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Abstract

Compression is desirable for network applications as it saves bandwidth; however, when data is
compressed before being encrypted, the amount of compression leaks information about the amount
of redundancy in the plaintext. This side channel has led to successful real-world attacks (the CRIME
and BREACH attacks) on web traffic protected by the Transport Layer Security (TLS) protocol. The
general guidance in light of these attacks has been to disable compression, preserving confidentiality
but sacrificing bandwidth. In this paper, we examine two techniques—heuristic separation of secrets
and fixed-dictionary compression—for enabling compression while protecting high-value secrets, such
as cookies, from attack. We model the security offered by these techniques and report on the amount
of compressibility that they can achieve.
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1 Introduction

To save communication costs, network applications often compress data before transmitting it; for
example, the Hypertext Transport Protocol (HTTP) [9, §4.2] has an optional mechanism in which a server
compresses the body of an HTTP response, most commonly using the gzip algorithm. When encryption is
used to protect communication, compression must be applied before encryption (since ciphertexts should
look random, and thus have little apparent redundancy that can be compressed). In fact, to facilitate
this, the Transport Layer Security (TLS) protocol [7, §6.2.2] has an optional compression mode that will
compress all application before encrypting it.

While compression is useful for reducing the size of transmitted data, it has had a negative impact
when combined with encryption, because the amount of compression acts as a side channel. Most research
considers side-channels that leak information like timing [15, 6, 5] or power consumption [12, 16], which
can reveal information about cryptographic operations and secret parameters.

1.1 Compression-based leakage.

In 2002, Kelsey [14] showed how compression can act as a form of side-channel leakage. If plaintext data
is compressed before being encrypted, the length of the ciphertext reveals information about the amount
of compression, which in turn can reveal information about the plaintext. Kelsey notes that this side
channel differs from other types of side channels in two key ways: “it reveals information about the
plaintext, rather than key material”, and “it is a property of the algorithm, not the implementation”.

Kelsey’s most powerful attack is an adaptive chosen input attack : if an attacker is allowed to choose
inputs x that are combined with a target secret s and x‖s is compressed and encrypted, then observing
the length of the outputs can eventually allow the attacker to extract the secret s. For example, the to
determine the first character of s, the attacker could ask to have the string x = prefix*prefix combined
with s compressed and encrypted, for every possible character *; in one case, when * = s1, the amount of
redunancy is higher and the ciphertext should be shorter. Once each character of s is found, the attack
can be carried out on the next character. The attack is somewhat noisy, but succeeds reasonably often.

Key to this attack is the fact that most compression algorithms (such as the deflate algorithm
underlying gzip) are adaptive: they adaptively build and maintain a dictionary of recently observed
strings, and replace subsequent occurences of that string with a code.

1.2 The CRIME and BREACH attacks.

In 2012, Rizzo and Duong [19] showed how to apply Kelsey’s adaptive chosen input attack against gzip
compression as used in TLS, in what they called the Compression Ratio Info-leak Mass Exploitation
(CRIME) attack. The primary target of the CRIME attack was the user’s cookie in the HTTP header. If
the victim visited an attacker-controlled web page, the attacker could use Javascript to cause the victim to
send HTTP requests to URLs of the attacker’s choice on a specified server. The attacker could adaptively
choose those URLs to include a prefix to carry out Kelsey’s adaptive chosen input attack. Some care is
required to ensure the padding does not hide the length with block ciphers, but this can be dealt with.

As a result of the CRIME attack, it was recommended that TLS compression be disabled, and the
Trustworthy Internet Movement’s SSL Pulse report for September 2014 indicates less than 10% of websites
have TLS compression enabled [22]; moreover, all major browsers have disabled it.

However, compression is also built into the HTTP protocol: servers can optionally compress the body
of HTTP responses. While this excludes the cookie in the header, this type of attack can still be successful
against secret values in the HTTP body, such as anti-cross-site request forgery (CSRF) tokens. Suggested
by Rizzo and Duong, this was demonstrated Gluck et al. [10] in the so-called Browser Reconnaissance
and Exfiltration via Adaptive Comrpession of Hypertext (BREACH) attack.

1.3 Mitigation techniques.

Gluck et al. [10] discussed several possible mitigation techniques against the BREACH attack, listed in
decreasing order of effectiveness:

1. Disabling HTTP compression

2. Separating secrets from user input

3. Randomizing secrets per request
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4. Masking secrets (effectively randomizing by XORing with a random secret perrequest)

5. Protecting vulnerable pages with CSRF

6. Length hiding (by adding random number of bytes to the responses)

7. Rate-limiting the requests

Despite the demonstrated practicality of the BREACH attack, support for and use of HTTP compres-
sion remains widespread, due in large part to the utility of decreasing communication costs and time. In
fact, compression is even more tightly integrated into the proposed HTTP version 2 [4] than previous
versions. Techniques 2–4 generally require changes to both browsers and web servers. For example,
masking secrets such as anti-CSRF tokens requires new mark-up for secrets, which browsers and servers
can interpret and apply the randomized masking technique. Techniques 5–7 can be unilaterally applied
by web servers, though length hiding can be defeated with statistical averaging, and rate-limiting must
find a balance between legitimate requests and the amount of information obtainable.

1.4 Related work.

There has been little academic study of compression and encryption. Besides Kelsey’s adaptive chosen
input attack and the related CRIME and BREACH attacks, the only relevant work we are aware of is
that of Kelley and Tamassia [13]. They give a new security notion called entropy-restricted semantic
security (ER-IND-CPA) for keyed compression functions which combine both encryption and compression:
compared with the normal indistinguishability under chosen plaintext attack (IND-CPA) security notion,
in ER-IND-CPA the adversary should be able to distinguish between the encryption of two messages
that compress to the same length. Kelley and Tamassia then show how to construct a cipher based
on the LZW compression algorithm by rerandomizing the compression dictionary. Unfortunately, the
ER-IND-CPA notion does not capture the CRIME and BREACH attacks, which depend on observing
messages that compress to different lengths.

In leakage-resilient security definitions [1, 2, 8, 17, 11], leakage of the secret key is addressed. This differs
from the setting in compression-based side-channel attacks, which addresses leakage of the plaintext. Thus,
previous leakage-resilient security definitions are not suitable to model compression-based side-channel
attacks.

1.5 Our contributions.

In this work, we study symmetric-key compression-encryption schemes, with the characterizing the security
properties that can be achieved by various mitigation techniques in the face of CRIME-/BREACH-like
attacks.

To some extent, the side channel exposed by compression is fundamentally unavoidable: if transmission
of data is decreased, nothing can hide the fact that some redundancy existed in the plaintext. Hence,
we focus our study on the ability of the attacker to learn specific “high value” secrets embedded in a
plaintext, such as cookies or anti-CSRF tokens. In our models, we imagine there is a secret value ck, and
the adversary can adaptively obtain encryptions

Ek(m′‖ck‖m′′) (1)

for messages m′ and m′′ of his choosing.
The first mitigation technique we consider is that of separating secrets. During compression/encryption,

an application-aware filter is applied to the plaintext to separate out any potential secret values from the
data, the remaining plaintext is compressed, then the secrets and compressed plaintext are encrypted;
after decryption, the inverse of the filter is used to reinsert the secret values in the plaintext. Assuming
the filter fully separates out all secret values, we show that the separating secrets technique is able to
achieve a strong notion of protection, which we call chosen cookie indistinguishability (CCI): the adversary
cannot determine which of two cookies ck0 and ck1 of the adversary’s choice was encrypted with messages
of the adversary’s choice given ciphertexts as in equation (1).

The second mitigation technique we consider is the use of a fixed-dictionary compression scheme,
where the dictionary used for compression does not adapt to the plaintext being compressed, but instead
is preselected in advance based on the expected distribution of plaintext messages, for example including
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Figure 1: Compression ratios of Gzip compression and mitigation techniques

common English words like “the” and “and”.1 We show that, if the secret values are sufficiently high
entropy, then fixed-dictionary compression is able to achieve cookie recovery (CR) security: if the secret
cookie chosen uniformly at random, the adversary cannot recover the entire secret cookie even given
an adaptive message attack as in equation (1). While cookie recovery security does not meet the “gold
standard” of indistinguishability notions for encryption, it may be sufficient for some settings, and would
for example protect compressed HTTP traffic from CRIME and BREACH attacks attempting to recover
cookies and anti-CSRF tokens.

We also characterize the relationship among the CCI and CR security notions, as well as an interme-
diate notion called random cookie indistinguishability (RCI) and the ER-IND-CPA notion of Kelley and
Tamassia [13].

In the separating secrets technique, if the number of secrets extracted by the separating filter is
relatively small, then the compressibility generally remains close to that of normal compression of the full
plaintext. In the fixed-dictionary compression technique, compressibility suffers quite a bit compared to
adaptive techniques on the full plaintext, although if the dictionary is constructed from a corpus of text
similar to the plaintext, then some compression can be achieved. In Figure 1, we report experimental
results comparing compression ratios for these two techniques on the HTML, CSS, and Javascript source
code of the top 10 global websites as reported by Alexa Top Sites2. On average, the compression ratio
(uncompressed size : compressed size) of the gzip algorithm applied to the full source code was 5.42×;
applying a separation filter that extracted all values following value= in the HTML source code yielded
an average compression ratio of 5.20×; compression of each page using a fixed dictionary trained on all
10 pages yielded an average compression ratio of 1.55×.

2 Definitions

Notation. If x is a string, then xi:` denotes the length-` substring of x starting at position i: xi:` =
xi‖ . . . ‖xi+`−1. If x and y are strings, then x ⊆ y denotes that x is a substring of y. The index of x in y
is the smallest i such that yi:|x| = x.

2.1 Encryption and compression schemes

Recall the standard definition of an encryption scheme:

Definition 2.1 (Symmetric-key encryption scheme). A symmetric-key encryption scheme Π for message
space M and ciphertext space C is a tuple of algorithms:

• KeyGen()
$→ k: A probabilistic key generation algorithm that generates a random key k in the

keyspace K.

• Enc(k,m)
$→ c: A possibly probabilistic encryption algorithm that takes as input a key k ∈ K and

a message m ∈M and outputs a ciphertext c ∈ C.
1Sadly “cryptography” is only the 29,697th most-frequently used English word. (http://en.wiktionary.org/wiki/

Wiktionary:Frequency_lists/PG/2006/04/20001-30000)
2http://www.alexa.com/topsites
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ExpIND-CPA
Π (A)

1: k
$← KeyGen()

2: b
$← {0, 1}

3: (m0,m1)
$← AEnck(·)()

4: if |m0| 6= |m1|, then return 0
5: c← Enck(mb)

6: b′
$← AEnck(·)(c)

7: if b′ = b then
8: return 1
9: else

10: return 0

ExpER-IND-CPA
Π◦Γ,L (A)

1: k
$← KG()

2: b
$← {0, 1}

3: (m0,m1)
$← AEk(·)()

4: if m0 6∈ L or m1 6∈ L, then return 0
5: c← Ek(mb)

6: b′
$← AEk(·)(c)

7: if b′ = b then
8: return 1
9: else

10: return 0

Figure 2: Security experiments for indistinguishability under chosen plaintext attack (IND-CPA, left) and
entropy-restricted IND-CPA (ER-IND-CPA, right)

• Dec(k, c)→ m′ or ⊥: A deterministic decryption algorithm that takes as input a key k ∈ K and a
ciphertext c ∈ C, and outputs either a message m′ ∈M or an error symbol ⊥.

Correctness of symmetric-key encryption is defined in the obvious way: for all k
$← KeyGen(), for all

m ∈M, we require that Dec(k,Enc(k,m)) = m.

Definition 2.2 (Compression scheme). A compression scheme Γ for message spaceM with output space
O is a pair of algorithms:

• Comp(m)→ o: A compression algorithm that takes as input a message m ∈ M and outputs an
encoded value o ∈ O.

• Decomp(o) → m′ or ⊥: A decompression algorithm that takes as input an encoded value o ∈ O
and outputs a message m′ ∈M or an error symbol ⊥.

Note that |Comp(m)| may not necessarily be less than |m|; Shannon’s coding theorem implies that no
algorithm can encode every message with shorter length, so not all messages may actually be “compressed”,
and in fact some may be length-increased.

Correctness of a compression scheme is again defined in the obvious way: for all m ∈M, we require
that Decomp(Comp(m)) = m.

In this paper, we are interested in symmetric-key compression-encryption schemes that come from the
composition of a compression scheme and an encryption scheme.

Definition 2.3 (Symmetric-key compression-encryption scheme). Let Γ = (Comp,Decomp) be a compres-
sion scheme with message spaceM and output space O. Let Π = (KeyGen,Enc,Dec) be a symmetric-key
encryption scheme with message space O and ciphertext space C. The symmetric-key compression-
encryption scheme Π ◦ Γ constructed from Γ and Π is a tuple of the following algorithms:

KG() = Π.KeyGen()

Ek(m) = Π.Enck(Γ.Comp(m))

Dk(c) = Γ.Decomp(Π.Enck(c))

Note that Π ◦ Γ is itself a symmetric-key encryption scheme with message space M and ciphertext
space C. Moreover, if Γ and Π are both correct, then so is Π ◦ Γ.

2.2 Existing security notions

The standard security notion for symmetric-key encryption is indistinguishability of encrypted messages.
In this paper, we focus on chosen plaintext attack. The security experiment ExpIND-CPA

Π (A) for indistin-
guishability under chosen plaintext attack (IND-CPA) of a symmetric-key encryption scheme Π against a
stateful adversary A is given in Figure 2. The advantage of A in breaking the IND-CPA experiment for Π

is AdvIND-CPA
Π (A) =

∣∣∣Pr
(

ExpIND-CPA
Π (A) = 1

)
− 1/2

∣∣∣.
6



Kelley and Tamassia [13] give a definition of entropy-restricted IND-CPA security which applies to
compession-encryption schemes Π ◦ Γ, and demands indistinguishability of messages from the same class
L ⊆M; typically, L is the class of messages that compress to the same length under Γ.Comp, such as:

L` = {m ∈M : |Comp(m)| = `} .

The ER-IND-CPA security experiment is given in Figure 2. (We adapt their notion slightly to use our
composition notation in Definition 2.3.) Kelley and Tamassia note that any IND-CPA-secure symmetric-key
encryption scheme Π, combined with any compression scheme Γ, is immediately ER-IND-CPA-secure.

2.3 New security notions

We focus on the ability of an attacker to learn about a secret piece of data inside a larger piece of data,
where the attacker controls everything except the secret data. We use the term cookie to refer to the
secret data; in practice, this could be an HTTP cookie in a header, an anti-cross-site request forgery
(CSRF) token, or some piece of personal information. We will allow the attacker to adaptively obtain
encryptions of compressions of data of the form m′‖ck‖m′′ for a secret cookie ck and adversary-chosen
message prefix m′ and suffix m′′.

We now present three notions for the security of cookies in the context of compression-encryption
schemes:

• Cookie recovery (CR) security : A simple, but relatively weak, security notion for symmetric-key
compression-encryption schemes is that of cookie recovery : it should be hard for the attacker to
recover a secret value, even given adaptive access to an oracle that encrypts plaintexts of his choosing
with the target cookie embedded.

• Random cookie indistinguishability (RCI) security : Here, the adversary has to decide which of two
randomly chosen cookies was embedded in the encrypted plaintext, even given adaptive access to
an oracle that encrypts plaintexts of his choosing with the target cookie embedded. RCI includes
indistinguishability of messages.

• Chosen cookie indistinguishability (CCI) security : Here, the adversary has to decide which of two
cookies of the adversary’s choice was embedded in the encrypted plaintext, even given adaptive
access to an oracle that encrypts plaintexts of his choosing with the target cookie embedded. CCI
includes indistinguishability of messages.

These security notions are formalized in the following definition, which refers to the security experiments
shown in Figure 3.

Definition 2.4 (CR,RCI,CCI security). Let Π ◦ Γ be a compression-encryption scheme constructed
from symmetric-key encryption scheme Π and compression scheme Γ. Let A denote an algorithm. Let
CK denote the cookie space. Let xxx ∈ {CR,RCI,CCI} be a security notion. Consider the security

experiment Expxxx
Π◦Γ,CK(A) defined in Figure 3. Let SuccCRΠ◦Γ,CK(A) = Pr

(
ExpCR

Π◦Γ,CK(A) = 1
)

denote the

probability that A wins the cookie recovery experiment for Π ◦ Γ and CK. Similarly, let Advxxx
Π◦Γ,CK(A) =∣∣Pr

(
Expxxx

Π◦Γ,CK(A) = 1
)
− 1/2

∣∣, xxx ∈ {RCI,CCI} denote the advantage that A has in winning the random
cookie and chosen cookie indistinguishability experiments.

The motivation for incorporating the message indistinguishability property is as follows: in real-world
situations, all the data in the application layer (messages and secrets) are sent to the security layer
(SSL/TLS) for encryption. In the security layer, encryption happens on all the data coming from the
application layer. If we only consider the indistinguishability of the cookie, a IND-CPA-secure encryption
scheme which only encrypts the cookie can satisfy the cookie indistinguishability requirement, which does
not address the real-world situation because the security layer does not encrypt just the cookie, instead
encrypts all the data (message and cookie) coming from the application layer. Therefore, in security
notions we need to make sure that the encryption scheme encrypts all the data. Thus, notions combining
both message indishtinguishability and cookie indistinguishability provide stronger security.
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ExpCR
Π◦Γ,CK(A)

1: k
$← KG()

2: ck
$← CK

3: ck′
$← AEk(·‖ck‖·),Ek(·)()

4: if ck′ = ck then
5: return 1
6: else
7: return 0

Exp
RCI/CCI
Π◦Γ,CK(A)

1: k
$← KG()

2: if RCI then
3: ck0, ck1

$← CK s.t. |ck0| = |ck1|
4: else if CCI then
5: ck0, ck1 ← AEk(·) s.t. |ck0| = |ck1|
6: b

$← {0, 1}
7: (m′0,m

′′
0 ,m

′
1,m

′′
1)← AEk(·‖ckb‖·),Ek(·)(ck0, ck1)

8: if |Comp(m′0)|+ |Comp(m′′0)|
6= |Comp(m′1)|+ |Comp(m′′1)| then

9: return 0
10: c∗ ← Ek(m′b‖ckb‖m′′b )
11: b′ ← AEk(·‖ckb‖·),Ek(·)(c∗, ck0, ck1)
12: if b′ = b then
13: return 1
14: else
15: return 0

Figure 3: Security experiments for cookie recovery (left) and random cookie indistinguishability and
chosen cookie indistinguishability (right) attacks

2.4 Relations and separations between security notions

Cookie recovery, being a computational problem rather than a decisional problem, is a weaker security
notion. Keeping CR as an initial step, the RCI and CCI notions gradual increase the security afforded to
the cookie, as well as incorporating the message indistinguishability property as well.

We can establish the following relations between security notions for symmetric-key compression-
encryption schemes:

CCI =⇒ RCI =⇒ CR .

In other words, every scheme that provides chosen cookie indistinguishability provides random cookie
indistinguishability, and so on. Moreover, these notions are distinct, and we can show separations between
them:

CR 6=⇒ RCI 6=⇒ CCI .

Additionally, we can connect our new notions with existing notions:

CCI =⇒ ER-IND-CPA =⇒ IND-CPA .

(These last relations should be interpreted as discussed at the end of Section 2.2: a CCI-secure symmetric-
key compression-encryption scheme, treated as an encryption scheme, is IND-CPA secure, and so on.)
Appendix A contains proofs of these relations and counterexamples for the separations.

3 Reviewing proposed mitigation techniques

In this section we review couple of mitigation techniques against compression-based side-channel attacks
such as CRIME and BREACH attacks and give reasons on why those mitigation techniques are not
provably secure or not suitable in practice.

3.1 Disabling compression

CRIME attack occurs due to SSL/TLS compression which is little-used, while BREACH attack occurs due
to HTTP compression which is widely-used. The TLS/SSL compression is taken place in the security layer
which in between the application layer and the transport layer, whereas the HTTP compression is taken
place in the application layer. Since SSL/TLS compression is little-used and disabled in most browsers by
default, switching it off would not be a huge overhead for data transmission as long as HTTP compression
is available. Thus, CRIME can be mitigated by switching-off the SSL/TLS compression. While the
CRIME is mitigated by that way, switching off HTTP compression is not a practical solution to mitigate
BREACH attack, even though it is the most effective mitigation technique (trivially IND-CPA-secure as
long as the underlying encryption scheme is IND-CPA-secure). Because switching off both compressions
will affect in transmission band-width.
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3.2 Length hiding

Length hiding by adding random amount of padding to the responses seems to be a technique which can
delay the attacker. The output length should always be smaller than the original input length, otherwise
it will be more inefficient than disabling the HTTP compression. Hence, the size of the set of numbers
where the random value is picked is smaller; a polynomial of the plaintext length. Weak random number
generators may lead towards weak countermeasures, because with significant probability the adversary
can guess the amount of random padding. Moreover, by observing the output length of the same input for
number of times, the attacker can obtain sufficient amount of information to reveal the actual compressed
size. It is not possible to prove the security of this mitigation technique, the only possibility is to obtain
an information theoretic bound on the minimum amount of information that the adversary needs to
reveal the secret. Besides this, due to the random amount of extra padding it is not possible to have a
good compression.

3.3 Rate-limiting the requests

Rate-limiting the requests can prevent the attacker getting sufficient information for the attack. But this
seems to be very difficult technique in practice; because a frequent legitimate customer of the website
may find it is not possible to get the service at some times. Therefore this mitigation technique cannot
be considered as a suitable one.

4 Separating secrets from user inputs

In this section we analyze an alternative mitigation technique against attacks that recover secrets from
compressed data: separating secrets from user inputs. This mitigation technique is a generic mitigation
technique against a whole class of compression-based side-channel attacks.

4.1 Basic idea

The basic idea of separating secrets from user inputs is: given an input, use a filter to separate all the
secrets from the rest of the content, including user inputs. Then the rest of the content is compressed,
while the secrets are kept uncompressed.

We model the filter for separating secrets from rest of the content using a reversible polynomial-time
function f defined as f : {0, 1}∗ → {0, 1}∗ × {0, 1}∗ . Given a filter f and a compression shcme Γ, the
separating-secrets scheme SSf,Γ is given in Figure 4.

SSf,Γ.Comp(pt)

1: ck, ptns ← f(pt)
2: p̃tns ← Γ.Comp(ptns)
3: return (ck, p̃tns)

SSf,Γ.Decomp(ck, p̃tns)

1: ptns ← Γ.Decomp(p̃tns)
2: pt← f−1(ck, ptns)
3: return pt

Figure 4: Abstract separating-secrets compression scheme SS

4.2 CCI-security of basic separating-secrets technique

In this section we analyze the security of separating-secrets mitigation technique according to CCI notion.
Let Π = (KeyGen,Enc,Dec) be a IND-CPA-secure symmetric-key encryption scheme and SSf,Γ be a
separating-secrets compression scheme as given in Figure 4. We consider the security of the resulting
symmetric-key compression-encryption scheme Π ◦ SSf,Γ, showing that, if the filter f is effective at
separating out secret cookies, then breaking chosen cookie indistinguishability of Π ◦ SSf,Γ is as hard as
breaking the indistinguishability (IND-CPA) of the encryption scheme Π.

Theorem 4.1. Let Π be a symmetric-key encryption scheme. Let A be any adversary against the chosen
cookie indistinguishability security of the separating-secrets symmetric-key compression-encryption scheme
Π ◦ SSf,Γ. Assume that filter f separates all secret values from the plaintext. Then

AdvCCI
Π◦SSf,Γ,CK(A) ≤ AdvIND-CPA

Π (B) ,

where B is an algorithm, constructed using the adversary A, against the IND-CPA security of the underlying
symmetric-key encryption scheme Π.
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In order to prove Theorem 4.1 we use the game hopping technique [21]; define a sequence of games and
relate the adversary’s advantage of distinguishing each game from the previous game to the advantage of
breaking one of the underlying cryptographic primitive.

Proof. Assume that the adversary A can win the CCI challenge against the separating-secrets symmetric-
key compression-encryption scheme Π ◦ SSf,Γ with non negligible advantage AdvCCI

Π◦SSf,Γ,CK(A).

Game 1: This game is the original game defined in CCI security definition.
Game 2: Same as Game 1 with the following exception: For the challenge request (m0 = (m′0,m

′′
0),m1 =

(m′1,m
′′
1)) and afterwards, for each encryption request, m = (m′,m′′), of A, Game 2 challenger randomly

chooses ciphertexts c and sends to A.

Analysis: The adversary’s advantage of distinguishing each game from the previous game is inves-

tigated. SuccGame x(A) be the event that the adversary A wins Game x, AdvGame x
A be the advantage of

the adversary A of winning Game x.

Game 1: The original game. Hence,

AdvGame 1
A = AdvCCI

Π◦SSf,Γ,CK(A). (2)

Difference between Game 1 and Game 2: We introduce an algorithm B which is constructed using
the adversary A as a subroutine. If A can distinguish the difference between Game 1 and Game 2, then
B can be used against a IND-CPA challenger of Π. To answer the encryption requests of A, the algorithm

B uses a IND-CPA challenger in which the secret key is k. The algorithm B randomly chooses θ
$←− {0, 1}.

For each encryption request, m = (m′,m′′), of A, B simulates the encryption process Ek(m′‖ckθ‖m′′)
as, When A outputs (m0,m1), B sends (M0 = (ck0‖m̃0),M1 = (ck1‖m̃1)) to the IND-CPA challenger as
1: (ckθ, m̃)← SSf,Γ.Comp(m′‖ckθ‖m′′)
2: sends (ckθ‖m̃) to the IND-CPA challenger
3: gets c← Enck(ckθ‖m̃) from the IND-CPA challenger and sends c to A.

the challenge request. The IND-CPA challenger randomly chooses b
$←− {0, 1}, computes c∗ ← Enck(Mb)

and sends c∗ to B as the challenge. B sends c∗ to A as the challenge. If θ = b, Game 2 is identical to
the Game 1, otherwise the simulation constructed by B is identical to Game 2. If A can distinguish
the difference between Game 1 and Game 2, then B can be used against a IND-CPA challenger of the
symmetric-key encryption scheme Π. Hence,

|AdvGame 1
A −AdvGame 2

A | ≤ AdvIND-CPA
Π (B). (3)

Semantic security of Game 2: Since the ciphertext c is chosen randomly, A does not have any
advantage in Game 2. Hence,

AdvGame 2
A = 0. (4)

Using equations 2–4 we find,
AdvCCI

Π◦SSf,Γ,CK(A) ≤ AdvIND-CPA
Π (B).

4.3 Separating secrets in HTML

Separating secrets from user inputs is a realistic mitigation technique against BREACH attack; because
in application layer the fields which contain secrets (CSRF tokens, PII or any sensitive data) can be
identified and separated from the HTTP response body. In order to implement separating secrets from
user inputs in HTML we need to instantiate the abstract function f as fHTML.

One possible method to separate secrets is to separate the content assigned to the value attribute of
a HTML file. Among other uses, the value attribute defines the value of a specific field in a form. The
HTML code segment of Figure 5 shows inclusion of a secret CSRF token as a hidden input field in a web
form, which will appear in a HTML response body. By separating the content assigned into the value

attribute it is possible to separate the CSRF token.
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<form action="/money_transfer" method="post">

<input type="hidden" name="CSRFtoken"

value="OWT4NmQlODE4ODRjN2Q1NTlhMmZlYWE ...">

...

</form>

Figure 5: HTML code segment showing inclusion of CSRF token in a web form

Based on the HTML specification, the following (case-insensitive) regular expression can be used to
separate out all data that is given in the value attribute of HTML elements:

value\s*=\s*"([^"]*)"|value\s*=\s*’([^’]*)’|value\s*=\s*[^\s]*

Note that the above regular expression will also capture the value attribute of HTML elements other
than hidden input elements, including elements such as option, that may not need to be treated as
secret. Figure 6 explains a basic algorithm of the separating secrets in a HTML file.

fHTML(Input)

1: P ← value\s*=\s*"([^"]*)"|value\s*=\s*’([^’]*)’|value\s*=\s*[^\s]*

2: Line ← read line in Input
3: while Line != null do
4: nonSecret ← replace in Line (P, ”FILTERED-OUT”)
5: Matcher ← match in Line (P)
6: while Matcher exists do
7: Secret ← append the Matcher
8: Line ← read line in Input

Figure 6: Separating secrets from user inputs in HTML

4.4 Experimental results

Table 1 shows the result of applying the above regular expression to separate secrets on the top 10 global
websites of Alexa Top Sites. As most pages containing little data in value attributes, the total amount
of space required to transmit the separated secrets + remaining data is not much more than when the
full page is compressed.

Website Original size
gzip full page Separating secrets

Size Compression ratio Size Compression ratio

Google.com 145599 41455 3.51 41502 3.51
Facebook.com 48226 13785 3.50 15863 3.04
Youtube.com 467928 41813 11.19 41893 11.17
Yahoo.com 444408 82572 5.38 83342 5.33
Baidu.com 74979 17519 4.28 17727 4.23
Wikipedia.org 48548 11217 4.33 11809 4.11
Twitter.com 57777 12520 4.61 16618 3.48
Qq.com 626297 124108 5.05 125747 4.98
Amazon.com 234609 54922 4.27 56278 4.17
Taobao.com 192068 23658 8.12 23898 8.04

Table 1: Compression performance, separating secrets technique

4.5 Discussion

The main drawback of the separating secrets mitigation technique is that the separation technique must
be application-dependent.

The method we used to separate secrets in HTML—separating the data assigned to the value

attribute—also separates some of the non-secrets as well. As an example, for a button element in a
web page value defines the text on the button, which is a non-secret. Even so, this is not a problem
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for leakage resilience security, as long as all the secrets are separated and kept uncompressed. A more
optimum secret-separation technique which separates only the secrets will give better compression.

This filter also only captures certain types of secrets, such as CSRF tokens in hidden fields. It does
not necessarily capture all values that might be considered sensitive. For example, should the titles of
books in a search results page on an shopping site be considered secret? If so, an alternative separation
filter would have to be developed. To provide complete certainty, secret separation would would require
additional markup with which the developer clearly identifies which data should be treated as secret. All
the values which are not separated will be compressed together with user inputs and other application
data, and hence open to the compression-based side-channel.

5 Fixed-dictionary compression

The CRIME and BREACH attacks work because the dictionary used by the deflate compression
algorithm is adaptive: if the attacker injects a substring of the target secret into the plaintext nearby
the secret itself, then the plaintext will compress more because of the repeated substring. Some early
compression algorithms were non-adaptive, using a fixed dictionary mechanism. For example, Pike [18]
used a fixed dictionary of 205 popular English words and a variable length coding mechanism to achieve
a compression ratio of less than 4 bits per character for typical English text. Another recent algorithm,
Smaz [20], similarly uses a fixed dictionary consisting of common digrams and trigrams from English and
HTML source code, allowing it to compress even very short strings. Because the CRIME and BREACH
attacks rely on the adaptivity of the compression dictionary, fixed-dictionary compression algorithms can
offer resistance to such attacks while still providing some compression, albeit not as good as adaptive
compression.

In this section, we investigate the use of fixed-dictionary compression in the context of encryption.
We describe the basic idea of fixed-dictionary compression. We give a security notion, called cookie
recovery security, that we show can be satisfied by compression-encryption schemes using fixed-dictionary
compression. We present an example of a modern fixed-dictionary algorithm, spaz, and report on the
compression ratios achieved by our algorithm.

5.1 Basic idea

In general, fixed-dictionary compression schemes work by advancing through the string x and looking
to see if the current substring appears in the dictionary D: if it does, then an encoding of the index of
the substring is recorded, otherwise an encoding of the current substring is recorded. The compression
scheme must specify the encoding rules in a way that unambiguously discriminates between the two cases.

An abstract version of a fixed-dictionary fixed-width compression algorithm FD is given in Figure 7.
FD checks if the current substring of length w appears in the dictionary D. If it does, it records the index
of the substring in D and advances w characters. If it does not, it records the next ` characters directly,
then advances. (Using ` > 1 but ` < w may be more efficient when it comes to encodings.)

FDD,w,`.Comp(x)

1: y ← empty string
2: i← 1
3: while i ≤ |x| − w + 1 do
4: if xi:w ⊆ D then
5: y ← y ‖ encoding of index of xi:w in D
6: i← i + w
7: else
8: y ← y ‖ encoding of xi:`

9: i← i + `
10: return y

FDD,w,`.Decomp(y)

1: x← empty string
2: i← 1
3: while i ≤ |y| do
4: if yi is the encoding of an index then
5: x← x ‖ Dyi:w

6: i← i + 1
7: else
8: x← x ‖ decoding of yi:`′

9: i← i + `′

10: return x

Figure 7: Abstract fixed-dictionary fixed-width compression scheme FD
Note the simplification that ` characters of x are encoded as `′ characters of y.

For example, if D =“cookierecoveryattack”, then FDD,4,2.Comp(“recover the cookie”) yields
7ver the 1ie.
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5.2 CR-security of basic fixed-dictionary technique

Let Π be a symmetric-key encryption scheme. Let D be a dictionary of length d and let FDD,w,` be the
abstract fixed-dictionary compression scheme shown in Figure 7.

Suppose the cookie space is binary strings of length 8λ, or equivalently byte strings of length λ:
CK = {0x00, . . . , 0xFF}λ.

If Π is a secure encryption scheme, then, intuitively, the only way the adversary can learn information
about the cookie from seeing ciphertexts Enck(·‖ck‖·) and Enck(·) is from the length of the ciphertext: if
some substring of ck appears in the dictionary D, then ck will compress, and that length difference tells
the adversary that the secret cookie is restricted to some subset of CK that matches D.

The situation is slightly subtler in the full CR experiment: the attacker can provide strings a and b
and get back Enck(Comp(a‖ck‖b)). If the last few bytes of a followed by the first few bytes of ck appear
in D, then the string will compress more. This allows the attacker to carry out a CRIME-like attack on
the first few bytes of ck.

For example, let w = 4 and suppose that

D = 1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz .

If the the first byte of ck is a letter of the alphabet (in ASCII encoding), which happens with probability
52/256, then the attacker can ask queries with a = 890, a = 90A, a = 0AB, . . . . In exactly one case, the
adversary’s a prefix combined with the cookie’s first letter will be in the dictionary, thereby telling the
adversary the first byte of ck. For example, if the first byte of ck is b, then when the adversary queries
a = YZa, the value that is compressed and then encrypted is a‖ck‖b = YZab . . . , which starts with a
dictionary substring.

While this allows the attacker to recover the first byte or two of the secret cookie with decent
probability, it drops off exponentially; a similar argument applies to the last few bytes of the secret cookie.
The final result below in Theorem 5.1 captures this issue, and only provides quantifiable security of the
cookie length n is significantly bigger than the compression window w. (This is why we focus on a cookie
recovery notion here, rather than a cookie indistinguishability notion).

Theorem 5.1. Let Π be a symmetric-key encryption scheme. Let D be a dictionary of d words, each of
length `. Let w be positive integer. Let CK = Ωn. Let A be any adversary against the cookie recovery
security of the fixed-dictionary symmetric-key compression-encryption scheme Π ◦ FDD,w,`. Then

AdvCR
Π◦FDD,w,`

(A) ≤ AdvIND-CPA
Π (B) + 2−∆ ,

where B is an algorithm, constructed using adversary A, against the IND-CPA security of the underlying
symmetric-key encryption scheme Π, and

∆ ≥

(
1− d

(
1−

(
1− 1

|Ω|w

)n−3w+1
))

· log2

(
|Ω|n−2w − |Ω|n−2w · d

(
1−

(
1− 1

|Ω|w

)n−3w+1
))

.

For example, for cookies of n = 16 bytes, with a dictionary of d = 4000 words each of length w = 4,
we have ∆ ≥ 63.999695.

5.2.1 Probability bounds, no prefix/suffix.

We first compute the amount of information given to the adversary by knowing the length of the
compressed cookie, without any adversarially chosen prefix or suffix. This can be computed by first
calculating the amount of information given by knowing how many substrings of the cookie appear in the
dictionary.

First we calculate the probability that a given string is a substring of a randomly chosen cookie. Note
that in our setting, typically the character set Ω = {0x00, . . . , 0xFF} is the set of all bytes.

Lemma 5.2. Let x ∈ Ωw be a word, and let ck
$← Ωn = CK be a random string of n characters. Then

Pr(x ⊆ ck) ≤ 1−
(

1− 1

|Ω|w

)n−w+1

.
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Proof.

Pr(x ⊆ ck) = 1− Pr(x 6⊆ ck)

= 1− Pr((x 6= ck1:w) ∧ (x 6= ck2:w) ∧ · · · ∧ (x 6= ckn−w+1:w))

≤ 1− Pr(x 6= ck1:w) Pr(x 6= ck2:w) . . .Pr(x 6= ckn−w+1:w)

= 1−
(

1− 1

|Ω|w

)n−w+1

We now compute that probability that one of set of given strings is a substring of a randomly chosen
cookie:

Lemma 5.3. Let D ⊆ Ωw with |D| = d be a dictionary of d words of w characters. Let ck
$← Ωn = CK

be a random string of n characters. Then

Pr(D ∩ ck 6= ∅) ≤ d

(
1−

(
1− 1

|Ω|w

)n−w+1
)

.

Proof. Suppose D = {x1, x2, . . . , xd}.

Pr(D ∩ ck 6= ∅) = Pr((x1 ⊆ ck) ∨ (x2 ⊆ ck) ∨ · · · ∨ (xd ⊆ ck))

≤
d∑
i=1

Pr(xi ⊆ ck)

≤ d

(
1−

(
1− 1

|Ω|w

)n−w+1
)

(by Lemma 5.2)

Recall the definition of conditional entropy: if X and Y are random variables, then

H(Y | X) =
∑

x∈supp(X)

Pr(X = x)H(Y | X = x)

= −
∑

x∈supp(X)

Pr(X = x)
∑

y∈supp(Y )

Pr(Y = y | X = x) log2 Pr(Y = y | X = x) .

We now compute the amount of entropy about the cookie given knowledge about the number of
substrings of the cookie that appear in the dictionary:

Lemma 5.4. Fix D. Let #SUB(ck) denote the number of substrings of ck that appear in D. Suppose
CK is a uniform random variable on CK. Then

H(CK | #SUB(CK)) ≥

(
1− d

(
1−

(
1− 1

|Ω|w

)n−w+1
))

· log2

(
|CK| − |CK| · d

(
1−

(
1− 1

|Ω|w

)n−w+1
))

.

Proof. Let #s denote the number of cookies ck ∈ CK such that #SUB(ck) = s. First note that

Pr(#SUB(CK) = s) =
#s

|CK|
.

Additionally,

Pr(CK = ck | #SUB(CK) = s) =

{
1

#s
, if |ck| = s ,

0, otherwise .

Then ∑
ck∈CK

Pr(CK = ck | #SUB(CK) = s) = #s ·
1

#s
log2

1

#s
= − log2 #s .
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Substituting into the definition of conditional entropy, we have

H(CK | #SUB(CK)) = −
∑
s∈N

Pr(#SUB(CK) = s)
∑
ck∈CK

Pr(CK = ck | #SUB(CK) = s)

· log2 Pr(CK = ck | #SUB(CK) = s)

= −
∑
s∈N

#s

|CK|
(− log2 #s)

=
1

|CK|
∑
s∈N

#s log2 #s .

Let #≥1 denote the number of cookies ck ∈ CK such that #SUB(ck) ≥ 1. Then

Pr(#SUB(CK) ≥ 1) = Pr(D ∩ CK 6= ∅) =
#≥1

|CK|
(by definition of #≥1)

≤ d

(
1−

(
1− 1

|Ω|w

)n−w+1
)

(by Lemma 5.3)

Thus, the number of cookies where at least 1 substring appears in the dictionary is at least

#≥1 ≤ |CK| · d

(
1−

(
1− 1

|Ω|w

)n−w+1
)

.

Consequently, the number of cookies where no substring appears in the dictionary is at most

#0 = |CK| −#≥1 ≥ |CK| − |CK|d

(
1−

(
1− 1

|Ω|w

)n−w+1
)

.

Finally,

H(CK | #SUB(CK)) =
1

|CK|
∑
s∈N

#s log2 #s

≥ 1

|CK|
#0 log2 #0

≥

(
1− d

(
1−

(
1− 1

|Ω|w

)n−w+1
))

· log2

(
|CK| − |CK| · d

(
1−

(
1− 1

|Ω|w

)n−w+1
))

.

For example, if we have 16-byte cookies (CK = {0x00, . . . , 0xFF}16), and the dictionary D is a set of
d = 4096 words of length w = 4 bytes, then

H(CK | #SUB(CK)) ≥ 127.998395 .

Concluding our analysis of the information learned given to the adversary without any adversarially
chosen prefix or suffix, we give a bound on the amount of entropy about the cookie given the length of
the compressed cookie:

Lemma 5.5. Fix D with d words of length w over character set Ω. Let COMPLEN(ck) = |FDD,w,`.Comp(ck)|
denote the length of a cookie ck compressed with dictionary D. Suppose CK is a uniform random variable
on CK. Then

H(CK | COMPLEN(CK)) ≥ H(CK | #SUB(CK))

≥

(
1− d

(
1−

(
1− 1

|Ω|w

)n−w+1
))

· log2

(
|CK| − |CK| · d

(
1−

(
1− 1

|Ω|w

)n−w+1
))

.

Lemma 5.5 is an immediate consequence of the data processing inequality and Lemma 5.4.
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5.2.2 Probability bounds, prefix/suffix.

Suppose CK is a uniform random variable on CK = Ωn. We know that H(CK) = n log2(|Ω|). Trivially,
H(CK | CK1) = (n− 1) log2(|Ω|), where CK1 is the first character of CK. Similarly, H(CK | CK1:a) =
(n− a) log2(|Ω|) and finally H(CK | CK1:a, CKn−b:b) = (n− a− b) log2(|Ω|).

Consider the following CRIME-like attack on the beginning of the cookie. Let D be a dictionary with
d words of length w over character set Ω. Let ck ∈ Ωn. Let O(·) be an oracle that, upon input a of length
w −m, with 1 ≤ m ≤ w − 1, returns 1 if and only if a‖ck1:m ∈ D.

The CRIME-like attack works as follows:

1. For each x ∈ D, query x1:w−1 to the oracle. If a query for x1:w−1 returns 1, then it is known that
ck1:1 ∈ Z1 = {z : x1:w−1‖z ∈ D}. If no query returns 1, then return ∅.

2. For m = 2, . . . , w−1: For each x ∈ D such that xw−m ∈ Zm−1, query x1:w−m to the oracle. If a query
for x1:w−m returns 1, then it is known that ck1:m ∈ Zm = {z1z2 . . . zm : x1:w−m‖z1z2 . . . zm ∈ D}.
If no query returns 1, then return Z1, . . . , Zm−1.

3. Return Z1, . . . , Zw−1.

A corresponding attack on the suffix is obvious.
Let CRIMEpre(ck) denote the output obtained from running the above prefix CRIME attacks

on ck, CRIMEsuf(ck) denote the output from the corresponding suffix attack. Let CRIME(ck) =
(CRIMEpre(ck),CRIMEsuf(ck)).

Noting that in the best case the CRIME attack allows the attacker to learn the first w − 1 and the
last w − 1 characters of the cookie, some trivial lower bounds are:

H(CK1:w−1 | CRIME(CK)) ≥ 0

H(CKn−w+1:w−1 | CRIME(CK)) ≥ 0

However, the CRIME attack provides no information about the remaining characters, so I(CK1:w−1, CKw:n−w+1) =
0 and I(CK1:n−w+1, CKn−w+1:w−1) = 0, and thus

H(CKw:n−w+2 | CRIME(CK),COMPLEN(CK)) = H(CKw:n−w+2 | COMPLEN(CK)) .

Finally, we have that

H(CK | CRIME(CK),COMPLEN(CK))

≥ H(CK1:w−1 | CRIMEpre(CK)) +H(CKw:n−w+2 | COMPLEN(CK))

+H(CKn−w+1:w−1 | CRIMEsuf(CK))

≥ 0 +H(CKw:n−w+2 | COMPLEN(CK)) + 0

and we can obtain a lower bound on H(CKw:n−w | COMPLEN(CK)) using Lemma 5.5.

5.3 Experimental results

Table 2 shows the result of applying a fixed-dictionary based compression algorithm on the top 10 global
websites of Alexa Top Sites. The 4000-byte dictionary was built from the most common 8-, 16-, and
32-character substrings of the pages. The compression algorithm was based in part on the Smaz [20]
algorithm, and was adapted slightly from Figure 7 to allow for variable-length words to be matched.

5.4 Discussion

The main drawback of the fixed dictionary mitigation technique is that it achieves relatively poor—albeit
non-zero—compression compared with adaptive compression techniques. However, it does not rely on
application-dependent or heuristic techniques for deparating secrets.
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Website Original size
gzip full page Fixed dictionary

Size Compression ratio Size Compression ratio

Google.com 145599 41455 3.51 117794 1.23
Facebook.com 48226 13785 3.50 35036 1.37
Youtube.com 467928 41813 11.19 181676 2.58
Yahoo.com 444408 82572 5.38 318386 1.40
Baidu.com 74979 17519 4.28 55950 1.34
Wikipedia.org 48548 11217 4.33 38406 1.26
Twitter.com 57777 12520 4.61 39712 1.46
Qq.com 626297 124108 5.05 519830 1.21
Amazon.com 234609 54922 4.27 150924 1.55
Taobao.com 192068 23658 8.12 93410 2.06

Table 2: Compression performance, fixed-dictionary technique

6 Conclusion

In this paper we introduced theoretical models to analyze compression-based side-channel attacks on
high-value secrets embedded inside messages: the notions of cookie recovery (CR) security, random cookie
indistinguishability (RCI), and chosen cookie indistinguishability (CCI).

The simple, but relatively weak, CR security notion which allows adaptive access to an oracle what
encrypts chosen plaintexts alongside a target cookie, is sufficient to address real-world compression-based
side-channel attacks such as CRIME and BREACH that aim to recover the target secret. The CCI
security notion address stronger situations where the adversary has to decide which of two secrets of the
adversary’s choice was embedded in the encrypted plaintext, even given adaptive access to an oracle that
encrypts plaintexts of his choosing with the target secret embedded.

The most secure countermeasure to compression-based side-channel attacks remains to disable com-
pression. As implementers seem loathe to do so—indeed, compression is even more heavily embedded
in current drafts of HTTP version 2 [4, §10.6] than it was in previous versions—techniques for safely
compression data that may be partially adversarially controlled are of significant importance. While
compression inherently leaks information about redundancy in plaintext, some compression techniques,
such as the separating secrets and fixed dictionary approaches treated in this paper, provide some
resistance to previous compression-based attacks like CRIME and BREACH. Further cryptographic study
of compression seems like a worthwhile research direction.
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A Relations and separations between security notions

Note that Π = (KeyGen,Enc,Dec) be a symmetric-key encryption scheme and Γ = (Comp,Decomp) be
a compression scheme. The structure of the resulting symmetric-key compression-encryption scheme is
Π ◦ Γ = (KG = Π.KeyGen,E = Π.Enc ◦ Γ.Comp,D = Γ.Decomp ◦Π.Enc).

Theorem A.1. RCI-secure symmetric-key compression-encryption scheme ⇒ CR-secure symmetric-key
compression-encryption scheme.

Proof. Let A be a PPT adversary against the CR security challenge of a symmetric-key compression-
encryption scheme Π ◦ Γ = (KG,E,D). Assume that A can win the CR security challenge with non-
negligible probability. We construct an algorithm B against the RCI security challenge of Π ◦ Γ using
A as a subroutine. The algorithm B simulates the view of CR challenger to A and constructs the RCI
adversary against the RCI challenger. The simulation of B is explained in Figure 8.

The simulation in Figure 8 illustrates that if A can win the CR challenge of Π ◦ Γ with non-negligible
probability, then B can win the RCI challenge of Π ◦ Γ with non-negligible advantage. Hence, if B can
not win the RCI challenge of Π ◦ Γ with non-negligible advantage, then A can not win CR challenge of
Π ◦ Γ with non-negligible probability. Thus, RCI-secure symmetric-key compression-encryption scheme ⇒
CR-secure symmetric-key compression-encryption scheme.

Theorem A.2. CR-secure symmetric-key compression-encryption scheme ; RCI-secure symmetric-key
compression-encryption scheme.
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RCI Challenger B A
k ← KG()

(ck0, ck1)
$←− CK (ck0,ck1)−−−−−−→ (ck0, ck1)

b
$←− {0, 1}

p←−− p
p←−− p

c← Ek(p)
c−→ (p, c)

c−→ (p, c)
: : : : :

m←−− m
m←−− m = (m′,m′′)

c← Ek(m′||ckb||m′′)
c−→ (m, c)

c−→ (m, c)
: : : : :

(m0,m1)
(m0,m1)←−−−−− (m0,m1)←−M

c∗ ← Ek(m′b||ckb||m′′b )
c∗−−→ c∗

p←−− p
p←−− p

c← Ek(p)
c−→ (p, c)

c−→ (p, c)
: : : : :

m←−− m
m←−− m = (m′,m′′)

c← Ek(m′||ckb||m′′)
c−→ (m, c)

c−→ (m, c)
: : : : :

b′←−− ck′←−−−

Figure 8: The CR challenge simulation of B

Proof. In order to prove this theorem we use a proof strategy used in Bellare et al. [3]. We assume
that a symmetric-key compression-encryption scheme Π ◦ Γ = (KG,E,D) is CR-secure. We now modify
Π ◦ Γ to a new symmetric-key encryption scheme (Π ◦ Γ)′ = (KG,E′,D′) which is also CR-secure, but not
RCI-secure. This will prove the Theorem A.2.

Let pt be the first t bits of the plaintext p where |p| > t and H be a second preimage resistant hash
function where the input size is t. A ciphertext of (Π ◦ Γ)′ is a pair of components, (c1||c2), where c1
consists encryption of the plaintext and c2 consists H(pt). The decryption ignores the second component
of the ciphertext and simply outputs the decryption of the first component. The new symmetric-key
encryption scheme (Π ◦ Γ)′ is described in Figure 9.

k ← KG() E′k(p){ D′k(c1||c2){
c1 ← Ek(p); c2 ← H(pt) p← Dk(c1)
return (c1||c2)} return p}

Figure 9: Encryption Scheme (Π ◦ Γ)′

Claim A.3. The symmetric-key encryption scheme (Π ◦ Γ)′ = (KG,E′,D′) is CR-secure.

If Π ◦ Γ is CR-secure and H is a second preimage resistant hash function, upon seeing c2 the adversary
gain no information about the first t bits of p. Thus, if the underlying symmetric-key encryption scheme
is CR-secure and the hash function H is second preimage resistant, the symmetric-key encryption scheme
(Π ◦ Γ)′ is CR-secure.

Claim A.4. The symmetric-key encryption scheme (Π ◦ Γ)′ = (KG,E′,D′) is not RCI-secure.

If the adversary is given two t-bit strings such that one bit string is the first t bits of the plaintext p
and the other bit string is a random t-bit string, upon seeing c2 the adversary can obviously find the first
t-bits of the plaintext by checking H of which bit-string matches with c2. Thus, although the underlying
symmetric-key encryption scheme is CR-secure, the symmetric-key encryption scheme (Π ◦ Γ)′ is not
CR-secure. Thus, CR-secure symmetric-key compression-encryption scheme ; RCI-secure symmetric-key
compression-encryption scheme.

Theorem A.5. CCI-secure symmetric-key compression-encryption scheme ⇒ RCI-secure symmetric-key
compression-encryption scheme.

Proof. Let A be a PPT adversary against RCI security of a symmetric-key compression-encryption scheme
Π ◦ Γ = (KG,E,D). Assume that A can win the RCI security game with non-negligible probability.
We construct an algorithm B against CCI security of Π ◦ Γ using A as a subroutine. The algorithm B
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simulates the view of RCI challenger to A and constructs the CCI adversary against the CCI challenger.
The simulation of B is explained in Figure 10.

CCI Challenger B A
k ← KG()

b
$←− {0, 1}

p←−− p

c← Ek(p)
c−→ (p, c)

: : :

(ck0, ck1)
(ck0,ck1)←−−−−−− (ck0, ck1)← CK (ck0,ck1)−−−−−−→ (ck0, ck1)

p←−− p
p←−− p

c← Ek(p)
c−→ (p, c)

c−→ (p, c)
: : : : :

m←−− m
m←−− m = (m′,m′′)

c← Ek(m′||ckb||m′′)
c−→ (m, c)

c−→ (m, c)
: : : : :

(m0,m1)
(m0,m1)←−−−−− (m0,m1)

(m0,m1)←−−−−− (m0,m1)←M
c∗ ← Ek(m′b||ckb||m′′b )

c∗−−→ c∗
c∗−−→ c∗

p←−− p
p←−− p

c← Ek(p)
c−→ (p, c)

c−→ (p, c)
: : : : :

m←−− m
m←−− m = (m′,m′′)

c← Ek(m′||ckb||m′′)
c−→ (m, c)

c−→ (m, c)
: : : : :

b′←−− b′
b′←−−

Figure 10: The RCI challenge simulation of B

The simulation in Figure 10 illustrates that if A can win the RCI challenge of Π ◦Γ with non-negligible
advantage, then B can win the CCI challenge of Π ◦ Γ with non-negligible advantage. Hence, if B can
not win the CCI challenge of Π ◦ Γ with non-negligible advantage, then A can not win RCI challenge of
Π ◦ Γ with non-negligible advantage. Thus, CCI-secure symmetric-key compression-encryption scheme ⇒
RCI-secure symmetric-key compression-encryption scheme.

Theorem A.6. RCI-secure symmetric-key compression-encryption scheme ; CCI-secure symmetric-key
compression-encryption scheme.

Proof. We assume that a symmetric-key compression-encryption scheme Π ◦Γ = (KG,E,D) is RCI-secure.
We now modify Π ◦ Γ to a new symmetric-key encryption scheme (Π ◦ Γ)′′ = (KG,E′′,D′′) which is also
RCI-secure, but not CCI-secure. This will prove the Theorem A.6.

Let pt be the first t bits of the plaintext p where |p| > t and f be a point function as defined follows
where the input size is t.

f(x) =

{
0 if x = public hard-coded value
1 otherwise

A ciphertext of (Π ◦Γ)′′ is a pair of components, (c1||c2), where c1 consists encryption of the message and
c2 consists f(pt). The decryption ignores the second component of the ciphertext and simply outputs the
decryption of the first component. The new symmetric-key encryption scheme (Π ◦ Γ)′′ = (KG,E′′,D′′) is
described in Figure 11.

k ← KG() E′′k(p){ D′′k(p){
c1 ← Ek(p); c2 ← f(p) p← Dk(c1)
return (c1||c2)} return p}

Figure 11: Encryption Scheme (Π ◦ Γ)′′

Claim A.7. The symmetric-key encryption scheme Π′′ = (KG,E′′,D′′) is RCI-secure.
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If Π◦Γ is RCI-secure and f is a point function, upon seeing c2 the adversary gain no information about
the first t bits of p, unless it equals to the public hard-coded value. Thus, if the underlying symmetric-key
encryption scheme is RCI-secure and the function f is a point function, the symmetric-key encryption
scheme (Π ◦ Γ)′′ is RCI-secure.

Claim A.8. The symmetric-key encryption scheme (Π ◦ Γ)′′ = (KG,E′′,D′′) is not CCI-secure.

If the adversary chooses two plaintexts such that in an one plaintext the first t bits equals to the public
hard-coded value, upon seeing c2 adversary can easily find whether the first t bits of the plaintext equals
to the hard-coded value or not. Thus, although the underlying symmetric-key encryption scheme is RCI-
secure, the symmetric-key encryption scheme (Π ◦ Γ)′′ is not CCI-secure. Thus, RCI-secure symmetric-key
compression-encryption scheme ; CCI-secure symmetric-key compression-encryption scheme.

Theorem A.9. CCI-secure symmetric-key compression-encryption scheme⇒ IND-CPA-secure symmetric-
key compression-encryption scheme.

Proof. Let A be a PPT adversary against IND-CPA security of a symmetric-key compression-encryption
scheme Π ◦ Γ = (KG,E,D). Assume that A can win the IND-CPA security game with non-negligible
probability. We construct an algorithm B against CCI security of Π ◦ Γ using A as a subroutine. The
algorithm B simulates the view of IND-CPA challenger to A and constructs the CCI adversary against the
CCI challenger. The simulation of B is explained in Figure 12.

CCI Challenger B A
k ←− KG()

p←−− p
p←−− p

c← Ek(p)
c−→ (p, c)

c−→ (p, c)
: : : : :

p0 → (ck0,m0)
(p0,p1)←−−−− (p0, p1)

(ck0, ck1)
(ck0,ck1)←−−−−−− p1 → (ck1,m1)

b
$←− {0, 1} (m0,m1)←−−−−−

c∗ ← Ek(m′b‖ckb‖m′′b )
c∗−−→ c∗

c∗−−→ c∗

p←−− p
p←−− p

c← Ek(p)
c−→ (p, c)

c−→ (p, c)
: : : : :

b′←−− b′
b′←−−

Figure 12: Simulation of B as the IND-CPA challenger

The simulation in Figure 12 illustrates that if A can win the IND-CPA challenge of Π ◦ Γ with
non-negligible advantage, then B can win the CCI challenge of Π ◦Γ with non-negligible advantage. Hence,
if B can not win the IND-CPA challenge of Π ◦ Γ with non-negligible advantage, then A can not win CCI
challenge of Π ◦ Γ with non-negligible advantage. Thus, CCI security ⇒ IND-CPA security.

Theorem A.10. CCI-secure symmetric-key compression-encryption scheme ⇒ ER-IND-CPA-secure
symmetric-key compression-encryption scheme.

Proof. LetA be a PPT adversary against ER-IND-CPA security of a symmetric-key compression-encryption
scheme Π ◦ Γ = (KG,E,D). Assume that A can win the ER-IND-CPA security game with non-negligible
probability. We construct an algorithm B against CCI security of Π ◦ Γ using A as a subroutine. The
algorithm B simulates the view of ER-IND-CPA challenger to A and constructs the CCI adversary against
the CCI challenger. The simulation of B is explained in Figure 13.

The simulation in Figure 13 illustrates that if A can win the ER-IND-CPA challenge of Π ◦ Γ with
non-negligible advantage, then B can win the CCI challenge of Π ◦Γ with non-negligible advantage. Hence,
if B can not win the ER-IND-CPA challenge of Π ◦ Γ with non-negligible advantage, then A can not win
CCI challenge of Π ◦ Γ with non-negligible advantage. Thus, CCI security ⇒ ER-IND-CPA security.
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CCI Challenger B A
k ←− KG()

p←−− p
p←−− p

c← Ek(p)
c−→ (p, c)

c−→ (p, c)
: : : : :

p0 → (ck0,m0)
(p0,p1)←−−−− (p0, p1)

(ck0, ck1)
(ck0,ck1)←−−−−−− p1 → (ck1,m1)

b
$←− {0, 1} (m0,m1)←−−−−−

c∗ ← Ek(m′b‖ckb‖m′′b )
c∗−−→ c∗

c∗−−→ c∗

p←−− p
p←−− p

c← Ek(p)
c−→ (p, c)

c−→ (p, c)
: : : : :

b′←−− b′
b′←−−

Figure 13: Simulation of B as the ER-IND-CPA challenger

B Source codes of fixed-dictionary mitigation technique

B.1 Source code of constructing a fixed-dictionary

1 import java . n io . f i l e . ∗ ;
2 import java . u t i l . ∗ ;
3 public class Freqs {
4 public stat ic f ina l int RECORD SIZE = 2 ;
5 public stat ic void main ( St r ing args [ ] ) throws Exception {
6 i f ( args . l ength < 3) {
7 System . e r r . p r i n t l n ( ”Usage : java Freqs d i c t S i z e wordLengths f i l enames >

output . d i c t ” ) ;
8 System . e r r . p r i n t l n ( ”− d i c t S i z e : the t a r g e t s i z e o f the output d i c t i ona ry

in bytes ; f o r Spaz t h i s should be 4000” ) ;
9 System . e r r . p r i n t l n ( ”− wordLengths : comma−separated l i s t o f word l eng th s

to count f r e qu en c i e s o f ; e . g . , 8 ,15 ,20 ” ) ;
10 System . e r r . p r i n t l n ( ”− f i l enames : l i s t o f f i l enames to bu i ld d i c t i ona ry

from” ) ;
11 return ;
12 }
13 int d i c t S i z e = In t eg e r . pa r s e In t ( args [ 0 ] ) ;
14 St r ing wordlengths [ ] = args [ 1 ] . s p l i t ( ” , ” ) ;
15 HashMap<Str ing , Integer> worths = new HashMap<Str ing , Integer >() ;
16 for ( int f = 2 ; f < args . l ength ; f++) {
17 St r ing f i l ename = args [ f ] ;
18 St r ing s r c = new St r ing ( F i l e s . readAl lBytes ( Paths . get ( f i l ename ) ) ) ;
19 for ( S t r ing wordlength : wordlengths ) {
20 calcWorth ( src , worths , I n t eg e r . pa r s e In t ( wordlength ) ) ;
21 }
22 }
23 pr in tBes t ( worths , d i c t S i z e ) ;
24 }
25
26 stat ic void calcWorth ( S t r ing src , Map<Str ing , Integer> f r eq s , int s eq l en ) {
27 for ( int i = 0 ; i < s r c . l ength ( ) − s eq l en ; i++) {
28 St r ing s = s r c . sub s t r i ng ( i , i + seq l en ) ;
29 i f ( f r e q s . containsKey ( s ) ) {
30 f r e q s . put ( s , f r e q s . get ( s ) + seq l en − RECORD SIZE) ;
31 } else {
32 f r e q s . put ( s , s eq l en − RECORD SIZE) ;
33 }
34 }
35 }
36
37 stat ic void pr in tBes t (Map<Str ing , Integer> f r eq s , int d i c t S i z e ) {
38 Map<Str ing , Integer> f r e q s s o r t e d = Freqs . sortByValue ( f r e q s ) ;
39 Vector<Str ing> best = new Vector<Str ing >( d i c t S i z e ) ;
40 I t e r a t o r<Map. Entry<Str ing , Integer>> i t = f r e q s s o r t e d . entrySet ( ) . i t e r a t o r ( ) ;
41 int cu r rD i c tS i z e = 0 ;
42 while ( i t . hasNext ( ) && ( cu r rD i c tS i z e < d i c t S i z e ) ) {
43 Map. Entry<Str ing , Integer> pa i r = i t . next ( ) ;
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44 boolean u s e i t = true ;
45 for ( S t r ing v : bes t ) {
46 i f ( l onge s tSubs t r ( pa i r . getKey ( ) , v ) > 5) {
47 u s e i t = fa l se ;
48 break ;
49 }
50 }
51 i f ( u s e i t ) {
52 best . add ( pa i r . getKey ( ) ) ;
53 System . out . p r i n t ( pa i r . getKey ( ) ) ;
54 cu r rD i c tS i z e += pa i r . getKey ( ) . l ength ( ) ;
55 }
56 }
57 System . out . p r i n t l n ( ) ;
58 }
59
60 public stat ic <K, V extends Comparable<? super V>> Map<K, V> sortByValue (Map<K, V> map)

{
61 List<Map. Entry<K, V>> l i s t = new LinkedList<Map. Entry<K, V>>(map . entrySet ( ) ) ;
62 Co l l e c t i o n s . s o r t ( l i s t , new Comparator<Map. Entry<K, V>>() {
63 public int compare (Map. Entry<K, V> o1 , Map. Entry<K, V> o2 ) {
64 return −(o1 . getValue ( ) ) . compareTo ( o2 . getValue ( ) ) ;
65 }
66 }) ;
67 Map<K, V> r e s u l t = new LinkedHashMap<K, V>() ;
68 for (Map. Entry<K, V> entry : l i s t ) {
69 r e s u l t . put ( entry . getKey ( ) , entry . getValue ( ) ) ;
70 }
71 return r e s u l t ;
72 }
73
74 public stat ic int l onge s tSubs t r ( S t r ing f i r s t , S t r ing second ) {
75 i f ( f i r s t == null | | second == null | | f i r s t . l ength ( ) == 0 | | second . l ength ( ) ==

0) {
76 return 0 ;
77 }
78 int maxLen = 0 ;
79 int f l = f i r s t . l ength ( ) ;
80 int s l = second . l ength ( ) ;
81 int [ ] [ ] t ab l e = new int [ f l + 1 ] [ s l + 1 ] ;
82 for ( int s = 0 ; s <= s l ; s++)
83 tab l e [ 0 ] [ s ] = 0 ;
84 for ( int f = 0 ; f <= f l ; f++)
85 tab l e [ f ] [ 0 ] = 0 ;
86 for ( int i = 1 ; i <= f l ; i++) {
87 for ( int j = 1 ; j <= s l ; j++) {
88 i f ( f i r s t . charAt ( i − 1) == second . charAt ( j − 1) ) {
89 i f ( i == 1 | | j == 1) {
90 tab l e [ i ] [ j ] = 1 ;
91 } else {
92 tab l e [ i ] [ j ] = tab l e [ i − 1 ] [ j − 1 ] + 1 ;
93 }
94 i f ( t ab l e [ i ] [ j ] > maxLen) {
95 maxLen = tab l e [ i ] [ j ] ;
96 }
97 }
98 }
99 }

100 return maxLen ;
101 }
102 }

B.2 Source code of fixed-dictionary experiment

1 import java . n io . f i l e . ∗ ;
2 public class Spaz2 {
3 public stat ic f ina l St r ing d i c t i ona ry = ” d i c t i ona ry ” ;
4 public stat ic St r ing decode (byte [ ] c , S t r ing d i c t i ona ry ) throws Exception {
5 byte bytes [ ] = new byte [ 8∗ c . l ength ] ;
6 int bindex = 0 ;
7 int c index = 0 ;
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8 while ( c index < c . l ength ) {
9 byte b = c [ c index ] ;

10 i f (b >> 6 == 0) {
11 i f ( c index + 1 >= c . l ength ) {
12 throw new Exception ( ”Need 2 byte record ” ) ;
13 }
14 byte a = c [ c index ] ;
15 a &= 0x3F ;
16 a <<= 1 ;
17 byte a2 = c [ c index +1] ;
18 a2 >>>= 7 ;
19 a2 &= 0x01 ;
20 a |= a2 ;
21 bytes [ bindex ] = a ;
22 a = c [ c index +1] ;
23 a &= 0x7F ;
24 bytes [ bindex+1] = a ;
25 c index += 2 ;
26 bindex += 2 ;
27 } else i f ( ( b & 0x80 ) > 0) {
28 i f ( c index + 1 >= c . l ength ) {
29 throw new Exception ( ”Need 2 byte record ” ) ;
30 }
31 int j = c [ c index+1] & 0x07 ;
32 int l en = 2 ∗ j + 4 ;
33 int index = c [ c index ] & 0x7F ;
34 index <<= 5 ;
35 int index2 = c [ c index+1] & 0xF8 ;
36 index2 >>= 3 ;
37 index2 &= 0x1F ;
38 index |= index2 ;
39 St r ing d i c t l ookup = d i c t i ona ry . sub s t r i ng ( index , index + len ) ;
40 byte d i c t l ookupbyte s [ ] = d i c t l ookup . getBytes ( ”UTF−8” ) ;
41 System . arraycopy ( d ic t lookupbytes , 0 , bytes , bindex ,

d i c t l ookupbyte s . l ength ) ;
42 c index += 2 ;
43 bindex += dic t l ookupbyte s . l ength ;
44 } else i f ( ( b & 0x40 ) > 0) {
45 i f ( c index + 1 >= c . l ength ) {
46 throw new Exception ( ”Need 2 byte record ” ) ;
47 }
48 bytes [ bindex ] = c [ c index +1] ;
49 c index += 2 ;
50 bindex += 1 ;
51 } else {
52 throw new Exception ( ”Unknown record type” ) ;
53 }
54 }
55 return new St r ing ( bytes , 0 , bindex , ”UTF−8” ) ;
56 }
57
58 stat ic boolean do i t (byte [ ] c , int cindex , S t r ing d i c t i onary , byte [ ] b , int bindex , int

s eq l en ) {
59 i f ( c index + seq l en <= c . l ength ) {
60 int d i c t i ndex = d i c t i ona ry . indexOf (new St r ing ( c , cindex , s eq l en ) ) ;
61 i f ( d i c t i ndex >= 0) {
62 int cons t ruc ted = 0x00008000 ;
63 cons t ruc ted |= dic t i ndex << 3 ;
64 cons t ruc ted |= ( seq len −4) / 2 ;
65 b [ bindex ] = (byte ) ( ( cons t ruc ted >>> 8) & 0xFF) ;
66 b [ bindex+1] = (byte ) ( cons t ruc ted & 0xFF) ;
67 return true ;
68 }
69 }
70 return fa l se ;
71 }
72
73 public stat ic byte [ ] encode ( S t r ing s , S t r ing d i c t i ona ry ) throws Exception {
74 byte [ ] b = new byte [ 2 ∗ s . l ength ( ) ] ;
75 byte [ ] c = s . getBytes ( ”UTF−8” ) ;
76 int c index = 0 ;
77 int bindex = 0 ;
78 int f r e q s [ ] = new int [ 3 0 ] ;
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79 for ( int i = 0 ; i < 30 ; i++) { f r e q s [ i ] = 0 ; }
80 while ( c index < c . l ength ) {
81 boolean foundone = fa l se ;
82 for ( int j = 7 ; j >= 0 ; j−−) {
83 int s eq l en = 2 ∗ j + 4 ;
84 i f ( do i t ( c , cindex , d i c t i onary , b , bindex , s eq l en ) ) {
85 c index += seq l en ;
86 bindex += 2 ;
87 f r e q s [ s eq l en ]++;
88 foundone = true ;
89 break ;
90 }
91 }
92 i f ( foundone ) continue ;
93 i f ( ( c index + 2 <= c . l ength ) && ( ( c [ c index ] >= 0x00 ) && ( c [ c index ] < 0

x7F) ) && ( ( c [ c index+1] >= 0x00 ) && ( c [ c index+1] < 0x7F) ) ) {
94 b [ bindex ] = (byte ) ( c [ c index ] >> 1) ;
95 b [ bindex ] &= 0x3F ;
96 b [ bindex+1] = (byte ) c [ c index +1] ;
97 b [ bindex+1] &= 0x7F ;
98 b [ bindex+1] |= (byte ) ( c [ c index ] << 7) ;
99 bindex += 2 ;

100 c index += 2 ;
101 f r e q s [2]++;
102 } else {
103 b [ bindex ] = (byte ) 0x40 ;
104 b [ bindex+1] = (byte ) c [ c index ] ;
105 bindex += 2 ;
106 c index += 1 ;
107 f r e q s [1]++;
108 }
109 }
110 byte [ ] r = new byte [ bindex ] ;
111 System . arraycopy (b , 0 , r , 0 , bindex ) ;
112 System . out . p r i n t f ( ” f r e q s : ” ) ;
113 for ( int i = 0 ; i < 30 ; i++) {
114 i f ( f r e q s [ i ] > 0) {
115 System . out . p r i n t f ( ”%dx%d , ” , f r e q s [ i ] , i ) ;
116 }
117 }
118 System . out . p r i n t l n ( ) ;
119 return r ;
120 }
121
122 public stat ic void main ( St r ing args [ ] ) {
123 i f ( args . l ength != 2) {
124 System . e r r . p r i n t l n ( ”Usage : Spaz d i c t i ona ry input ” ) ;
125 return ;
126 }
127 St r ing d ic t ionaryFi l ename = args [ 0 ] ;
128 St r ing inputFi lename = args [ 1 ] ;
129 try {
130 St r ing d i c t i ona ry = new St r ing ( F i l e s . readAl lBytes ( Paths . get (

d i c t i onaryFi l ename ) ) ) ;
131 St r ing input = new St r ing ( F i l e s . readAl lBytes ( Paths . get ( inputFi lename ) ) ) ;
132 i f ( d i c t i ona ry . l ength ( ) > 4096) {
133 throw new Exception ( ”Dict ionary i s too long . ” ) ;
134 }
135 byte [ ] b = Spaz2 . encode ( input , d i c t i ona ry ) ;
136 St r ing output = Spaz2 . decode (b , d i c t i ona ry ) ;
137 int inputLength = input . getBytes ( ”UTF−8” ) . l ength ;
138 int outputLength = b . l ength ;
139 double compress ion = ( (double ) inputLength ) / ( (double ) outputLength ) ;
140 System . out . p r i n t f ( ” Input l ength : %d ; output l ength : %d ; compress ion : %.3

fx \n” , inputLength , outputLength , compress ion ) ;
141 i f ( ! input . equa l s ( output ) ) {
142 throw new Exception ( ” S t r i ng s do not match . ” ) ;
143 }
144 } catch ( Exception e ) {
145 e . pr intStackTrace ( ) ;
146 }
147 }
148 }
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C Source codes of separating-secrets mitigation technique

C.1 Source code of separating-secrets experiment

1 import java . i o . ∗ ;
2 import java . u t i l . regex . Pattern ;
3 import java . u t i l . regex . Matcher ;
4 import java . u t i l . z ip . GZIPOutputStream ;
5 import java . u t i l . z ip . GZIPInputStream ;
6 import java . n io . f i l e . ∗ ;
7 public class exp{
8 /∗ method o f s epara t ing s e c r e t s ; separa te contents ass i gned to the ‘ ‘ va lue ”

a t t r i b u t e ∗/
9 public stat ic void SepSec ( S t r ing o r i g i n a l f i l e ) {

10 try{
11 Fi leReader f i l e r e a d e r = new Fi leReader ( o r i g i n a l f i l e ) ;
12 BufferedReader in = new BufferedReader ( f i l e r e a d e r ) ;
13 F i l eWr i t e r f i l e w r i t e r n s = new Fi l eWr i t e r ( o r i g i n a l f i l e+” ns ” ) ;
14 Buf feredWriter b f r n s = new Buf feredWriter ( f i l e w r i t e r n s ) ;
15 F i l eWr i t e r f i l e w r i t e r s = new Fi l eWr i t e r ( o r i g i n a l f i l e+” s ” ) ;
16 Buf feredWriter b f r s = new Buf feredWriter ( f i l e w r i t e r s ) ;
17 Pattern pattern = Pattern . compi le ( ” va lue \\ s∗=\\ s ∗\” ( [ ˆ\” ]∗ ) \” |

value \\ s∗=\\ s ∗ \ ’ ( [ ˆ \ ’ ] ∗ ) \ ’ | value \\ s∗=\\ s ∗ [ ˆ\\ s ]∗ ” ) ;
18 Matcher p matcher ;
19 St r ing s e c r e t , nonsec re t ;
20 St r ing l i n e = in . readLine ( ) ;
21 while ( l i n e != null ) {
22 nonsec re t = l i n e . r e p l a c eA l l ( ” va lue \\ s∗=\\ s ∗\” ( [ ˆ\” ]∗ ) \” |

value \\ s∗=\\ s ∗ \ ’ ( [ ˆ \ ’ ] ∗ ) \ ’ | value \\ s∗=\\ s ∗ [ ˆ\\ s ]∗ ” , ”
FILTERED−OUT” ) ;

23 b f r n s . wr i t e ( nonsec re t ) ;
24 b f r n s . newLine ( ) ;
25 p matcher = pattern . matcher ( l i n e ) ;
26 while ( p matcher . f i nd ( ) ) {
27 s e c r e t = p matcher . group ( ) ;
28 b f r s . wr i t e ( s e c r e t ) ;
29 b f r s . newLine ( ) ;
30 }
31 l i n e = in . readLine ( ) ;
32 }
33 in . c l o s e ( ) ;
34 b f r s . c l o s e ( ) ;
35 b f r n s . c l o s e ( ) ;
36 }
37 catch ( Exception e ) {
38 System . out . p r i n t ( e ) ;
39 }
40 }
41
42 /∗ g z i p compression ; modi f ied the code o f Byron Kiour tzog lou ( h t t p :// examples .

javacodegeeks . com/core−java / io / f i l e i n pu t s t r e am /compress−a−f i l e −in−gz ip−format−in−
java /) ∗/

43 public stat ic void g z i pF i l e ( S t r ing s ou r c e f i l e p a t h , S t r ing
d e s t i n a t o n z i p f i l e p a t h ) {

44 byte [ ] b u f f e r = new byte [ 1 0 2 4 ] ;
45 try {
46 FileOutputStream f i leOutputStream =new FileOutputStream (

d e s t i n a t o n z i p f i l e p a t h ) ;
47 GZIPOutputStream gzipOuputStream = new GZIPOutputStream(

f i l eOutputStream ) ;
48 Fi le InputStream f i l e I n p u t = new Fi leInputStream ( s o u r c e f i l e p a t h )

;
49 int byte s r ead ;
50 while ( ( byte s r ead = f i l e I n p u t . read ( bu f f e r ) ) > 0) {
51 gzipOuputStream . wr i t e ( bu f f e r , 0 , byte s r ead ) ;
52 }
53 f i l e I n p u t . c l o s e ( ) ;
54 gzipOuputStream . f i n i s h ( ) ;
55 gzipOuputStream . c l o s e ( ) ;
56 }
57 catch ( Exception e ) {
58 System . out . p r i n t ( e ) ;
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59 }
60 }
61
62 /∗ gunzip decompression ; modi f ied the code o f Nikos Maravitsas ( h t t p :// examples .

javacodegeeks . com/core−java / io / f i l e i n pu t s t r e am /decompress−a−gz ip−f i l e −in−java−
example /) ∗/

63 public stat ic void unGunzipFile ( S t r ing compressedFi le , S t r ing decompressedFi le ) {
64 byte [ ] b u f f e r = new byte [ 1 0 2 4 ] ;
65 try{
66 Fi le InputStream f i l e I n = new Fi leInputStream ( compressedFi l e ) ;
67 GZIPInputStream gZIPInputStream = new GZIPInputStream ( f i l e I n ) ;
68 FileOutputStream f i leOutputStream = new FileOutputStream (

decompressedFi le ) ;
69 int byte s r ead ;
70 while ( ( byte s r ead = gZIPInputStream . read ( bu f f e r ) ) > 0) {
71 f i l eOutputStream . wr i t e ( bu f f e r , 0 , byte s r ead ) ;
72 }
73 gZIPInputStream . c l o s e ( ) ;
74 f i l eOutputStream . c l o s e ( ) ;
75 }
76 catch ( IOException ex ) {
77 ex . pr intStackTrace ( ) ;
78 }
79 }
80
81
82 /∗ method o f recover ing the o r i g i n a l f i l e from s e c r e t s and non−s e c r e t s ∗/
83 public stat ic void MergeSec ( S t r ing s e c r e t f i l e , S t r ing n o n s e c r e t f i l e ) {
84 try{
85 F i l eWr i t e r f i l e w r i t e r = new Fi l eWr i t e r ( n o n s e c r e t f i l e+” r e c ov e r

. htm” ) ;
86 Buf feredWriter out = new Buf feredWriter ( f i l e w r i t e r ) ;
87 Fi leReader f i l e r e a d e r n s = new Fi leReader ( n o n s e c r e t f i l e ) ;
88 BufferedReader b f r n s = new BufferedReader ( f i l e r e a d e r n s ) ;
89 Fi leReader f i l e r e a d e r s = new Fi leReader ( s e c r e t f i l e ) ;
90 BufferedReader b f r s = new BufferedReader ( f i l e r e a d e r s ) ;
91 Pattern pattern = Pattern . compi le ( ”FILTERED−OUT” ) ;
92 Matcher p matcher ;
93 St r ing l i n e , s e c r e t ;
94 St r ing recovery ;
95 S t r i ngBu f f e r sb ;
96 l i n e = b f r n s . readLine ( ) ;
97 while ( l i n e != null ) {
98 sb = new St r i ngBu f f e r ( ) ;
99 p matcher = pattern . matcher ( l i n e ) ;

100 while ( p matcher . f i nd ( ) ) {
101 St r ing text = p matcher . group (0 ) ;
102 s e c r e t = b f r s . readLine ( ) ;
103 p matcher . appendReplacement ( sb , p matcher .

quoteReplacement ( s e c r e t ) ) ;
104 }
105 p matcher . appendTail ( sb ) ;
106 recovery = sb . t oS t r i ng ( ) ;
107 out . wr i t e ( r ecovery ) ;
108 out . newLine ( ) ;
109 l i n e = b f r n s . readLine ( ) ;
110 }
111 out . c l o s e ( ) ;
112 b f r s . c l o s e ( ) ;
113 b f r n s . c l o s e ( ) ;
114 }
115 catch ( Exception e ) {
116 System . out . p r i n t ( e ) ;
117 }
118 }
119
120 /∗ experiment ∗/
121 public stat ic void main ( St r ing args [ ] ) {
122 try{
123 f loat o r i g i n a l s i z e , compres sed s i ze , m i t i g a t ed s i z e ,

s e c r e t s i z e , n on s e c r e t s i z e , avg1 = 0 , avg2 = 0 ;
124 Fi leReader f i l enames = new Fi leReader ( ”names . txt ” ) ;
125 BufferedReader f names = new BufferedReader ( f i l enames ) ;
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126 F i l eWr i t e r w = new Fi l eWr i t e r ( ”Report . t ex t ” ) ;
127 Buf feredWriter out = new Buf feredWriter (w) ;
128 St r ing l i n e = f names . readLine ( ) ;
129 while ( l i n e != null ) {
130 St r ing temp = new St r ing ( F i l e s . readAl lBytes ( Paths . get (

l i n e ) ) ) ;
131 o r i g i n a l s i z e = temp . getBytes ( ”UTF−8” ) . l ength ;
132 g z i pF i l e ( l i n e , l i n e+” . gz ip ” ) ;
133 compre s s ed s i z e = F i l e s . readAl lBytes ( Paths . get ( l i n e+” .

gz ip ” ) ) . l ength ;
134 SepSec ( l i n e ) ;
135 s e c r e t s i z e = F i l e s . readAl lBytes ( Paths . get ( l i n e+” s ” ) ) .

l ength ;
136 g z i pF i l e ( l i n e+” ns ” , l i n e+” ns . gz ip ” ) ;
137 n o n s e c r e t s i z e = F i l e s . readAl lBytes ( Paths . get ( l i n e+” ns

. gz ip ” ) ) . l ength ;
138 m i t i g a t e d s i z e = n on s e c r e t s i z e + s e c r e t s i z e ;
139 unGunzipFile ( l i n e+” ns . gz ip ” , l i n e+”2 ns ” ) ;
140 MergeSec ( l i n e+” s ” , l i n e+”2 ns ” ) ;
141 out . wr i t e ( ” F i l e Name : ”+l i n e ) ;
142 out . newLine ( ) ;
143 out . wr i t e ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−” ) ;
144 out . newLine ( ) ;
145 out . wr i t e ( ” S i z e o f the Or i g i na l F i l e : ”+o r i g i n a l s i z e+”

bytes ” ) ;
146 out . newLine ( ) ;
147 out . wr i t e ( ” S i z e o f the Compressed F i l e : ”+

compre s s ed s i z e+” bytes ” ) ;
148 out . newLine ( ) ;
149 out . wr i t e ( ”Compression : ”+o r i g i n a l s i z e / compre s s ed s i z e )

;
150 avg1 += o r i g i n a l s i z e / compre s s ed s i z e ;
151 out . newLine ( ) ;
152 out . wr i t e ( ” Extracte r and Compressed : ”+n on s e c r e t s i z e+”

bytes ” ) ;
153 out . newLine ( ) ;
154 out . wr i t e ( ” S i z e o f the Se c r e t s : ”+s e c r e t s i z e+” bytes ” ) ;
155 out . newLine ( ) ;
156 out . wr i t e ( ”Total s i z e the mi t i ga t i on : ”+m i t i g a t e d s i z e+”

bytes ” ) ;
157 out . newLine ( ) ;
158 out . wr i t e ( ”Compression : ”+o r i g i n a l s i z e / m i t i g a t e d s i z e ) ;
159 avg2 += o r i g i n a l s i z e / m i t i g a t e d s i z e ;
160 out . newLine ( ) ;
161 out . newLine ( ) ;
162 l i n e = f names . readLine ( ) ;
163 }
164 out . wr i t e ( ”Avg Or i g i na l Compression : ”+avg1 /10) ;
165 out . newLine ( ) ;
166 out . wr i t e ( ”Avg mit igated Compression : ”+avg2 /10) ;
167 out . c l o s e ( ) ;
168 }
169 catch ( Exception e ) {
170 System . out . p r i n t ( e ) ;
171 }
172 }
173 }
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