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Abstract

We consider the problem of designing multi-tenant public infrastructure clouds resistant to
cross-VM attacks without relying on single-tenancy or on assumptions about the cloud’s servers.
In a cross-VM attack (which have been demonstrated recently in Amazon EC2) an adversary
launches malicious virtual machines (VM) that perform side-channel attacks against co-located
VMs in order to recover their contents.

We propose a formal model in which to design and analyze secure VM placement algorithms,
which are online vector bin packing algorithms that simultaneously satisfy certain optimization
constraints and notions of security. We introduce and formalize several notions of security,
establishing formal connections between them. We also introduce a new notion of efficiency for
online bin packing algorithms that better captures their cost in the setting of cloud computing.

Finally, we propose a secure placement algorithm that achieves our strong notions of security
when used with a new cryptographic mechanism we refer to as a shared deployment scheme.

1 Introduction

Cloud computing platforms make computational resources available to clients as a service. With
cloud computing, a client can outsource its computation and/or storage to a cloud provider, paying
only for the resources used at any time. Cloud computing platforms can be roughly categorized
as either public or private. In a private cloud, the underlying infrastructure (i.e., servers, network
and storage) is owned and operated by the client whereas in a public cloud (e.g., Amazon EC2 or
Microsoft Azure) it is owned and managed by a cloud provider and made available as a service. The
benefits of using a public cloud include reliability, elasticity (i.e., computational resources can be
increased and decreased quickly) and cost-savings. As such, many private and public organizations
are considering migrating their IT infrastructures to a public cloud.

Roughly speaking, a cloud is composed of physical servers and of a controller. The servers are
virtualized which means that a single physical server can execute several virtual machines (VM)
concurrently. This concurrent execution is implemented through a hypervisor which is responsible
for isolating the co-located VMs from each other and making sure that the server’s resources are
allocated fairly. The allocation of VMs to physical servers is handled by the controller which
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monitors the servers’ resources and executes a placement algorithm. To use a cloud, a tenant creates
and sends to the controller a deployment, i.e., a set of VMs that execute its computation. The
cost-effectiveness of public clouds stems from several reasons but the most important is multi-tenancy,
i.e., the cloud provider’s ability to execute the workloads of several clients on the same physical
server. Multi-tenancy is made possible through virtualization

Cross-VM attacks. While multi-tenancy is crucial to cloud computing it also introduces a number
of security concerns, including the possibility of cross-VM attacks. In a cross-VM attack, a malicious
VM bypasses the hypervisor-level isolation to attack co-located VMs. Possible cross-VM attacks
range from taking over other VMs by exploiting vulnerabilities in the hypervisor and guest OS, to
stealing secrets through side-channels attacks [15, 25].

Currently, the best solution to these attacks is single-tenancy, i.e., letting clients run their VMs
on a dedicated server. While single-tenancy obviously mitigates cross-VM attacks, it does not scale
since at some point it obviates the economic benefits of public clouds. The design of cross-VM
mitigation techniques that preserve multi-tenancy is therefore an important and well-motivated
problem in cloud security. Many recent works [22, 23, 14, 1, 17, 21, 7, 26, 11, 9, 20] have explored
cross-VM mitigation techniques but all these approaches are restricted to cache-based attacks. In
addition, these solutions rely on systems-level assumptions, i.e., they rely on the integrity of the
servers’ hardware, hypervisors and/or OSs.

Co-location attacks. A basic, but crucial, observation about cross-VM attacks is that they first
necessitate the successful completion of a co-location attack; that is, an attack in which the adversary
strategically creates and launches VMs so that they are co-located with its target VMs. As discussed
by Ristenpart et al. [15], there are at least two different kinds of co-location attacks in public
clouds. The first are what we refer to as complete co-location attacks, where the adversary wants to
co-locate with each VM in a given set of target VMs. The second is what we refer to as a fractional
attack, where the adversary only wants to co-locate with some fraction of the target VMs.

1.1 Our Contributions

In this work, we consider the problem of cross-VM attacks in public clouds, seeking solutions that
do not rely on single-tenancy or on systems-level assumptions. At a very high-level, our focus is on
mitigating co-location attacks since they are a necessary first step to performing cross-VM attacks.
More concretely, our approach is to assign VMs to physical servers in such a way that attack VMs
are rarely co-located with target VMs. To do this, we formalize and design co-location-resistant
placement algorithms which, roughly speaking, protect VMs against complete and fractional co-
location attacks. Our main placement algorithm uses randomization to place VMs in a manner
that is unpredictable to the adversary and that reduces its probability of successfully completing a
co-location attack.

We note that the naive strategy of placing VMs on servers chosen uniformly at random is not
feasible in our setting since VMs cannot be placed arbitrarily in practice. Indeed, VM placement
algorithms have to satisfy non-trivial optimization constraints which cannot be met by simply
placing VMs at random. One of the major contributions of our work is the design of an algorithm
that optimizes for these constraints while remaining co-location-resistant to the adversary.

Secure optimization. As far as we know, ours is the first work to consider the design of such
“secure optimization” algorithms; that is, optimization algorithms that also provide some form of
security. We believe the study of secure optimization algorithms is an interesting research direction
at the intersection of algorithms, security and cryptography and could have applications, not only
to cloud computing, but more generally to distributed systems.



Theoretical cloud security. While cloud security has attracted a lot of attention from the
research community, there are no formal security models in which to rigorously analyze the security
of cloud systems. Another major contribution of our work is to provide such a model for the study
of security against cross-VM and co-location attacks. Though our main results are algorithmic
in nature (with the exception of our notion of shared deployments from Section 6), our model is
cryptographic. More precisely, we model and analyze the properties of our placement algorithm
using the provable security methodology from Theoretical Cryptography. While we focus here on
VM placement, we believe that our core model and principles can be extended in future work to
analyze the security of cloud systems against other threats. As a concrete example, we believe our
ideas could be extended and applied to hypervisor-level core scheduling to prevent cache-based
attacks on multi-core servers.

1.2 Overview of Our Work

In our model, a cloud Cld consists of a set of virtualized physical servers (Srvy,...,Srv,) and a
controller Ctrlr; that allocates VMs to servers according to a placement algorithm II. VMs are
created by running a deployment scheme A. Each VM includes a resource vector r which captures
its resource requirements (e.g., I/O, CPU and memory requirements); each dimension of the vector
corresponds to a particular resource. Similarly, each physical server has a capacity vector which
determines the maximum amount of any resource it can provide. In our work, we require two main
properties from such a cloud: efficiency and security.

Efficiency. In our context, the efficiency of a cloud refers to its total resource usage when executing
deployments and not just the time to execute a VM. In fact, the most expensive resource when
running a cloud is energy. So, intuitively, an efficient cloud is one that minimizes its total resource
consumption. Efficiency in this sense is therefore determined by the controller and its placement
algorithm II. The problem of allocating VMs to servers is known to be an instance of the online
vector bin packing problem, where one must allocate a stream of vectors to bins in such a way as to
minimize the number of bins and without exceeding the capacity of the bins (see, e.g., [13, 8] for
detailed discussions). The quality of online algorithms are evaluated using the notion of competitive
ratio which bounds the ratio between the cost of the algorithm and the cost of the optimal algorithm
over the worst-case input stream. For bin packing algorithms the cost is usually defined to be
the number of bins used. We point out in this work, however, that the number-of-bins cost is
inappropriate for cloud computing where efficiency is determined by the total amount of resources
used.

We therefore propose a more relevant cost function which we refer to as server-time which is the
sum over time of the number of utilized servers. We believe minimizing server-time in infrastructure
clouds is crucial for at least two reasons. First, it seems to be correlated to energy consumption.
! The second is that minimizing server-time in a public cloud increases the amount of resources
available in the data center for other purposes (e.g., for use as a private cloud).

Security. The second property we want is security which, in our setting, corresponds to security
against cross-VM attacks. As we will see, however, formalizing this notion is non-trivial and several
interesting subtleties arise. The intuitive security guarantee that we expect from a cloud is isolation,
which means that each VM is executed independently of other VMs and, in particular, in such a way
that cross-VM attacks are not possible. We formalize this intuition in the ideal/real-world paradigm
which is typically used to analyze the security of multi-party computation protocols. Roughly

1 We note that while this seems to be intuitively the case, we are not aware of any experimental studies that
validate this intuition.



speaking, our definition will guarantee that the execution of a tenant’s deployment in a cloud is
equivalent to an execution of the deployment by a trusted party. And since cross-VM attacks are
impossible by definition when VMs are executed by a trusted party, they are also impossible in the
cloud. As we will see, isolation is a very strong property that implies security beyond just protecting
the honest tenant’s inputs and/or the state of his VMs. For example, as described, isolation also
protects the VMs’ resource vectors (i.e., the amount of resources they need) which may not always
be a desirable property. This leads us to distinguish between two notions of isolation: weak isolation
which leaks the resource vectors and strong isolation which protects the resource vectors.

While isolation (either strong or weak) is clearly a desirable property from a cloud, in practice,
one may be satisfied with something weaker. In particular, in some settings a guarantee that the
adversary cannot co-locate with more than a certain fraction of one’s deployment may be enough.
We formalize this property as the notion of co-location-resistance (CLR). Informally, we say that
a placement algorithm IT is (n, ¢, t,d,e)-CLR if an adversary that submits at most ¢ attack VMs
can co-locate with at least a 0 fraction of a t-size deployment with probability at most ¢ (here n
is the number of servers in the cloud). CL-resistance is interesting for several reasons. First, as
discussed above, it can be a useful security guarantee in and of itself. In addition, we also show in
Section 4.2 that the (n,q,t,1/t,e)-CL-resistance of a placement algorithm II gives an upper bound
on the perfect isolation provided by a cloud Cld = (Ctrlrr, Srvy, ..., Srv,,), where perfect refers to the
adversary being computationally unbounded. Throughout, we refer to CL-resistance with § = 1/t
as single CL-resistance. It turns out that designing placement algorithms with very strong single
CL-resistance (i.e., with very small ¢) is very difficult to achieve.

This motivates us to consider a weaker notion of isolation: namely, computational isolation where
the adversary is assumed to be computationally-bounded and where tenants can use cryptography
to secure their deployments. In this setting, we introduce the notion of a shared deployment which
guarantees that no information about the tenant’s input can be recovered unless all VMs in the
deployment are compromised. We show how to construct such deployments for arbitrary functions
from multi-worker delegation protocols which were introduced in [6]. We then show in Section 6
that the computational isolation of a shared deployment is upper-bounded by the (n,q,t,1,¢)-CLR
of a placement algorithm II. Throughout, we will refer to CL-resistance with § = 1 as complete
CL-resistance.

Our algorithm. Having established a model, notions of efficiency and security definitions, we
turn to the problem of designing CL-resistant placement algorithms in Section 5. Our algorithm
is parameterized with a value A which influences both its CL-resistance and its competitive ratio.
Intuitively, the higher X is the better its CL-resistance becomes and the worse its competitive ratio
is. We analyze our algorithm with respect to both complete CL-resistance (i.e., when ¢ = 1) and
fractional CL-resistance (i.e., when § < 1). Combining this with our results connecting CL-resistance
and isolation, we then show that our algorithm performs poorly with respect to perfect isolation but
performs well with respect to computational isolation when used with a shared deployment scheme.

2 Preliminaries and Model

Notation. We write x < x to represent an element x being sampled from a distribution y, and

z & X to represent an element x being sampled uniformly from a set X. The output = of an
algorithm A is denoted by x < A. We refer to the ith element of a vector v as either v; or v[i].
Throughout k refers to the security parameter. A function v : N — N is negligible in k if for
every positive polynomial p(-) and sufficiently large k, v(k) < 1/p(k). poly(k) and negl(k) denote



unspecified polynomial and negligible functions in k, respectively. We write f(k) = poly(k) to
mean that there exists a polynomial p(-) such that for all sufficiently large k, f(k) < p(k), and
f(k) = negl(k) to mean that there exists a negligible function v(-) such that for all sufficiently large
k, f(k) < v(k). Throughout, PPT denotes probabilistic polynomial time.

Clouds. We provide an overview of our model of cloud computing. At a high-level, we view a cloud
as a set of n physical servers and a controller. The servers are virtualized which means that each
server can execute a number of VMs subject to the amount of computational resources it has. The
assignment of VMs to physical servers is handled by the controller which constantly monitors each
server’s resources. To use a cloud, a tenant creates and sends a set of VMs to the controller. This
set of VMs—referred to as the tenant’s deployment—is a distributed instantiation of the tenant’s
computation. So for example, if the tenant wishes to deploy a web service in the cloud, then its
deployment might consist of a set of VMs that each run a web server. If, on the other hand, the
tenant just wishes to outsource the evaluation of a function f then its deployment would consist of
a single VM that executes f on some input z.

A cloud Cld = (Ctrlryg, Srvy, ..., Srv,,) consists of a controller and a set of n virtualized physical
servers Srvy,...,Srv,. Each virtualized server Srv; has a d-dimensional capacity vector b; =
(c1,...,¢q), where each dimension corresponds to a resource provided by the server (e.g., 1/O, CPU,
disk) and where the value ¢; € N is the maximum amount of a resource provided by the server.
Throughout we consider, without loss of generality, the case where all capacities are equal; that is,
¢, =cforall 1l <i<d.

Virtual machines and deployments. A cloud executes VMs that are created and sent to the
controller. Given a VM, the controller executes a placement algorithm II to decide on which physical
server to execute the VM. A virtual machine vin = (F, z,r) consists of a functionality F, an initial
input x and a resource vector r. The resource vector r is a d-dimensional vector over [0, 1], where 7;
is the amount of the ith resource needed by the VM.

To generate VMs for a cloud, a tenant runs a deployment scheme A that takes as input a
functionality F, an initial input z, a deployment size ¢ and a set of resource vector (ri,...,r;). It
returns a t-size deployment vim = (vmy,...,vmy). For ease of exposition, we describe all of our
results for non-reactive functionalities; that is, functionalities F that consist of a single function
and no state.

3 Isolation

We now describe our main notion of security. In our setting, we are concerned with an adversarial
tenant that submits malicious VMs to the cloud. The purpose of these VMs is to execute cross-VM
attacks on honest VMs that are co-located on its server. Throughout this work, we assume that if a
malicious VM is placed on a server Srv;, then it can corrupt the entire server and learn the state
and input of all the VMs on that server. This captures a worst-case scenario where malicious VMs
can execute cross-VM attacks with certainty. Clearly, this can be relaxed and one could consider
cases where malicious VMs succeed in their cross-VM attacks with some probability.

Intuitively, we say that a deployment scheme A is isolated in a cloud Cld = (Ctrlrry, Srvy, ..., Srvy)
if, with high enough probability, a malicious tenant cannot recover any partial information about the
tenants’ inputs (which includes non-initial inputs in the case of a reactive deployment). We formalize
this in the ideal/real-world paradigm typically used to define the security of secure multi-party
computation protocols [3]. All parties below are assumed to be interactive Turing Machines.

Real-world execution. The real-world execution is a probabilistic experiment in which an



honest tenant uses a cloud Cld = (Ctrlryg, Srvy, ..., Srv,) in the presence of an adversary A and an
environment Z to compute a function f. At the beginning of the experiment, the tenant receives an
input x, a deployment size ¢ and a set of resource vectors R = (ry,...,r;) from the environment
Z. Tt also receives the auxiliary string z. The tenant runs A(f, z,¢,R) to generate a deployment
vm = (vmy,...,vmy) which it submits to the controller. The adversary is given the size ¢ of
the deployment and the auxiliary string z and sends a set of attack VMs (amy,...,am,) and an
execution schedule to the controller. The execution schedule is the order in which all VMs should be
processed. The controller processes the honest and attack VMs according to A’s execution schedule
and assigns each one to a physical server according to II. Once the VMs start running on their
assigned servers, both the tenant and adversary are allowed to interact with their VMs.

Whenever an attack VM is placed on a physical server the adversary is allowed to corrupt all
the VMs on that server. If A is semi-honest, then he sees the state and initial input to the VMs but
cannot interfere with its processing. If, on the other hand, A is malicious, then it can also interfere
with the VMs arbitrarily (we only consider semi-honest adversaries in this work but define security
in the malicious model for completeness). At the end of the execution the tenant sends its output
to the environment Z while A sends an arbitrary function of its view. Z then outputs a bit. We
denote the random variable that outputs this bit by Reala 11z 4(n,q,1t).

Ideal-world execution. The ideal-world execution is a probabilistic experiment in which the
honest tenant, the cloud Cld = (Ctrlrry, Srvy, ..., Srv,) and the ideal adversary S, all have access to
a trusted party. At the beginning of the execution, the tenant receives an input z, a deployment
size t and a set of resource vectors R = (ry,...,r;) from the environment Z. It also receives the
auxiliary string z. The tenant runs A(f,z,t,R) to generate a deployment vin = (vmy, ..., vmy;)
which it submits to the trusted party. The attacker is given the size ¢ of the honest deployment
together with the resource vectors R and the auxiliary string z. The adversary sends a set of attack
VMs (amy,...,am,) to the trusted party which executes all the VMs. During these executions,
the honest tenant and adversary are allowed to interact with their VMs.

At the end of the experiment, the tenant sends its output to the environment Z while S sends
an arbitrary function of its view. The environment Z outputs a bit. We denote the random variable
that outputs this bit by Ideala 11,z s(n, ¢, t).

Definition 3.1 (Isolation). A deployment scheme A is (n,q,t,e)-isolated in a cloud Cld =
(Ctrlrrr, Srvy, ..., Srvy) if for all functions f, for all PPT adversaries A, there exists an ideal
PPT adversary S such that for all PPT environments Z and all auziliary strings z € {0, 1}*, the
following expression is at most €

|Pr[Reala 1.z 4(n,¢,t) = 1] — Pr[Ideala 11,z s(n, ¢, t) = 1]],

where € = negl(k). If A, S and Z are unbounded, then we say that A is perfectly (n,q,t,¢e)-isolated
in Cld. When n, q and t are clear from the context, we sometimes say that A is e-isolated in Cld.

Intuitively, the definition guarantees that anything an adversary can achieve in the real-world
execution can be achieved in the ideal-world execution, where the VMs are isolated by definition
since they are executed by a trusted party. Note, however, that in the ideal-world execution the
adversary is given the resource vectors of the honest deployment which implies that the definition
allows the adversary to learn this information in real-world executions.

Strong isolation. A stronger definition, which we refer to as strong isolation, results from not
giving the adversary the resource vectors in the ideal-world execution. This distinction between
weak and strong isolation highlights that it could be possible to protect the honest tenant’s inputs



without necessarily hiding the resource vectors of its deployment (of course this is provided the
resource vectors are independent of the input). The resource vectors, however, could also be sensitive
in some scenarios so we believe the notion of strong isolation is interesting as well.

Relationship to co-location-resistance. A simple but crucial observation about isolation and
cross-VM attacks is that the latter require the completion of a co-location attack, i.e., the adversary
first needs to co-locate its malicious VMs with the target’s deployment. Since in infrastructure
clouds VM placement is not under adversarial control, the adversary must create and launch its
attack VMs in such a way as to influence the controller into co-locating them with the target’s
deployment. Concrete examples of such attacks were first described by Ristenpart et al. against
Amazon EC2 in [15]. In that work, the authors describe two types of co-location attacks. The first
are what we refer to as complete attacks, where the adversary’s goal is to co-locate at least one
attack VM with each VM from a target set (not necessarily all from the same deployment). The
second are what we refer to as fractional attacks where the adversary just wants to co-locate with
some fraction of a target set (again, not necessarily from the same deployment).

In Section 4, we formalize the notion of co-location resistance and in Sections 4 and 6, respetively,
we show that the various forms of co-location-resistance imply either perfect or computational
isolation (the latter when used in conjunction with a shared deployment). Establishing relationships
between these notions serves several purposes. The first—as is usually the case in cryptography—is
that it increases our confidence in the definitions. The second is that it allows us to use the notion
of co-location-resistance which is easier to work with when analyzing secure placement algorithms
(this is similar to the situation of game-based vs. simulation-based definitions in Cryptography).
The third is that both notions—and their variants—may each prove useful in practice depending on
the setting.

4 Secure Placement Algorithms

Here, we are concerned with the design and analysis of “secure” placement algorithms; that is,
algorithms that place VMs in such a way that it is “hard” for the adversary to co-locate attack VMs
with target VMs. To formally analyze the security of such algorithms we introduce and formalize the
notion of co-location resistance which captures the intuitive notion of hardness above. In Theorem
4.3 in Section 4.2 below, we show that a certain variant of CL-resistance implies weak isolation.

Though we provide a cryptographic treatment of CL-resistance, it is important to note that our
notion of security is fundamentally different than standard cryptographic notions. The security
of standard cryptographic algorithms is typically quantified by the time-to-success ratio, i.e., the
worst-case (over all adversaries within some class) ratio of the time invested by the adversary and
its probability of breaking the algorithm. This is typically reflected, in the asymptotic setting, by
the requirement that all polynomially-bounded adversaries be able to break the algorithm with
probability at most negl(k) = k=<() | where k is the security parameter. In our setting, we are
interested instead in an adversary’s success probability as a function of the number of attack VMs
it uses.

4.1 Competitive Ratio

In infrastructure clouds such as Amazon EC2 or Microsoft Azure, VMs are assigned to servers
according to carefully designed placement algorithms. To minimize the amount of resources used,
these algorithms typically try to pack as many VMs as possible on each server. Viewing each
VM as a d-dimensional vector over [0, 1] (with dimensions corresponding to some computational



resource) and each server as a d-dimensional vector over [0, ¢| (with ¢ being the maximum amount
of a resource made available by the server), the problem of VM assignment becomes an instance of
the online vector bin packing problem. We refer the reader to [13, 8] for detailed discussions on the
relationship between VM placement and the bin packing problem.

Bin packing. In the vector bin packing problem, we are given a sequence of d-dimensional vectors
(V1,...,vy) over [0,1] and a set of n bins (by,...,b,,) each of capacity ¢ (i.e., each b; € [0, ¢]) and
must assign the vectors to bins subject to never exceeding the bin capacity in any dimension. In the
online version, we receive the sequence of vectors as a stream and must assign each v; before seeing
v;11. Bin packing is a classic and well-studied problem in computer science. The offline vector bin
packing problem is NP-hard. While there exists an asymptotic polynomial-time approximation
scheme (PTAS) 2 for the one-dimensional case, it is not practical as the constants are too high. For
dimension d > 2, the problem is APX-hard [24] which means that no PTAS exists unless P = NP.

Competitive ratio. The quality of an online optimization algorithm II is evaluated using the
notion of competitive ratio [18] which is the worst-case (over input sequences) ratio between the
online performance of II and the offline performance of the optimal algorithm. The performance of
the algorithm is quantified using a cost function which is chosen to reflect the real-world cost of the
algorithm. In the case of bin packing the cost function is typically chosen to be the total number of
bins used. The online bin packing problem can be solved using the generalized first-fit algorithm
[5] which is O(d)-competitive. In light of a recent lower bound of Q(d'~¢) by Azar et al. [2] this is
effectively optimal.

A new cost function. Like any online algorithm, the quality of CL-resistant placement algorithms
should be evaluated using the competitive ratio. There are subtleties, however, in exactly how this
should be done. In particular, we note that the standard cost function used for bin packing is not
appropriate in our setting. The reason is that in the context of VM assignments the true cost of
a packing algorithm is the total amount of resources expended by the servers/bins. While total
resource consumption is correlated with the number of bins used in the offline setting, this is not
true in the online case.

To see why, consider the following two simple algorithms. The first algorithm, Iy, turns on one
server per hour for a duration of n hours while the second algorithm, Ils, turns on n servers in
the first hour and keeps all servers on for n hours. Note that both algorithms use n servers but
obviously the second algorithm is less efficient with respect to total resource consumption and, in
particular, to energy.

This example illustrates the fact that we need a new cost function in order to evaluate the
quality of a placement algorithm in the online setting. We describe such a function precisely in
Definition 4.1 below. Intuitively, our new cost function, which we refer to as the server-time, works
as follows. We partition the execution of a placement algorithm IT into T time steps. At Step 1,
all the servers are assumed to be off. We also assume that once a VM is placed on a server, it
runs perpetually. At each step, II either receives a VM or not. If so, it assigns the VM to a server,
choosing to place it either on a server that was already on or on a server that was previously off
(after turning it on, of course). The cost of II is defined as the sum over time of the number of
servers that are on at each time step. Returning to our example above, note that under this new
function, II; has cost n - (n + 1)/2 whereas Il has cost n?.

Definition 4.1 (Competitive ratio). Consider the following probabilistic experiment between an
adversary A and a challenger that places m VMs on n servers using an algorithm I1:

2A PTAS is an algorithm that takes as input an instance of the problem and a value € > 0 and is guaranteed to
return a solution that is within a (1 + ) factor of optimal.



e Costiya(n,m, T): Let ONg = ) and, for each time step 1 < i < T, set ON; = ON;_; and
proceed as follows. If the adversary A outputs a virtual machine v, then the challenger
places vin; according to I1. If II placed vim; on a server that was previously off then add that
server to ON;. The experiment outputs Sy |ONy|.

We say that 11 is (n, m, T, d)-competitive if for all (unbounded) adversaries A,

Costra(n,m,T) <0 - Hl_lll*n {CostH*,A(n,m, T)}

4.2 Co-Location Resistance

In a co-location attack, the adversary seeks to co-locate attack VMs with some fraction of target
VMs. More precisely, given t target VMs (tmy,...,tm;) the adversary launches ¢ attack VMs
(amy,...,am,) so that a J fraction of the target VMs are co-located with at least one attack VM.
Intuitively, we say that a placement algorithm II is CL-resistant if the probability of this occurring
is bounded by some small value €. We formalize this intuition as a probabilistic experiment between
an adversary A and a cloud Cld = (Ctrlryg, Srvy, ..., Srv,) with a controller that runs the placement
algorithm II.

Definition 4.2 (Co-location-resistance). Consider the following probabilistic experiment between
an adversary A and a cloud Cld = (Ctrlry, Srvy, ..., Srvy):

e CLRi 4(n,q,t,0): the adversary A generates q attack machines (amy,...,amy), t target
machines (tmy, ..., tm;) and an execution schedule. The controller processes all the VMs
according to the adversary’s execution schedule and places them according to I1. The experiment
outputs 1 if at least § - t target VMs are co-located with at least one of the q attack VMs and O
otherwise.

We say that 11 is (n, q,t,6,¢)-CL-resistant if for all adversaries A,
Pr[CLRi 4(n,q,t,6) =1] <e.
When n, q and t are clear from the context, we sometimes say that I is (6,¢)-CLR.

A few words about our definition are in order. First, note that the adversary A can choose both
the attack VMs and the target VMs. This captures the worst-case scenario where a client chooses
its VMs according to the instructions of the adversary. The implication is that if one can show that
an algorithm II is secure according to this definition, an adversary will have at most an € probability
of co-location even in the worst-case. Another note about the definition is that the adversary can
schedule attack VMs before target VMs. This captures the worst-case scenario with respect to the
distribution of VMs on the servers right before the target VMs are placed.

Alternative definitions. Our notion of CL-resistance is very general and captures several scenarios
of interest depending on the parameter ranges. For instance, setting 6 = 1 captures what we refer to
as complete CL-resistance, where the adversary wishes to co-locate attack VMs with all the target
VMs. Similarly, by setting 6 = 1/t, we get the notion of single CL-resistance where the adversary
is only interested in co-locating with at least 1 of the ¢ target VMs. We refer to the case where
0 < 0 < 1, as fractional CL-resistance.

The range of t is also important as it determines the types of deployments that can be handled.
For example, for single VM deployments we are only interested in the setting t = 1 and § = 1.



In other cases, where the honest tenant deploys several VMs (e.g., for cluster computing or for a
load-balanced web server) we are interested in ¢ > 1 and § > 1/¢.

Relationship to isolation. We now show that single CL-resistance implies weak isolation. The
intuition is straightforward: if IT is (1/¢,¢)-CLR then with probability at least 1 — ¢ none of the
attack VMs will be co-located with the honest deployment and therefore the adversary will not learn
any information about the honest tenant’s inputs. We point out, however, that this does not imply
strong isolation. In fact, for our proof to go through we explicitly need the simulator to receive the
resource vectors of the honest deployment. This suggests that even if the placement algorithm is
CL-resistant, the adversary could still learn information about the deployment’s resource vectors.
Intuitively, this makes sense since CL-resistance only guarantees that, with some probability, the
attack VMs will not be co-located with some fraction of the deployment which a-priori does not
imply any privacy for the resource vectors. To see why, consider the case of complete CL-resistance,
from which we can get a lower bound on the probability that none of the attack VMs are co-located
with the deployment. Clearly, this is the best possible case from the perspective of protecting the
honest tenant’s inputs. In such a scenario, the only co-locations that occur are between attack VMs
so the adversary only learns his own inputs from a cross-VM attack. Note, however, that even from
this seemingly innocuous information he can infer something about the current placement of VMs
in the cloud. ? For example, it will learn that a particular server is executing a specific set of his
attack VMs. The placement of VMs on servers, however, is a function of the resources required by
both the honest and malicious VMs so learning anything about the current placement of VMs in the
cloud can reveal information about the honest VMs resource vectors.

Theorem 4.3. Let A be a deployment scheme and I1 be an (n,q,t,1/t,e)-CL-resistant placement
algorithm. Then A is (n,q,t,e)-isolated in Cld = (Ctrlrr, Srvy, ..., Srvy,).

Proof. Let A be an arbitrary real-world adversary and consider the ideal adversary S that works
as follows. Given the resource vectors of the honest deployment, S simulates A by feeding it the
auxiliary string z. When A returns a set of ¢ attack VMs and an execution schedule, S sends the
attack VMs to the trusted party. S then creates a dummy target deployment (tmy,...,tm;) that
consists of VMs with the same resource vectors as the honest deployment but that execute arbitrary
functions over arbitrary inputs. It then simulates Ctrlryy, feeding it the dummy deployment and
the attack VMs according to A’s execution schedule. Whenever an attack VM is co-located with
another attack VM, S sends their contents to A. Throughout, S forwards any messages between
attack VMs and A. If at any point during this simulation, Ctrlr; co-locates an attack VM with a
dummy VM, S aborts. At the end of the simulation, S outputs whatever A outputs.

Let &€ be the event that no target VMs are co-located with attack VMs. Conditioned on &, it
follows by construction that A’s simulated view is distributed exactly as in a Reala 11z 4(n,q,t)
execution and therefore so is its output. Notice also that by construction Ctrlrry’s view is distributed
exactly as in a CLR 1 4(n, ¢,t,1/t) experiment so it follows by the CL-resistance of II that the event
& occurs with probability at least 1 — . Putting the two together, it follows that Cld is e-isolated.

5 Our Placement Algorithm

We now describe and analyze our placement algorithm. The algorithm is very simple and is described
in detail in Fig. 1. It is a randomized stateful vector bin packing algorithm that is parameterized

3This is assuming the adversary can distinguish between his own attack VMs, which can be done trivially
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Let Srv; through Srv,, be n servers such that Srv; € [0, c]d, where d > 1 is the dimension and ¢ > 2
is the capacity of the servers. Let A > 2 be a parameter of the algorithm.

Algorithm II), (vm) :

1. Choose a subset of A open servers OPN C {Srvl, e ,Srvn};
2. Set EMP = {Srvl, ... 7Srvn}/OPN.
3. Repeat

(a) choose a server Srv from OPN uniformly at random and let £ € [0, c|? be its current load;
(b) assign vm to Srv;
(c) if £[i] + vmli] > ¢ — 1 for at least one ¢ € [d],

i. remove Srv from OPN and add it to Cr;

ii. remove an empty server from EMP and add it to OPN

Figure 1: A CL-resistant placement algorithm

by a value A > 2. It takes as input a vector vim € [0, 1]% and outputs a server identifier i € [n].

Here, we assume the server capacity c is at least 2. This is in order to remove a dependence on
c in the competitive ratio. Since VM resource vectors are in [0, 1]%, this is equivalent to assuming
that no VM will use up more than 1/2 of a resource available on a server.

At a high level, the algorithm works as follows. It labels servers as either off or on and open or
closed. Off and on refer to whether the server is powered on (i.e., consuming energy) and open and
closed refer to whether the server can receive more VMs or not. Note that a closed server can be on.
When referring to closed servers, we do not count servers that are off. The algorithm will always
keep exactly A servers open and assign an incoming VM to one of these servers Srv uniformly at
random. If any of Srv’s resources increases to being larger than ¢ — 1 due to the new VM (where
¢ is the capacity of Srv) then Srv is closed and a new server is opened. Note that VM resource
vectors are in [0, 1]¢ so the algorithm never assigns VMs to a server that does not have the required
capacity.

In the following Sections we analyze our algorithm’s competitive ratio and its security against
complete and fractional CL attacks.

5.1 Competitive Ratio

We now prove that our algorithm is a good vector bin packing algorithm in the sense that its
competitive ratio is a factor of A + 2d off from optimal, where d is the number of resources provided
by the servers and A is the number of servers the algorithm keeps open at all times.

Theorem 5.1. The algorithm 11\ from Fig. 1 is (n,T,d)-competitive, where § = \ + 2d.

Proof. At each time step 4, the total resources needed by (vmy,...,vm;) is
i d
R, = Z vaj[l],
j=11=1

so the number of servers needed at step i by any algorithm is at least R;/(d - ¢). In the following we
let ON} denote the set of servers opened by an optimal algorithm for the instance; hence

[ONj| > Ri/(d - ). (1)

11



Recall that we wish to bound .
i—1 |ON;|

T T Ot

2i=1|ONj|

Let OpN; and CL; be the open and closed servers at time i by our algorithm, and £(OPN;) and
£(CL;) denote the load (i.e., total resources) on the open and closed servers at time 7, respectively.

Note that by construction each of the closed servers has at least one of its dimensions filled up to
¢ — 1 and therefore £(CL;) > |CL;| - (¢ — 1). It follows that

(2)

E(OPNZ‘) = Rz — E(CLZ) < Ri — |CLZ’ . (C — 1),

from which we have that

R; > £(OPN;) + |CL;| - (¢ — 1) > |CLy| - (¢ — 1). (3)
Note next that

T T T

Z |ON;| = Z |OPN; + CL;| = T - A + Z |CL;|,

i=1 i=1 i=1

where the second equality is because |OPN;| = A for all 7 since ITy always keeps A servers open by
construction. Hence by Eq. (2) we have

5= T-A+3 L, |CL < M
ioNy| T i_1 |ON7|

(4)
where the second inequality follows from the fact that Y, |ON7| > T. We now use Egs. (1) and (3)

to upper bound the second term in Eq. (4), resulting in

Z‘T:1 |CL;] iT:I |CL;| d-c z‘T:1 |CL;]
* < T < T =
Z;le IONF| = Y1 Ri/(d-c) — c—1 >, |CL

where the final inequality follows since ¢ > 2 and hence ¢/(c — 1) < 2.

2,

5.2 Complete Co-Location Resistance

Here, we analyze the complete CL-resistance of our algorithm (i.e., for § = 1). At a high-level, our
analysis is based on a balls and bins process and proceeds in three steps. First, we show in Lemma
5.2 a bound on the probability that each bin among a given subset of bins contains at least one ball.
As far as we know—and perhaps surprisingly—no concrete analysis of this particular balls and bins
process has appeared prior to this work.

We note that while the process can be viewed as a coupon collector problem where the bins are
the coupons, we cannot apply the Erdos-Renyi Theorem [4] since it is asymptotic and only holds for
infinitely many bins. We therefore believe that Lemma 5.2 is of independent interest. Intuitively,
Lemma 5.2 will help us bound the probability that—conditioned on the target VMs being placed on
some number of servers—our algorithm will co-locate each target VM with at least one attack VM.

In the second phase of our analysis we prove in Lemma 5.3 a lower bound on the probability that
at least ¢/2 bins are occupied when throwing ¢ balls in b bins uniformly at random. Intuitively, this
Lemma will allow us to analyze the number of servers on which our algorithm places the target VMs.
Finally, in Theorem 5.4 we combine both Lemmas to analyze our algorithm’s co-location-resistance.

12



Lemma 5.2. Consider a process that throws balls uniformly at random into b bins and let C' be a
subset of these bins. If the process throws q < b-log |C| balls, then the probability that each bin in C
has at least one ball is at most

1/ exp (v- ((1 - b-loi;ﬂ) -10g|C>2>7

if |C| > 2, where 7y is some constant strictly less than 1. If |C| =1, then the probability is at most
1\ /b
- () .
4

Proof. This process can be viewed as a variant of the coupon collector problem where the bins in C'
are the coupons. Let epoch 7 denote the set of samples between the time where we found the ith
and (i + 1)th new coupons. So epoch 0, for example, is the set of samples made until a ball is first
placed in a bin in C. Let X; be the length of epoch i (i.e., the number of samples needed to collect
the (¢ + 1)th coupon once we have the ith) and let X = Zf;é X; be the total number of samples
needed to find all |C| coupons.

Clearly, if |C| =1,
1\ ¢ 1\4/b
<gl=1-(1-=) <1-(=
Pr{X <gq] (1 b) <1 (4> )

so we focus on the case |C| > 2. Since the X; are non-negative independent random variables, it

follows by [12] that
2

Pr[E[X] = X > a] < 1/exp <2§:CLIE[X2])

Setting a = «a - E[X] we have,

()

o2 2
Pr[XS(l—a)-E[X]]Sl/eXp< EX] )

2. B[X7)

Note that X; satisfies a geometric distribution with parameter p; = (|C| —4)/b since, in epoch i, the
probability of finding a new coupon is (|C| —14)/b. It follows that E[X;] = 1/p; = b/(|C| — i) and
therefore that

|C|-1 cl-r
E(X]= X EXi2b- 3 mr—; 2b-lglCl (6)
1=0 =0

where the first equality is by the linearity of expectation. Since X; is geometric, we also have
Var[X;] = (1 — p;)/p? and

—pi 2b*
< .
b; (IC[ =)

E[X}] = E*[X;] + Var[X,] = 2

From the above, it follows that
|C|—-1 2b2

; E[XE]SZW§5~IJ2, (7)

i
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where (3 is some constant which is about 12/72. Combining this with (5) and (6), we obtain

2 2
PrX <(1-a) BIX]] < 1ew (T P00)
2 721..2
< 1/exp(a sﬁlf)fz |C‘)
2 7.2
_ 1/exp(al§/§lcl)

Setting ¢ = (1 — «) - E[X], i.e., a = 1 — ¢/E[X], we have

Pr(X <q]=1/exp <v- ((1— bloqg|C]) -log|C|)2>,

where v = 1/(2- 3) =~ 72/24 as long as |C| > 2.
|

Lemma 5.2 upper-bounds the probability that each bin in C' holds at least one of ¢ balls. As
will become clear in the proof of Theorem 5.4 this Lemma allows us to upper bound the probability
that our algorithm will co-locate at least one attack VM with each one of ¢ target VMs. The bound,
however, depends on the size of the subset C which, intuitively, will correspond to the number
of servers on which the t target VMs are located. In the following Lemma we upper bound the
probability that less than ¢/2 bins will be occupied when throwing ¢ balls, or in other words, the
probability that our algorithm places the ¢ target VMs on less than ¢/2 servers.

Lemma 5.3. Consider a process that throws t balls into b bins uniformly at random. Ift < b/e,
then the probability that there are at most t/2 occupied bins is at most 2-t/2,

Proof. The probability that at most m bins are occupied is at most
¢ t t—
2 ) =G G = ()
m b/ — \m b b
Setting m = t/2, we get m/b < 1/2e and the above expression is at most
t/2
o (LY 1
2e 2t/2°
|

Our main Theorem. We now turn to our CL-resistance analysis and Theorem 5.4. We discuss
our Theorem and its implications below.

Theorem 5.4. Ift < Ae and g < X -log(t/2) then the algorithm I, described in Fig. 1, is
(n,q,t,1,e)-CL-resistant for

e= 9272 1/exp <7, (<1 _ )\-1();](75/2)) -10g(t/2)>2>7

for some constant v < 1.
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Proof. Let A be an arbitrary adversary and consider a CLRyy, 4(n, ¢,t) experiment. In the following
we omit the subscripts II) and A and the parameters (n, q1, g2, t) for visual clarity. Let S be the
random variable denoting the number of servers on which the target VMs are located. Recall that
II, assigns attack VMs uniformly at random amongst a set of A open servers. The VM assignments
can therefore be viewed as a balls and bins process. We then have,

Pr[CLR=1]=Pr[CLR=1| 5 < t/2]-Pr[S§ < t/2]
+Pr[CLR=1|8>1/2]-Pr[S>1t/2]
<272 L Pr[CLR=1|5 >1/2],

where the inequality follows from upper bounding the first and fourth terms in the first equality by
1 and upper bounding the second term using Lemma 5.3.

The probability that CLR = 1 conditioned on S > ¢/2, can be bounded using Lemma 5.2 by
setting b = X\ and |C| =i for t/2 < i < t. Note, however, that this probability is maximized when
S =1/2 so we have,

Pr[CLR =1] <224 Pr[CLR =1 5 = /2]

<272 41/ exp (fy- ((1 - )\102(75/2)) -log(t/2)>2>.
|

Remarks. Note that the bound on CL-resistance we establish holds for a certain range of parameters.
In particular, as long as the number of target VMs ¢ is at most A/e and the number of attack VMs
q is less than A - log(¢/2). In this regime, our algorithm achieves a good complete CL-resistance for
large t.

In large public infrastructure clouds, the number of servers n can be very large. For example,
Amazon EC2 is rumored to have anywhere from 150K [19] to 450K [10] servers. Taking the smallest
estimates of n = 150K and assuming that a cloud provider is willing to have at least 1/3 of its
servers on at any time, we could set A = 50K in our algorithm. Our analysis would then hold for
deployments of size at most 18,394 and adversaries with a budget of at most 456, 331 attack VMs,
both of which are very large. The tradeoff in efficiency is that the placement would be 50K + 2d off
of the optimal placement in terms of server-time.

On the other end of the spectrum, assuming the cloud provider is willing to have less than 1%
of its servers on at any time (say 0.5%) we could set A = 1K in our algorithm. Our analysis would
then hold for deployments of size at most 3678 and adversaries with a budget of at most 3912 attack
VMs. Here, the tradeoff in efficiency would be 1K + 2d off of the optimal placement in terms of
server-time. In this regime, where A = 1K, Theorem 5.4 bounds the complete CL-resistance of the
algorithm by 0.009 for deployments of size ¢ = 100 against an adversary with 1K attack VMs. For
even smaller A, say A = 100, the analysis would hold for deployments of size up to about 18 and
adversaries with budgets of up to 290 attack VMs with efficiency that is 100 + 2d off from optimal.

Another important observation about our bound is that it is not tight. This is due to our
analysis overestimating the probability of co-location by ignoring the fact that target VMs on closed
servers cannot be co-located with new attack VMs. This indicates that, in practice, our algorithm
will likely perform better than what our analysis suggests.

15



5.3 Fractional Co-Location Resistance

In this Section we analyze the fractional CL-resistance of our algorithm (i.e., for 6 < 1). The overall
structure of our analysis is similar to the targeted case: we first show in Lemma 5.5 a bound on the
probability that a § fraction of a given set of bins is occupied when throwing ¢ balls. In Theorem
5.6 below, we then combine Lemma 5.5 and Lemma 5.3 to prove our main bound.

Lemma 5.5. Consider a process that throws balls uniformly at random into b bins and let C' be a
subset of these bins. If the process throws q balls, then the probability that at least § - |C| of the bins
in C' have at least one ball is at most
6-|C
1/exp (6")

1/exp <6é0| : <5qb - 1)2> )

Proof. Let X; be the random variable that outputs 1 if the ¢th bin from C has at least one ball.
The probability that X; = 0 is at least (1 — 1/b)9 so

if ¢ <0-b/2 and at most

if0-b/2<q<d-b.

PriX;=1]<1- (1—Z>q.

Now, if X = °I_; X; is the total number of bins that have at least one ball, we have
€]

BX) = 3B < 0] (1-(1-3) ) sierap ®)

since 1 — (1 —1/b)? < q/b. Because X through X, are negatively associated, we have

a?- E[X]>7

Pr[X > (1+0a) - E[X]] s1/exp( o

for > 0 by a Chernoff bound. Setting (1 + «) - E[X] = - |C|, we have

a?-5-|C|
. < =
Pr[X > 6 |C|]_1/exp((2+a)(1+a)>, )
with 5-1C] 5-1C|-b 5ob
S el R i I 10
E[X] ~ q-[C| q (10)

where the first inequality follows from Eq. 8. We consider only ¢ < § - b and break our analysis into
two cases: ¢ < d-b/2and 6-b/2<q<d-b. If ¢ <0-b/2, we have a > 1 and therefore

OéQ

2+a) (1+a)

Combining this with Eq. 9, we have

Pr[X >0-|C]] Sl/exp(é.éq)
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We now consider the case 0 - b/2 < g < § - b which, by Eq. 10, implies that 0 < o < 1. Since o < 1,

we have
a? 2 _(6-b/q—1)?

@
> — > )
2+a) (14 a«) 6 — 6
where the second inequality follows from Eq. 10. Again, combining this with Eq. 9 we obtain

Pr[X >6-|C|] < 1/exp(6'6|c|- (‘5('1[7—1)2)

We now turn to analyzing the fractional CL-resistance of our algorithm. We make use of Lemmas
5.3 and 5.5 in our Theorem.

Theorem 5.6. The algorithm 11y, described in Fig. 1, is (n,q,t,d,e)-CL-resistant for

e=2""241/exp (61t>

2
€:2t/2+1/exp(61t- (“—1) ),
q

Proof. The proof is similar to that of Theorem 5.4. We consider an adversary A in the experiment
CLR, 4(n,q,t,0) and in the following we omit the subscripts and parameters for visual clarity.
Let S be the random variable denoting the number of servers on which the target VMs are located.
Since II) assigns attack VMs uniformly at random amongst a set of A open servers, we obtain the
following from Lemma 5.3:

when ¢ < 6-\/2 and

when 6 - A\/2 < qg<d- A\

Pr[CLR =1] =Pr[CLR =1| S < t/2] - Pr[S < /2]
+Pr[CLR=1|8>t/2]-Pr[S >1t/2]
<272 L Pr[CLR =1]| 8 >t/2].
We use Lemma 5.5 to bound the probability that CLR%["; 4 = 1 conditioned on S > t/2 by
setting b = X and |C| =i for /2 > i > t. We consider two cases, the first being when ¢ < 6-A/2 and

the second when § - A\/2 < g < § - A. Note that in both cases, the bound of Lemma 5.5 is decreasing
in |C| = S therefore, if S > ¢/2, it is maximized at S = t/2. This gives us,

Pr[CLR =1] <272 4+ 1/exp (51t>

when ¢ < §- /2 and

2
Pr[CLR = 1] <272+ 1/exp (‘512’5 (“ _1> )
q

when §-A\/2 < g <d- A
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5.4 Perfect Isolation

While we are mainly interested in computational isolation, for completeness we provide a Corollary
that quantifies the perfect isolation provided by our placement algorithm. The Corollary results
from combining Theorems 4.3 and 5.6 and essentially shows that our algorithm performs poorly
with respect to perfect isolation.

Corollary 5.7. Let A be an arbitrary deployment scheme and 11 be the algorithm described in Fig.
1. Then A is (n,q,t,e)-isolated in Cld = (Ctrlrpy, Srvy, ..., Srvy,), where

e=2"1211/eM12 x 2712 £ 0.92

when ¢ < \/2t and

1 A 2
— o9—t/2 i (AN > 9—t/2
e=2 —i—l/exp(12 (t-q 1> ) >2 + 0.92,

when \/2t < q¢ < \/t.

6 Shared Deployments and Computational Isolation

As Theorem 4.3 shows, single CL-resistance bounds perfect isolation but, unfortunately, Corollary
5.7 shows that our algorithm has poor single CL-resistance. On the other hand, Theorem 5.4 shows
that our algorithm achieves good complete CL-resistance. Intuitively, what these results show is
that, against our algorithm, an adversary has a good probability of co-locating with at least one out
of ¢ target VMs but a low probability of co-locating with all ¢.

In this Section, we show how to take advantage of complete CL-resistance through the use of
cryptography. At a high-level, our approach is to assume the adversary is computationally-bounded
and to cryptographically “split” a tenant’s computation among a set of VMs in such a way that the
tenant’s secrets can only be recovered if the adversary co-locates with all the VMs in the set.

We then show in Theorem 6.2 that if a computation is executed using a shared deployment, its
computational isolation in a cloud is upper bounded by the complete CL-resistance of the cloud’s
placement algorithm. Combining this with Theorem 5.4, we show in Corollary 6.3 that our algorithm
provides good computational isolation.

6.1 Shared Deployments

A shared deployment scheme ¥ takes as input a security parameter 1%, a functionality f, an input x,
a deployment size ¢t and a set of resource vectors R = (ry,...,r;). It outputs a shared deployment
vm = (vmy,...,vmy). Intuitively, the security guarantee a shared deployment scheme should
provide is that no computationally-bounded adversary can learn any partial information about the
input unless it corrupts at least ¢ out of the ¢ VMs. We formalize this in the following definition.

Definition 6.1 (Secure shared deployment). Consider the following probabilistic experiment between
an adversary A and a cloud Cld = (Ctrlry, Srvy, ..., Srvy):

e Shrdy 4 7(¢,t): the adversary A sends two inputs xo and x1 for the functionality F to
the challenger. The challenger samples a bit b uniformly at random and computes vim
S(1%, F,xy,t). The adversary then chooses which subset C' C [n] of ¢ VMs to corrupt and
given, {vin;},cc, outputs a bit b/. The experiment outputs 1 if b/ = b and 0 otherwise.
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We say that a shared deployment ¥ is (¢, t,€)-secure if for all PPT adversaries A, for all function-
alities F,

Pr [Shrdg,A,]:((Zs,t) =1]<-+e.

N =

Constructing shared non-reactive deployments. Using fully-homomorphic encryption, one
can construct a (1, 1, negl(k))-secure deployment scheme by storing in a single VM the functionality
F and an FHE encryption of x; and having the VM execute the functionality homomorphically.
One can avoid the use of FHE, however, by using a multi-worker delegation (MWD) protocol.
MWD protocols were first considered in [6], where a construction based on secret sharing and secure
function evaluation was proposed. We refer the reader to Appendix B for an overview of MWD
protocols and an overview of the concrete construction from [6]. We sketch here how a MWD
protocol leads directly to a (¢ — 1,¢, negl(k))-secure (non-reactive) deployment scheme.

Let MWD = (Encode, Wrky, ..., Wrk;, Decode) be a MWD protocol. 3 takes as input a security
parameter 1’“, a function f, an input x, a size t and a set of resource vectors (ry,...,r;). It computes
(s1,...,5¢) + Encode(1¥, f, z,t) and returns t VMs (vmy, ..., vmy) such that vim; = (Wrk;, L, s;, ;).

6.2 Computational Isolation

In Theorem 6.2 below, we show that for any placement algorithm II, the computational isolation
of a shared deployment scheme ¥ in a cloud Cld = (Ctrlry, Srvy, ..., Srv,) is negligibly-close to II’s
complete CL-resistance.

Theorem 6.2. If ¥ is a (t — 1,t, negl(k))-secure shared deployment scheme and 11 is (n,q,t,1,¢)-
CLR, then 3 is computationally (¢ + negl(k))-isolated in Cld = (Ctrlry, Srvy, ..., Srvy,).

Proof. Let A be an arbitrary real-world PPT adversary and consider the ideal PPT adversary S
that works as follows. Given the resource vectors R = (ry,...,r;) of the honest deployment, S
simulates A by feeding it the auxiliary string z. When A returns a set of ¢ attack VMs and an
execution schedule, S sends the attack VMs to the trusted party. S then chooses some arbitrary
input = and generates a dummy target deployment (tmy,...,tm;) < S(1% f 2,¢,R). It then
simulates Ctrlryy, feeding it the target deployment and the attack VMs according to A’s execution
schedule. Whenever an attack VM is placed on a (simulated) server, S sends the state and inputs
of all co-located VMs to A. Throughout, S forwards any messages between attack VMs and A. If
at any point during this simulation, Ctrlryy co-locates an attack VM with up to t target VMs, S
aborts. At the end of the simulation, S outputs whatever A outputs.

Note that the simulation of Ctrlry is indistinguishable from its execution in a Realy 1,z 4
experiment and, therefore, so is the placement of VMs. This is because the dummy target deploy-
ment has the same resource vectors as the real deployment. But since the VM placements are
indistinguishable, so is the adversary’s corruption set (i.e., the VMs it is co-located with). Now,
let £ be the event that at most ¢t — 1 VMs of the dummy deployment are co-located with attack
VMs. It follows by the (¢t — 1, ¢, negl(k))-security of ¥ that, conditioned on &, A cannot distinguish
between the real and dummy deployments. So, conditioned on &, both the corruption set and the
deployments are indistinguishable. It follows then that, conditioned on £, A’s view and, therefore,
its output is also indistinguishable.

We also have that the simulated view of Ctrlryy is distributed exactly as in a CLRyy, 4 experiment,
so the probability that £ occurs is exactly 1 — Pr[CLRi 4(n,q,t,1) = 1] which, by the complete
CL-resistance of II, is at least 1 — . In other words, the simulation will fail with probability at
most € + negl(k) from which the theorem follows.

19



6.3 Owur Algorithm’s Computational Isolation

We give a Corollary that quantifies the computational isolation provided by our placement algorithm.
The Corollary results from combining Theorems 5.4 and 6.2 and shows that our algorithm performs
well with respect to computational isolation.

Corollary 6.3. Let ¥ be a (t—1,t, negl(k))-secure shared deployment scheme and I1 be the algorithm
described in Fig. 1. Ift < \/e and q < X\ -log(t/2) then ¥ is computationally (n,q,t,)-isolated in
Cld = (Ctrlryg, Srvy, ..., Srvy,), where

e=2""241/exp (7~ ((1 - )\lo(g](t/2)> . log(t/2)>2> + negl(k),

for some constant v < 1.

7 Future Directions

There are many future directions suggested by this work. The most immediate are to establish
a bound on our algorithm’s CL-resistance that is tighter and/or applicable to a wider range of
parameters. Another problem is to find new algorithms with better CL-resistance and, in particular,
better single CL-resistance which in turn would imply better perfect isolation. Designing algorithms
with better tradeoffs between competitive ratio and CL-resistance would also prove to be very useful
in practice. Another direction of interest is to achieve strong isolation, where the VM resource
vectors are protected.

In addition to finding improved algorithms, an interesting line of results would be to establish
lower bounds. For example, finding a lower bound on single CL-resistance and, therefore, on perfect
isolation would be very interesting (though lower bounds for any ¢ would be welcome). Similarly,
establishing lower bounds on the tradeoffs between competitive ratio and CL-resistance would help
us better understand the inherent “cost of security” in this context.
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A The Ideal/Real-World Paradigm

We give an overview of the ideal/real-world paradigm [3] which is often used to analyze the security
of cryptographic protocols. In this framework one compares the real-world execution of a protocol
to an ideal evaluation of a functionality F. An n-party functionality

F(1,. oyxn) = Y1y Yn)s

takes as input a collection of n strings (z1,...,zy), where x; is the input of the ith party, and
returns output y; to the ith party.

Real-world execution. The real-world execution takes place between an environment Z, n players
Py through P, and an adversary A. At the beginning of the execution, the environment Z and
adversary A receive an auxiliary input z € {0,1}*. In addition, the adversary receives a set I C [n]
of parties to corrupt (we assume here the adversary is static). The environment then chooses inputs
(21,...,xy,) for each player and sends input z; to P;. The parties execute the protocol II on their
inputs.
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At the end of the execution, the environment Z is given the outputs of the honest parties and
an adversarially-chosen function of A’s view and is required to output a bit b. The random variable
that returns the output of Z is denoted Realy z 4 1(k).

Ideal-world execution. The ideal-world execution takes place between an environment Z, n
players P, through P, and an ideal adversary A’, all of whom have access to an ideal functionality
F (i-e., a trusted party that computes F). The execution begins with the environment Z and
adversary A receiving the auxiliary input z € {0, 1}*. In addition, the adversary receives the set of
corrupted parties I C [n]. The environment Z chooses inputs (z1,...,z,) for each party and sends
z; to P;.

The honest parties send their input z; to the ideal functionality F while the corrupted parties
send 2} = x; if A" is semi-honest and arbitrary values z (i.e., not necessarily z;) if A’ is malicious.
Output delivery works as follows. If a corrupted party sends L, F aborts the execution and returns
1 to all parties. Otherwise, it computes y < F(x) and sends {y;}icr to the ideal adversary A’
The latter decides whether to abort or continue the execution. If A’ aborts, F sends L to all the
honest parties. If A’ continues, F sends y; to party P;. At the end of the execution, the environment
Z is given the outputs of the honest parties and an adversarially-chosen function of A”’s view
and is required to output a bit b. The random variable that returns the output of Z is denoted
Ideal]:’g’_A/’[(k).

Secure emulation. Roughly speaking, we say that a protocol Il securely emulates F if a real-world
execution of II is equivalent to an ideal-world execution of F. This is formalized by requiring that
the outputs of the real- and ideal-world executions be negligibly-close.

Definition A.1 (Secure emulation (static case)). Let F be an ideal n-party functionality, I1 be an

n-party protocol and ¢ < n. We say that 11 (¢, n)-securely emulates F if for all PPT adversaries A,

there exists a PPT ideal adversary A’ such that for all PPT environments Z, all I C [n] such that
|Pr[Real z 4(k) = 1] — Pr[Idealr z a ;(k) = 1]| < negl(k).

Hybrid executions. Hybrid executions are similar to real-world executions except that all parties
have access to some ideal functionality F' # F. Hybrid executions allow for modular proofs of
security in the ideal/real-world paradigm by allowing one to first prove that the F'-hybrid is
indistinguishable from the ideal-world execution of F and then replacing the ideal functionality
F' in the hybrid with a concrete protocol that securely computes F'. We say that a protocol IT
securely emulates F in the F’-hybrid model if the execution of II in the F’-hybrid is computationally
indistinguishable from the ideal-world execution of F.

B Multi-Worker Delegation

We provide an overview of MWD protocols which were introduced in [6]. We review their syntax
and recall the construction of [6] in Section B.1. The protocol is based on SFE and secret sharing,
both of which are described below. While the notion of MWD protocols and a concrete construction
were presented in [6], a proof of security was deferred to the full version of that work. In Appendix
B.1 below we provide such a proof.

Syntax. An MWD protocol [6] consists of a set of algorithms MWD = (Encode, Wrky, ..., Wrky,,
Decode) such that Encode takes as input a security parameter k, a function f, an input value x
and a threshold ¢. It outputs a set of n encodings (s1,...,S,). Wrk,, for ¢ € [n], takes as input an
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encoding s;, runs an interactive protocol with {Wrk;};.; and returns an encoded output d;. Decode

!/

takes as input a set of encoded outputs (s},...,s],) and returns a decoded value y. Informally, we say

that a multi-worker delegation protocol is (¢, n)-secure, for ¢ < n, if an adversary that corrupts at
most ¢ workers cannot learn any useful information about z or y and if Decode(s], ..., s]) outputs
L if any worker deviates from the protocol.

With a multi-worker delegation protocol MWD, a client can securely outsource the evaluation of

a function f over an input z to n workers by generating n encodings (s1, ..., s,) < Encode(1¥, f, )
and sending s; to the ith worker. The workers compute the encoded outputs s, < Wrk(s;) and
return them to the client who recovers y <— Decode(s], ..., s).

Security. The security of MWD protocols can be formalized in the ideal /real-world paradigm using
the ideal (n + 1)-party functionality

fMWD(x,J_, ... ,J_) = (f(ac),J_, .. .,J_),

where the first party is assumed to be the client and the remaining parties are the workers. More
precisely, we say that an MWD protocol is (¢, n)-secure if it (¢, n)-securely emulates the functionality

FmMwD-

B.1 A Concrete Multi-Worker Delegation Protocol

We recall the MWD protocol from [6]. The protocol makes black-box use of SFE and secret sharing,
which we describe next.

Secret sharing. A threshold secret sharing scheme consists of two efficient algorithms SS =
(Share, Recover) that work as follows. Share takes as input a secret = from some input space, a
number of shares n € N and a threshold ¢ < n and outputs n shares (si,...,s,). We sometimes
make explicit the randomness used by Share by writing (s1,. .., s,) < Share(z, n;r), where r refers
its coins. Recover takes as input a set of ¢ shares and outputs a secret x.

SS is correct if Recover returns x when it is given any subset of (¢ + 1) shares of z. It is
(¢, n)-hiding if, given at most ¢ shares, no adversary can learn any partial information about the
secret x. The hiding property is formalized by requiring that for all efficient adversaries A, there
exist a PPT simulator S such that for all secrets x, for all n and all ¢ < n, S can generate n
shares that are indistinguishable from real shares. Shamir secret sharing [16] provides an efficient
instantiation of threshold secret sharing that is information theoretically hiding (i.e., it holds even
against a computationally unbounded adversary).

Secure function evaluation. A secure function evaluation protocol SFE = (SFEy,...,SFE,)
allows n parties to evaluate an n-ary function f(x) = (f1(x),..., fn(x)) (where the ith party holds
input ;) without revealing any information to each other about their inputs beyond what can be
inferred from the output. For i € [n], SFE; takes as input a security parameter k, the function f
and an input x; and executes an interactive protocol with {SFE;};..;. At the end of this execution,
SFE; returns f;(x). We say that SFE is secure if it securely emulates the ideal functionality Fsre,
which takes as input x in the domain of f and returns f(x).

The protocol [6]. Let SS; = (Share;, Recover;) and SSo = (Shares, Recovery) be two secret sharing
schemes and SFE = (SFEy,...,SFE,) be an n-party secure function evaluation protocol. We note
that, in practice, SS; and SS9 can be instantiated with the same concrete construction and that we
only distinguish between the two schemes for ease of exposition. The protocol works as follows.
Given a security parameter k, a function f, an input x and a threshold ¢, the Encode algorithm
computes and outputs (si,...,s,) < Sharej(z,n,¢). For all i € [n], the algorithm Wrk; runs

24



SFE;(1%, f', s;;7;); that is, it runs the algorithm for the ith player of SFE to securely compute the
function f’ defined as

I ((s1,71)s - -+, (st,7m)) = Sharea(f (Recoveri (s1,...,8n)),n, @371 D - D 1y).

/

The result of securely computing f’ is a set of n shares (s, . .., s],) which are the encoded outputs.

Given these encoded outputs, the Decode algorithm computes and outputs y < Recovera(s), ..., s.,).

Security. Before formally proving the security of the protocol, we provide some intuition. Consider
an adversary A that corrupts workers and learns the share they received from the client. We argue,
informally, that as long as at least one worker remains uncorrupted, the adversary will not learn
any information about either the input = or the output f(z) of the client. The confidentiality of
the input follows from: (1) the security of SFE, which guarantees that corrupted workers will not
learn any information from the SFE execution about the honest worker’s input which includes its
share of z and its randomness 7;; and (2) from the security of the first secret sharing scheme which
guarantees that as long as at least one share of x is unknown to the adversary, it cannot learn any
information about x.

The confidentiality of the output follows from the security of the second secret sharing scheme
which guarantees that if at least one share of the output f(x) remains unknown to the adversary
then no information about it can be recovered. This last property, however, holds only if the
randomness used to generate the shares of f(x) is uniform but this is guaranteed to hold if at least
one worker is honest because 71 @ - - - @ 1, is uniformly distributed as long as at least one 7; is.

We formalize this intuition in the following Theorem which is in the F¢p-hybrid model.

Theorem B.1. If SS; and SSq are hiding, then the protocol MWD described above (¢, n)-securely
emulates Fypwp n the fSFEf/-hybm'd model.

Proof. Let Sss, and Sss, be the simulators guaranteed to exist by the hiding property of SS; and
SSs, respectively. Let A be the real-world adversary and A’ the ideal-world adversary for MWD,
respectively. Given a set of parties to corrupt I and an auxiliary input z, the ideal adversary A’
works as follows. It computes (s1,...,5,) + Sss, (1%) and (s},...,s]) < Sss,(1¥). It simulates n
workers Wrky, ..., Wrk;,, the real-world MWD adversary A(I, z) and the ideal functionality Fe .
It then sends Wrk; share s;. Note that whenever A corrupts Wrk;, it receives the simulated share s;.
Next, the simulated workers Wrky, ..., Wrky, use the ideal F¢; functionality to compute fA
simulates F¢ . and sends back s to Wrk;. During the Fopes simulation, if A chooses to abort
then A’ asks its trusted party to abort. Finally, A’ returns whatever A outputs.

Next, we show that the output of an F¢;-hybrid execution is indistinguishable from the output
of an Idealr,,, z 4.1(k) execution. We do this using a sequence of games.

Game consists of the F¢ . -hybrid execution: namely, after receiving its input z, the client
sends shares (s1,...,sn) < Sharei(z,n, ¢) to the n workers who use the ideal F¢ ., functionality
to securely compute f'((z1,71),...,(Zn, 7)), where ; = x; and 7; is chosen uniformly at random if
Wrk; is uncorrupted. If the adversary does not abort the ideal Fopgsr computation, each worker Wrk;

/

sends its output s, to the client who computes y «— Recovera(s], ..., s, ). Note that since A corrupts

at most ¢ < n workers, if no aborts occur then at least one r; will be uniformly distributed and,
therefore, the shares (s}, ...,s]) computed by the Fopes functionality will be generated honestly,
i.e., according to Share,.

In Gamey, we replace the shares (s}, ..., s!,) with simulated shares (s}, ..., s},) <+ Sss,(1¥). Since
A corrupts at most ¢ < n workers we have that: (1) the “real” shares generated in Game; are

generated honestly; and (2) the simulated shares (s],...,s,) are indistinguishable from honestly
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generated shares by the hiding property of SSo. It follows that the simulated shares in Game; are
indistinguishable from the ones in Gameg and, in turn, that A’s view is indistinguishable as well.

In Game, we replace the shares of 2 in Game; with simulated shares (si,...,s,) < Sss, (1¥).
Since A corrupts at most ¢ < n workers, it sees at most ¢ out of n shares so its view in Game; and
Games is indistinguishable, otherwise the hiding property of SS; would be violated. Note, however,
that Gamey is the Idealz,,, z 4/.1(k) execution from which the Theorem follows.

C Preliminary Simulation Results

We implemented our algorithm and ran preliminary simulations over several sets of parameters. We
chose parameters based on publicly available estimates about cloud services such as [10] and [19].
We assume a cloud with n = 200K servers. We consider three values for our algorithm’s number of
open servers A\: 60K, 100K, 150K. For each of these settings, we consider deployments of size ¢
ranging from 100 to 500. The number ¢ of attack VMs ranges from 1K to 150K (guaranteeing that
g <A).

We ran simulations of our algorithm for each combination of parameters and computed the
percentage of target VMs that were co-located with attack VMs. When executing a simulation for ¢
target VMs and ¢ attack VMs, we proceed as follows. For 1 <1¢ < ¢+ ¢, we create a VM and assign
it to be a target VM with probability ¢/(¢ + t) and to be an attack VM with probability ¢/(q + t).
VMs are assigned their resource requirement by choosing, for each dimension, a random value from
0 to 1/10-th of the server capacity which is 1K in all our simulations.

Our preliminary results are for 1-dimensional VMs and servers (i.e., d = 1) and are described
in Fig. 2 for A = 150K and in Fig. 3 for A = 100K. We observe that the results are consistent
with the bounds for fractional co-location resistance from Theorem 5.6. More specifically, when
q < § - A, the fraction of target VMs co-located with attacks VMs is less than §. For example, when
d = 1/3, we can see in Figure 2 that the fraction of co-located target VMs is less than 33% when
g <d-X=>50K. The same holds in Figure 3 when ¢ < 34K, in Figure 4 when ¢ < 20K, and in
Figure 5 when ¢ < 3300. We also observe that for smaller values of § the co-location fraction in our
simulations are closer to d for ¢ = ¢ - A\, which tells us that our bounds may be tighter for smaller
values of §.

We also consider two settings with higher dimensional resource/capacity vectors. Here, we run
simulations with A = 60K for both d = 3 and d = 6. The results of the simulations are shown in
Figs. 6 and 7 conform to our bounds.
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