
Adaptively Secure Constrained Pseudorandom Functions

Dennis Hofheinz
dennis.hofheinz@kit.edu

Akshay Kamath
University of Texas at Austin

kamath@cs.utexas.edu

Venkata Koppula
University of Texas at Austin
kvenkata@cs.utexas.edu

Brent Waters
University of Texas at Austin
bwaters@cs.utexas.edu∗

Abstract

A constrained pseudo random function (PRF) behaves like a standard PRF, but with the added
feature that the (master) secret key holder, having secret key K, can produce a constrained key, Kf ,
that allows for the evaluation of the PRF on a subset of the domain as determined by a predicate function
f within some family F . While previous constructions gave constrained PRFs for poly-sized circuits, all
reductions for such functionality were based in the selective model of security where an attacker declares
which point he is attacking before seeing any constrained keys.

In this paper we give new constrained PRF constructions for circuits that have polynomial reductions
to indistinguishability obfuscation in the random oracle model. Our solution is constructed from two
recently emerged primitives: an adaptively secure Attribute-Based Encryption (ABE) for circuits and a
Universal Parameters as introduced by Hofheinz et al. Both primitives are constructible from indistin-
guishability obfuscation (iO) (and injective pseudorandom generators) with only polynomial loss.

∗Supported by NSF CNS-0952692, CNS-1228599 and CNS-1414082. DARPA through the U.S. Office of Naval Research under
Contract N00014-11-1-0382, Google Faculty Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and
Packard Foundation Fellowship.



1 Introduction

Recently, the concept of constrained pseudo random functions (PRFs) was proposed independently by Boneh
and Waters [BW13], Boyle, Goldwasser and Ivan [BGI13] and Kiayias et al [KPTZ13]. A constrained PRF
behaves like a standard PRF [GGM84], but with the added feature that the (master) secret key holder,
having secret key K, can produce a constrained key, Kf , that allows for the evaluation of the PRF on a
subset of the domain as determined by a predicate function f within some family F . The security definition of
a constrained PRF system allows for a poly-time attacker to query adaptively on several functions f1, . . . , fQ
and receive constrained keys Kf1 , . . . ,KfQ . Later the attacker chooses a challenge point x∗ such that
fi(x

∗) = 0 ∀i. The attacker should not be able to distinguish between the output of the PRF F (k, x∗) and
a randomly chosen value with better than negligible probability. Constrained PRFs have been utilized for
applications such as broadcast encryption [BW13], multiparty key exchange [BZ14] and the development of
“punctured programming” techniques using obfuscation [SW14].

Ideally, we would would like to be able to construct constrained PRF systems for as expressive families as
possible. In their initial work Boneh and Waters [BW13] gave a construction for building constrained PRFs
for polynomial sized circuits (with an priori fixed depth) based on multilinear encodings [GGH13a, CLT13].
Furthermore, they demonstrated the power of constrained PRFs with several motivating applications.

One application (detailed in [BW13]) is a (secret encryption key) broadcast key encapsulation mechanism
with “optimal size ciphertexts”, where the ciphertext consists solely of a header describing the recipient list
S. The main idea is that to the key assigned to a set S is simply the PRF evaluated on S as F (k, S). A
user i in the system is assigned a key for a function fi(·), where fi(S) = 1 if and only if i ∈ S. Other
natural applications given include identity-based key exchange and a form of non-interactive policy-based
key distribution. Later Sahai and Waters [SW14] showed the utility of (a limited form of) constrained PRFs
in building cryptography from indistinguishability obfuscation and Boneh and Zhandry [BZ14] used them
(along with obfuscation) in constructing recipient private broadcast encryption.

Adaptive Security While the functionality of the Boneh-Waters construction was expressive, their proof
reduction was limited to selective security where the challenge point x∗ is declared by the attacker before
it makes any queries. For many applications of constrained PRFs achieving the “right” notion of adaptive
security requires an underlying adaptively secure constrained PRF. In particular, this applies to the opti-
mal size broadcast, policy-based encryption, non-interactive key exchange and recipient-private broadcast
constructions mentioned above.

In this work we are interested in exploring adaptive security in constrained PRFs with polynomial time
reductions (i.e. avoid complexity leveraging). To this point constructions that achieve adaptive security have
relatively limited functionality. Hohenberger, Koppula, and Waters [HKW14] show how to build adaptive
security from indistinguishability obfuscation for a special type of constrained PRFs called puncturable PRF.
In a puncturable PRF system the attacker is allowed to make several point queries adaptively, before choosing
a challenge point x∗ and receiving a key that allows for evaluation at all points x 6= x∗. While their work
presents progress in this area, there is a large functionality gap between the family of all poly-sized circuits
and puncturing-type functions. Fuchsbauer et al [FKPR14] give a subexponential reduction to obfuscation
for a larger class of “prefix-type” circuits, however, their reduction is still super polynomial. In addition, they
give evidence that the problem of achieving full security with polynomial reductions might be difficult. They
adapt the proof of [LW14] to show a black box impossibility result for a certain class of “fingerprinting”
constructions that include the original Boneh-Waters [BW13] scheme.

Our Contributions In this paper we give new constrained PRF constructions for circuit classes that have
polynomial reductions to indistinguishability obfuscation in the random oracle model 1 .

Our solution is constructed from two recently emerged primitives: an adaptively secure Attribute-Based
Encryption (ABE) [SW05] for circuits and Universal Parameters as introduced by Hofheinz et al. [HJK+14].
Both primitives are constructible from indistinguishability obfuscation (iO) (and injective pseudorandom

1This paper supersedes an earlier eprint posting of Hofheinz [Hof14].

1



generators) with only polynomial loss. Waters [Wat14] recently gave an adaptively secure construction of
ABE2 based on indistinguishability obfuscation and Hofheinz et al. [HJK+14] showed how to build Universal
Parameter from iO in the random oracle model — emphasizing that the random oracle heuristic is applied
outside the obfuscated program.

Before we describe our construction we briefly overview the two underlying primitives. An ABE scheme
(for circuits) has four algorithms. A setup algorithm ABE.setup(1λ) that outputs public parameters pkABE,
and a master secret key mskABE. The encryption algorithm ABE.enc(pkABE, t, x) takes in the public pa-
rameters, message t, an “attribute” string x and outputs a ciphertext ct. A key generation algorithm
ABE.keygen(mskABE, C) outputs a secret key given a boolean circuit C. Finally, the decryption algorithm
ABE.dec(SK, ct) will decrypt an ABE ciphertext encrypted under attribute x iff C(x) = 1, where C is the
circuit associated with the secret key.

The second primitive is a universal parameters scheme. Intuitively a universal parameters scheme behaves
somewhat like a random oracle except it can sample from arbitrary distributions as opposed to just uniformly
random strings. More concretely, a universal parameters scheme consists of two algorithms, UniversalGen
and InduceGen. In a set-up phase, U ← UniversalGen(1λ) will take as input a security parameter and output
“universal parameters” U . We can use these parameters to “obliviously” sample from a distribution specified
by a circuit d, in the following sense. If we call InduceGen(U, d) the scheme will output d(z) for hidden random
coins z that are pseudorandomly derived from U and d.

Security requires that in the random oracle model, UniversalGen outputs images that look like inde-
pendently and honestly generated d-samples, in the following sense. Namely, we require that an efficient
simulator can simulate U and the random oracle such that the output of InduceGen on arbitrarily many
adversarially chosen inputs di coincides with independently and honestly chosen images di(zi) (for truly ran-
dom zi that are hidden even from the simulator). Of course, the simulated U and the programmed random
oracle must be computationally indistinguishable from the real setting.

Our Solution in a Nutshell We now describe our construction that shows how to build constrained
PRFs from adaptively secure ABE and universal parameters. One remarkable feature is the simplicity of
our construction once the underlying building blocks are in place.

The constrained PRF key is setup by first running U ← UniversalGen(1λ) and (pkABE,mskABE) ←
ABE.setup(1λ). The master PRF key K is (U, (pkABE,mskABE)). To define the PRF evaluation on input
x we let dpkABE,x(z = (t, r)) be a circuit in some canonical form that takes as input random z = (t, r) and
computes ABE.enc(pkABE, t, x; r). Here we view pkABE, x as constants hardwired into the circuit d and t, r
as the inputs, where we make the random coins of the encryption algorithm explicit. To evaluate the PRF
F (K,x) we first compute ctx = InduceGen(U, dpkABE,x). Then we compute and output ABE.dec(mskABE, ctx)3.
Essentially, the evaluation function on input x first uses the universal parameters to encrypt an ABE cipher-
text under attribute x for a randomly chosen message t. Then it uses the master secret key to decrypt the
ciphertext which gives t as the output.

To generate a constrained key for circuit C, the master key holder simply runs the ABE key generation
to compute skC = ABE.keygen(mskABE, C) and sets the constrained key to be K{C} = (U, (pkABE, skC)).
Evaluation can be done using K{C} on input x where C(x) = 1. Simply compute ctx from the universal
parameters U as above, but then use skC to decrypt. The output will be consistent with the master key
evaluation.

The security argument is organized as follows. We first introduce a hybrid game where the calls to the
universal parameters scheme are answered by a parameters oracle that generates a fresh sample every time it
is called. The security definition of universal parameters schemes argues (in the random oracle model) that
the attacker’s advantage in this game must be negligibly close to the original advantage. Furthermore, any
polynomial time attacker will cause this parameters oracle to be called at most some polynomial Q number
of times. One of these calls must correspond to the eventual challenge input x∗.

2The construction is actually for Functional Encryption which implies ABE.
3We use the convention that the master secret key can decrypt all honestly generated ABE ciphertexts. Alternatively, one

could just generate a secret key for a circuit that always outputs 1 and use this to decrypt.

2



We can now reduce to the security of the underlying ABE scheme. First the reduction guesses with
1/Q success probability which parameter oracle call will correspond to x∗ and embed and ABE challenge
ciphertext here. An attacker on the constrained PRF scheme now maps straightforwardly to an ABE
attacker.

Future Directions A clear future direction is to attempt to achieve greater functionality in the standard
model. There is a significant gap between our random oracle model results of constrained PRFs for all circuits
and the standard model results of Hohenberger, Koppula, and Waters for puncturable PRFs [HKW14]. It
would be interesting to understand if there are fundamental limitations to achieving such results. Fuchsbauer
et al [FKPR14] et al. give some initial steps to negative results, however, it is unclear if they generalize to
larger classes of constructions.

Relationship to [Hof14] We note to the reader that this work supersedes/replaces an earlier eprint
article of Hofheinz [Hof14]. We intend this paper to be viewed as the definitive source for ideas appearing
both here and some related to [Hof14].

Other Related Work Attribute-Based Encryption for circuits was first achieved independently by Garg,
Gentry, Halevi, Sahai and Waters [GGH+13b] from multilinear maps and by Gorbunov, Vaikuntanathan and
Wee [GVW13] from the learning with errors [Reg05] assumption. Both works were proven selectively secure;
requiring complexity leveraging for adaptive security. In two recent works, Waters [Wat14] and Garg, Gentry,
Halevi and Zhandry [GGHZ14] achieve adaptively secure ABE for circuits under different cryptographic
assumptions. We also note that Boneh and Zhandry [BZ14] show how to use indistinguishability obfuscation
for circuits and punctured PRFs to create constrained PRFs for circuit. This construction is limited though
to either selective security or utilizing complexity leveraging.

2 Preliminaries

2.1 Notations

Let x ← X denote a uniformly random element drawn from the set X . Given integers `ckt, `inp, `out, let
C[`ckt, `inp, `out] denote the set of circuits that can be represented using `ckt bits, take `inp bits input and
output `out bits.

2.2 Constrained Pseudorandom Functions

The notion of constrained pseudorandom functions was introduced in the concurrent works of [BW13, BGI13,
KPTZ13]. Let K denote the key space, X the input domain and Y the range space. A PRF F : K×X → Y
is said to be constrained with respect to a boolean circuit family F if there is an additional key space Kc,
and three algorithms F.setup, F.constrain and F.eval as follows:

• F.setup(1λ) is a PPT algorithm that takes the security parameter λ as input and outputs a key K ∈ K.

• F.constrain(K,C) is a PPT algorithm that takes as input a PRF key K ∈ K and a circuit C ∈ F and
outputs a constrained key K{C} ∈ Kc.

• F.eval(K{C}, x) is a deterministic polynomial time algorithm that takes as input a constrained key
K{C} ∈ Kc and x ∈ X and outputs an element y ∈ Y. Let K{C} be the output of F.constrain(K,C).
For correctness, we require the following:

F.eval(K{C}, x) = F (K,x) if C(x) = 1.

3



2.2.1 Security of Constrained Pseudorandom Functions

Intuitively, we require that even after obtaining several constrained keys, no polynomial time adversary can
distinguish a truly random string from the PRF evaluation at a point not accepted by the queried circuits.
This intuition can be formalized by the following security game between a challenger and an adversary Att.

Let F : K×X → Y be a constrained PRF with respect to a circuit family F . The security game consists
of three phases.

Setup Phase The challenger chooses a random key K ← K and a random bit b← {0, 1}.

Query Phase In this phase, Att is allowed to ask for the following queries:

• Evaluation Query Att sends x ∈ X , and receives F (K,x).
• Key Query Att sends a circuit C ∈ F , and receives F.constrain(K,C).
• Challenge Query Att sends x ∈ X as a challenge query. If b = 0, the challenger outputs F (K,x).

Else, the challenger outputs a random element y ← Y.

Guess A outputs a guess b′ of b.

Let E ⊂ X be the set of evaluation queries, L ⊂ F be the set of constrained key queries and Z ⊂ X the
set of challenge queries. A wins if b = b′ and E ∩ Z = φ and for all C ∈ L, z ∈ Z,C(z) = 0. The advantage

of Att is defined to be AdvFAtt(λ) =
∣∣∣Pr[Att wins]− 1/2

∣∣∣.
Definition 2.1. The PRF F is a secure constrained PRF with respect to F if for all PPT adversaries A
AdvFAtt(λ) is negligible in λ.

In the above definition the challenge query oracle may be queried multiple times on different points, and
either all the challenge responses are correct PRF evaluations or they are all random points. As argued in
[BW13], such a definition is equivalent (via a hybrid argument) to a definition where the adversary may only
submit one challenge query. For our proofs, we will use the single challenge point security definition.

Another simplification that we will use in our proofs is with respect to the evaluation queries. Note that
since we are considering constrained PRFs for circuits, without loss of generality, we can assume that the
attacker queries for only constrained key queries. This is because any query for evaluation at input x can be
replaced by a constrained key query for a circuit Cx that accepts only x.

2.3 Universal Parameters

In a recent work, Hofheinz et al. [HJK+14] introduced the notion of universal parameters. Intuitively, a
universal parameters scheme provides a concise way to sample pseudorandomly from arbitrary distributions.
More formally, a universal parameters scheme U , parameterized by polynomials `ckt, `inp and `out, consists
of algorithms UniversalGen and InduceGen defined below.

• UniversalGen(1λ) takes as input the security parameter λ and outputs the universal parameters U .

• InduceGen(U, d) is a deterministic algorithm that takes as input the universal parameters U and a
circuit d of size at most `ckt bits. The circuit d takes as input `inp bits and outputs `out bits. The
output of InduceGen also consists of `out bits.

Intuitively, InduceGen is supposed to sample from d, in the sense that it outputs a value d(z) for pseudorandom
and hidden random coins z. However, it is nontrivial to define what it means that the random coins z are
hidden, and that even multiple outputs (for adversarially and possibly even adaptively chosen circuits d)
look pseudorandom.

Hofheinz et al. [HJK+14] formalize security by mandating that InduceGen is programmable in the random
oracle model. In particular, there should be an efficient way to simulate U and the random oracle, such that

4



InduceGen outputs an externally given value that is honestly sampled from d. This programming should
work even for arbitrarily many InduceGen outputs for adversarially chosen inputs d simultaneously, and it
should be indistinguishable from a real execution of UniversalGen and InduceGen.

In this work, we will be using a universal parameter scheme that is even adaptively secure. In order
to formally define adaptive security for universal parameters, let us first define the notion of an admissible
adversary A.

An admissible adversary A is defined to be an efficient interactive Turing Machine that outputs one bit,
with the following input/output behavior:

• A takes as input security parameter λ and a universal parameter U .
• A can send a random oracle query (RO, x), and receives the output of the random oracle on input x.
• A can send a message of the form (params, d) where d ∈ C[`ckt, `inp, `out]. Upon sending this message,
A is required to honestly compute pd = InduceGen(U, d), making use of any additional random oracle
queries, and A appends (d, pd) to an auxiliary tape.

Let SimUGen and SimRO be PPT algorithms. Consider the following two experiments:

RealA(1λ):

1. The random oracle RO is implemented by assigning random outputs to each unique query made to RO.
2. U ← UniversalGenRO(1λ).
3. A(1λ, U) is executed, where every message of the form (RO, x) receives the response RO(x).
4. Upon termination of A, the output of the experiment is the final output of the execution of A.

IdealASimUGen,SimRO(1λ):

1. A truly random function F that maps `ckt bits to `inp bits is implemented by assigning random `inp-bit
outputs to each unique query made to F . Throughout this experiment, a Parameters Oracle O is
implemented as follows: On input d, where d ∈ C[`ckt, `inp, `out], O outputs d(F (d)).

2. (U, τ)← SimUGen(1λ). Here, SimUGen can make arbitrary queries to the Parameters Oracle O.
3. A(1λ, U) and SimRO(τ) begin simultaneous execution.

- Whenever A sends a message of the form (RO, x), this is forwarded to SimRO, which produces a
response to be sent back to A.

- SimRO can make any number of queries to the Parameter Oracle O.
- Finally, after A sends any message of the form (params, d), the auxiliary tape of A is examined

until an entry of the form (d, pd) is added to it. At this point, if pd is not equal to d(F (d)), then
experiment aborts, resulting in an Honest Parameter Violation.

4. Upon termination of A, the output of the experiment is the final output of the execution of A.

Definition 2.2. A universal parameters scheme U = (UniversalGen, InduceGen), parameterized by polynomi-
als `ckt, `inp and `out, is said to be adaptively secure in the random oracle model if there exist PPT algorithms
SimUGen and SimRO such that for all PPT adversaries A, the following hold:

Pr[IdealASimUGen,SimRO(1λ) aborts ] = 04

and ∣∣∣Pr[RealA(1λ) = 1]− Pr[IdealASimUGen,SimRO(1λ) = 1]
∣∣∣ ≤ negl(λ)

Hofheinz et al. [HJK+14] construct a universal parameters scheme that is adaptively secure in the random
oracle model, assuming a secure indistinguishability obfuscator, a selectively secure puncturable PRF and
an injective pseudorandom generator.

4The definition in [HJK+14] only requires this probability to be negligible in λ. However, the construction actually achieves
zero probability of Honest Parameter Violation. Hence, for the simplicity of our proof, we will use this definition

5



2.4 Attribute Based Encryption

An attribute based encryption scheme ABE for a circuit family F with message spaceM and attribute space
X consists of algorithms ABE.setup, ABE.keygen, ABE.enc and ABE.dec defined below.

• ABE.setup(1λ) is a PPT algorithm that takes as input the security parameter and outputs the public
key pkABE and the master secret key mskABE.

• ABE.keygen(mskABE, C) is a PPT algorithm that takes as input the master secret key mskABE, a circuit
C ∈ F and outputs a secret key skC for circuit C.

• ABE.enc(pkABE,m, x) takes as input a public key pkABE, message m ∈ M, an attribute x ∈ X and
outputs a ciphertext ct. We will assume the encryption algorithm takes `rnd bits of randomness 5. The
notation ABE.enc(pkABE,m, x; r) is used to represent the randomness r used by ABE.enc.

• ABE.dec(skC , ct) takes as input secret key skC , ciphertext ct and outputs y ∈M∪ {⊥}.

Correctness For any circuit C ∈ F , (pkABE,mskABE)← ABE.setup(1λ) , message m ∈M, attribute x ∈ X
such that C(x) = 1, we require the following:

ABE.dec(ABE.keygen(mskABE, C),ABE.enc(pkABE,m, x)) = m.

For simplicity of notation, we will assume ABE.dec(mskABE,ABE.enc(pkABE,m, x)) = m for all messages
m, attributes x 6.

2.4.1 Security

Security for an ABE scheme is defined via the following adaptive security game between a challenger and
adversary Att.

1. Setup Phase The challenger chooses (pkABE,mskABE)← ABE.setup(1λ) and sends pkABE to Att.

2. Pre-Challenge Phase The challenger receives multiple secret key queries. For each C ∈ F queried,
it computes skC ← ABE.keygen(mskABE, C) and sends skC to Att.

3. Challenge Att sends messages m0,m1 ∈ M and attribute x ∈ X such that C(x) = 0 for all cir-
cuits queried during the Pre-Challenge phase. The challenger chooses b ← {0, 1}, computes ct ←
ABE.enc(pkABE,mb, x) and sends ct to Att.

4. Post-Challenge Phase Att sends multiple secret key queries C ∈ F as in the Pre-Challenge phase,
but with the added restriction that C(x) = 0. It receives skC ← ABE.keygen(mskABE, C).

5. Guess Finally, Att outputs its guess b′.

Att wins the ABE security game for scheme ABE if b = b′. Let AdvABEAtt =
∣∣∣Pr[Att wins]− 1/2

∣∣∣.
Definition 2.3. An ABE scheme ABE = (ABE.setup,ABE.keygen,ABE.enc,ABE.dec) is said to be adaptively
secure if for all PPT adversaries Att, AdvABEAtt ≤ negl(λ).

In a recent work, Waters [Wat14] showed a construction for an adaptively secure functional encryption
scheme, using indistinguishability obfuscation. An adaptively secure functional encryption scheme implies an
adaptively secure attribute based encryption scheme. Garg, Gentry, Halevi and Zhandry [GGHZ14] showed
a direct construction based on multilinear encodings.

5This assumption can be justified by the use of an appropriate pseudorandom generator that maps `rnd bits to the required
length.

6We can assume this holds true, since given mskABE, one can compute a secret key sk for circuit Call that accepts all inputs,
and then use sk to decrypt ABE.enc(pkABE,m, x).

6



3 Adaptively Secure Constrained PRF

In this section, we will describe our constrained pseudorandom function scheme for circuit class F . Let
n = n(λ), `rnd = `rnd(λ) be polynomials in λ, and let `ckt be a polynomial (to be defined in the construction
below). We will use an adaptively secure ABE scheme (ABE.setup, ABE.keygen, ABE.enc, ABE.dec) for a
circuit family F with message and attribute space {0, 1}n. Let us assume the encryption algorithm ABE.enc
uses `rnd bits of randomness to compute the ciphertext. We will also use an (`ckt, `inp = n+ `rnd, `out = n)
universal parameters scheme U = (UniversalGen, InduceGen).

The PRF F : K× {0, 1}n → {0, 1}n, along with algorithms F.setup, F.constrain and F.eval are described
as follows.

F.setup(1λ): The setup algorithm computes the universal parameters U ← UniversalGen(1λ) and the key
pair (pkABE,mskABE)← ABE.setup(1λ). In order to define F , we will first define a program Prog{pkABE, x}.

Prog{pkABE, x}:

Input : t ∈ {0, 1}n, r ∈ {0, 1}`rnd .

Constants : pkABE, x ∈ {0, 1}n.

Output ABE.enc(pkABE, t, x; r).

Let C-Prog{pkABE, x} be an `ckt = `ckt(λ)7 bit canonical description of Prog{pkABE, x}, where the last n
bits of the representation are x, and let C-Prog{pkABE} be C-Prog{pkABE, x} without the last n bits; that is,
for any x ∈ {0, 1}n, C-Prog{pkABE}||x = C-Prog{pkABE, x}.

The PRF key K is set to be (U, (pkABE,mskABE), C-Prog{pkABE}). To compute F (K,x), first compute
ct = InduceGen(U, C-Prog{pkABE}||x) and output ABE.dec(mskABE, ct).

F.constrain(K = (U, (pkABE,mskABE), C-Prog{pkABE}), C): The constrain algorithm first computes an ABE
secret key corresponding to circuit C. It computes skC = ABE.keygen(mskABE, C) and sets the constrained
key to be K{C} = (U, (pkABE, skC), C-Prog{pkABE}).

F.eval(K{C} = (U, (pkABE, skC), C-Prog{pkABE}), x): The evaluation algorithm first computes the canonical
circuit C-Prog{pkABE, x} = C-Prog{pkABE}||x. Next, it computes ct = InduceGen(U, C-Prog{pkABE, x}) and
outputs ABE.dec(skC , ct).

Correctness Consider any PRF key K = (U, (pkABE,mskABE), C-Prog{pkABE}) output by F.setup(1λ). Let
C ∈ F be any circuit, and let skC ← ABE.keygen(mskABE, C), K{C} = (U, (pkABE,mskABE), C-Prog{pkABE}).
Let x be any input such that C(x) = 1. We require that F.eval(K{C}, x) = F (K,x).

F.eval(K{C}, x) = ABE.dec(skC , InduceGen(U, C-Prog{pkABE, x}))
= ABE.dec(mskABE, InduceGen(U, C-Prog{pkABE, x}))8

= F (K,x)

7Note that the value `ckt required by the universal parameters scheme is determined by the ABE scheme. It depends on the
size of the encryption circuit ABE.enc and the length of pkABE.

8Recall ABE.dec(mskABE,ABE.enc(pkABE,m, x)) = m = ABE.dec(skC ,ABE.enc(pkABE,m, x)) if C(x) = 1.

7



4 Proof of Security

In this section, we will prove adaptive security for our constrained PRF in the random oracle model. We
assume the random oracle outputs `RO bit strings as output. We will first define a sequence of hybrid
experiments, and then show that if any PPT adversary Att has non-negligible advantage in one experiment,
then it has non-negligible advantage in the next experiment. Game 0 is the constrained PRF adaptive
security game in the random oracle model. In Game 1, the challenger simulates the universal parameters and
the random oracle queries. It also implements a Parameters Oracle O which is used for this simulation. Let
qpar denote the number of queries to O during the Setup, Pre-Challenge and Challenge phases. In the next
game, the challenger guesses the parameters oracle query which corresponds to the challenge input. Finally,
in the last game, it modifies the output of the parameter oracle on challenge input.

4.1 Sequence of Games

Game 0: In this experiment, the challenger chooses PRF key K. It receives random oracle queries and
constrained key queries from the adversary Att. On receiving the challenge input x∗, it outputs either
F (K,x∗) or a truly random string. The adversary then sends post-challenge random oracle/constrained key
queries, and finally outputs a bit b′.

1. Setup Phase Choose U ← UniversalGen(1λ), (pkABE,mskABE)← ABE.setup(1λ).
Let C-Prog{pkABE} be the canonical circuit as defined in the construction.

2. Pre Challenge Phase

• Constrained Key Queries: For every constrained key query C, compute skC ← ABE.keygen(mskABE, C).
Send (U, (pkABE, skC), C-Prog{pkABE}) to Att.
• Random Oracle Queries: For each random oracle query yi, check if yi has already been queried.

If yes, let (yi, αi) be the tuple corresponding to yi. Send αi to Att.
If not, choose αi ← {0, 1}`RO , send αi to Att and add (yi, αi) to table.

3. Challenge Phase On receiving challenge input x∗, set d∗ = C-Prog{pkABE}||x∗.
Compute ct = InduceGen(U, d∗), t0 = ABE.dec(mskABE, ct).
Choose b← {0, 1}. If b = 0, send t0 to Att. Else send t1 ← {0, 1}n.

4. Post Challenge Phase Respond to constrained key/random oracle queries as in pre-challenge phase.
5. Guess Att outputs a bit b′.

Game 1: This game is similar to the previous one, except that the universal parameters U and responses
to random oracle queries are simulated. The challenger implements a Parameter Oracle O, and O is used for
simulating U and the random oracle. Also, instead of using InduceGen to compute F (K,x∗), the challenger
uses the parameters oracle O. Please note that even though O is defined during the Setup Phase, it is used
in all the remaining phases.

1. Setup Phase Choose (pkABE,mskABE) ← ABE.setup(1λ). Let C-Prog{pkABE} be the canonical circuit
as defined in the construction. Implement the Parameters Oracle O as follows:

• Implement a table T . Initially T is empty.
• For each query d ∈ C[`ckt, `inp, `out](recall C[`ckt, `inp, `out] is the family of circuits whose bit rep-

resentation is of length `ckt, takes input of length `inp and provides output of length `out) ,

– If there exists an entry of the form (d, α, β), output α.

– Else if d is of the form C-Prog{pkABE}||x for some x, choose t← {0, 1}n, r ← {0, 1}`rnd .
Output ct = ABE.enc(pkABE, t, x; r).
Add (d, ct, t) to T .

– Else, choose t← {0, 1}`inp , compute α = d(t). Add (d, α,⊥) to T and output α.

Choose U ← SimUGen(1λ).

8



2. Pre Challenge Phase

• Constrained Key Queries: For every constrained key query C, compute skC ← ABE.keygen(mskABE, C).
Send (U, (pkABE, skC), C-Prog{pkABE}) to Att.
• Random Oracle Queries: For each random oracle query yi, output SimRO(yi)

9.

3. Challenge Phase On receiving challenge input x∗, set d∗ = C-Prog{pkABE}||x∗.
If T does not contain an entry of the form (d∗, α, β), query the Parameters Oracle O with input d∗.

Let (d∗, α, β) be the entry in T corresponding to d∗. Set t0 = ABE.dec(mskABE, O(d∗)) = β 10.
Choose b← {0, 1}. If b = 0, send t0 to Att. Else send t1 ← {0, 1}n.

4. Post Challenge Phase Respond to constrained key/random oracle queries as in pre-challenge phase.
5. Guess Att outputs a bit b′.

Game 2: In this game, the challenger ‘guesses’ the parameters oracle query which will correspond to the
challenge input. The attacker wins if this guess is correct, or if the challenge input has not been queried
before. Recall qpar denotes the number of calls to the Parameters Oracle O during the Setup, Pre-Challenge
and Challenge phases.

1. Setup Phase Choose i∗ ← [qpar].

Choose (pkABE,mskABE) ← ABE.setup(1λ). Let C-Prog{pkABE} be the canonical circuit as defined in
the construction. Implement the Parameters Oracle O as follows:

• Implement a table T . Initially T is empty.
• For each query d ∈ C[`ckt, `inp, `out],

– If there exists an entry of the form (d, α, β), output α.
– Else if d is of the form C-Prog{pkABE}||x for some x, choose t← {0, 1}n, r ← {0, 1}l.

Output ct = ABE.enc(pkABE, t, x; r).
Add (d, ct, t) to T .

– Else, choose t← {0, 1}`inp , compute α = d(t). Add (d, α,⊥) to T and output α.

Choose U ← SimUGen(1λ).
2. Pre Challenge Phase

• Constrained Key Queries: For every constrained key query C, compute skC ← ABE.keygen(mskABE, C).
Send (U, (pkABE, skC), C-Prog{pkABE}) to Att.

• Random Oracle Queries: For each random oracle query yi, output SimRO(yi).

3. Challenge Phase On receiving challenge input x∗, set d∗ = C-Prog{pkABE}||x∗.
If T does not contain an entry of the form (d∗, α, β), query the Parameters Oracle O with input d∗.
If d∗ was not the (i∗)th unique query to O, abort. Choose γ ← {0, 1}. Att wins if γ = 1.

Else if d∗ was the (i∗)th unique query to O, let (d∗, α∗, β∗) be the corresponding entry in T . Set t0 = β.
Choose b← {0, 1}. If b = 0, send t0 to Att. Else send t1 ← {0, 1}n.

4. Post Challenge Phase Respond to constrained key/random oracle queries as in pre-challenge phase.
5. Guess Att outputs a bit b′.

Game 3: The only difference between this game and the previous one is in the behavior of the Parameter
Oracle on the (i∗)th query. Suppose the (i∗)th input is of the form d∗ = C-Prog{pkABE}||x∗. In the previous
game, the entry in table T corresponding to d∗ is of the form (d∗, α∗, β∗) where α∗ is an encryption of β∗

for attribute x∗ using public key pkABE. In this game, the entry corresponding to d∗ is (d∗, α∗, β∗), where
α∗ is the encryption of a random message for attribute x∗ using pkABE.

1. Setup Phase Choose i∗ ← [qpar].
Choose (pkABE,mskABE) ← ABE.setup(1λ). Let C-Prog{pkABE} be the canonical circuit as defined in
the construction. Implement the Parameters Oracle O as follows:

9Recall SimRO can make polynomially many calls to Parameter Oracle O.
10Recall O(d∗) = α, and ABE.dec(mskABE, α) = β.

9



• Implement a table T . Initially T is empty.
• For each query d ∈ C[`ckt, `inp, `out],

– If there exists an entry of the form (d, α, β), output α.
– Else if d is of the form C-Prog{pkABE}||x for some x, choose t, t̃← {0, 1}n, r ← {0, 1}`rnd .

If d is not the (i∗)th unique query, output ct← ABE.enc(pkABE, t, x; r) and add (d, ct, t) to T .

Else compute ct← ABE.enc(pkABE, t̃, x; r) and add (d, ct, t).

– Else, choose t← {0, 1}`inp , compute α = d(t). Add (d, α,⊥) to T and output α.

Choose U ← SimUGen(1λ).
2. Pre Challenge Phase

• Constrained Key Queries: For every constrained key query C, compute skC ← ABE.keygen(mskABE, C).
Send (U, (pkABE, skC), C-Prog{pkABE}) to Att.

• Random Oracle Queries: For each random oracle query yi, output SimRO(yi).

3. Challenge Phase On receiving challenge input x∗, set d∗ = C-Prog{pkABE}||x∗.
If T does not contain an entry of the form (d∗, α, β), query the Parameters Oracle O with input d∗.
If d∗ was not the (i∗)th unique query to O, abort. Choose γ ← {0, 1}. Att wins if γ = 1.
Else if d∗ was the (i∗)th unique query to O, let (d∗, α∗, β∗) be the corresponding entry in T . Set t0 = β.
Choose b← {0, 1}. If b = 0, send t0 to Att. Else send t1 ← {0, 1}n.

4. Post Challenge Phase Respond to constrained key/random oracle queries as in pre-challenge phase.
5. Guess Att outputs a bit b′.

4.2 Analysis

For any PPT adversary Att, let AdviAtt denote the advantage of Att in Game i.

Claim 4.1. Assuming U = (UniversalGen, InduceGen) is a secure (`ckt, `inp, `out) universal parameters scheme,
for any PPT adversary Att, ∣∣Adv0Att − Adv1Att

∣∣ ≤ negl(λ).

Proof. Suppose there exists a PPT adversary Att such that
∣∣Adv0Att − Adv1Att

∣∣ = ε. We will construct a PPT

algorithm B such that
∣∣∣Pr[RealB(1λ) = 1]− Pr[IdealBSimUGen,SimRO(1λ) = 1]

∣∣∣ = ε.

B interacts with Att and participates in either the Real or Ideal game. It receives the universal parameters
U . It chooses (pkABE,mskABE)← ABE.setup(1λ).

During the pre-challenge phase, B receives either secret key queries or random oracle queries. On
receiving secret key query for circuit C, it computes skC ← ABE.keygen(mskABE, C) and sends K{C} =
(U, (pkABE, skC), C-Prog{pkABE}) to Att. On receiving random oracle query y, it forwards it to the universal
parameters challenger. It receives response α, which it forwards to Att.

On receiving the challenge message x∗, it sets d∗ = C-Prog{pkABE}||x∗, computes ct = InduceGen(U, d∗),
t0 = ABE.dec(mskABE, ct). It chooses b← {0, 1}. If b = 0, it sends t0, else it sends t1 ← {0, 1}.

The post challenge queries are handled similar to the pre challenge queries. Finally, Att outputs b′. If
b = b′, B send 0 to the universal parameters challenger, indicating Real experiment. Else it sends 1.

Note that due to the honest parameter violation probability being 0, Att participates in either Game 0
or Game 1. This concludes our proof.

Observation 4.1. For any adversary Att, Adv2Att ≥ Adv1Att/qpar.

Proof. Since the challenger’s choice i∗ is independent of Att, if d = C-Prog{pkABE}||x∗ was queried before
the challenge phase, then the challenger’s guess is correct with probability 1/qpar.

10



Claim 4.2. Assuming ABE = (ABE.setup,ABE.keygen,ABE.enc,ABE.dec) is an adaptively secure attribute
based encryption scheme, for any PPT adversary Att,∣∣Adv2Att − Adv3Att

∣∣ ≤ negl(λ).

Proof. Note that the only difference between Game 2 and Game 3 is in the implementation of Parameters
Oracle O. Suppose there exists a PPT adversary Att such that

∣∣Adv2Att − Adv3Att
∣∣ = ε. We will construct

a PPT algorithm B that interacts with Att and breaks the adaptive security of ABE scheme with advantage ε.

B receives pkABE from the ABE challenger. It chooses i∗ ← [qpar] and computes U ← SimUGen(1λ).
Implementing the Parameters Oracle O : B must implement the Parameters Oracle. It maintains a

table T which is initially empty. On receiving a query d for O, if there exists an entry of the form (d, α, β)
in T , it outputs α. Else, if d is a new query, and is not of the form C-Prog{pkABE}||x for some x, it
chooses t ← {0, 1}`inp , outputs d(t) and stores (d, d(t),⊥). Else, if d = C-Prog{pkABE}||x, and d is not the
(i∗)th query, it chooses t ∈ {0, 1}n, computes ct = ABE.enc(pkABE, t, x) and stores (d, ct, t) in T . Else, if
d∗ = C-Prog{pkABE}||x∗ is the (i∗)th query, B chooses t, t̃← {0, 1}n, sends t, t̃ as the challenge messages and
x∗ as the challenge attribute to the ABE challenger. It receives ct in response. B stores (d∗, ct, t) in T and
outputs ct.

The remaining parts are identical in both Game 2 and Game 3. During the pre-challenge query phase, B re-
ceives either constrained key queries or random oracle queries. On receiving constrained key query for circuit
C, it sends C to the ABE challenger as a secret key query, and receives skC . It sends (U, (pk, skC), C-Prog{pkABE})
to Att. On receiving a random oracle query y, it computes SimRO(y), where SimRO is allowed to query
the Parameters Oracle O. If B receives any constrained key query C such that C(x∗) = 1 (where d∗ =
C-Prog{pkABE}||x∗ was the (i∗)th unique query to O), then B aborts.

In the challenge phase, B receives input x∗. If d∗ = C-Prog{pkABE}||x∗ was not the (i∗)th query to O,
B aborts. Else, let (d∗, α∗, β∗) be the corresponding entry in T . It chooses b ← {0, 1}. If b = 0, it outputs
t0 = β∗, else it outputs t1 ← {0, 1}n.

The post challenge phase is handled similar to the pre-challenge phase. Finally, Att outputs b′. If b = b′,
Att outputs 0, indicating ct is an encryption of t. Else it outputs 1.

We will now analyse B’s winning probability. Let x∗ was the challenge input sent by Att. Note that if
B aborts, then the (i∗)th unique query to O was not d∗ = C-Prog{pkABE}||x∗, in which case, Att wins with
probability exactly 1/2.

If d∗ was the (i∗)th query and ct is an encryption of t, then this corresponds to Game 2. Else, it cor-
responds to Game 3. Note that Pr[B outputs 0|ct ← ABE.enc(pkABE, t, x

∗)] = Pr[Att wins in Game 2] and
Pr[B outputs 0|ct← ABE.enc(pkABE, t̃, x

∗)] = Pr[Att wins in Game 3]. Therefore, AdvABEB = ε.

Observation 4.2. For any adversary Att, Adv3Att = 0.

Proof. Note that Att receives no information about t0 in the pre-challenge and post challenge phases. As a
result, t0 and t1 look identical to Att.

References

[BGI13] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. IACR Cryptology ePrint Archive, 2013:401, 2013.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT, pages 280–300, 2013.

11



[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. In Proceedings of CRYPTO 2014, 2014.

[CLT13] Jean-Sebastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over
the integers. Cryptology ePrint Archive, Report 2013/183, 2013.

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao. Adaptive
security of constrained prfs. IACR Cryptology ePrint Archive, 2014:416, 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based
encryption for circuits from multilinear maps. Cryptology ePrint Archive, Report 2013/128,
2013. http://eprint.iacr.org/.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure attribute based
encryption from multilinear maps. Cryptology ePrint Archive, Report 2014/622, 2014. http:

//eprint.iacr.org/.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In FOCS, pages 464–479, 1984.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In STOC, 2013.

[HJK+14] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark
Zhandry. How to generate and use universal parameters. Cryptology ePrint Archive, Report
2014/507, 2014. http://eprint.iacr.org/.

[HKW14] Susan Hohenberger, Venkata Koppula, and Brent Waters. Adaptively secure puncturable pseu-
dorandom functions in the standard model. Cryptology ePrint Archive, Report 2014/521, 2014.
http://eprint.iacr.org/.

[Hof14] Dennis Hofheinz. Fully secure constrained pseudorandom functions using random oracles. IACR
Cryptology ePrint Archive, 2014:372, 2014.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Del-
egatable pseudorandom functions and applications. In ACM Conference on Computer and
Communications Security, pages 669–684, 2013.

[LW14] Allison B. Lewko and Brent Waters. Why proving HIBE systems secure is difficult. In Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceed-
ings, pages 58–76, 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–
473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In STOC, pages 475–484, 2014.

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional encryption.
Cryptology ePrint Archive, Report 2014/588, 2014. http://eprint.iacr.org/.

12


