
An Efficient Transform from Sigma Protocols to NIZK

with a CRS and Non-Programmable Random Oracle∗

Yehuda Lindell†

Dept. of Computer Science
Bar-Ilan University, Israel

lindell@biu.ac.il

September 6, 2015

Abstract

In this short paper, we present a Fiat-Shamir type transform that takes any Sigma protocol
for a relation R and outputs a non-interactive zero-knowledge proof (not of knowledge) for the
associated language LR, in the common reference string model. As in the Fiat-Shamir transform,
we use a hash function H. However, zero-knowledge is achieved under standard assumptions
in the common reference string model (without any random oracle), and soundness is achieved
in the non-programmable random oracle model. The concrete computational complexity of the
transform is only slightly higher than the original Fiat-Shamir transform.

Keywords: zero knowledge, Sigma protocols, Fiat-Shamir, random oracles, programmability,
common reference string

∗The original version of this paper had a small error in the definition of the dual-mode commitment scheme in
Section 3.1. This was pointed out by [5] and has been fixed in this version.
†This work was funded by the European Research Council under the European Union’s Seventh Framework Programme

(FP/2007-2013) / ERC consolidators grant agreement n. 615172 (HIPS), and under the European Union’s Seventh Framework
Program (FP7/2007-2013) grant agreement n. 609611 (PRACTICE).



1 Introduction

Concretely efficient zero knowledge. Zero knowledge proofs [21, 17] play an important role
in many fields of cryptography. In secure multiparty computation, zero-knowledge proofs are used
to force parties to behave semi-honestly, and as such are a crucial tool in achieving security in the
presence of malicious adversaries [18]. This use of zero-knowledge proofs is not only for proving
feasibility as in [18], and efficient zero-knowledge proofs are used widely in protocols for achieving
concretely efficient multiparty computation with security in the presence of malicious adversaries;
see [31, 23, 27, 32, 24, 25] for just a few examples. Efficient zero knowledge is also widely used in
protocols for specific problems like voting, auctions, anonymous credentials, and more.

Most efficient zero knowledge proofs known are based on Sigma protocols [9] and [22, Ch. 7].
Informally, Sigma protocols are honest-verifier perfect zero-knowledge interactive proof systems
with some very interesting properties. First, they are three round public-key protocols (meaning
that the verifier’s single message—or challenge—is just a random string); second, if the statement
is not in the language, then for every first prover message there exists just a single verifier challenge
that can be answered; third, there exists a simulator that is given the statement and verifier chal-
lenge and generates the exact distribution over the prover’s messages with this challenge. Although
seemingly specific, there exist Sigma protocols for a wide variety of tasks like proving that a tuple
is of the Diffie-Hellman type, that an ElGamal commitment is to a certain value, that a Paillier
encryption is to zero, and many more. It is also possible to efficiently combine Sigma protocols to
prove compound statements [6]; e.g., (x1 ∈ L ∧ y1 ∈ L) ∨ (x2 ∈ L ∧ y2 ∈ L). Finally, it is possible
to efficiently compile a Sigma protocol to a zero-knowledge proof (resp., zero-knowledge proof of
knowledge) with the addition of one additional round (resp., two additional rounds) [22, Ch. 7].

The Fiat-Shamir transform and NIZK. The Fiat-Shamir transform [14] is a way of transform-
ing any public-coin zero-knowledge proof into a non-interactive zero-knowledge proof of knowledge
[2, 12].1 The transform is very simple, and works by having the prover compute the verifier’s (ran-
dom) messages by applying an “appropriate” hash function to the previous prover messages. The
security of this transform was proven in the random oracle model [30]. This means that if the hash
function is modeled as an external random function, then the result of applying the Fiat-Shamir
transform to a public-coin zero-knowledge proof is a non-interactive zero-knowledge proof. How-
ever, it was also shown that it is not possible to prove this statement for any concrete instantiation
of the hash function. Rather, there exist public-coin zero-knowledge proofs for which every concrete
instantiation of the hash function in the Fiat-Shamir transform yields an insecure scheme [20].

When applying the Fiat-Shamir transform to a Sigma protocol, the result is an extraordinarily
efficient non-interactive zero-knowledge proof. We remark that this is not immediate since Sigma
protocols are only honest-verifier zero knowledge. Thus, the Fiat-Shamir transform both removes
interaction and guarantees zero knowledge for malicious verifiers.

The Fiat-Shamir transform is very beneficial in obtaining efficient protocols since it saves ex-
pensive rounds of communication without increasing the computational complexity of the original
protocol. In addition, it is very useful in settings where the non-interactive nature of the proof is es-
sential (e.g., in anonymous credentials). However, as we have seen, this reliance on the Fiat-Shamir

1The Fiat-Shamir transform was designed to construct signature schemes from public-coin zero-knowledge proofs,
and later works also studied its security as a signature scheme. However, the results are actually the same for
non-interactive zero knowledge.

1



is only sound in the random-oracle model. This leads us to the following question:

Can we construct a Fiat-Shamir type transformation, that is highly efficient and is
secure in the standard model (without a random oracle)?

In this paper, we take a first step towards answering this question.

The random-oracle saga. Reliance on the random oracle model is controversial, with strong
advocates on one side and strong opponents on the other. However, it seems that almost all agree
that proving security without reliance on the random oracle model is preferable. As such, there
has been a long line of work attempting to prove security of existing schemes without reliance on
a random oracle, and to construct new schemes that are comparable to existing ones (e.g., with
respect to efficiency) but don’t require a random oracle. In the case of the Fiat-Shamir transform,
there is no chance of proving it secure in general without a random oracle, due to the impossibility
result of [20]. Thus, the aim is to construct a transform that is comparable to Fiat-Shamir in terms
of efficiency, but can be proven secure in the standard model.

An interesting development regarding the random oracle is that not all random oracles are equal.
In particular, Nielsen introduced the notion of a non-programmable random oracle [26], based on
the observation that many proofs of security—including that of the Fiat-Shamir transform—rely
inherently on the ability of the simulator (or security reduction) to “program” the random oracle and
fix specific input/output pairs. In contrast, a non-programmable random oracle is simply a random
function that all parties have access to. In some sense, reliance on a non-programmable random
oracle seems conceptually preferable since it more closely models the intuition that “appropriate
hash functions” behave in a random way. Formally, of course, this makes no sense. However, proofs
of security that do not require programmability are preferable in the sense that they rely on less
properties of the random oracle and can be viewed as a first step towards removing it entirely.

Our results. In this paper, we present a Fiat-Shamir type transform from Sigma protocols to non-
interactive zero knowledge proofs (that are not proofs of knowledge). The transform is extremely
efficient; for example, under the Decisional Diffie-Hellman assumption, the cost of transforming
a Sigma protocol to a non-interactive zero-knowledge proof is just 4 exponentiations, and the
transmission of a single number in Zq (where q is the order of the group). Our transform achieves
two advantages over the Fiat-Shamir transform:

1. The zero-knowledge property holds in the standard model and does not require any random
oracle at all. This is in contrast to the standard Fiat-Shamir transform when applied to
Sigma protocols, for which the only known proof uses a (fully programmable) random oracle.
Our transform utilizes the common reference string model, which is inherent since one-round
zero-knowledge protocols do not exist for languages not in BPP [19].

2. The soundness property holds when the hash function is modeled as a non-programmable
random oracle.

The fact that zero knowledge holds without any random oracle implies that the difficulties regarding
zero knowledge composition that arise in the random oracle model [33] are not an issue here. It
also implies that the random oracle is not needed for any simulation, and one only needs it to prove
soundness.

2



Our transform. The technique used in our transform is very simple. We use a two-round
equivocal commitment scheme for which there exists a trapdoor with which commitments can be
decommitted to any value. One example of such a scheme is that of Pedersen’s commitment [29].
Specifically, let g and h be two random generators of a group in which the discrete log problem
is assumed to be hard. Then, c = Comg,h(x) = gr · hx, where r ← Zq is random. This scheme
is perfectly hiding, and it can be shown to be computationally binding under the discrete log
assumption. However, if the discrete log of h with respect to g is known, then it is possible to
decommit to any value (if h = gα and α is known to the committer, then it can define c = gy and
then for any x it simply sets r = y − α · x).

We define a common reference string (CRS) that contains the first message of the commitment
scheme. Thus, when the simulator chooses the CRS, it will know the trapdoor, thereby enabling
it to equivocate. Let Σ be a Sigma protocol for some language, and denote the messages of the
proof that x ∈ L by (a, e, z). Then, in the Fiat-Shamir transform, the prover uses the verifier
challenge e = H(x, a). In our transform, the prover first computes a commitment to a, denoted
c = Com(a), and sets e = H(x, c). In addition, it computes the decommitment d. Then, the proof
contains (c, d, z), and the verifier first computes a from the commitment c and its decommitment d.
Next, the verifier computes e = H(x, c) and verifies that (a, e, z) is an accepting proof that x ∈ L.
Intuitively, since c is a commitment to a, soundness is preserved like in the original Fiat-Shamir
transform. However, since the simulator can choose the common reference string, and so can know
the trapdoor, it can equivocate to any value it likes. Thus, the simulator can generate a commitment
c that can be opened later to anything. Next, it computes e = H(x, c). Finally, it runs the Sigma
protocol simulator with the verifier challenge e already known, in order to obtain an accepting
proof (a, e, z). Finally, it finds a “decommitment” d such that d is a “valid” decommitment of c
to a. This reverse order of operations is possible since the simulator can equivocate; soundness is
preserved since the real prover cannot.

As appealing as the above is, the proof of soundness is problematic since the commitment is
only computational binding and the reduction would need to construct an adversary breaking the
binding from any adversary breaking the soundness. However, since a cheating prover outputs a
single proof, such a reduction seems problematic, even in the random oracle model.2 We therefore
use a dual-mode commitment (or hybrid trapdoor commitment [4]) which means that there are two
ways to choose the common reference string: in one way the commitment is perfectly binding, and
in the other it is equivocal. This enables us to prove soundness when the commitment is perfectly
binding, and zero knowledge when it is equivocal. We construct dual-mode commitments from any
“hard” language with an associated Sigma protocol (see Section 3.2). Thus, the security of our
transform for such languages requires no additional assumptions. We also demonstrate a concrete
instantiation of our construction that is secure under the DDH assumption, and requires only 4
exponentiations to generate a commitment. Our DDH instantiation of this primitive appeared in [4]
(for different applications); we present the construction here in any case for completeness.

Open questions. The major question left open by our work is whether or not it is possible to
prove the security of our transform or a similar one using a (concretely efficient) hash function whose
security is based on a standard cryptographic assumption. Note that even achieving a falsifiable

2It may be possible to prove by relying on the extractability of the random oracle, meaning that it is possible
to “catch” the cheating prover’s queries to the random oracle. We do not know how to do this in this context. In
addition, our solution is preferable since we do not even require extractability of random oracle queries.

3



assumption is difficult, and this has been studied by [1] and [11]. However, we have the additional
power of a CRS, and this may make it easier.

Related work. Damg̊ard [8] used a very similar transform to obtain 3-round concurrent zero
knowledge in the CRS model. Specifically, [8] uses a trapdoor commitment applied to the first
prover message, as we do. This enables simulation without rewinding and thus achieves concurrent
zero knowledge. However, as we have described, it seems that in our setting a regular tradpoor
commitment does not suffice since there is no interaction and thus no possibility of rewinding the
adversary (note that in the context of concurrent zero knowledge it is problematic to rewind a
cheating verifier when proving zero knowledge, but there is no problem rewinding a cheating prover
in order to prove soundness, and this is indeed what [8] do).

The problem of constructing zero knowledge in the non-programmable random oracle model
was first considered by [28] with extensions to the UC setting in [10]. However, their constructions
are not completely non-interactive and require two messages. This is due to the fact that their aim
is to solve the problem of deniability and transferability of NIZK proofs, and so some interaction is
necessary (as proven in [28]). We also remark that the transform from Σ-protocols to Ω-protocols
used in their construction requires repeating the proof multiple times, and so is far less efficient.

2 Definitions

2.1 Preliminaries

Let R be a relation; we denote the associated language by LR. That is, LR = {x | ∃w : (x,w) ∈ R}.
We denote the security parameter by n. We model a random oracle simply as a random function
O : {0, 1}∗ → {0, 1}n. In our work, we use the random oracle only to prove soundness, and there is
therefore no issue of “programmability”. When S is a set, x← S denotes choosing x from S with
a uniform distribution.

2.2 Sigma Protocols and NIZK

For the sake of completeness, we define Sigma protocols and adaptive non-interactive zero knowl-
edge (NIZK). Our formulation of non-interactive zero knowledge is both adaptive (meaning that
statements can be chosen as a function of the common reference string) and considers the case
where many proofs are given.

Sigma protocols. We briefly define Sigma protocols. For more details, see [9] and [22, Ch.
7]. Let R be a binary polynomial-bounded relation. A Σ protocol π = (P1, P2, VΣ) is a 3-round
public-coin protocol: the prover’s first message is denoted a = P1(x); the verifier’s message is a
random string e ∈R {0, 1}n, and the prover’s second message is denoted z = P2(x, a, e). We write
VΣ(x, a, e, z) = 1 if and only if the verifier accepts, and in this case we say tha transcript (a, e, z) is
accepting for x. We now formally define the notion of a Sigma-protocol:

Definition 2.1 A protocol π = (P1, P2, VΣ) is a Sigma-protocol for relation R if it is a three-round
public-coin protocol, and the following requirements hold:

• Completeness: If P and V follow the protocol on input x and private input w to P where
(x,w) ∈ R, then V always accepts.

4



• Special soundness: There exists a polynomial-time algorithm A that given any x and
any pair of accepting transcripts (a, e, z), (a, e′, z′) for x, where e 6= e′, outputs w such that
(x,w) ∈ R.

• Special honest verifier zero knowledge: There exists a probabilistic polynomial-time
simulator SΣ such that{

SΣ(x, e)
}
x∈L;e∈{0,1}n

≡
{
〈P (x,w), V (x, e)〉

}
x∈L;e∈{0,1}n

where SΣ(x, e) denotes the output of simulator M upon input x and e, and 〈P (x,w), V (x, e)〉
denotes the output transcript of an execution between P and V , where P has input (x,w), V
has input x, and V ’s random tape (determining its query) equals e.

Note that we consider only the case that e is of length n, and thus special soundness implies the
standard notion of soundness with cheating probability of only 2−n.

Adaptive non-interactive zero-knowledge. In the model of non-interactive zero-knowledge
proofs [2], the prover and verifier both have access to a public common reference string (CRS). We
present the definition of adaptive zero knowledge, meaning that both soundness and zero-knowledge
hold when statements can be chosen as a function of the CRS. We also consider the unbounded
version, meaning that zero knowledge holds for any polynomial number of statements proven. We
present the definition directly, and refer to [15, Section 4.10] for motivation and discussion. We
define soundness in the non-programmable random oracle model, since this is what we use in our
construction.

Definition 2.2 (adaptive non-interactive unbounded zero-knowledge): A triple of probabilistic
polynomial-time machines (GenCRS, P, V ) is called an adaptive non-interactive unbounded zero-
knowledge argument system for a language L ∈ NP with an NP-relation RL, if the following holds:

• Perfect completeness: For every (x,w) ∈ RL, Pr[V (x, ρn, P (x,w, ρn)) = 1] = 1 where ρn is
randomly sampled according to GenCRS(1n).

• Adaptive computational soundness with a non-programmable random oracle: For every
probabilistic polynomial-time function f : {0, 1}poly(n) → {0, 1}n \ L and every probabilistic
polynomial-time (cheating) prover B,

Pr
[
V O(f(ρn), ρn,BOn(ρn)) = 1

]
< µ(n)

where ρn is randomly sampled according to GenCRS(1n) and On : {0, 1}∗ → {0, 1}n is a
random function.

• Adaptive unbounded zero knowledge: There exists a probabilistic polynomial-time simulator
Szk such that for every probabilistic polynomial-time function

f :{0, 1}poly(n) → {0, 1}n × {0, 1}poly(n) ∩RL,

every polynomial p(·) and every probabilistic polynomial-time distinguisher D, there exists a
negligible function µ such that for every n,∣∣∣Pr

[
D
(
Rf (ρn, P

f (1n+p(n)))
)

= 1
]
− Pr

[
D
(
Szkf (1n+p(n)))

)
= 1
]∣∣∣ ≤ µ(n)

5



where ρn is randomly sampled according to GenCRS(1n), f1 and f2 denote the first and second
outputs of f respectively, and Rf (ρn, P

f (1n+p(n))) and Szkf (1n+p(n)) denote the output from
the following experiments:

Real proofs Rf (ρn, P
f (1n+p(n))):

1. ρ← GenCRS(1n): a common reference string is sampled

2. For i = 1, . . . , p(n) (initially ~x and ~π are empty):

(a) xi ← f1(ρn, ~x, ~π): the next statement xi to be proven is chosen.

(b) πi ← P (f1(ρn, ~x, ~π), f2(ρn, ~x, ~π), ρn): the ith proof is generated.

(c) Set ~x = x1, . . . , xi and ~π = π1, . . . , πi

3. Output (ρn, ~x, ~π).

Simulation Szkf (1n+p(n)):

1. ρ← Szk(1n): Simulator Szk (upon input 1n) outputs a reference string ρ

2. For i = 1, . . . , p(n) (initially ~x and ~π are empty):

(a) xi ← f1(ρn, ~x, ~π): the next statement xi to be proven is chosen.

(b) πi ← Szk(xi): Simulator Szk generates a simulated proof πi that xi ∈ L.

(c) Set ~x = x1, . . . , xi and ~π = π1, . . . , πi

3. Output (ρ, ~x, ~π).

Adaptive NIZK proof systems can be constructed from any (doubly) enhanced trapdoor per-
mutation [12]; see [15, Appendix C.4.1] and [16] regarding the assumption.

3 Dual-Mode Commitments

We use a commitment scheme in the CRS model with the property that it is perfectly binding
given the correctly constructed CRS, but is equivocal to a simulator who generates the CRS in an
alternative but indistinguishable way. Stated differently, the simulator can generate the CRS so
that it looks like a real one, but a commitment can be decommitted to any value. We show how
to construct this from any “hard” NP-relation with a Sigma protocol (to be defined below). This
construction has the advantage that we obtain non-interactive zero knowledge for such relations
under no additional assumptions. This construction is based on the commitment scheme from
Sigma protocols that appeared in [7]. However, [7] constructed a standard commitment scheme,
and we show how the same ideas can be used to achieve a dual commitment scheme. Following
this, we show a concrete instantiation under the DDH assumption which is extremely efficient.

Such a commitment was called a hybrid trapdoor commitment in [4], who studied this primitive
in depth and presented a number of constructions. In particular, the DDH-based construction in [4]
is identical to ours. We repeat it here for the sake of completeness.

3.1 Definition

Before we show how to construct such commitments, we provide a formal definition.

Definition 3.1 A dual-mode commitment scheme is a tuple of probabilistic polynomial-time algo-
rithms (GenCRS,Com,Scom) such that

6



• GenCRS(1n) outputs a common reference string, denoted ρ,

• (GenCRS,Com,Decom,ReceiverDecom): When ρ ← GenCRS(1n) and m ∈ {0, 1}n, the algo-
rithm Comρ(m; r) with a random r is a non-interactive perfectly-binding commitment scheme
with decommitment algorithm Decom and decommitment verification algorithm ReceiverDecom.
(We require that ReceiverDecomρ(Comρ(m; r),Decomρ(m; r)) = m except with negligible prob-
ability.)

• (Com,Scom): For every probabilistic polynomial-time adversary A and every polynomial p(·),
the output of the following two experiments is computationally indistinguishable:

realCom,A(1n) simulationScom(1n)

1. ρ← GenCRS(1n); ~c, ~d← φ 1. ρ← Scom(1n); ~c, ~d← φ
2. For i = 1, . . . , p(n): 2. For i = 1, . . . , p(n):

(a) mi ← A(ρ,~c, ~d) (a) ci ← Scom
(b) ci = Comρ(mi; ri) for ri ← {0, 1}poly(n) (b) mi ← A(ρ,~c, ~d)
(c) di = Decomρ(mi; ri) (c) di ← Scom(mi)

(d) Set ~c = c1, . . . , ci and ~d = d1, . . . , di (d) Set ~c = c1, . . . , ci and ~d = d1, . . . , di
3. Output A(ρ,m1, . . . ,mp(n),~c, ~d) Output A(ρ,m1, . . . ,mp(n),~c, ~d)

3.2 Membership-Hard Languages with Efficient Sampling

Intuitively, a membership-hard language L is one for which it is possible to sample instances of the
problem in a way that it is hard to detect if a given instance is in the language or not. In more
detail, there exists a sampling algorithm SL that receives for input a bit b and outputs an instance
in the language together with a witness w if b = 0, and an instance not in the language if b = 1.
The property required is that no polynomial-time distinguisher can know which bit SL received.
We let SxL denote the instance part of the output (without the witness, in the case that b = 0). We
now define this formally.

Definition 3.2 Let L be a language. We say that L is membership-hard with efficient sampling if
there exists a probabilistic polynomial-time sampler SL such for every probabilistic polynomial-time
distinguisher D there exists a negligible function µ(·) such that∣∣∣Pr[D(SxL(0, 1n), 1n) = 1]− Pr[D(SL(1, 1n), 1n) = 1]

∣∣∣ ≤ µ(n)

Such languages can be constructed from essentially any cryptographic assumption. Specifically,
if one-way functions exist then there exists a pseudorandom generator G : {0, 1}n → {0, 1}2n. Now,
define L to be the language of all images of G; i.e., L = {G(s) | s ∈ {0, 1}∗}, and define SL(0, 1n) =
(G(Un), Un), and SL(1, 1n) = U2n, where Uk is a uniformly distributed string of length k. It is clear
that this language is membership-hard with efficient sampling.

Nevertheless, we will be more interested in such languages that have efficient Sigma protocols
associated with them. One simple such examples is the language of Diffie-Hellman tuples (where
SL(0, 1n) outputs a random Diffie-Hellman tuple (g, h, ga, ha) together with a, and SL(1, 1n) outputs
a random non Diffie-Hellman tuple (g, h, ga, hb), where a and b are random).

We remark that Feige and Shamir [13] consider the notion of an invulnerable generator for a
language. Their notion considers a relation for which it is possible to generate an instance such
that it is hard to find the associated witness. In contrast, our notion relates to languages and not
relations, and on deciding membership rather than finding witnesses.

7



3.3 Dual-Mode Commitments from Membership-Hard Languages with Sigma
Protocols

We now construct a dual-mode commitment scheme from any language L that is membership hard,
and has an associated Sigma protocol. Recall that the verifier message of a Sigma protocol is always
a uniformly distributed e ∈R {0, 1}n. We denote the first and second prover messages of the Sigma
protocol on common input x (and witness w for the prover) by a = P1(x,w) and z = P2(x,w, a, e),
respectively. We denote by SΣ the simulator for the Sigma protocol. Thus, SΣ(x, e) outputs (a, z).

PROTOCOL 3.3 (Dual-Mode Commitment (General Construction))

• Regular CRS generation (perfect binding): Run the sampler SL for the language L
with input (1, 1n), and receive back an x (recall that x /∈ L). The CRS is ρ = x.

• Commitment Com: To commit to a value m ∈ {0, 1}n, set e = m, run SΣ(x, e) and obtain
(a, z). The commitment is c = a.

• Decommitment Decom: To decommit to m, provide e, z from above.

• Receiver decommitment ReceiverDecom: The receiver checks that VΣ(a, e, z) = 1 and
outputs m = e if yes, and ⊥ if not.

• Simulator Scom:

1. Upon input 1n, simulator Scom runs the sampler SL for the language L with in-
put (0, 1n), and receives back (x,w) (recall that x ∈ L and w is a witness to this fact).
Then, Scom computes a = P1(x,w), sets c = a and ρ = x, and outputs (c, ρ).

2. Upon input m ∈ {0, 1}n, simulator Scom sets e = m and outputs the decommitment
d = (e, z) where z = P2(x,w, a, e).

The fact that the commitment scheme is perfectly binding in the regular CRS case holds since
x /∈ L and thus for every a, there exists a single e, z for which (a, e, z) is an accepting proof. In
contrast, in the alternative CRS generation case, x ∈ L and the simulator knows the witness w.
Thus, it can generate a “commitment” a = P1(x,w), and then for any m ∈ {0, 1}n chosen later, it
can decommit to m by setting e = m, computing z = P2(x, e) and supplying (e, z). Since (a, e, z)
is a valid proof, and the Sigma protocol simulator is perfect, the only difference between this and
a real commitment is the fact that x ∈ L. However, by the property of the sampler SL, this is
indistinguishable from the case that x /∈ L.

Theorem 3.4 Let L be a membership-hard language, and let (P1, P2, VΣ) be a Sigma protocol for L.
Then, Protocol 3.3 is a dual-mode commitment scheme.

Proof: The fact that Comρ(m; r) is perfectly binding when ρ ← GenCRS(1n) follows from the
fact that when x /∈ L it holds that for every a there exists a single e such that VΣ(x, a, e, z) = 1.

We now show that the outputs of realCom,A(1n) and simulationScom(1n) (as in Definition 3.1)
are computationally indistinguishable. (We prove this first since we will use it later to prove the
computational hiding of (GenCRS,Com).) We begin by modifying the realCom,A(1n) experiment
to hybridCom,A(1n), where the only difference is that the CRS is generated by running SL(0, 1n) in
the way that Scom generates it, instead of running SL(1, 1n). Apart from this, everything remains
exactly the same. (Observe that since Com runs the Sigma protocol simulator, it makes no difference

8



if x ∈ L or x /∈ L.) By the assumption that SxL(0, 1n) is computationally indistinguishable from
SL(1, 1n), it follows that the outputs of realCom,A(1n) and hybridCom,A(1n) are computationally
indistinguishable. Next, we show that hybridCom,A(1n) and simulationScom(1n) are identically
distributed. There are two differences between them. First, in simulation the real Sigma-protocol
prover is used instead of the simulator; second, in simulation the value ci is generated before mi

is given, in every iteration. Regarding the first difference, the distributions are identical by the
perfect zero-knowledge property of SΣ. Regarding the second difference, once the real prover is
used, it makes no difference if ci is given before or after, since the distribution over ai is identical.
We conclude that hybridCom,A(1n) and simulationScom(1n) are identically distributed, and thus
realCom,A(1n) and simulationScom(1n) are computationally indistinguishable.

It remains to show that (GenCRS,Com) is computationally hiding as a commitment scheme.
In order to see this, observe that simulationScom(1n) is perfectly hiding. Intuitively, since it is
computationally indistinguishable from a real commitment, this proves computational hiding. More
formally, for any pair m0,m1 of the same length, the output of real with m0 is computationally
indistinguishable from the output of simulation with m0, and the output of real with m1 is
computationally indistinguishable from the output of simulation with m1. (It is straightforward
to modify the experiments to have a fixed message, or to have A output a pair and choose one at
random.) Since the commitment in simulation is perfectly hiding, it follows that the output of
simulation with m0 is identical to the output of simulation with m1. This implies computational
indistinguishability of the output of real with m0 from the output of real with m1.

3.4 A Concrete Instantiation from DDH

In this section, we present a dual-mode commitment scheme from the DDH assumption. This can
be used for any transform, and may be more efficient if the Sigma protocol for the language being
used is less efficient. The complexity is 4 exponentiations for a commitment (by the prover), and
4 exponentiations for a decommitment (by the receiver).

Let G be the “generator algorithm” of a group in which the DDH assumption is assumed to
hold. We denote the output of G(1n) by (G, q, g, h) where G is the description of a group of order
q > 2n with two random generators g, h.

PROTOCOL 3.5 (Dual-Mode Commitment from DDH)

• Regular CRS generation (perfect binding): Run G(1n) to obtain (G, q, g, h). Choose
ρ1, ρ2 ∈R Zq and compute u = gρ1 and v = hρ2 . The CRS is (G, q, g, h, u, v).

• Alternative CRS generation (equivocal): As above, except choose a single ρ ∈R Zq
and compute u = gρ and v = hρ.

• Commitment: To commit to a value m ∈ {0, 1}n, choose a random z ∈R Zq and compute
a = gz/um and b = hz/vm. The commitment is c = (a, b).

• Decommitment: To decommit to c = (a, b), provide m, z.

• Receiver decommitment: The receiver outputs m if gz = a · um and hz = b · vm.
Otherwise, it outputs ⊥.

The fact that the commitment scheme is perfectly binding in the regular CRS case holds since
(g, h, u, v) is not a Diffie-Hellman tuple. Thus, by the property of the DH Sigma Protocol, for every

9



(a, b) there exists a unique e for which there exists a value z such that gz = a · ue and hz = b · ve.
In contrast, in the alternative CRS generation case, (g, h, u, v) is a Diffie-Hellman tuple and the
simulator knows the witness ρ. Thus, it can generate a = gr and b = hr and then for any m ∈ {0, 1}n
chosen later, it can decommit to m by computing z = r +mρ and supplying (m, z). Since u = gρ

and v = hρ it follows that gz = gr+mρ = gr · (gρ)m = a · um and hz = hr+mρ = hr · (hρ)m = b · vm,
as required.

The proof of the following theorem follows directly from Theorem 3.4 and the fact that the
language of Diffie-Hellman tuples is membership hard, under the DDH assumption.

Theorem 3.6 If the Decisional Diffie-Hellman assumption holds relative to G, then Protocol 3.5
is a dual-mode commitment scheme.

4 The Non-Interactive Zero-Knowledge Transformation

We denote by P1, P2 the prover algorithms for a Sigma protocol for the relation R. Thus, a proof
of common statement x with witness w (for (x,w) ∈ R) is run by the prover sending the verifier
the first message a = P1(x,w), the verifier sending a random query e ← {0, 1}n, and the prover
replying with z = P2(x,w, e). We denote the verification algorithm by VΣ(x, a, e, z).

PROTOCOL 4.1 (NIZK from Sigma Protocol for Relation R)

• Inputs: common statement x; the prover also has a witness w such that (x,w) ∈ R
• Common reference string: the (regular) CRS ρ of a dual-mode commitment scheme, and a key
s for a hash function family H.

• Auxiliary input: 1n, where n ∈ N is the security parameter

• The prover algorithm P (x,w, ρ):

1. Compute a = P1(x,w)

2. Compute c = Comρ(a; r) and d = Decomρ(a; r), where Comρ(a; r) is the dual-mode commit-
ment to a using randomness r and CRS ρ, and d is its decommitment

3. Compute e = Hs(x, c)

4. Compute z = P2(x,w, a, e)

5. Output a proof π = (x, c, d, z)

• The verifier algorithm V (x, ρ, c, d, z):

1. Compute a = ReceiverDecom(c, d); output 0 if ReceiverDecom(c, d) returns ⊥.

2. Compute e = Hs(x, c)

3. Output VΣ(x, a, e, z)

The intuition behind the transformation has been described in the introduction. We therefore
proceed directly to prove its security.

4.1 Zero Knowledge

Lemma 4.2 Let Σ = (P1, P2, VΣ) be a Sigma protocol for a relation R and let Com be a dual-mode
commitment. Then, Protocol 4.1 with Σ is zero-knowledge for the language LR in the common
reference string model.

10



Proof: We construct a simulator Szk (as in Definition 2.2) for Protocol 4.1 as follows:

• Upon input 1n, Szk runs Scom(1n) for the dual-mode commitment scheme and obtains the
value ρ. In addition, Szk samples a key s for the hash function. Szk outputs the CRS (ρ, s).

• Upon input x (for every x1, . . . , xp(n)), simulator Szk runs Scom to obtain some c. Then,
Szk computes e = Hs(x, c) and runs the simulator SΣ for the Sigma protocol upon input
(x, e). Let the output of the simulator be (a, z). Then, Szk runs Scom(a) from the dual-mode
commitment to obtain d such that a = ReceiverDecomρ(c, d). Finally, Szk outputs (x, c, d, z).

Intuitively, the difference between a simulated proof and a real one is in the dual-mode commitment.
Note also that Szk uses the Sigma protocol simulator. However, by the property of Sigma protocols,
these messages have an identical distribution. Thus, we prove the zero-knowledge property by
reducing the security to that of the dual-commitment scheme, as in Definition 3.1.

First, we construct an alternative simulator S ′ who in every iteration (for i = 1, . . . , p(n))
receives (x,w); i.e., S ′ receives both f1(ρ, ~x, ~π) and f2(ρ, ~x, ~π) and so also receives the witness for
the fact that x ∈ L. In the first stage of the simulation, S ′ works exactly like Szk to generate
the CRS (ρ, s). In addition, S ′ generates c by running Scom, just like Szk. However, in order to
generate (a, z), S ′ uses (x,w) and works as follows. It first computes e = Hs(x, c) exactly like
Szk. However, S ′ runs P1(x,w) to obtain a (instead of running SΣ), and then runs P2(x,w, a, e)
to obtain z. Finally, S ′ runs Scom(a) to obtain d such that a = ReceiverDecomρ(c, d). The only
difference between Szk and S ′ is how the values a, z are obtained. Since for every e, SΣ outputs
(a, z) that are distributed identically as in a real proof with e, it holds that the output distributions
of Szk and S ′ are identical.

We now proceed to show that the output distribution of S ′ is computationally indistinguishable
to a real proof. Formally, let f = (f1, f2) be the function choosing the inputs as in Definition 2.2.
We construct an adversary A for the dual-mode commitments as in Definition 3.1, with input 1n:

1. A receives ρ, chooses a key s for the hash function family H, and sets the CRS to be (ρ, s).

2. For i = 1, . . . , p(n) (~x and ~π are initially empty):

(a) A receives (ρ,~c, ~d) and knows m1, . . . ,mi−1 and x1, . . . , xi−1 (since these were generated
by A in previous iterations).

(b) For every j = 1, . . . , i − 1, A sets aj = mj , ej = Hs(xj , cj), zj = P2(xj , wj , aj , ej), and
πj = (xj , aj , rj , zj). Finally A sets ~x = (x1, . . . , xi−1) and ~π = (π1, . . . , πi−1).

(c) A computes (xi, wi) = f((ρ, s), ~x, ~π)

(d) A outputs mi = ai = P1(xi, wi), as in Step 2(a) of the real experiment in Definition 3.1

3. A receives ((ρ, s),m1, . . . ,mp(n),~c, ~d) and works as follows:

(a) For every i = 1, . . . , p(n), A sets ai = mi, computes ei = Hs(xi,Com(mi; ri)), zi =
P2(xi, ai, ei), and defines πi = (xi, ci, di, zi).

(b) A outputs ((ρ, s), x1, . . . , xp(n), π1, . . . , πp(n))

Now, if A interacts in the “real commitment” experiment real for dual-mode commitments, then
its output is exactly the same output as in the real proofs experiment Rf in Definition 2.2. This
is because the CRS is generated according to the dual commitment scheme, and the algorithm run

11



by A to compute all the (xi, ci, di, zi) is exactly the same as the honest prover P (xi, wi, ρi). The
only difference is that A receives (ci, di) externally. However, ci and di are “honestly generated” in
this experiment. Thus, it is exactly the same as P in Protocol 4.1.

In contrast, if A interacts in the “simulation” experiment simulation for dual-mode commit-
ments, then its output is distributed identically to S ′. This is because the CRS ρ is computed
as ρ ← Scom(1n), as too are ci ← Scom and di ← Scom(ai) in the dual-commitment simulation
experiment, exactly as computed by S ′.

Thus, by Definition 3.1 it follows that the output of S ′ is computationally indistinguishable
from a real proof. This implies that the output of Szk is computationally indistinguishable from a
real proof, as required by Definition 2.2.

4.2 Interactive Argument (Adaptive Soundness)

We now prove that Protocol 4.1 is a non-interactive argument system. In particular, it is compu-
tationally (adaptively) sound.

Lemma 4.3 Let Σ = (P1, P2, VΣ) be a Sigma-protocol for a relation R, let Com be a perfectly-
binding commitment, and let H : {0, 1}∗ → {0, 1}n be a non-programmable random oracle. Then,
Protocol 4.1 with Σ is a non-interactive argument system for the language LR in the common
reference string model.

Proof: Completeness is immediate. We proceed to prove adaptive soundness, as in Definition 2.2.
We will use the fact that for any function g, the relationR = {(x, g(x)} is evasive on pairs (x,O(x)),
where O is a (non-programmable) random oracle. This means that, given oracle access to O, it is
infeasible to find a string x so that the pair (x,O(x)) ∈ R [3].

Assume x /∈ L. Then, by the soundness of the Sigma protocol, we have that for every a there
exists a single e ∈ {0, 1}n for which (a, e, z) is accepting, for some z. Define the function g(x, c) = e,
where there exist a, d, z such that a = ReceiverDecom(c, d) and VΣ(x, a, e, z) = 1. We stress that
since x /∈ L and since c is perfectly binding (and so it fully defines a), there exists a single value e
that fulfills this property. Thus, it follows that g is a function, as required.

Since g is a function, it follows that the relation R = {((x, c), g(x, c))} is evasive, meaning that
no polynomial-time machine A can find a pair (x, c) so that O(x, c) = g(x, c), with non-negligible
probability. Assume now, by contradiction, that there exists a probabilistic polynomial-time func-
tion f and a probabilistic polynomial-time cheating prover B such that V (f(ρn), ρn,B(ρn)) = 1
with non-negligible probability (where ρn ← GenCRS(1n)).

We construct a probabilistic polynomial-time adversary A as follows. A runs the regular gener-
ation of the dual-mode commitment scheme to obtain ρn. Then, A runs B(ρn) and obtains a tuple
(x, c, d, z). If V (f(ρn), ρn, (c, d, z)) = 1, then A outputs (x, c) and halts. According to the con-
tradicting assumption, V (f(ρn), ρn, (c, d, z)) = 1 with non-negligible probability. This implies that
with non-negligible probability, it holds that VΣ(x, a,O(x, c), z) = 1. However, there is just a single
value e for which VΣ(x, a,O(x, c), z) = 1. Thus, this implies that O(x, c) = e, with non-negligible
probability. Stated differently, this implies that O(x, c) = g(x, c) with non-negligible probability, in
contradiction to the fact that any function g is evasive for a (non-programmable) random oracle.

12



4.3 Summary

Combining Lemmas 4.2 and 4.3 with the fact that the dual-mode commitment scheme is perfectly
binding when the CRS is chosen correctly, we have:

Corollary 4.4 Let L be a language with an associated Sigma protocol. If dual-mode commit-
ments exist, then there exists a non-interactive zero-knowledge argument system for L in the non-
programmable random-oracle model. Furthermore, zero-knowledge holds in the standard model.

In Theorem 3.4 we showed that dual-mode commitment schemes exist for every membership-
hard language with a Sigma protocol. Combining this with the above corollary, we have:

Corollary 4.5 Let L be a membership-hard language with an associated Sigma protocol. Then,
there exists a non-interactive zero-knowledge interactive proof system for L, in the non-programmable
random oracle model. Furthermore, zero-knowledge holds in the standard model.

Acknowledgements

We thank Ben Riva, Nigel Smart and Daniel Wichs for helpful discussions.

References

[1] B. Barak, Y. Lindell and S. Vadhan. Lower Bounds for Non-Black-Box Zero Knowledge. In
the Journal of Computer and System Sciences, 72(2):321–391, 2006. (An extended abstract
appeared in FOCS 2003.)

[2] M. Blum, P. Feldman and S. Micali. Non-interactive Zero-Knowledge and its Applications.
In 20th STOC, pages 103–112, 1988.

[3] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited. In
the 30th STOC, pages 209-218, 1998.

[4] D. Catalano and I. Visconti. Hybrid Commitments and their Applications to Zero-
Knowledge Proof Systems. Theoretical Computer Science, 374(1-3):229-260, 2007.

[5] M. Ciampi, G. Persiano, L. Siniscalchi and I. Visconti. A Transform for NIZK Almost
as Efficient and General as the Fiat-Shamir Transform Without Programmable Random
Oracles. Cryptology ePrint Archive, Report 2015/770, 2015.

[6] R. Cramer, I. Damg̊ard and B. Schoenmakers. Proofs of Partial Knowledge and Simplified
Design of Witness Hiding Protocols. In CRYPTO’94, Springer-Verlag (LNCS 839), pages
174–187, 1994.

[7] I. Damg̊ard. On the Existence of Bit Commitments Schemes and Zero-Knowledge Proofs.
In CRYPTO’89, Springer-Verlag (LNCS 435), pages 17–27, 1989.

[8] I. Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In EU-
ROCRYPT 2000, Springer (LNCS 1807), pages 418–430, 2000.

[9] I. Damg̊ard. On Σ Protocols. http://www.daimi.au.dk/∼ivan/Sigma.pdf.

13



[10] Y. Dodis, V. Shoup and S. Walfish. Efficient Constructions of Composable Commitments
and Zero-Knowledge Proofs. In CRYPTO 2008, Springer (LNCS 5157), pages 515–535,
2008.

[11] Y. Dodis, T. Ristenpart and S.P. Vadhan. Randomness Condensers for Efficiently Samplable,
Seed-Dependent Sources. In the 9th TCC, Springer (LNCS 7194), pages 618–635, 2012.

[12] U. Feige, D. Lapidot and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under
General Assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

[13] U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Protocols. In the
22nd STOC, pages 416–426, 1990.

[14] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. In CRYPTO 1986, Springer-Verlag (LNCS 263) pages 186–194, 1986.

[15] O. Goldreich. Foundation of Cryptography, Volume II. Cambridge University Press, 2004.

[16] O. Goldreich. Basing Non-Interactive Zero-Knowledge on (Enhanced) Trapdoor Permuta-
tion: The State of the Art. Technical Report, 2009.
http://www.wisdom.weizmann.ac.il/∼oded/PSBookFrag/nizk-tdp.ps

[17] O. Goldreich, S. Micali and A. Wigderson. How to Prove all NP-Statements in Zero-
Knowledge, and a Methodology of Cryptographic Protocol Design. In CRYPTO’86,
Springer-Verlag (LNCS 263), pages 171–185, 1986.

[18] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987.

[19] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems.
Journal of Cryptology, 7(1):1–32, 1994.

[20] S. Goldwasser and Y. Kalai. On the (In)security of the Fiat-Shamir Paradigm. In the 44th
FOCS, pages 102–113, 2003.

[21] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[22] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols – Techniques and Construc-
tions. Springer, October 2010.

[23] S. Jarecki and V. Shmatikov. Efficient Two-Party Secure Computation on Committed
Inputs. In EUROCRYPT 2007, Springer (LNCS 4515), pages 97–114, 2007.

[24] Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-and-Choose Oblivious
Transfer. In Journal of Cryptology, 25(4):680722, 2012. (Extended abstract appeared in
TCC 2011, Springer (LNCS 6597), pages 329–346, 2011.)

[25] Yehuda Lindell. Fast Cut-and-Choose Based Protocols for Malicious and Covert Adversaries.
In CRYPTO 2013, Springer (LNCS 8043) pages 1–17, 2013.

14



[26] J.B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The
Non-committing Encryption Case. In CRYPTO 2002, Springer (LNCS 2442), pages 111–
126, 2002.

[27] J.B. Nielsen and C. Orlandi. LEGO for Two-Party Secure Computation. In TCC 2009,
Springer (LNCS 5444), pages 368–386, 2009.

[28] R. Pass. On Deniability in the Common Reference String and Random Oracle Model. In
CRYPTO 2003, Springer (LNCS 2729), pages 316–337, 2003.

[29] T.P. Pedersen. Non-interactive and Information-Theoretical Secure Verifiable Secret Shar-
ing. In CRYPTO’91, Springer-Verlag (LNCS 576) pages 129–140, 1991.

[30] D. Pointcheval and J. Stern: Security Proofs for Signature Schemes. In EUROCRYPT 1996,
Springe-Verlag (LNCS 1070), pages 387–398, 1996.

[31] B. Schoenmakers and P. Tuyls. Practical Two-Party Computation Based on the Conditional
Gate. In ASIACRYPT 2004, Springer (LNCS 3329), pages 119–136, 2004.

[32] A. Shelat, C.H. Shen. Two-Output Secure Computation with Malicious Adversaries. In
EUROCRYPT 2011, Springer (LNCS 6632), pages 386–405, 2011.

[33] Hoeteck Wee. Zero Knowledge in the Random Oracle Model, Revisited. In ASIACRYPT
2009, Springer (LNCS 5912), pages 417–434, 2009.

15


	Introduction
	Definitions
	Preliminaries
	Sigma Protocols and NIZK

	Dual-Mode Commitments
	Definition
	Membership-Hard Languages with Efficient Sampling
	Dual-Mode Commitments from Membership-Hard Languages with Sigma Protocols
	A Concrete Instantiation from DDH

	The Non-Interactive Zero-Knowledge Transformation
	Zero Knowledge
	Interactive Argument (Adaptive Soundness)
	Summary


