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Abstract Security is one of the most important features of industrial products.
Cryptographic algorithms are mainly used for this purpose to obtain confiden-
tiality and integrity of data in industry. One of the main concerns of researchers
in designing cryptographic algorithms is efficiency in either software implemen-
tation or hardware implementation. However, the efficiency of some well-known
algorithms is highly questionable. The main goal of this paper is to present a novel
processor architecture called CIARP (stands for Crypto Instruction-Aware RISC
Processor) being feasible for high speed implementation of low throughput cryp-
tographic algorithms. CIARP has been designed based on a proposed instruction
set named Crypto Specific Instruction Set (CSIS), that can speed up encryption
and decryption processes of data.

Keywords Co-design cryptography · CIARP processor · Crypto-Purpose
Instruction

1 Introduction

Old-time necessity for security and data protection against unauthorized access
to classified information in many industries especially in military application is
undeniably sobering. Hence, Cryptography plays a significantly important role in
the security of data transmission.

On one hand, with developing computing technology, implementation of sophis-
ticated cryptographic algorithms has become feasible. On the other hand, stronger
cryptographic specifications are needed in order to be reluctant to possible threats.
Some well-known examples of cryptographic algorithms are DES and AES. The
Data Encryption Standard (DES) has been the U.S. government standard since
1977. However, now, it can be easily cracked inexpensively. In 2000, the Advanced
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Encryption Standard (AES) was substituted for the DES to meet ever-increasing
requirements for security.

General purpose processors are mostly used to speed up data manipulation and
information processing in systems. Nevertheless, these processors are not perfor-
mance efficient when they are utilized for data encryption and decryption, mainly
because many cryptographic algorithms need bit-oriented operations in contrast
with what general purpose processors work based on. Data are manipulated by
word-oriented operations in processors. Consequenty, bit-oriented manipulating
by means of them poses undesirable time overhead although some approaches like
hardware/software co-design can mitigate the problem. By the way, the most well-
known approaches which are used for implementations of cryptographic algorithms
can be enumerated as:

– General purpose processors and DSP.
– Application Specific IC (ASIC).
– Reconfigurable hardware or encryption systems (FPGAs).
– Crypto processor and Crypto-Coprocessor.

The main goal of this paper is to present an especial purpose instruction
set called CSIS (Crypto Specific Instruction Set) that can be utilized for cryp-
tographic algorithms. This instruction set is structured based on some bit and
byte-oriented operations. In order to show their appropriateness, a cryptographic
processor named CIARP (Crypto Instruction-Aware RISC Processor) has been
designed. By this novel processor, the time order of the standard cryptographic
algorithms has been reduced compared to those run on general purpose proces-
sors. We believe that CSIS and CIARP open a new field in implementation of
cryptographic algorithms.

The rest of the paper is organized as follows:Related Work is presented in sec-
tion 2. a general description of CIARP is presented in section 3. Afterwards, The
assembler of CIARP is presented in section 4. Section 5 describes the syntehsis
result of the CIARP processor. Section 6 describes the simulation and implemen-
tation results of the CIARP processor. Finally, the paper is concluded in section 7.

2 Related Work

Research to develop a device which can support high efficient implementation of
multiple cryptographic algorithms to reduced the time order of the execution has
gained considerable momentum in the last decade, since it reduces efforts of the
chip makers to come up with a new chip as new cryptographic algorithms continue
to emerge.So we can divide implementation of cryptographic algorithms to three
basic techniques:

– Fully Hardware Cryptographic algorithms Implementation- There have
been many different hardware realization and implementation of Cryptographic
algorithms on FPGA and ASIC platform. Refs. [1]through [17] present the
FPGA implementations of the Cryptographic algorithms. All of the architec-
tures used in those works can achieve the throughput rate of several Gbps [18].ASIC
and FPGA technologies provide the opportunity to augment the existing dat-
apath of a processor implemented via an IP core to add acceleration modules
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supported through newly defined instruction set extensions targeting perfor-
mance critical functions [19], [20], [21].Though it is an energy efficient solution,
the downside of it is lack of flexibility and scalability to support new Crypto-
graphic algorithms.

– Fully Software Cryptographic algorithms Implementation- The advan-
tages of a software implementation include ease of use, ease of upgrade, ease
of design, portability, and flexibility. However, a software implementation of-
fers only limited physical security, especially with respect to key storage [22].
The most significant disadvantage of software based solutions is that the speed
performance is significantly lower than that based on hardware [23]. Most tradi-
tional methods for improving the throughput of pure software implementations
of symmetric-key algorithms fall into one of two categories. One option is to
construct memorybased look-up tables where results of some of the basic op-
erations of the algorithm have been pre-computed and stored.Another method
for speeding up software implementations of cryptographic algorithms involves
taking advantage of mathematical or structural properties of the particular al-
gorithm. The software implementation requires very high time to execute. The
hardware implementation is better than software implementation in terms of
processing speed and power consumption. The combination of both the im-
plementations constitutes a co-design, which offers flexibility to implement
complex systems.

– Co-design Cryptographic algorithms Implementation- The hardware /
software co-design methodology is adopted to implement one of the functional
modules in hardware and subsequent remaining modules in software .For ex-
ample, An AES has four modules in the algorithm, each one of them is perform-
ing a specific function.The modules are addroundkey, subbyte, shiftrow, and
mixcolumn. At first, the complete algorithm is implemented in software. The
timing profile is done. The mixcolumn, block with more computational com-
plexity is shifted in hardware. The remaining three blocks are kept in software
only [24]. The software (SW) critical part i.e., a mixcolumn, module of AES
is implemented inhardware (HW) in VHDL language [25]. The main idea of
AES implementation is to achieve advantages of the parallel structures, which
can be efficiently implemented in hardware [26].By using parallel hardware
structure, there is a reduction in the number of operations and also parallel
operation is possible. An implementation result shows a considerable improve-
ment in speed as compared to software only approach. On the other hand,
the significant reduction in area is achieved as compared to hardware only
approach.Further, the software and hardware blocks are combined together
and co-design implementation is done. By applying the suggested co-design
approach for an AES encryption algorithm the execution time is accelerated
and power consumption is reduced as compared to that of software imple-
mentation. By incorporating the hardware / software codesign methodology, a
significant reduction in area usage and thermal power dissipation is achieved
as compared to custom hardware. The considerable reduction in time further
allows the preference ofsuggested methodology over software. The hardware
/software co-design methodology can be easily extended to any application.
The application under consideration in the present work is Rijindaels Encryp-
tion Algorithm (AES) [35].
The main open problem is:
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Can the techniques that noted above implement a wide range of Cryptogra-
phy algorithms efficiently ? In this paper, We introduce CSIS concept (i.e. we
have designed innovative instruction based on Shannon’s principleregarding
the confusion and diffusion principles [27] , Bit-oriented , and Byte-oriented
operations). So we use the concept of CSIS to implement a wide range of cryp-
tographic algorithms efficiently to reduce the time order of the execution.
On one hand, The CSIS concept uses the advantages of software implemen-
tation such as ease to use, ease of upgrade, ease of design, portability, and
flexibility and eliminates the disadvantage of software implementation ”very
high time to execute”. on the other hand, It’s more scalable and more flexible
than co-design implementation.

3 CIARP Processor

CIARP is a 32-bit processor that its architecture has been designed in a way to
be modular. In other words it is composed of some basic building blocks such
as multiplexers, decoders, registers and counters and whole processor has been
implemented by interconnecting these modules that makes it a fully-synthesizable
processor.

Each instruction cycle in CIARP is composed of four T-states. The CIARP in-
struction set includes two categories of computing instructions. One group contains
word-oriented instructions like those can be found in general purpose processors
such as arithmetic and logical operations. Another class of instructions is bit and
byte oriented so that they can be exploited in implementing algorithms needing
such features.

CIARP reaps the benefits of RISC architectures to speed up running programs
by utilizing fewer instructions and addressing modes and more registers as well as
pipeline technique and register windowing in its structure. The memory is acces-
sible via only two instructions (load and store). Furthermore, this processor has
some control instructions like unconditional and conditional branch instructions.

The main part of CIARP is IR-Decoder that has been designed to decode
the instructions. In other words, according to the given instruction, it determines
which unit in the next stage should be activated. One of the distinct features of
CIARP is the barrel shifter that is able to shift a word as many as it is desired
in one clock pulse. The most important instructions of CIARP are BITP, BYTP
and RXOR that will be disscussed further.

3.1 The Register File

Here, CIARP registers are presented. In all registers, the bit with number zero is
assessed as the LSB (Least Significant Bit) while the MSB (Most Significant Bit)
is recognized as the bit with number 31.

3.1.1 General Purpose Registers (GPR)

These 32-bit registers are used as the source or the destination in most of instruc-
tions.
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Fig. 1 The internal structure of CIARP.

3.1.2 Permutation Registers (PR)

PRs are 32-bit registers that specify the pattern of permutation in crypto-specific
instructions. They determine the number of bits or bytes in bit-oriented or byte
oriented instructions.

3.1.3 Program Counter (PC)

It is a 32-bit counter that ascertains the sequence of the program.
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3.1.4 Address Register (AR)

A 32-bit register that is used for memory addressing.

3.1.5 Program Status Word (PSW)

It is 32-bit register that each bit of it determines a status except some bits that
have been considered for future use. Fig. 2 shows its structure and the functionality
of each bit.

Fig. 2 The functionality of each bit in PSW.

GT and EQ are used in the comparison instructions and refreshed when a
comparison instruction is issued. If the first register is greater than the second,
GT bit is set to 1 while EQ bit is set to 1 if both registers are equal. In other
cases, both of them are filled by zero. SF is known as the Sign Flag and is set to
1 when the result of an arithmetic instruction is negative. CF is used to save the
carry generated by arithmetic operations and by RXOR as well. When overflow
occurs, OF is set to 1. In arithmetic and logical instructions, if the result has even
parity, PF is set to 1. IE is a writable bit to enable maskable interrupts. Finally,
CWP known as the Current Window Pointer of CIARP is a 3-bit field to keep the
sequence of window switching in the 8-window register file of CIARP.

3.2 Addressing Mode

Most instructions work directly with registers and the memory is accessible through
load or store instructions like what are designed in RISC processors. There are four
addressing modes in CIARP: Immediate addressing, Register Direct Addressing,
Register Indirect Addressing, and Index addressing.

3.2.1 Immediate Addressing Mode

It can be used for all instructions except for load and store instructions. This kind
of addressing mode is shown in Fig. 3.

3.2.2 Register Direct Addressing Mode

As the former addressing mode, It can be used for all instructions except for load

and store instructions. This kind of addressing mode is shown in Fig. 4.

3.2.3 Register Indirect Addressing Mode

It is utilized in the load and store instructions. For the load instruction, the source
field refers to a register containing the address of the desired operand. By contrast,
in store instruction, the destination field uses this addressing mode.
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Op3 Unused Immediate(Op1)

Immediate
(i)

(ii)

(iii)
Op3 Op2 Immediate(Op1)

Fig. 3 Immediate addressing mode for (i) Single operand instructions (ii) two operand in-
structions and (iii) three operand instructions.

56

Op3 Op2 Op1 Op0

56

Op3 Op2 Op1 Unused

Destination Unused

(i)

(ii)

(iii)

Fig. 4 Register direct addressing mode for (i) three operand instructions (ii) four operand
instructions and (iii) branch statements.

3.2.4 Index Addressing Mode

As the previous addressing mode, it is used in load and store instructions. There
are two fields to indicate this kind of addressing mode. One field is reserved for
displacement while the other field refers to the index register. The effective address
in this mode is as follows:EA=index+displacement. This kind of addressing mode
is shown in Fig. 5.

AM 29 23                         18 17                        12 11                                                                      0

1 1 Opcode Destination Source Displacement

24

Fig. 5 Index Addressing Mode.

3.3 ISA(Instruction Set Architecture)

CIARP’s ALU support many instructions like arithmatical, logical, branch, load
and store instructions that define in RISC processors. CIARP’s ISA consist of
some insrtuction that specialize CIARP from othere processors. These instructions
named CSIS and will be explained in upcoming sections. Instruction set of CIARP
and explanations shown in Table. 2. Instructions divided to three parts depend on
operand numbers: one, two and three operand instructions as they are mentioned
in previous section and shown in Table. 2. Just the third operand in three operand
instructions and the second operand in two operand instructions and the first in
one operand instructions can be point to an immediate value in immediate and
index addressing modes. Otherwise, the operands must be point to a register.
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Table 1 Instruction set architecture of CIARP (IM means IMmediate, IN means INdex, RD
means Rgister Direct and RI means Register Indirect).

Instruction Addressing modes Description

ADD Op1,Op2,Op3 RD,IM Op1=Op2+Op3

SUB Op1,Op2,Op3 RD,IM Op1=Op2-Op3

MUL Op1,Op2,Op3 RD,IM Op1=Op2*Op3

LOAD Op1,Op2 RI Op1=[Op2]

LOAD Op1,Op2,OP3 IN Op1=[Op2+Op3]

STORE Op1,Op2 RI [Op1]=Op2

STORE Op1,Op2,OP3 IN [Op1]=Op2+Op3

AND Op1,Op2,Op3 RD,IM Op1=Op2 (and) Op3

OR Op1,Op2,Op3 RD,IM Op1=Op2 (or) Op3

XOR Op1,Op2,Op3 RD,IM Op1=Op2 (xor) Op3

SHR Op1,Op2,Op3 RD,IM Op1=Rigth shifting of Op2 that
Op3 specify number of shifting

SHL Op1,Op2,Op3 RD,IM Op1=Left shifting of Op2 that
Op3 specify number of shifting

ROR Op1,Op2,Op3 RD,IM Op1=Rigth rotating of Op2 that
Op3 specify number of shifting

ROL Op1,Op2,Op3 RD,IM Op1=Left rotating of Op2 that
Op3 specify number of shifting

RORC Op1,Op2,Op3 RD,IM Op1=Rigth rotating of Op2 with
Carry Bit that

Op3 specify number of shifting

ROLC Op1,Op2,Op3 RD,IM Op1=Left rotating of Op2 with
Carry Bit that

Op3 specify number of shifting

CMG Op1,Op2 RD,IM GT= 1 If Op1 Greater than Op2

CML Op1,Op2 RD,IM LT= 1 If Op1 Less than Op2

CME Op1,Op2 RD,IM EQ= 1 If Op1 Equals with Op2

JMG Op1 RD,IM If GT==1, PC=Op1

JML Op1 RD,IM If LT==1, PC=Op1

JME Op1 RD,IM If EQ==1, PC=Op1

JMP Op1 RD,IM PC=Op1

MGG Op1,Op2 RD Op1=Op2

MGP Op1,Op2 RD Op1=Op2

MPG Op1,Op2 RD Op1=Op2

MPP Op1,Op2 RD Op1=Op2

MIP Op1,Op2 IM Op1=Op2

MIG Op1,Op2 IM Op1=Op2

CALL Op1 RD,IM Push PC then PC=Op1

RET Implicit POP PC
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3.4 The Pipeline Structure of CIARP

Pipelining is an implementation technique in which the phases of the instruction
cycle are executed simultaneously. While an instruction is being fetched from the
memory, the former instructions are being processed in following stages.CIARP
takes the advantages of a 4-stage pipeline structure [28]. Each of fetch cycle, decode
cycle, execute cycle, and write back cycle has been considered one stage in the
CIARP pipeline architecture. Hence, all instructions run in four clock periods.
Fig. 1 illustrates the pipeline architecture of CIARP.

3.5 Register Windows

Register Files represent a substantial portion of the energy budget in modern
microprocessors [29] and [30]. The techniques for reducing the size include sharing
an entry among several operands with the same value [31] and [32], and dividing
the register storage hierarchically [33] and [34]. The register model of CIARP is the
same as the SPARC architecture and uses the same register windowing mechanism
that is described in this section.

The SPARC architecture uses a windowed register file model in which the file
is divided up into groups of registers called windows [35]. This windowed register
model simplifies compiler design and accelerates procedure calls.

The implementation of the proposed CIARP processor contains 68 GPR reg-
isters and 64 PR registers that are 32-bit wide and are classified into a set of
128 window registers and a set of 4 global registers. The 128 window registers are
grouped into 8 sets of 12 GPR registers and 12 PR registers called windows. Thus,
the register file consists of 8 register windows where each window includes of a
set of 24 registers. While a program is running, it has access to 28 32-bit proces-
sor registers which include 4 global registers plus 24 registers that belong to the
current register window. As it is shown in Fig. 6, The first 8 registers (GPR and
PR) in the window are called the in registers (in4-in7 (GPR) and in4-in7 (PR)).
When a function is called, these registers may contain arguments that can be used.
The next 8 registers are the local registers (local8-loca11 (GPR) and local8-local11
(PR)) which are scratch registers that can be used for anything while the function
executes. The last 8 registers are the out registers (out12-out15 (GPR) and out12-
out15 (PR)) which the function uses to pass arguments to functions that it calls.
At any given time, a program can access an active 28-register window (24 window
registers) and the four global registers. The current active window (the window
visible to the programmer) is identified by the Current Window Pointer (CWP).
Either incrementing or decrementing the CWP results in an eight register overlap
between windows. This overlap of window registers is used to pass parameters
from one window to the next.

3.6 The Structure of Barrel Shifter in CIARP

The key objective of today’s circuit design is to increase the performance without
the proportional increase in power consumption. Shifting and rotating are required
in many operations such as arithmetic and logical operations, address decoding



10 Nima Karimpour Darav et al.

Fig. 6 The functionality of the designed register window.

and indexing etc. Barrel shifters, which can shift and rotate multiple bits in a
single cycle, have become a common design choice for high speed applications.
For this reason, CIARP reap the benefits of the method that uses multipliers in
its barrel shifter [36] and [37]. A 32-bit barrel shifter requires thirty-two, 32-to-1
multiplexers. A 32-to-1 multiplexer can be implemented in a Spartan-3a device
using two CLBs. Only sixty four CLBs are required to accomplish all the required
multiplexing. By using a multiplier-based barrel shifter, a 32-bit barrel shifter is
built using four 8-bit barrel shifters and thirty two 4-to-1 multiplexers.

The diagram on the left side of Fig. 7 is a single-cycle, 32-bit barrel shifter.
The input bus is broken down into four 8-bit words. The data is processed in two
stages. The first stage is constructed of the 8-bit barrel shifters. This stage provides
the fine shifting, moving the bits from adjoining bytes. Passing the first stage, the
appropriate bits are stored in a byte; however the bytes need to be reordered. The
reordering of the bytes, or bulk shifting, is applied in the second stage, as shown
on the right in Fig. 7. The 8-bit barrel shifter requires the shift amount being in
the one-hot encoded format where three LSBs are used to control the fine shifting,
and the two MSBs are used to control the bulk shifting [9].

CIARP supports six kinds of shift operations (SHL, SHR, ROR, ROL, ROLC,
and RORC) and uses Hardware sharing technique to reduce the number of slices
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Fig. 7 The barrel shifter based on multipliers.

Table 2 The synthesis results of the barrel shifter in CIARP.

Used Available Utilization
Number of slices 117 11264 1%

Number of occupies 107 11264 1%

and the hardware cost without missing performance. Table 2 shows the synthesis
results of the barrel shifter of CIARP.

3.7 Interrupt

When an interrupt occurs by peripheral device, an 8-bit vector is placed on the
bus Interrupt Vector and the CPU in interrupt cycle jump to the location of the
memory which interrupts vector indicates.

3.8 The Crypto-Purpose Instructions

3.8.1 The BITP Instruction

It is a bit-oriented instruction with four operands that is demonstrated in Fig. 8.
A sample use of BITP is shown in 1.

BITP GPR1, GPR2, PR1, PR2 (1)

It is a bit permutation on lower 16 bits of GPR2 (as the source register) based
on the pattern determined by PR1 and PR2 registers, and the result is stored in
GPR1 as the target register.

The PR registers are divided into eight parts containing 4 bits. Each part is
able to indicate one bit out of lower 16 bits in GPRs. In the BITP instruction,
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01234567

01234567

1101=13 Hex

GPR2(5)    GPR1(13)

Pr2, Op0(PAT#2)Pr1, Op1(PAT#1)GPR1, Op2(Src)GPR2, Op3(Des)

Pr1

Pr2

Fig. 8 The functionality of the BITP instruction.

PR2 specifies the bits of GPR2 (the source register) to be copied into those bits of
GPR1 (the target register) that are designated by PR1. For example if the value
of part 5 of PR2 and PR1 is 13 and 5 respectively, the content of the bit 13 of
GPR2 will be copied into the bit 5 of GPR1. Any GPR can be substituted for
GPR1 and GPR2 as well as PR1 and PR2 which can be replaced by any PR.

3.8.2 The BYTP Instruction

It is a byte-oriented instruction with three operands that is demonstrated in Fig. 9.
A sample use of BYTP is shown in 2.

BY TP GPR1, GPR2, PR1 (2)

P0Unused P3 P2 P1

8

Byte0Byte2

8

Byte1Byte3

15162324

Byte0Byte2

8

Byte1Byte3

15162324

GPR1

GPR2

PR 1

if P1 = 3 then GPR1(15:8) GPR2(31:24)←

Fig. 9 The functionality of the BYTP instruction.

It is a byte permutation on the four bytes of GPR2 (as the source register)
based on the pattern determined by PR1, and the result is stored in GPR1 as the
target register.

The PR registers are divided into four parts containing 2 bits. Each part is
able to indicate one byte out of the four bytes in GPRs. In the BYTP instruction,
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PR1 specifies the bytes of GPR2 (the source register) to be copied into relative
bytes of GPR1 (the target register). For example if the value of part 1 of PR1 is
3, the contents of byte 3 of GPR2 will be copied into byte 1 of GPR1. Any GPR
can be substituted for GPR1 and GPR2 as well as PR1 and PR2 which can be
replaced by any PR.

3.8.3 The RXOR Instruction

31 01

31 01

AND

AND

AND

31 01

GPR

   PR

PSW

GTEQSFOFCF

Fig. 10 The functionality of the RXOR instruction.

A sample use of BYTP is shown below:

RXOR GPR1, PR1

As it is shown in Fig. 10, this instruction applies the XOR operation on all
bits of GPR2 according to contents of PR1 and stores the result into CF which is
a flag bit in PSW.

4 CIARP Assembeler

An embedded system is a special-purpose computer system designed to perform
one or a few dedicated functions. It is usually embedded as part of a complete
device including hardware and mechanical parts. Since embedded systems usually
use processors with limited computational power and few hardware resources, it
is important to write efficient programs controlling the systems [38]. In order to
automate generating executable code for CIARP, we have designed an assembler
that converts assembly instructions written in a file into machine language in-
structions [39]. Assembler provided in java programming language and support
the instructions in Table 2 and CSIS.

5 Synthesis Results

Having been completed the design process, in order to verify its performance, the
processor was implemented on hardware using VHDL and Xilinx ISE synthesis



14 Nima Karimpour Darav et al.

tool. The target FPGA used in the implementation was Spartan3a xc3s1400an
device from Xilinx. The result of the synthesis showed that the full implementation
needs 5,127 (45% of 11264) slices and its critical path limited the maximum clock
frequency on 69 MHz. The post-synthesis simulation verified the design goals of
CIARP. Synthesis results detail shown in Table 3.

Table 3 The synthesis results of CIARP.

Components Number of Utilization Critical path
occupies Slice Delay

CIARP 5127 45% 14.299ns
Data path 4956 43% 12.614ns

Control unit 162 1% 5.512ns
Register file 5162 45% 6.081ns

Stage3 - data path 644 5% 10.896ns
Function unit 618 5% -
Special order 160 1% -

ALU 156 1% -
Load store branch 132 1% -

Shift 107 1% -

6 Experiments, Results and discussions

To evaluate our specific instructions, in cryptography algorithms, one issue should
be discussed: The number of cycles for implementation (Ordering). Notice that,
using specific instructions can reduce number of cycles, so an accuracy measure
number of cycles should be used. Therefore, for these objectives, the number of
cycles should be evaluated with and without specific instructions. So, to achieve
this purpose the AES-128bit algorithm as Block Cipher and the A5/1 and Salsa20
as Stream Ciphers implement on CIARP, MICROBLAZE and LEON3 [40] [41]
processors.

6.1 Implementation of AES algorithm on Leon3

The first step for implementation of AES on LEON3 is the configuration of LEON3
processor according to our requirements. For the configuration of LEON3 Proces-
sor, first enter into the grlib-gpl-1.2.0-b4121/designs/leon3-gr-xc3s-1500 and then
give the command, make xconfig[] Using GUI interface configure various aspects of
LEON3 processor. Click the ’Processor’ button and it will give various options for
configuring integer unit, floating-point unit, cache system, memory management
unit, debug support unit etc. For this project we have disabled the floating-point
unit and memory management unit and enabled debug support unit and Accel-
erated UART tracing. To copy the configuration to leon3-gr-xc3s-1500/config.vhd
file click on ’save and exit’.

To compile the AES program written in C, we have to first copy the program
in systest.c of directory grlib-gpl-1.2.0-b4121/designs/leon3-gr-xc3s-1500 and then
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give command, make soft. The design can be compiled by giving the following com-
mand in grlib-gpl-1.2.0-b4121/designs/leon3-gr-xc3s-1500 directory, make vsim. It
compiles all .vhd files [42].

To simulate the design, first enter into the grlib-gpl-1.2.0-b4121/designs/leon3-
gr-xc3s-1500 directory and then give command, vsim testbench. The subdirectory
’software’ contains all the test files for the processor. Each test has been described
in a separate file. These tests are compiled into an sdram.srec file which is loaded
into the memory of the processor while simulation. Finally to start the simulation
give command. run -all. It runs the simulation completely. Simulation is halted by
generating a failure.

6.2 Implementation of AES algorithm on CIARP

The first step for implementation of AES on CIARP is the AES program written
in CIARP assembly, we have to first copy the program in Assembler(CIARP) and
then click the ’Open and Save Directory Of instructions’ button it will give instruc-
tion.txt file that should be copied in /CIARP-IP directory. /CIARP-IP directory
contains of two different instruction .txt and data .txt files which consequently
loaded into the instruction memory and the data memory of the processor while
simulation, and .vhd files which are CIARP core. To simulation the design, first
enter into /CIARP-IP directory and then give command, vsim testbench. Finally
to start the simulation give command. run -all. It runs the simulation completely.

6.3 Implementation of A5/1 algorithm

The A5/1 is a stream cipher and divided to six step for implementation. The fifth
step of A5/1 consist of six basic function [43]:

– bit parity(word x).
– word clockone(word reg, word mask, word taps).
– bit majority().
– void clock().
– void clockallthree().
– void getbit().

We imeplement the fifth step of A5/1 on three different processors CIARP, MI-
CROBLAZE, and LEON3.

6.4 Implementation of Salsa20 algorithm

Salsa20 is a stream cipher submitted to eSTREAM by Daniel J. Bernstein. It
is built on a pseudorandom function based on 32-bit addition, bitwise addition
(XOR) and rotation operations. The one round of Salsa20 for implementation on
CIARP, MicroBlaze, and LEON3 shown at Fig. 11.
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z1 = y1 xor ((y0 + y3) << 7 )

z2 = y2 xor ((z1 + y0) << 9 )

z3 = y3 xor ((z2 + z1) << 13 )

z0 = y0 xor ((z3 + z2) << 18 )

Fig. 11 The one round of Salsa20.

Table 4 Simulation Report

CPU core AES-128 A5/1 Salsa20 Frequency
Mhz

CIARP 5426 41 14 50

MICROBLAZE 8378 420 14 50

LEON3 8888 2888 41 50

Table 5 Memory Usage

CPU core AES (byte) A5/1 (byte) Salsa20 (byte)

CIARP 1292 336 48

MICROBLAZE 2388 552 48

LEON3 15224 4656 48

6.5 Memory-Usage of algorithms

As shown in Table 5 The CIARP Processor not only reduce number of time order
for implementing cryptography algorithms but also has better results for memory
usage comparing to other processors.

6.6 Results

Following Implementation AES-128bit, A5/1 and Salsa20 algorithms on three dif-
ferent processors CIARP, MICROBLAZE, and LEON3 Results shown at Table 4
and Table 6.

6.7 discussions

The basic reason of reduce number of ordering in CIARP processor for imple-
mentation A5/1 is using RXOR instruction while other processors lack of this
instruction and use parity function. Fig. 12 show how RXOR instruction decrease
number of ordering.
On other hand, The basic reason of decrease number of ordering in CIARP pro-

cessor for implementation AES is using BYTP instruction while other processors
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Table 6 CPU Soft Cores

CPU core License Pipeline Cycles Area Comments
depth per (LEs)

instruction
CIARP - 4 1 5000 Crypto Specific

Instruction Set (CSIS)
MICROBLAZE Proprietary 3, 5 1 3500 Limited to

Xilinx devices
LEON3 Open-source 7 1 1300

(GPL) -

Fig. 12 The functionality of the RXOR instruction.

Fig. 13 The functionality of the BYTP instruction.

lack of this instruction. Fig. 13 show how BYTP instruction decrease number of
ordering.

7 Conclusion

In this paper a novel architecture for crypto processors were presented. The pro-
posed idea of CSIS was implemented by means of the architecture in a way to
reduce the time order of the execution of the cryptographic-related instructions.
Three instructions called BYTP, BITP and RXOR are introduced. The simulation
results show that they are able to speed up execution of stream ciphers and block
ciphers.
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