
Efficient Software Implementation of Ring-LWE
Encryption

Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede

KU Leuven, Department of Electrical Engineering - ESAT/COSIC and iMinds, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. Present-day public-key cryptosystems such as RSA and Elliptic Curve
Cryptography (ECC) will become insecure when quantum computers become a
reality. This paper presents the new state of the art in efficient software imple-
mentations of a post-quantum secure public-key encryption scheme based on the
ring-LWE problem. We use a 32-bit ARM Cortex-M4F microcontroller as the tar-
get platform. Our contribution includes optimization techniques for fast discrete
Gaussian sampling and efficient polynomial multiplication. This implementation
beats all known software implementations, on any architecture, by at least one or-
der of magnitude. We further show that our scheme beats all ECC-based public-
key encryption schemes by at least one order of magnitude. At 128-bit security
we require 121166 cycles per encryption and 43324 cycles per decryption, while
at a 256-bit security we require 261939 cycles per encryption and 96520 cycles
per decryption. Gaussian sampling is done at an average of 28.5 cycles per sam-
ple.

1 Introduction

Our present day public-key schemes use number theoretic problems such as the fac-
toring or the discrete logarithm for providing security, authenticity and privacy. For
sufficiently large key sizes, these public-key cyptosystems are practically unsolvable
using present day computers or even using super computers or special hardware clus-
ters. In 1994 Peter Shor proposed a quantum algorithm [1] for integer factorization.
Later a modified version of Shor’s algorithm appeared that can solve the elliptic curve
discrete logarithm problem (ECDLP). Shor’s algorithms cannot be used on classical
computers, and can only execute on powerful quantum computers to solve the factoring
or the discrete logarithm problems in polynomial time. In the present decade, signifi-
cant research is being performed to develop powerful quantum computers. As a con-
sequence, the cryptography research community has become interested in developing
post-quantum-secure public-key schemes.

The learning with errors (LWE) problem and its efficient ring variant (the ring-
LWE problem) are related to well known worst-case problems over lattices, and hence
are considered to be secure in the post-quantum world. In this paper we will describe
an efficient software implementation of an encryption scheme based on the ring-LWE
problem [2]. The ring-LWE encryption scheme is computation intensive, and uses poly-
nomial arithmetic and discrete Gaussian sampling as primitive functions. While addi-
tion and subtraction of large polynomials are easy to implement, efficient design deci-



sions are essential for implementing the polynomial multiplication algorithm. Similarly,
an efficient discrete Gaussian sampler improves the performance of encryption.

In recent years several practical implementations based on the ring-LWE problem
were published in literature. The first implementation [3] includes a hardware-based ar-
chitecture and a high-level software implementation. It uses a Number Theoretic Trans-
form (NTT) based polynomial multiplier and a rejection sampler. In [4–8] more efficient
hardware implementations reduced the area and timing requirements. Even though there
exists several high-level software implementations [3, 13] and hardware implementa-
tions of the ring-LWE based encryption scheme in literature, efficient software imple-
mentations on resource constrained microcontrollers have received less attention [12].
Our everyday lives are permeated by these devices, and they are increasingly becoming
interconnected, even over the Internet. This raises security concerns, as these devices
handle sensitive information and are sometimes critical for the safety of human lives.
Our Contributions: This paper presents an implementation of the ring-LWE encryp-

tion scheme on the ARM Cortex-M4F microcontroller. Our design goals include high
speed and low memory consumption. Our contributions are as follows:

Fast discrete Gaussian Sampling We use the Knuth-Yao sampling algorithm to im-
plement a fast discrete Gaussian sampler. We investigate acceleration techniques to
improve the sampler based on the architecture of the microcontroller. The platform’s
built-in True Random Number Generator (TRNG) is used to generate random numbers.
Lookup tables are used to accelerate the sampling algorithm in the most frequently
used regions of the Gaussian distribution. This allows us to sample at an average of
28.5 cycles per sample.

Efficient Polynomial Multiplication We use the negative-wrapped NTT along with
computational optimizations from [7] to implement the polynomial multiplication. The
architecture’s large word size is used to store multiple coefficients in each processor
word, and the basic negative-wrapped iterative NTT algorithm is unrolled by a factor
two. This reduces the number of memory accesses and loop overhead by 50%. We
demonstrate that a polynomial multiplication of 256 elements can be done in 108147
cycles.

The paper is organized as follows. First, we provide a mathematical background to
help readers understand the paper. Next, we discuss the implementation details. We
provide an analysis of bottlenecks in standard algorithms, and provide solutions to
overcome these, with a specific focus on the target platform. Afterwards, our results
are presented and compared with related works. Finally, we provide a short conclusion
together with ideas for future work.

2 Mathematical Background

In this section we provide a brief mathematical overview and related references that
might be helpful for the reader.



2.1 The ring-LWE Encryption Scheme

In the ring-LWE problem [9] two polynomials a and s are chosen uniformly from a
polynomial ring Rq = Zq[x]/〈f〉 where f is an irreducible polynomial of degree n. An
error polynomial e of degree n is sampled from an error distribution X . The error dis-
tribution is usually a discrete Gaussian distribution Xσ with standard deviation σ. The
ring-LWE distributionAs,X overRq×Rq consists of tuples (a, t) where t = a · s+e ∈
Rq . Given a polynomial number of sample pairs (a, t) from As,X , it is very difficult to
find s. This problem is known as the search ring-LWE problem. An encryption scheme
based on the ring-LWE problem was proposed in [2]. Efficient implementations of this
encryption scheme are available in [?,7]. We use the parameter sets (n, q,σ) from [3],
namely P1 = (256, 7681, 11.31/

√
2π) and P2 = (512, 12289, 12.18/

√
2π) that have

security levels of 128-bit and 256-bit respectively.

2.2 Discrete Gaussian Sampling

The ring-LWE cryptosystem requires samples from a discrete Gaussian distribution to
construct the error polynomials during the key generation and encryption operations.
There are various methods for sampling from a discrete Gaussian distribution. The most
well known techniques are rejection sampling, inversion sampling, and the random bit
model. Efficiency (time and space) of the sampling algorithms depends on the standard
deviation σ of the distribution. Detailed comparative analysis of the sampling algo-
rithms can be found in [10]. We use the Knuth-Yao algorithm [11] to sample from a
discrete Gaussian distribution. The Knuth-Yao algorithm is based on the random-bit
model and uses, on average, a near-optimal number of random bits. This algorithm re-
quires storage of the probabilities of the sample points. The small standard deviation in
the ring-LWE encryption scheme means that the memory requirement is small and can
easily be satisfied on microcontrollers.
Tail and precision bounds: The tail of a discrete Gaussian is infinitely long and the

probability values have infinitely large precision. Thus for a practical implementation,
there is a tail and precision bound for a required bit-security. We use sufficiently large
precision and tail-bound [10, 6] to maintain a maximum statistical distance of 2−90 to
the true distribution.

2.3 Polynomial Multiplication

For large polynomial multiplications, the Fast Fourier Transform (FFT) is considered as
the fastest algorithm due to itsO(n log n) complexity. In this paper we use the Number
Theoretic Transform (NTT) which corresponds to a FFT where the primitive roots of
unity are from a finite ring (thus integers) instead of complex numbers. For efficient
implementation, we perform polynomial arithmetic in Rq = Zq[x]/〈f〉 with f = xn +
1, and n = 2k and q a prime such that q ≡ 1 mod 2n. Such a choice of the parameters
allows us to use an n-point NTT instead of an 2n-point NTT during a polynomial
multiplication in Rq . This technique is known as the negative wrapped convolution.
However there is an additional scaling overhead associated with the negative wrapped
convolution. We use the optimizations from [7] during the NTT computation.



In this paper we use the steps from [7] to implement a fast encryption scheme.
The encryption samples three error polynomials, computes three forward NTTs and
two coefficient-wize polynomial multiplications, and three polynomial additions. The
decryption computes one coefficient-wize polynomial multiplication, one polynomial
addition and one inverse NTT. For more details the reader is referred to [7].

3 Implementation

In this section we describe our ring-LWE implementation based on an ARM platform.
After introducing the target device, we describe techniques for efficient sampling from
a Gaussian distribution, efficient polynomial multiplication, and finally random number
generation.

3.1 Target Device

Our design was implemented on the ARM Cortex-M4F, which is a popular and pow-
erful embedded platform. It has a 32-bit word size, 13 general-purpose registers, its
instruction set supports performing single-cycle 32-bit multiplications, 16-bit SIMD
arithmetic, and a division instruction that requires between 2-12 cycles, depending on
the input parameters. We make use of STMicroelectronics’ STM32F407 chip, which
includes an ARM Cortex-M4F with a maximum clock speed of 168 MHz, 192 KB of
SRAM, and a hardware-based TRNG.

3.2 Gaussian Sampler

The discrete Gaussian sampler deserves special attention, as the efficient implementa-
tion of this building block has a big performance impact on the ring-LWE cryptosystem.
In our implementation, each encryption operation requires 3n Gaussian samples.

Knuth-Yao Algorithm This algorithm [11] performs a random walk along a binary
tree known as the discrete distribution generating (DDG) tree. A DDG tree is related
to the probabilities of the sample points. The binary expansions of the probabilities are
written in matrix form with binary elements, referred to as the probability matrix Pmat.
Each row of Pmat corresponds to the probability of sampling a random number at a
discrete position from the Gaussian distribution. Each element of Pmat represents a
node in the binary tree, with each non-zero element corresponding to a terminal node.
Each column of Pmat corresponds to a level in the DDG tree.

Alg. 1 shows a listing of the algorithm. The DDG tree is constructed on-the-fly,
eliminating the need for storing the entire tree. During a sampling operation a random
walk is performed starting from the root of the DDG tree. Each random walk consumes
a single random bit to travel from one level to the next. The distance counter d represents
the number of intermediate nodes to the right side of the visited node. Each non-zero
node that is visited, decrements the distance counter by one. When the distance counter
is finally decremented to below zero, the terminal node is found, and the current row



Input: Probability matrix P , random number r, modulus q
Output: Sample value s
1 for col← 0 to MAXCOL do
2 d← 2d+ (r&1)
3 r ← r � 1
4 for row ←MAXROW downto 0 do
5 d← d− P [row][col]
6 if d = −1 then
7 if (r&1) = 1 then
8 return q − row
9 else

10 return row

11 return 0

Algorithm 1: Knuth-Yao Sampling.

number of the probability matrix represents the sample. As the probability matrix only
contains the positive half of the Gaussian distribution, a random bit is used to decide
the sign of the sample. As our scheme performs all operations modulo q, the negative
number is found by q − row. For more details the reader is referred to [6, 10].

The bit-scanning operation in Alg. 1 is expensive: in the inner loop each bit of a
column is extracted from Pmat, subtracted from d, afterwhich the sign of d is checked.
Loop overhead exists in each inner loop iteration: the row index needs to be updated,
and checked against it’s lower bound. We further need to read multiple words from
each column. Therefore, each iteration of the inner loop requires at least 8 cycles for:
updating and bounds checking of d and the loop overhead from the row index. While
this seems like a small amount, it becomes significant when you consider that Pmat
consists of 5995 bits in our design for s = 11.31. The following discusses several
optimizations techniques for software implementations of the Knuth-Yao algorithm.
These techniques mostly focus on reducing the number of scanned bits.

Storing the probability matrix in column form Alg. 1 requires consecutive accesses
to elements from different rows in the same column in Pmat. To keep the number of
memory accesses low, Pmat is stored in a column-wise form. Storage of Pmat with
s = 11.31 requires 55 rows and 109 columns to provide a precision of 2−90. As each
column contains only 55 bits, 9 bits are wasted when a column is stored in two 32-bit
words. The following optimizations assume that the matrix is stored in column-wize
form.

Reducing the number of stored elements From Alg. 1 we can see that processing a
zero has no effect, as the distance d is not altered. It is therefore desireable to process
and store the region of the matrix that is known to contain non-zero elements. The
Hamming weight between two consecutive columns increases at most by one; thereby
causing a large number of zeros to exist in the bottom left-hand corner of the probability
matrix, as shown in Fig. 1.



1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0

0
1
0
0
1
1
1
0
0
0
0
0
0
0
0
0

1
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0

0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
0

0
1
1
1
0
1
0
1
1
1
0
0
0
0
0
0

0
0
1
0
1
0
0
1
1
1
1
0
0
0
0
0

Fig. 1. The partial contents of a probability matrix. We avoid storing zero words (represented by
the blue box) as they do not need to be processed.

Multiple processor words are required to store each column (section 3.2), and as
we would like to avoid the ineffectual bit-scanning operation on zero words, we store
only the non-zero words of the probability matrix, as they require no processing. For
s = 11.31 this technique allowed us to reduce the number of stored words from 218 to
180.

Skipping Unnecessary Bit Scanning A terminal node is located in a particular level
when the value of the distance d is less than the Hamming weight of the associated
column of the probability matrix. The authors in [6] proposed to store each column’s
Hamming weight in memory. The Hamming weights are used to avoid performing bit
scanning on any column that would not reduce the distance d to a negative number,
thereby avoiding columns in which a terminal node will not be found. This method
requires storage for the Hamming weights, as well as logic in the outer loop to check if
a terminal node will be discovered in the current level.

We propose to avoid the bit-scanning operation completely on all non-zero elements
of the probability matrix. A useful feature to do this on our target microcontroller is an
instruction that counts the number of leading zeros, called clz. The current column
word is stored in a register, and in each iteration of the inner loop clz is used to skip
the consecutive leading zeros of the elements of a column that still requires processing.
Next, the processed bits are left-shifted, and the inner loop repeats until the register is
equal to zero.

Lookup Tables Fig. 2 shows that the probability of sampling from the distribution is
highest at the mean. For s = 11.31 a terminal node has a probability of 97.27% to be
located within the first 8 levels and 99.87% to be located within the first 13 levels of the
DDG tree. This can be exploited by using a lookup table (LUT) to represent the levels
of the DDG tree that are closest to the mean, as they have a much higher likelihood of
containing a terminal node.



Input: Probability matrix P , random number r, modulus q
Output: Sample value s
1 index← r&255
2 r ← r � 8
3 s← LUT1[index]
4 if msb(s) = 0 then
5 if (r&1) = 1 then
6 return q − s
7 else
8 return s

9 d← s&7
10 col← 0
11 for col← 8 to MAXCOL do
12 d← 2d+ (r&1)
13 r ← r � 1
14 for row ←MAXROW downto 0 do
15 d← d− P [row][col]
16 if d = −1 then
17 if (r&1) = 1 then
18 return q − row
19 else
20 return row

21 return 0

Algorithm 2: Knuth-Yao Sampling with an LUT

An LUT that represents the first 8 columns is generated by using an 8-bit index
(instead of a random number) as an input to Alg. 1, and the results are saved in a
256-element lookup table. There is a small probability that a terminal node will not be
discovered in the first 8 levels. Each index that does not lead to a terminal node within
the first 8 levels, will cause a lookup failure, which is indicated in the most significant
bit of the corresponding lookup table element.

Alg. 2 shows how the costly bit-scanning operation for the first 8 levels is replaced
by an inexpensive table lookup operation. Sampling is performed with an 8-bit random
number as an index to the LUT. The lookup is successful if the most significant bit of
the lookup result is zero, afterwhich the algorithm returns the lookup result. A lookup
failure occurs if the most significant bit of the lookup result is one. The distance d is
then assigned to the lookup result with the most significant bit cleared, followed by the
bit-scanning operation (Alg. 1).

The efficiency of the algorithm can further be increased by using a second lookup
table to represent level 9 up to level 13 of the DDG tree. The second LUT is generated
in a similar way to the first LUT. The 8-bit index now consists of a 5-bit random number
concatenated with the 3-bit distance d. After a failed lookup in the first LUT, a lookup
in the second LUT checks if the terminal node lies inside level 9 through level 13. The
most significant bit of the lookup result is checked for a lookup failure. If the most



A
cc

um
ul

at
ed

Sa
m

pl
in

g
Pr

ob
ab

ili
ty

Level
3 4 5 6 7 8 9 10 11 12 13

0.7

0.8

0.9

1

Fig. 2. The probability that the Knuth-Yao sampling algorithm finds a terminal node within x
levels for a Gaussian distribution with σ = 11.31/

√
2π.

significant bit of the lookup result is zero, the lookup was successful, and the algorithm
quits by returning the lookup result. However, if the most significant bit of the lookup
result is one, a lookup failure has occurred. Next, the distance d is set to the low 4 bits
of the lookup result, followed by the bit-scanning operation on the remaining levels.

For a Gaussian distribution with σ = 11.31/
√

2π we found that all failed lookups
from the first LUT has a distance d between 0 and 6. As the second LUT index, which
consists partly of the parameter d, now has a limited range of values that will ever be
set, the LUT can be stored in only 224 elements.

3.3 Polynomial Multiplication

In this section we discuss the building blocks for fast multiplication based on the Num-
ber Theoretic Transform (NTT).

The basic negative-wrapped iterative algorithm for NTT computation is shown in
Alg. 3. This algorithm has inefficiencies coming from memory accesses in non-consecutive
locations. First, two coefficients are read from non-consecutive locations. Next, some
processing is performed on these two coefficients, and finally the two resulting coeffi-
cients are written to non-consecutive locations. Each inner loop iteration requires two
pointer calculations to access the elements stored in the non-consecutive memory loca-
tions. The inner loop further has loop overhead from updating the index k, and checking
it against its upper bound.

Coefficients require only 13-bits or 14-bits of storage respectively for q = 7681 and
q = 12289, and therefore fit into halfwords. On the target platform, a memory access
requires 2 cycles, regardless of whether it is to a 16-bit halfword, or to a full 32-bit word.
It is therefore wasteful to access halfwords, as two coefficients can be stored in a 32-bit
word, which can then be accessed in the minimum number of cycles. The expensive
calculation of twiddle factors can be avoided by storing precomputed twiddle factors,
and inverse twiddle factors in a lookup table.

3.4 Efficient Polynomial Multiplication

We can reduce the number of memory accesses, pointer operations, and loop overhead
by 50% by performing a two-fold unrolling of the inner loop, as shown in Alg. 4.



Input: Polynomial a(x) ∈ Zq[x] of degree n− 1 and the n-th primitive root wn ∈ Zq of
unity

Output: Polynomial A(x) ∈ Zq[x] = NTT (a)
1 A← BitReverse(a)
2 for m = 2 to n/2 step 2m do
3 wm ← primitiveroot(m) // wm = w

n/m
n

4 w =
√
wm

5 for j = 0 to m/2− 1 do
6 for k = 0 to n− 1 step m do
7 t← w ·A[m/2 + j + k] mod q
8 u← A[j + k]
9 A[j + k]← u+ t mod q

10 A[m/2 + j + k]← u− t mod q

11 w ← w · wm

Algorithm 3: Negative-Wrapped Iterative Fwd NTT

Memory operations are reduced by storing two coefficients in a single 32-bit word. In
each iteration of the inner loop the following occurs: two 32-bit words, each containing
two coefficients are read from memory, followed by arithmetic with these coefficients,
and finally the two resulting 32-bit words, each containing two coefficients, are written
to two different memory locations. The inner loop still requires two pointer calculations,
but now at least each memory operation will access two coefficients in a single memory
location. The reduction in the loop overhead comes from the two-fold unrolling of the
inner loop, as index k requires 50% fewer updates.

During encryption, three NTT operations are performed, one after the other, on three
different sets of coefficients. The loop overhead and calculation of the parameter w has
a non-negligible cost. This cost can be reduced by performing the three NTT operations
in parallel inside the same inner loop. By doing this, the cost is effectively reduced by
33%. Each of the three sets of coefficients requires a pointer to its data set. However, as
the target only has 13 general-purpose registers, we found it infeasible to keep all three
pointers simultaneously inside registers. To solve this, we propose to store the three sets
of coefficients in three consecutive memory locations separated by n/2 addresses. This
allows us to store only the first coefficient set’s address in a register, as the remaining
two sets’ addresses can easily be calculated.

3.5 Random Number Generation

The target platform’s TRNG uses a 48 MHz clock and can generate a 32-bit random
number every 40 clock cycles. The microprocessor runs at a clock speed of 168 MHz,
and can perform other computations while waiting 12 cycles between each random
number request. According to [?] the TRNG passes all the NIST statistical tests for
secure random number generation.

Each call to the Knuth-Yao sampling algorithm requires a varying amount of ran-
dom bits. To reduce the number of accesses to the TRNG, and thereby increase the
efficiency of our implementation, we propose to fetch a fresh random number from the



Input: Polynomial a(x) ∈ Zq[x] of degree n− 1, and lookup table primitive root with
the m-th primitive roots wm ∈ Zq of unity

Output: Polynomial A(x) ∈ Zq[x] = NTT (a)
1 A← BitReverse(a)
2 l← 1
3 for m = 2 to n/2 step 2m do
4 wm ← primitive root[l] // wm = w

n/m
n

5 w ← primitive root[l + 1] // w =
√
wm

6 for j = 0 to m− 1 step 2 do
7 for k = 0 to n/2− 1 step 2m do
8 (u1, t1)← (A[j + k],A[j + k + 1])
9 (u2, t2)← (A[m+ j + k],A[m+ j + k + 1])

10 t1 ← w · t1 mod q
11 t2 ← w · t2 mod q
12 A[j + k]← u1 + t1 mod q
13 A[j + k + 1]← u2 + t2 mod q
14 A[m+ j + k]← u1 − t1 mod q
15 A[m+ j + k + 1]← u2 − t2 mod q
16 w ← w · wm

17 l← l + 1

18 wm ← primitive root[l] // wm = wn

19 w ← primitive root[l + 1] // w =
√
wm

20 for k = 0 to n/2− 1 do
21 (u1, t1)← (A[2k],A[2k + 1])
22 t1 ← w · t1 mod q
23 A[2k]← u1 + t1 mod q
24 A[2k + 1]← u1 − t1 mod q
25 w ← w · wm

Algorithm 4: Memory Efficient Negative-Wrapped Fwd NTT



Table 1. Measured results of major operations.

Operation P1 (Cycles) P2 (Cycles)

NTT transform 31 583 73 406
Parallel NTT transform 84 031 188 150
Inverse NTT transform 39 126 90 583
Knuth-Yao sampling 7 294 14 604
NTT multiplication 108 147 248 310
P1 = (256, 7681, 11.31/

√
2π), P2 = (512, 12289, 12.18/

√
2π)

TRNG only when we run out of fresh random bits. The random bits are stored in a
register, and all used bits are right-shifted out of the register. When the register contains
an insufficient number of fresh bits for the next operation, a new random number is
fetched. A register could be used to keep a count of the number of fresh random bits in
the register. However, a limited number of registers are available, and we can do better
than this by counting the number of fresh bits with the clz instruction. To ensure that
clz reports the correct number of used bits, we set each fresh random number’s most
significant bit to one.

4 Results

In this section, we present the performance results of our ring-LWE implementation on
the ARM Cortex-M4F. The elapsed clock cycles are measured with the platform’s built-
in debug and trace unit (DWT), which contains a cycle count register (DWT CYCCNT).
All routines were benchmarked by obtaining the average cycle counts for 10000 runs.

4.1 Performance Results

Table 1 shows that the NTT-based operations are at least 123% more for expensive
for P2 when compared with P1, whereas Knuth-Yao sampling requires an average of
28.5 cycles per sample for both parameters. The NTT and Inverse NTT operations have
roughly the same execution times. The Parallel NTT operation consists of three NTT
operations in parallel, and outperforms 3 seperate NTT operations by 8.3%.

Table 2 shows that the code size has the same storage requirement for both param-
eter sets, while the RAM requirement increases by approx. 100% when comparing P2

with P1. Key generation, encryption, and decryption each has a respective increase in
execution time of 126%, 118%, and 117% when comparing P1 with P2. Decryption
requires 35% fewer cycles than encryption, while using 33% less RAM.

4.2 Performance Comparison

Table 3 shows that our results for the NTT transform requires 27.5% less cycles than
[12]. The scheme proposed by [13] has parameters n = 1024,σ = 8/

√
2π while

providing a security level of 128 bits. The same security level can be provided with
P1 which uses 3 times less coefficients. This, together with our optimizations, allowed



Table 2. Measured results for our implementation of the ring-LWE encryption scheme.

Operation Cycles Flash (B) RAM (B) Parameters

Key Generation 116 772 1 552 1 596 P1

Encryption 121 166 1 506 3 128 P1

Decryption 43 324 516 2 100 P1

Key Generation 263 622 1 552 3 132 P2

Encryption 261 939 1 506 6 200 P2

Decryption 96 520 516 4 148 P2

P1 = (256, 7681, 11.31/
√

2π), P2 = (512, 12289, 12.18/
√

2π)

Table 3. Performance comparison of major building blocks in lattice-based post-quantum cryp-
tosystems.

Operation Platform Cycles n, q, σ

NTT transform[12] ARM Cortex-M4F 122 619 P3

NTT transform∗ ARM Cortex-M4F 71 090 P2

NTT multiplication[12] ARM Cortex-M4F 508 624 P3

NTT multiplication∗ ARM Cortex-M4F 237 803 P2

NTT multiplication[13] Intel Core i5 4570R 342 800 P4

NTT multiplication∗ ARM Cortex-M4F 108 147 P1

Gaussian sampling[13] Intel Core i5 4570R 652.3 P4

Gaussian sampling[12] ARM Cortex-M4F 1828 P3

Gaussian sampling∗ ARM Cortex-M4F 28.5 P1 and P2

∗ This work, P1 = (256, 7681, 11.31/
√

2π), P2 = (512, 12289, 12.18/
√

2π)

P3 = (512, 12289, 215), P4 = (1024, 232 − 1, 8/
√

2π)

Note: For NTT transform and NTT multiplication P2 and P3 are equivalent.

us to beat their result for NTT multiplication by a factor of 3.2, and their result for
Gaussian sampling by more than one order of magnitude. even though they use a much
more powerful desktop processor.

Table 4 lists a comparison of our implementation with the only other known software-
based ring-LWE implementation by [3]. Even though they used a desktop processor, we
still beat their results by more than one order of magnitude.

In order to draw a comparison of our cryptosystem with more estabelished public-
key cryptosystems, we compare our implementation to an existing ECC implementa-
tion. We consider Elliptic Curve Integrated Encryption Scheme (ECIES) [?], which has
few known software implementations. The cycle cost of both the encryption and de-
cryption operations are estimated based on the most performance hungry operations,
namely two point multiplications. As our scheme provides a security level of 128 bits,
we therefore compare our results to ECC implementations of roughly 256 bits. In [15]
the authors found that a 233-bit point multiplication requires 2761640 cycles on the
ARM Cortex-M0+. This means that an ECIES implementation would require roughly
5523280 cycles for both encryption and decryption. Therefore, our implementation is



Table 4. Comparison of ring-LWE encryption schemes.

Platform Key Gen. Encrypt Decrypt n, q, σ

Core 2 Duo [3] 1 9 300 000 4 560 000 1 710 000 P1

Cortex-M4F∗ 117 009 121 166 43 324 P1

Core 2 Duo [3] 1 13 590 000 9 180 000 3 540 000 P2

Cortex-M4F∗ 252 002 261 939 96520 P2

∗ This work, P1 = (256, 7681, 11.31/
√

2π), P2 = (512, 12289, 12.18/
√

2π)
1 Cycles estimated from reported execution time.

faster than ECIES by more than one order of magnitude for encryption and two orders
of magnitude for decryption.

5 Conclusion

In this work, we demonstrated that it is possible to implement a lattice-based post-
quantum public-key cryptosystem on a device that is as simple as a Cortex-M4F mi-
crocontroller. We showed various implementation techniques to improve the efficiency
of the Knuth-Yao Gaussian sampler and the NTT-based multiplier. These optimization
allowed us to beat all known implementations of ring-lwe encryption operations, and
gaussian sampling by at least one order of magnitude. We further demonstrated that
our scheme beats all ECC-based public-key encryption schemes by at least one order
of magnitude. Our implementation requires an average of 28.5 cycles per Gaussian
sample, 121166 and 43324 cycles respectively for encryption and decryption at 128-bit
security, and 261939 and 96520 cycles respectively for 256-bit security, while using a
modest amount of flash and RAM.

For future work we plan to create an efficient implementation for a Single Instruc-
tion Multiple Data (SIMD) processor (e.g., ARM NEON). We further intend to extend
our scheme to allow for constant-time execution. Another interesting direction is to use
our optimization strategies on a signature-based protocol.

References

1. P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Foun-
dations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, Nov 1994, pp.
124–134.

2. V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and Learning with Errors
Over Rings,” Cryptology ePrint Archive, Report 2012/230, 2012, http://eprint.iacr.org/.

3. N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, “On the design of hardware
building blocks for modern lattice-based encryption schemes,” Cryptographic Hardware and
Embedded Systems–CHES 2012, vol. 7428, pp. 512–529, 2012.

4. T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for lattice-based cryptogra-
phy on reconfigurable hardware,” Progress in Cryptology–LATINCRYPT 2012, pp. 139–158,
2012.

5. A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and Area-efficient FPGA Implementa-
tions of Lattice-based Cryptography,” in HOST, 2013, pp. 81–86.



6. S. S. Roy, F. Vercauteren, and I. Verbauwhede, “High precision discrete gaussian sampling
on FPGAs,” Selected Areas in Cryptography–SAC 2013, pp. 383–401, 2014.

7. S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede, “Compact Ring-
LWE Cryptoprocessor,” Cryptology ePrint Archive, Report 2013/866, 2013.

8. T. Pöppelmann, L. Ducas, and T. Güneysu, “Enhanced Lattice-Based Signatures on Recon-
figurable Hardware,” Cryptology ePrint Archive, Report 2014/254, 2014, http://eprint.iacr.
org/.

9. O. Regev, “On Lattices, Learning with Errors, Random Linear Codes, and Cryptography,”
in Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, ser.
STOC ’05. New York, NY, USA: ACM, 2005, pp. 84–93.

10. N. C. Dwarakanath and S. D. Galbraith, “Sampling from discrete gaussians for lattice-based
cryptography on a constrained device,” Applicable Algebra in Engineering, Communication
and Computing, pp. 159–180, 2014.

11. D. E. Knuth and A. C. Yao, “The complexity of nonuniform random number generation,”
Algorithms and complexity: new directions and recent results, pp. 357–428, 1976.

12. T. Oder, T. Pöppelmann, and T. Güneysu, “Beyond ECDSA and RSA: Lattice-based Digital
Signatures on Constrained Devices.”

13. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem,” Cryptology ePrint Archive, Report
2014/599, 2014, 2014.

14. NTT Information Sharing Platform Laboratories, “PSEC-KEM Specification version 2.2,”
2008.

15. R. De Clercq, L. Uhsadel, A. Van Herrewege, and I. Verbauwhede, “Ultra Low-Power imple-
mentation of ECC on the ARM Cortex-M0+.” Proceedings of the The 51st Annual Design
Automation Conference–DAC 2014, 2014.


