expected results con�rm our theoretical results according
to which AOV gives similar results as CPA when the leakage is linear but may
give signi�cantly better results when the leakage is far from being linear. AOV
must therefore be preferred to CPA.

Fig. 9 and 10 show the evolution of the Mean Guessing Entropy for the
DPAv2-AES and the 65nm-AES, but this time depending on the time taken by
the attacks on our PC. As can be seen in Fig. 9, in a linear case, CPA and
AOV require approximately the same number of traces to recover the key and
thus took approximately the same amount of time. However, the MIA that also
requires approximately the same number of traces in this case but is much more
time consuming. Thus it takes more time to recover the key. On a non-linear case
represented in Fig. 10, it is clear that the AOV is the best compromise between
genericity and speed. However it is to notice that it only detects relations on the
means, and it is not able to capture higher moments. Thus, in case of a leakage
present in higher moments, the MIA should perform the best results as it would
be the only one to recover the key despite its low computation time.

5 Conclusion

Despite the proposal of many distinguishers in the literature, the CPA remains
the most used SCA. This choice is due to its simplicity of use and its low com-
putation time. However, in most cases, the shape of the leakage of a device is
unknown for an attacker. The distinguisher used by the CPA is the Pearson cor-
relation. Thus, performing such an attack, that can only detect relations not too
far from linearity, is an irrelevant choice without knowledge about the leakage.

In this context, the Analysis of Variance for SCA is a safer alternative and
should be preferred. Indeed, it is more generic than CPA, while keeping approxi-
mately the same simplicity of use and the same computation time. It can recover
the key in cases where the leakage deviates from linearity (leakage carried by the
means) and where the CPA can't �nd it. And it should perform similar results
to CPA in cases of a linear leakage, as theoretically and empirically showed in
this paper.

However, it should be noticed that AOV is less generic than MIA that can
detect any kind of relation between two variables, and not only dependence on
their means. A further study of the di�erence between these two distinguishers
would be interesting.
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