
How to Split a Secret into Unknown Shares

Ruxandra F. Olimid∗

ruxandra.olimid@fmi.unibuc.ro

September 12, 2014

Abstract

Grigoriev and Shpilrain recently considered secret sharing systems for which nobody (including the
dealer) knows the share of a particular party and introduced a construction for the special case of all-or-
nothing schemes. We extend their work and propose two threshold secret sharing schemes that satisfy
this property.

1 Introduction

Blakley [B79] and Shamir [S79] independently introduced the idea of secret sharing as a solution to the
key management problem. A secret sharing scheme is a cryptographic primitive that allows a dealer to
split a secret into multiple shares and distribute them to distinct parties; authorized sets of parties can
reconstruct the secret, while the others obtain no (in case of perfect secret sharing) or little information
about the secret. An all-or-nothing scheme requires all shares for reconstruction, while a more general
threshold scheme permits reconstruction from at least t+ 1 out of n shares, t < n.

Recently, Grigoriev and Shpilrain considered the construction of secret sharing schemes for which nobody
(including the dealer) knows the share of a particular party [GS13]; through our work, we will call such
systems secret sharing schemes with unknown shares. The study of Grigoriev and Shpilrain restricts to the
particular case of all-or-nothing schemes, which motivates us to extend their research to the more general
class of threshold secret sharing.

For the rest of this section, we explain our contribution: two threshold secret sharing schemes with
unknown shares. Next section reviews the underlying notions and schemes we use for our constructions.
Then, we present our two proposals and prove their properties.

1.1 Contribution

We continue the work of Grigoriev and Shpilrain [GS13] and propose two threshold secret sharing schemes
with unknown shares: nobody (except the party itself) knows the shares of any particular party. Our
constructions are built on Shamir’s secret sharing [S79]. To maintain the privacy of the shares with respect
to the dealer, we disallow him to know both the polynomial and the value were the polynomial is evaluated
to generate a share: (1) in our first construction, the dealer chooses the polynomial, but he does not learn
the values where the polynomial is evaluated; (2) in our second construction, the dealer knows the values
where the polynomial is evaluated, but he does not learn the polynomial itself.

Our first proposal is elegant to expose and has the great advantage of working over public channels only;
however, it is build from black-box obfuscation, which makes it impractical. To overcome this issue, we give
a second construction that is theoretically secure; the drawback of this solution is that is requires secure
communication channels between any two parties.

∗Department of Computer Science, University of Bucharest, Romania.
This work was supported by the strategic grant POSDRU/159/1.5/S/137750, ”Project Doctoral and Postdoctoral programs
support for increased competitiveness in Exact Sciences research” cofinanced by the European Social Found within the Sectorial
Operational Program Human Resources Development 2007-2013.

1

2 Preliminaries

2.1 Definitions and Notations

Let p be a prime large number. All computation are performed in Zp, hence we omit to explicitly mention
this when it is evident from the context. We consider S ∈ Zp the secret a dealer D shares among a set of
parties {P1, . . . , Pn}.

Let PRG : {0, 1}λ → {0, 1}2λ be a pseudorandom generator such that 2λ−1 ≤ |Zp| ≤ 2λ, where λ is
the security parameter. Informally, a pseudorandom generator is secure if no polynomial-time distinguisher
can make the difference between its output and a uniformly random sequence of the same length. As a
consequence, given the output of the pseudorandom generator, it is computationally infeasible to determine
the seed.

For the rest of our work, we consider a t-bounded adversary A that can compromise at most t out of n
non-dealer parties. We work in the semi-honest adversarial model, a particular case of malicious adversarial
model for which the parties follow the protocol exactly. More precise, the adversary gains the knowledge of
up to t players, but cannot coordinate their actions; moreover, the adversary is adaptive (i.e. he can corrupt
any non-dealer party during the protocol execution as long as the number of corrupted parties is bounded
by t).

2.2 Shamir’s Secret Sharing

Shamir’s secret sharing scheme is based on polynomial interpolation: a t-degree polynomial is uniquely
defined by t+ 1 distinct points. We review next the construction [S79]:

Construction 2.1.

1. Sharing Phase.

(a) D chooses uniformly at random a t-degree polynomial f ∈ Zp[x] such that f(0) = S and computes
f(i), 1 ≤ i ≤ n;

(b) D privately sends f(i) to player Pi, for all 1 ≤ i ≤ n;

2. Reconstruction Phase. Any t + 1 (or more) parties P1, . . . , Pt+1 (without loss of generality after a

possible reordering) recover S =
t+1∑
i=1

f(i)
∏

1≤j≤t+1,i6=j

j

j − i
.

Shamir’s scheme satisfies two important properties: (1) it is ideal, since both the secret and the shares lie
in Zp and (2) it is perfect (when the exact degree of the polynomial is unknown), because t or less users obtain
no information about the secret: for every value of the secret S ∈ Zp, the participants can reconstruct with
the same probability a polynomial that passes through the t points they own and (0, S) (we have considered
the worst case scenario, when t participants cooperate).

2.3 All-or-Nothing Secret Sharing

We review next a simple and efficient all-or-nothing secret sharing [K83]:

Construction 2.2.

1. Sharing Phase.

(a) D chooses uniformly at random Si ∈ Zp, 1 ≤ i ≤ n− 1 and computes Sn = S −
n−1∑
i=1

Si;

(b) D privately sends Si to player Pi, for all 1 ≤ i ≤ n;

2

2. Reconstruction Phase. All parties P1, . . . , Pn recover S =
n∑
i=1

Si.

The scheme satisfies the same two properties as Shamir’s scheme: (1) it is ideal, since both the secret
and the shares lie in Zp and (2) it is perfect , because less than n users obtain no information regarding
the secret: for every value of the secret S ∈ Zp, the last share is computed with the same probability as

Sn−1 = S −
n−1∑
i=1

Si (we have considered the worst case scenario, when n− 1 participants cooperate).

2.4 Obfuscation

Obfuscation is a technique used to hide the content of a program or implementation by making it hard
to understand and analyze. An obfuscator O is an efficient algorithm that on input a program P outputs
another program O(P) with the same functionality as P (i.e. for the same input x, O(P (x)) = P (x)) that
keeps private the internal implementation. Ideally, a black-box obfuscator should behave as a virtual black-
box in the sense that it only allows access to the inputs and outputs of the system: anything that can be
efficiently computed from O(P) can be efficiently computed given oracle access to P [BG01]. Barak and al.
showed the impossibility of a universal black-box obfuscator that could be applied for any program [BG01];
subsequent work extended the impossibility results [BCC14]. However, candidates for simple programs do
exist [L04,W05,CV13].

3 First Proposal

3.1 Construction

We build a secret sharing scheme with unknown shares from black-box obfuscation and pseudorandom
generators, inspired by the Boneh-Zhandry NIKE [BZ14]. The idea is the following: each party Pi generates
a seed si and publishes xi = PRG(si), where PRG is a pseudorandom generator. The dealer D chooses
a t-degree polynomial f as in Shamir’s scheme, but instead of distributing the shares to the parties, he
builds and publishes an obfuscated program that allows the parties to compute the shares by themselves.
To operate, the obfuscated program requires a valid seed; in this way, each of the parties can only evaluate
f in a single point and hence the protocol maintains the threshold. Anyone else (including the dealer) does
not know any of the seeds and therefore is unable to compute the corresponding shares.

The construction is as follows:

Construction 3.1.

1. Registration Phase. Each party Pi, 1 ≤ i ≤ n chooses uniformly at random a private seed si ∈ Z∗p and
publishes xi = PRG(si).

2. Sharing Phase.

(a) D chooses uniformly at random a t-degree polynomial f ∈ Zp[x] such that f(0) = S and builds
the program Prgf ;{x1,...,xn} as follows:

Input: s ∈ Z∗p
Constants: f , {x1, . . . , xn}, PRG

i. if PRG(s) ∈ {x1, . . . , xn}, then output f(s)

ii. otherwise, output ⊥
(b) D makes public O(Prgf ;{x1,...,xn}), the black-box obfuscated version of Prgf ;{x1,...,xn};

(c) Each party Pi, 1 ≤ i ≤ n runs O(Prgf ;{x1,...,xn}) on input si to obtain f(si);

3

3. Reconstruction Phase. Any t+1 (or more) parties P1, . . . , Pt+1 with distinct x1, . . . , xt+1 (without loss

of generality after a possible reordering) recover S =
t+1∑
i=1

f(si)
∏

1≤j≤t+1,i6=j

sj
sj − si

.

In comparison to Shamir’s scheme, our first proposal: (1) remains ideal; (2) maintains the same recon-
struction algorithm; (3) looses perfect secrecy, but achieves computational secrecy from black-box obfuscation
and pseudorandom generators; (4) requires no secure communication.

3.2 Proofs

Theorem 3.1 (Correctness). If D is honest, then at the end of the reconstruction phase any set of at least
t+ 1 parties P1, . . . , Pt+1 with distinct x1, . . . , xt+1 output the correct secret.

Proof. By construction, at the end of the sharing phase all parties Pi, 1 ≤ i ≤ n hold valid points (si, f(si))
on the polynomial f such that f(0) = S. Note that the seeds s1, . . . , st+1 are distinct for distinct values
x1, . . . , xt+1. Now, the correctness of the scheme reduces to the correctness of Shamir’s scheme.

Theorem 3.2 (Secrecy). If D is honest, PRG is a secure psudorandom generator and O is a secure black-
box obfuscator, then a t-bounded adversary A cannot reveal any information about the secret (except with
negligible probability).

Proof. By definition, a t-bounded adversary A gains access to the knowledge of up to t parties, i.e. pairs
(si, f(si)), 1 ≤ i ≤ t (without loss of generality, after a possible reordering). The proof reduces to Shamir’s
secrecy ifA gains no additional information. First, if PRG is a secure pseudorandom generator, thenA cannot
compute si from the public xi, except with negligible probability; hence, A can query O(Prgf ;{x1,...,xn})
in at most t points s1, . . . , st. Second, if O is a secure black-box obfuscator, O(Prgf ;{x1,...,xn}) reveals no
information about the polynomial f . Hence, the scheme is computationally secure.

Theorem 3.3 (Unknown shares). If PRG is a secure psudorandom generator, then D cannot reveal any
information about the share of a player Pi, 1 ≤ i ≤ n (except with negligible probability).

Proof. If PRG is a secure pseudorandom generator, then D cannot compute si from the public xi, except
with negligible probability. Since D does not know the input si on which the player runs O(Prgf ;{x1,...,xn}),
the output f(si) remains hidden.

4 Second Proposal

4.1 Construction

We build a theoretically secure secret sharing scheme with unknown shares. The idea is the following: the
dealer D does not choose the polynomial, but instead he allows each party Pi to select a t-degree polynomial

fi such that their sum f is a valid polynomial for the given secret (i.e. f(0) =
n∑
i=1

fi(0) = S). To guarantee

the correctness of f , D previously distributes fi(0) to Pi as a share in an all-or-nothing scheme. Except the
free coefficient, D knows nothing about fi; in consequence, he does not learn f and therefore is unable to
compute the corresponding shares.

The construction is as follows:

Construction 4.1.

1. Sharing Phase.

(a) D chooses uniformly at random Si ∈ Zp, 1 ≤ i ≤ n− 1 and computes Sn = S −
n−1∑
i=1

Si;

4

(b) D privately sends Si to player Pi, for all 1 ≤ i ≤ n;

(c) Each party Pi, 1 ≤ i ≤ n uses Shamir’s scheme to share Si among the players, i.e. Pi chooses
uniformly at random a t-degree polynomial fi(x) ∈ Zp[x] such that fi(0) = Si and privately
distributes sub-share fi(j) to party Pj , 1 ≤ j ≤ n;

(d) Each party Pi, 1 ≤ i ≤ n computes the share f(i) =
n∑
j=1

fj(i);

2. Reconstruction Phase. Any t + 1 (or more) parties P1, . . . , Pt+1 (without loss of generality after a

possible reordering) recover S =
t+1∑
i=1

f(i)
∏

1≤j≤t+1,i6=j

j

j − i
.

In comparison to Shamir’s scheme, our second proposal: (1) remains ideal; (2) maintains the same
reconstruction algorithm; (3) preserves perfect secrecy (4) requires secure communication between any two
parties.

4.2 Proofs

Theorem 4.1 (Correctness). If D is honest, then at the end of the reconstruction phase any set of at least
t+ 1 honest parties P1, . . . , Pt+1 output the correct secret.

Proof. By construction, f(0) =
n∑
i=1

fi(0) =
n∑
i=1

Si = S; hence f(x) =
n∑
i=1

fi(x) is a valid polynomial that

can be used to share S using Shamir’s secret sharing. At the end of the sharing phase, each player holds

f(i) =
n∑
j=1

fj(i) a valid point on f . Now, the correctness of the scheme reduces to the correctness of Shamir’s

scheme.

Theorem 4.2 (Secrecy). If D is honest, then a t-bounded adversary A cannot reveal any information about
the secret (i.e. the scheme is perfect).

Proof. By definition, a t-bounded adversary A gains access to the knowledge of up to t parties, i.e. values
Si, polynomials fi and pairs (i, f(i)), 1 ≤ i ≤ t (without loss of generality, after a possible reordering). The
proof reduces to Shamir’s secrecy if A gains no additional information from Si and fi, 1 ≤ i ≤ t; this holds
from the perfect secrecy of the all-or-nothing scheme (not that fi can be also seen as shares of f). Hence,
the scheme remains perfectly secure.

Theorem 4.3 (Unknown shares). D cannot reveal any information about the share of a player Pi, 1 ≤ i ≤ n.

Proof. By construction, the polynomial f(x) =
n∑
i=1

fi(x) remains hidden to D, except the free coefficient

f(0) = S. Hence, D cannot reveal any information about the shares f(i), 1 ≤ i ≤ n.

5 Conclusions and Future Work

We proposed two threshold secret sharing schemes that have the property that nobody, including the dealer,
knows the shares of any particular players. Our first proposal has the great advantage of working over public
channels only, but it is build from black-box obfuscation, which makes it impractical. Our second proposal
is theoretically secure, but requires secure communication channels between any two parties. Further work
might consider decreasing the number of secure channels. An interesting open problem is to extend the
construction to general access structure schemes.

5

References
[BG01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai , Salil P. Vadhan and

Ke Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology - CRYPTO
2001, pages 1–18, 2001.

[BCC14] Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser, Yael Tauman Kalai, Omer Paneth
and Alon Rosen. The impossibility of obfuscation with auxiliary input or a universal simulator. In
Advances in Cryptology - CRYPTO 2014, pages 71–89, 2014.

[B79] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS National Com-
puter Conference, pages 313–317, 1979.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In Advances in Cryptology - CRYPTO 2014, pages 480–499, 2014.

[CV13] Ran Canetti and Vinod Vaikuntanathan. Obfuscating branching programs using black-box pseudo-
free groups. IACR Cryptology ePrint Archive, Report 2013/500, 2013. http://eprint.iacr.org

[GS13] Dima Grigoriev and Vladimir Shpilrain. Secrecy without one-way functions. Cryptology ePrint
Archive, Report 2013/055, 2013. http://eprint.iacr.org

[K83] Ehud D. Karnin, Jonathan W. Greene and Martin E. Hellman. On secret sharing systems. In IEEE
Transactions on Information Theory 29, pages 35–41, 1983.

[L04] Ben Lynn, Manoj Prabhakaran and Amit Sahai. Positive results and techniques for obfuscation. In
Advances in Cryptology - EUROCRYPT 2004, pages 20–39, 2004.

[S79] Adi Shamir. How to share a secret. In Commun. ACM 22, pages 612–613, 1979.

[W05] Hoeteck Wee. On obfuscating point functions. In Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing pages 523–532, 2005.

6

