
Unpicking PLAID
A Cryptographic Analysis of an ISO-standards-track Authentication Protocol

Jean Paul Degabriele1 Victoria Fehr2 Marc Fischlin2 Tommaso Gagliardoni2
Felix Günther2 Giorgia Azzurra Marson2 Arno Mittelbach2 Kenneth G. Paterson1

1 Information Security Group, Royal Holloway, University of London
2 Cryptoplexity, Technische Universität Darmstadt, Germany

{j.p.degabriele,kenny.paterson}@rhul.ac.uk, marc.fischlin@cryptoplexity.de,
{victoria.fehr,tommaso.gagliardoni,giorgia.marson,arno.mittelbach}@cased.de,

guenther@cs.tu-darmstadt.de

Abstract. The Protocol for Lightweight Authentication of Identity (PLAID) aims at secure and private
authentication between a smart card and a terminal. Originally developed by a unit of the Australian
Department of Human Services for physical and logical access control, PLAID has now been standardized
as an Australian standard AS-5185-2010 and is currently in the fast track standardization process for
ISO/IEC 25182-1.2. We present a cryptographic evaluation of PLAID. As well as reporting a number
of undesirable cryptographic features of the protocol, we show that the privacy properties of PLAID
are significantly weaker than claimed: using a variety of techniques we can fingerprint and then later
identify cards. These techniques involve a novel application of standard statistical and data analysis
techniques in cryptography. We also discuss countermeasures to our attacks.
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1 Introduction
PLAID, the Protocol for Lightweight Authentication of Identity, is a contactless authentication protocol
intended to be run between terminals and smartcards. The protocol was designed by Centrelink, an agency
of the Australian government’s Department of Human Services (DHS). According to the developers it is
supposed to provide a cryptographically strong, fast, and private protocol for physical and logical access
control, without exposing “card or cardholder identifying information or any other information which is
useful to an attacker” [Cen09, Aus10, ISO14].

PLAID was initially proposed for use in the internal ID management of Centrelink [Kli10]. However,
the intended scope of applications has since significantly broadened to include the whole of DHS and the
Australian Department of Defence [Tay12]. Indeed, the protocol’s promoters aspire to broader commercial
and governmental deployment, including on an international level [Dep14]. Strategies that are mentioned to
support these aspirations include freely available intellectual property and outreach to other governmental
organizations. To the latter end, NIST organized a workshop to explore the potential of PLAID for
U.S. Federal Agencies in July 2009 [Nat09].

Another strategy that is being actively pursued is standardization. PLAID was previously registered as
the Australian standard AS-5185-2010 [Aus10] and was then entered into the ISO/IEC standardization
process via the fast track procedure. At the time of writing, the current ISO/IEC version is draft
international standard (DIS) 25182-1.2 [ISO14] and is currently in the “Enquiry phase” 40.60 (close of
voting). Minor changes in the original protocol to match the international standard have been applied.
Reference implementations, based on the Australian standard, are available both from the Australian
Department of Human Services (in Version 8.04) and of the Australian Department of Defence (in draft
version 1.0.0).

The protocol. The main aim of the protocol is to perform mutual authentication and establish a shared
key between the terminal (IFD) and the card (ICC). To this end the terminal and the card exchange
nonces RND1 and RND2 in encrypted form and then derive the session key as part of the hash value of
the two nonces. Encryption here uses both asymmetric RSA-based encryption (when the card transmits
RND1 to the terminal) and symmetric AES-based encryption (when the terminal sends RND2 to the card).
Authentication of the partner is presumably guaranteed by the fact that a party should know the secret key
in order to be able to decrypt the other party’s nonce. An overview of the protocol is depicted in Figure 1,
where the encrypted nonces are exchanged with transmissions eSTR1 and eSTR2. The card confirms the
receipt of RND2 by sending a string encrypted under the derived key in eSTR3.

The role of the terminal’s initial message KeySetIDs is as follows. Each PLAID deployment involves a
set of key pairs consisting of an RSA key and an AES key. Each terminal and each card stores a certain
subset of these pairs. More precisely, each terminal holds a set of RSA key pairs (both encryption and
decryption key) and corresponding AES master keys, while each card holds a set of RSA public keys and
card-specific AES keys, derived from the corresponding AES master keys using a card identity. The keys
held by a card are intended to control what types of access the card should have, so each key represents
a capability. The actually deployed pair of keys is negotiated during the protocol itself, by having the
terminal send a sequence of supported RSA key identifiers KeySetID in the first message. Even though the
encryption key in RSA is usually public, in PLAID it is kept secret to enhance privacy (since, for example,
the set of RSA keys held by a card could be used to identify the card and track its use in a deployment).

One distinctive feature of the protocol, added for privacy reasons, is that the card switches to using a
pair of so-called shill keys in case of an error. That is, if the card detects some potential error, then it uses
its card-specific RSA shill key and AES shill key to encrypt random data. This mechanism is intended
to hide information about failures from an adversary and thereby prevent leakage about which keys are
possessed by a particular card.
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Figure 1: PLAID protocol overview.

Previous security analyses. Centrelink’s accompanying description of PLAID [Cen09] claims that
PLAID is highly resistant against leakage of card or card holder identifying information, against various
forms of active attacks, and provides mutual authentication. The document states as a goal that the protocol
shall be “evaluated by the most respected cryptographic organisations, and the broader cryptographic
community.” For version 8 the document [Cen09] refers to the input by various agencies like NIST and
of “a number of independent cryptographic experts and consultants, a number of respected commercial
cryptographic teams, as well as the internal Centrelink team.”

However, we are not aware of any publicly available cryptographic evaluation of PLAID. None of the
claimed security properties is backed up by arguments, nor matched against more precise formalizations in
the description [Cen09] or standards [Aus10, ISO14]. Some useful comments about the protocol’s security
have been given by the national representatives in the previous version of the ISO standard and documented
there [ISO13]. These comments refer partly to the points discussed in Section 5, where we asses them in a
cryptographic context.

PLAID has been scrutinized to some extent by using formal methods and automated tools. Watan-
abe [Wat13], using Scyther, and Sakurada [Sak13], using ProVerif, confirmed that PLAID satisfies some
form of mutual authentication and some level of secrecy of the session key, assuming idealized cryptographic
primitives. It remained unclear to us what this assurance means in a cryptographic sense. Neither of the
works considers privacy aspects.

Finally, the Master’s thesis of Kiat and Run [KR12] at the Naval Postgraduate School compares PLAID
with a similar protocol, the ANSI/INCITS 504-1-2013 standard OPACITY. The conclusion is indecisive
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and is primarily based on deployment characteristics. The authors evaluate cryptographic properties only
on a superficial level. Indeed, while the thesis does not pinpoint at any major weakness in OPACITY, a
cryptographic analysis [DFG+13] was less positive.

Our results. According to the developers of PLAID, the lack of privacy in previous efforts was one of
the main reasons to introduce a new authentication protocol [Ris09]. Indeed, PLAID is described as highly
resistant against “the leakage of individually identifiable, unique or determinable data or characteristics of
the smart card or the holder during authentication.” [Cen09]. We argue here that PLAID does not achieve
this ambitious goal. More precisely, we describe and evaluate a suite of attacks that break the privacy goals
of PLAID, enabling cards to be efficiently identified in a number of realistic scenarios. We also identify
some countermeasures to our attacks.

In more detail, two of our attacks exploit PLAID’s use of shill keys, which, being card-specific, can
serve as a proxy for the card identity. While the shill keys themselves are not transmitted in the protocol,
we show how they can be statistically estimated from RSA ciphertexts observed in protocol runs, enabling
cards to be initially fingerprinted and then later re-identified. These two “shill key fingerprinting” attacks,
presented in Section 3, deploy different techniques to perform the statistical estimation, and apply in
different attack scenarios. Our first attack uses the standard solution to what is known as the “German
Tank Problem”, which concerns estimating the maximum of a discrete uniform distribution from a number
of samples, while our second attack uses clustering techniques (and in particular the standard k-means
clustering algorithm) to perform the estimation of the shill keys.

Our third attack, targeting the terminal’s initial message KeySetIDs, is called “keyset fingerprinting”
and is presented in Section 4. It exploits specific properties of the protocol flow to extract information about
the set of keys held by a given card, potentially allowing us to draw conclusions about the card holder (e.g.,
via access authorizations). We show that this information can be efficiently extracted by interacting with a
card a number of times and observing how the protocol proceeds (or fails to proceed). The information
obtained in this attack may already be sufficient to identify individual cards from amongst a population,
depending on the exact characteristics of a given deployment. The attack can also be combined with our
first two attacks to increase their efficiency (by reducing the number of possible keys that need to be
considered in the re-identification phase).

Finally, in Section 5, we make a number of other observations on cryptographic aspects of the PLAID
protocol, focusing in particular on its lack of forward security, the use of weak RSA encryption, the lack of
integrity protection for the symmetric encryption and a number of imprecisions in its specification. Some
of the issues have already been briefly touched upon in the national body comments on the previous ISO
standard version [ISO13]; some aspects, like the lack of forward security, are new.

Reaction of the Responsible Authorities. We communicated our results to both the ISO 25182-1
project editor and to a contact person at the Department of Human Services. They are currently looking
into our findings. The ISO project editor Graeme Freedman pointed out to us [Fre14] that card-identifying
information may be also available by other means, such as through the so-called Card Production Life
Cycle (CPLC) data. The CPLC data contain information like serial numbers and manufacturers, uniquely
identifying cards on a global scale. For privacy reasons access to the CPLC data must thus be restricted
for PLAID. Indeed, the ISO draft standard itself already mentions this issue: “Consider switching off
access to administrative applications from contactless interfaces, particularly ones which store unique card
identification information such as the GlobalPlatform Card Production Life Cycle (CPLC) data.” [ISO14].
Our results show, however, that even if one restricts access to such administrative data, then PLAID still
leaks card and cardholder identifying information.
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Variable Description
ACSRecord An access-control system record for each operation mode required for authentication.
DivData A “random or unique” 16-byte ICC identifier.
FAKey A 16-byte AES key which can be seen as master key to compute the diversified key used in

the protocol (only known to the IFD).
FAKey(Div) A 16-byte AES key derived from the FAKey and used in the FA phase.
IAKey A 2048-bit pre-shared RSA key pair used in the IA phase. The ICC only knows the public

key part.
KeySetID A 2-byte index value identifying an IAKey and FAKey or FAKey(Div), respectively.
OpModeID A 2-byte index value identifying the operation mode. This value indicates which ACSRecord

and payload the ICC needs to provide for authentication.
RNDi A 16-byte random string for i = 1, 2.
KeysHash1 A 16-byte session key computed by IFD and ICC used in the FA phase.
ShillKey A pair of 2048-bit RSA public key and 16-byte AES key of the ICC (randomly chosen per

ICC during setup). These keys are to be used instead of error messages to simulate the next
step of the protocol camouflaging that something went wrong.

Table 1: Most important fields and identifiers of PLAID.

2 PLAID Protocol Description
In this section we give a detailed description of PLAID according to the specification of the draft ISO/IEC
DIS 25185-1.2 [ISO14]. A more concise overview of the protocol flow is depicted in Figure 1. To make our
description as close as possible to the original specification [ISO14] we denote terminal and card by IFD
(Interface Device) and ICC (Integrated Circuit Card) respectively. Table 1 provides a summary of the most
important fields and objects occurring in the protocol.

2.1 PLAID Setup

In the setup phase PLAID initializes both terminals (IFDs) and cards (ICCs). PLAID supports up to 216

key sets, each consisting of an RSA key pair IAKeyi and an AES key FAKeyi. Each terminal and each
card hold a subset of these overall possible key pairs, according to some access-control policy. However,
the card only holds the public key part of the IAKey as well as a processed version of the original FAKey.
More concretely, the card does not keep the FAKeys directly, but only a diversified version FAKey(Div) =
AESFAKey

Encrypt(DivData), where DivData is a 128-bit card identifier. The standard [ISO14] highlights that
these diversification data should be “random or unique”. Using the diversified key instead of FAKey should
retain security for other cards, in the case of a card being compromised and hence some of the (diversified)
keys are disclosed. In addition to the RSA keys, FAKey(Div) and the value DivData, each card receives a
pair of individual distress-keys (called ShillKey): a random encryption RSA key and a random AES key.
These “shill keys” should be used to encrypt random data in case an error is detected, thus camouflaging
errors or de-facto aborts on the card.

2.2 Initial Authenticate

The IA phase aims at exchanging the necessary information to compute the symmetric keys used in the FA
phase as well as transferring DivData, the card-specific data later needed to guarante authenticity of the
final message, securely to the terminal.

1Note that in the original draft KeysHash refers to the entire 32 byte output of SHA-256(RND1 ‖RND2) and the term
session key is used to refer to the first 16 bytes which are used as secret key in the final message. For simplicity we refer to the
session key as KeysHash in this paper.
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Step 1 (IFD) – IA Command: The interaction is initiated by the IFD, which transmits the complete
sequence of supported KeySetIDs (in order of preference) to the ICC.

Step 2 (ICC) – IA Command Evalution: Upon receiving a set of KeySetIDs, the ICC traverses the
entire list of indices to find the first KeySetID it supports, which determines the IAKey for RSA
encryption. To prevent timing attacks it does not abort the search, even if a match has occurred. If
no match is found, in Step 3 the ICC will encrypt a randomly generated string using its ShillKey.2

Step 3 (ICC) – IA Response: The ICC generates RND1, retrieves its DivData and derives string STR1,
together with an encryption of it under IAKey, as follows:

STR1 = KeySetID ‖DivData ‖RND1 ‖RND1, eSTR1 = RSAIAKey
Encrypt(STR1) .

The encrypted string eSTR1 is sent to the IFD. Here PKCS#1 v1.5 padding is used.

Step 4 (IFD) – IA Response Evaluation: The IFD trial-decrypts eSTR1 with all possible private
IAKeys indexed by its KeySetID list and, for each valid decryption, it checks if the last two 16-byte
blocks are equal. Again, to prevent timing attacks the IFD will continue the search even if a matching
string has already been found. The (first) match is then used to extract KeySetID3, DivData, and
RND1. If no plaintext is of the anticipated format, authentication fails.4

2.3 Final Authenticate

The FA phase permits to specify the operation mode and to exchange data, like a PIN or biometrics,
needed to complete the authentication. Here the diversified key FAKey(Div) (stored on the card and
previously computed by the terminal during the IA phase) and a derived session key are used to secure the
communication. The card authenticates by proving its ability to decrypt eSTR2 as well as to include the
correct DivData (transmitted in the previous IA phase) in the final message eSTR3.

Step 5 (IFD) – FA Command: The IFD generates the 16-byte nonce RND2 and computes the unique
session key KeysHash as the first 128 bits of

SHA-256(RND1 ‖RND2) .

Next, using the master FAKey indexed by KeySetID, it computes the diversified AES key

FAKey(Div) = AESFAKey
Encrypt(DivData) ,

which corresponds to the AES key stored on the ICC under index KeySetID. The latter is used to
encrypt

STR2 = OpModeID ‖RND2 ‖ [Payload] ‖KeysHash ,

using AES in CBC mode with the all-zero string as initialization vector, where Payload is an optional,
variable-size field that depends on the operation mode. Concerning padding, the standard refers to
the ISO/IEC 9797-1 method 2, where one byte 0x80 is appended, followed by blocks of 0x00 bytes
until the length is a multiple of the block length.5 The resulting string

eSTR2 = AESFAKey(Div)

Encrypt (STR2) ,

is then transmitted to the ICC.
2The standard neither specifies the exact format nor the length of this randomly generated string.
3The standard is ambiguous in whether the trial KeySetID of the IFD or the value contained in eSTR1 is stored.
4The standard does not specify what is meant by “authentication fails.” We assume the protocol aborts in this case.
5Though referring to ISO/IEC 9797-1 method 2, the standard explicitly describes a different padding method and thus

makes unambiguous decoding impossible (cf. Section 5.4).
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Step 6 (ICC) – FA Command Evaluation: The ICC decrypts eSTR2 with FAKey(Div) and retrieves
RND2. It computes the session key as described above as first half of SHA-256(RND1 ‖RND2) and
compares the result to the value KeysHash extracted from the decrypted eSTR2. If they do not
match the ICC encrypts a random byte string6 using its AES ShillKey in the FA Response. Else
Payload, if given, should be processed as specified by the implementation.

Step 7 (ICC) – FA Response: The ICC retrieves the Payload data specified by the operation mode (if
necessary) and encrypts

STR3 = ACSRecord ‖ [Payload] ‖DivData ,

using AES in CBC mode with the all-zero string as initialization vector. Again, Payload is an optional,
variable-size field which may (and usually will) differ from the Payload in Step 5. The resulting
ciphertext

eSTR3 = AESKeysHash
Encrypt (STR3) ,

is transmitted as final message to the IFD.

Step 8 (IFD) – FA Response Evaluation: The IFD decrypts eSTR3 and checks whether the recovered
DivData matches the one received in the IA phase: if so, then the other data is considered authenticated
and processed according to the implementation, otherwise authentication fails.

3 ShillKey Fingerprinting – Tracing Cards in PLAID
According to the developers of PLAID, privacy was one of the main reasons to introduce a new authentication
protocol. In this and the next section we present three attacks on the privacy of PLAID contradicting the
claims that no static information is available to be exploited. In this section we focus on the traceability of
cards, that is, we consider an adversary who learns some information about one or more cards and then
tries to identify these cards at a later time.

We consider two distinct attack scenarios, each consisting of a fingerprinting phase and then an
identification phase. The difference is roughly that in the first scenario the fingerprinting is a supervised
learning phase in the sense that we can attribute execution traces to cards, whereas the second setting
corresponds to unsupervised learning where we get a set of random traces. More precisely:

• In the first scenario we allow the adversary to first interact in turn with each and every card in the
system in a number of protocol runs (the fingerprinting phase). We then draw a card at random and
let the adversary interact with this specific card a number of times, with the adversary’s goal being
to identify which of the cards was selected. The adversary’s ability to interact with each card in the
system in turn in the identification is not wholly realistic. However, given the high success rates of
this attack that we will report below, we believe that good success rates would still be achieved in
the more realistic scenario where the adversary does not have the guarantee of being able to interact
with each distinct card in turn in a first phase, but instead must build up its picture of the system as
it goes along.

• In the second scenario, which is much more challenging for the adversary, we do not allow the
adversary to interact in turn with every card in a number of protocol runs, but simply present it
with a sequence of transcripts of individual protocol executions, each execution involving a randomly
chosen card. The identification phase and the adversary’s goal are the same as before. This much

6Again, the standard does neither specify the exact format nor the length (note that STR3 in Step 7 contains a variable
sized field Payload) of this random byte string.
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more demanding attack scenario models a situation where the adversary cannot interact many times
with each distinct card during fingerprinting, but only in one protocol run at a time with a random
card.

In Section 4 we consider a different attack scenario and show how an adversary can learn the capabilities
of a card (that is, it learns which keys are stored on a card). Besides being a serious breach of privacy on its
own, this attack can also be combined with the attacks described in this section to gain better performance.

Our attacks in this section specifically target the ShillKey values used by PLAID. A ShillKey pair,
generated for every card, contains an RSA public key and an AES key that are to be used in the IA and in
the FA phases respectively in place of the actual keys should an error in the terminal message be detected.
Intended as a security measure—to prevent attackers from exploiting potential information leaked by error
messages—the use of the ShillKey turns out to drastically weaken the anonymity properties of PLAID.

Before explaining the details of the attacks, we note that in order to run the attacks in this section,
we need to be able to force each card into replying with RSA ciphertexts generated using its ShillKey in
the first phase of the protocol. This can, however, easily be arranged by sending the card a first message
containing an empty sequence of KeySetIDs, or a set of KeySetIDs containing a single and particularly
high index that is not in use in any card on the system. Thus we may assume that the adversary is able to
gather samples of ShillKey ciphertexts from cards at will.

3.1 Tracing Cards via ShillKey Ciphertexts

We consider the following situation: we assume the system has t cards with corresponding ShillKey
moduli N1, . . . , Nt, where each Ni is an n-bit RSA modulus (the current draft version gives n = 2048 [ISO14]).
Our basic attack considers the following scenario. In a first phase the adversary learns, for every card in the
system, k1 encryptions of a random message under the card’s ShillKey (Nj , ej); then, in a challenge phase
the adversary is given k2 fresh ciphertexts (again for random messages) computed under ShillKey (Nj∗ , ej∗),
for j∗ chosen uniformly at random from {1, . . . , t}. The adversary’s goal is to identify from which card the
challenge ciphertexts come, that is, to output the correct index j∗. We define the adversary’s advantage as
its success probability bounded away from the guessing probability 1

t .
The idea behind our first attack is that, although each ShillKey (Nj , ej) is meant to be kept private,

each of the k1 ciphertexts Xi,j computed using (Nj , ej) leaks some information about the modulus Nj .
Specifically, we learn that Xi,j < Nj for each i. Similarly, in the challenge phase, where we have k2
ciphertexts computed using (Nj∗ , ej∗), each ciphertext leaks some information about the challenge ShillKey
modulus. Starting from this observation, we now seek a procedure to obtain a good estimate of the ShillKey
moduli given only a certain number of corresponding ciphertexts for each modulus.

The problem can be reposed as follows. Notice that each ciphertext Xi,j can be regarded as a uniformly
random integer in the range [1, Nj − 1]. We are then faced with the task of estimating Nj , which is one
more than the size of the interval from which the sample comes. This is essentially an instance of a classical
statistical problem that is known as the German Tank Problem7. A naive approach would be to use twice
the mean values of the samples Xi,j as an estimate for Nj . A statistically strictly better approach is to use
as an estimator for Nj the value

Ñj = mj + mj

k1
,

where mj is the maximum value of the observed samples Xi,j and k1 is the number of samples. It basically
corresponds to the maximum plus the average distance of observed samples. This estimator arises from a

7See [Joh94] for a good introduction. The name stems from the problem initially being posed as that of estimating the
total number of tanks in the German army from observing a subset of their serial numbers.
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Figure 2: Simulations of the ShillKey attack. On the left with k1 (the number of samples during the fingerprinting phase) set
to 100 and on the right with k1 set to 1000. The success probability is averaged over ten runs with one hundred repetitions of
the identification phase and the simulation was done with t = 10, 15, 20, 25, 50, 100 cards. The baseline indicates the success
probability of an adversary that tries to win the game by purely guessing.

frequentist interpretation of the problem, and has the benefit of providing what is known as a Minimum-
variance Uniform Estimator (MVUE). It can be replaced by a more appropriate Bayesian estimator, but
the estimator above is sufficient for our purposes.

Our first attack proceeds using this estimator as follows. In the first phase, we use it to produce
estimates Ñj for each of the ShillKey moduli Nj . In the challenge phase, we again use it to produce
an estimate Ñ∗ for the challenge ShillKey modulus (now with parameter k2, representing the number of
samples available in that phase). We finally output as our guess for the challenge index j∗ the index j for
which Ñ∗ is closest in absolute value to Ñj , that is,

arg min
j

∣∣∣Ñ∗ − Ñj

∣∣∣ .

This concludes the description of our first attack.

Simulation results. We have conducted extensive simulations of the first attack above for various values
of t (the number of cards), k1 (the number of ciphertext samples per card available in the first phase) and
k2 (the number of ciphertext samples in the challenge phase). A selection of our results are depicted in
Figure 2.

It can be seen that even with many cards in the system (t = 100, say), our attack significantly
outperforms simply guessing the card’s identity. This is particularly so when the number of samples k2
available in the challenge phase is large. However, even with k2 as low as 50, the attack performance is still
significantly better than guessing; given the target execution time of the PLAID protocol of 300ms, this
many samples could be gathered from a card within 15 s.

It is also the case that increasing the number of samples available in the first phase of the attack, k1,
improves the attack performance (compare the left and right sub-figures in Figure 2, which correspond to
values of k1 equal to 100 and 1000, respectively). This is particularly accentuated at higher levels of k2,
where the attack’s success probability is better than 75%, even for a system with t = 100 cards.
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3.2 Tracing Cards from a Mixed Set of ShillKey Ciphertexts

For the basic attack in Section 3.1, we assumed that during the initial phase the attacker was able to
identify ciphertexts computed from the same key. In our second attack, we relax this assumption: we now
give the attacker a large mixed set of k1 × t ciphertext samples, each sample coming from a randomly
selected card. The challenge phase of the attack proceeds as before where the attacker obtains a small
sample of k2 ciphertexts computed by the same card, and the attacker’s goal is to identify this card.

The challenge now is to somehow process this mixed set of samples in order to extract reasonable
estimates of the individual RSA moduli. We accomplish this by means of a heuristic clustering technique.
Assuming that we know the number of cards t used to produce the mixed sample set, let N1, . . . , Nt represent
their ShillKey moduli in increasing order. From the mixed sample of ciphertexts we ignore all samples
smaller than 22047. We then use a standard clustering technique based on the k-means algorithm to group
the remaining ciphertext samples into t clusters approximating the intervals [Nj , Nj+1), for j ∈ {0, 1, . . . , t}
and N0 = 22047. Once we have this set of clusters, we then obtain an estimate for the ShillKey modulus
Ni+1 by using the German Tank estimator on the cluster corresponding to the interval [Ni, Ni+1).

We now describe the clustering algorithm in more detail. We initially assign to each of the t clusters a
uniformly random value in the range (22047, 22048). This value is called the centroid of the cluster. For each
ciphertext sample greater than 22047 we calculate its distance from each of the cluster centroids, and assign
that ciphertext to the cluster to whose centroid it is closest. The distance metric is merely the absolute
value of the arithmetic difference. Once that every ciphertext sample has been assigned to a cluster we
ensure that no cluster is empty. If an empty cluster is found, we pick another cluster at random whose size is
greater than one and move its largest element to the empty cluster. We then set the centroid of each cluster
to be the mean of the ciphertext samples contained in that cluster, as per the standard k-means algorithm.
We iterate this process of assigning ciphertext samples to clusters and recalculating their centroids until
the centroids converge to stable values, or the maximum number of iterations is exceeded.

In the challenge phase of the attack, the attacker is given k2 ciphertexts computed by the same card.
Here, our attack proceeds identically to the previous one: the attacker uses the estimator to produce an
estimate Ñ∗ for the challenge ShillKey modulus and outputs as its guess the index of the modulus from
the first phase that is closest to Ñ∗.

Simulation results. We ran simulations of the above clustering attack for a mixed sample set of size
t× k1 for various values of t (the number of cards) and values of k1 equal to 100 and 1000. The results of
our simulations are depicted in Figure 3.

Being a more ambitious type of attack, the success probabilities for this attack are considerably lower
than for the previous attack. Nonetheless we see that our clustering approach is able to correctly identify a
card with a probability of roughly 4 times the guessing probability. Notably, as we increase the values of k1
and k2 beyond 100 we do not get a corresponding increase in performance as in the previous attack. On
the other hand, for low parameter values its performance is comparable to the previous attack. In fact if
we compare Figures 2 and 3 we see that for k2 = 10 the two attacks perform almost identically. Therefore
if the attacker is limited to a small number of samples (≈ 10) during the identification phase, he can trace
cards as effectively without requiring a sorted set of ciphertext samples during fingerprinting.

3.3 Connection to Key Privacy of RSA Encryption

We remark that our two ShillKey fingerprinting attacks only consider properties of RSA moduli and are,
thus, of independent interest in the study of key privacy (or key anonymity) of RSA encryption, a security
notion introduced by Bellare et al. in [BBDP01]. In the key privacy security model of [BBDP01], an
adversary plays against two key pairs and is given both the public keys. Security is modelled in terms of key
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Figure 3: Simulations of the clustering attack for k1 equal to 100 and 1000, and varying values of k2 for each. The success
probability is averaged over fifty runs, and the simulation was done with t = 10, 15, 20, 25, 50, 100 cards. The baseline indicates
the success probability of an adversary that tries to win the game by pure guessing.

indistinguishability, requiring that it is infeasible for any efficient adversary, which can request encryptions
of messages of its choice under one of the two public keys, to tell which key was chosen with probability
higher than guessing. As already pointed out in [BBDP01], the RSA cryptosystem does not provide key
privacy. Security is trivially broken when the two key lengths are different. However, RSA keys of the same
bit length are easy to tell apart, too: let N0 < N1 be two RSA moduli: independently of the underlying
plaintext, a ciphertext c computed under one of the two corresponding keys satisfies c < Nb. A single-query
attack which succeeds with non-negligible advantage simply requests to encrypt an arbitrary message and
then compares the resulting ciphertext c with the smallest modulus: if c < N0 then it returns 0 and else
guesses 1.

This attack is not directly applicable to the PLAID setting because there the RSA encryption keys are
kept secret. Moreover, a realistic adversary against card untraceability should play against a number of
cards t� 2. Still, our ShillKey fingerprinting attacks on PLAID can be seen as similar in spirit to, but
obviously harder to perform than, the above single-query attack. Moreover, if the encryption scheme used
in PLAID were to enjoy key privacy, then the attacks presented would be completely thwarted (and the
RSA moduli would no longer need to be kept secret).

3.4 Countermeasures to Our Attacks

A very simple countermeasure to our attacks is for every card to use the same RSA ShillKey. This does
not seem to have any negative security consequences and renders ineffective any tracing attacks based on
the analysis of RSA ShillKey ciphertexts. A second countermeasure to our attacks is to modify the RSA
encryption scheme so that it is key private. This can be done in two ways: padding by adding multiples of
the modulus to the ciphertext, and selection of RSA moduli that all lie in a small interval.
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4 Keyset Fingerprinting – Determining a Card’s Capabilities
In this section we present another type of attack on PLAID’s privacy, which we call keyset fingerprinting.
This attack reveals the exact set of keys a card knows8, thereby determining its capabilities in terms of
which keyset it can use, i.e., which specific terminal it is able to talk to. In order to mount the attack,
we exploit the following observations: (i) the KeySetIDs list sent by the terminal (in the clear) in the
IA Command contains all keys known by the terminal [ISO14, 6.1], and is not authenticated9, (ii) in its
IA Response, the card is required to use the first key of the received KeySetIDs list it knows [ISO14, 6.2],
and (iii) if the card uses its ShillKey, in the IA Response, then the terminal aborts [ISO14, 6.4].

4.1 The Attack in a Nutshell

We first explain the core idea of our attack by describing a concrete attack scenario. Assume an adversary
observes a successful protocol run between a card and a terminal where the latter had sent (in the
clear) KeySetIDs = (2, 5, 8). From this, the attacker not only learns that the ICC holds at least one of the
keys with IDs {2, 5, 8}, but it can also determine all of the keys the ICC supports, independently of the
identifiers announced in KeySetIDs. To this end, the adversary can trigger a protocol run and mount a
man-in-the-middle attack as described below.

In a first phase, the attacker sequentially replaces the IFD’s original initial message by one containing
only a single identifier from the original list of KeySetIDs, that is, 2, 5 or 8 in our example; by observing
the subsequent protocol run, the attacker deduces that the ICC supports the selected key if and only if the
protocol execution reaches the third step, i.e., if the terminal responds with a third message. In a second
phase, the attacker sequentially prepends to the IFD’s original initial message all key identifiers that were
not contained in KeySetIDs, e.g., (1, 2, 5, 8), (3, 2, 5, 8), . . . , (65536, 2, 5, 8) in our example. Then, from
each of the subsequent protocol runs, the attacker learns that the ICC knows the inserted key if and only if
the IFD does not respond with a third message. This is because of observation (ii) above about the first
matching key in the list to be used. At the end of the two phases, the attacker knows the identifiers of all
keys supported by the ICC.

We stress the attack above can be performed in a remote fashion where two attackers, placed in physical
proximity to the terminal (respectively, the card) relay the exchanged messages between each other, playing
the role of a card (respectively, a terminal). Moreover, this attack can be mounted independently of the
values announced in KeySetIDs, as long as the attacker observes a single, successful protocol execution.

Note that knowledge of all the keys supported by a card also reveals its capabilities (e.g., access
authorizations), thereby potentially disclosing highly sensitive information. While this is not, in general,
sufficient to identify a card uniquely, it effectively allows to derive capability classes, containing cards with
the same capabilities. Moreover, in certain scenarios, capabilities like access authorizations might even leak
the identity of a card’s owner, hence breaking its anonymity, as some keys might be used exclusively to
access security-critical infrastructure [ISO14, Annex C] such as, e.g., server rooms or the CEO’s office. The
impact of keyset fingerprinting is furthermore increased by the remote nature and the low cost of the attack
(in terms of the number of interactions between terminal and card). Even in large-scale, realistic scenarios,
the attack requires only few seconds (and no physical proximity of card and terminal) to determine a card’s
capabilities. See Section 4.2 for a more detailed discussion.

We remark that keyset fingerprinting can, in addition, be used as a prefilter for the tracing attacks
8Recall that terminals announce their supported keysets by sending corresponding KeySetIDs in the clear. As a consequence,

any observer can see which keys are related to which resource/terminal.
9We note that the unauthenticated nature of the PLAID protocol messages has already been criticized in the national

body comments on an earlier ISO draft [ISO13]. In our attack we exploit this weakness, refuting the claim of the current ISO
draft [ISO14, Annex H.1.1] that sending KeySetIDs in clear is “of no use to an attacker.”
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discussed in Section 3 based on ShillKey Fingerprinting. Recall that the performance of these attacks
heavily depends on the number of cards in the system that have to be distinguished. By first performing
keyset fingerprinting on the card(s) in question, this number can potentially be reduced substantially
(thereby improving the overall efficiency), as the ShillKey Fingerprinting in a second step only has to
discriminate amongst the smaller number of cards belonging to the same capability class. Finally, we
note that there are cases where the cheaper keyset fingerprinting attack on its own is actually already
sufficient for a tracing attack: whenever a traced card has a unique set of supported keys (i.e., is the only
member in its capability class), this attack is able to uniquely (re)identify that card. Furthermore, keyset
fingerprinting suffices to distinguish two cards as long as there is a key supported by only one of the cards.

4.2 The Attack Details

Suppose that we observe a successful authentication between an honest terminal IFD and an honest
card ICC. In the course of the protocol execution, the IFD starts by sending the list KeySetIDs =
(KeySetIDi1 , . . . ,KeySetIDi`

) of (all) KeySetIDs it supports. The keyset fingerprinting attack proceeds in
two phases, focusing first on the keys supported by the IFD and then on the remaining keys.

Phase 1. In the first phase, we replace the initial KeySetIDs list with a list containing only one of the keys
supported by the IFD at a time, i.e., we replace the first message by (KeySetIDij

) for j = 1, . . . , ` in
` sequential interactions. We relay the response of the ICC unmodified to the IFD. If the IFD replies
with a third message in the jth interaction, we can infer that the ICC knows the key with KeySetIDij

.
Otherwise, the ICC did not support this key and hence used its ShillKey, leading the IFD to abort.

Phase 2. In the second phase, we prepend the initial KeySetIDs list with one (or multiple, see below)
values KeySetIDj /∈ {KeySetIDi1 , . . . ,KeySetIDi`

} at a time. We relay the response of the ICC
unmodified to the IFD. If the IFD replies with a third message, we can infer that the ICC knows
none of the prepended keys. Otherwise, the ICC did know at least one of these keys (which the IFD
does not support), leading the IFD to abort. This relies on observations (ii) and (iii) above.

We measure the attack costs in terms of the number of interactions between IFD and ICC needed to
extract the keys supported by the ICC. In the first phase, which requires ` interactions between the IFD and
the ICC, we are able to determine exactly which of the keys {KeySetIDi1 , . . . ,KeySetIDi`

} supported by
the IFD the ICC knows. The second phase aims at determining which of the remaining 216 − ` KeySetIDs
are known by the ICC. There are different strategies to proceed in Phase 2:

1. The basic approach is to simply prepend each one of the 216− ` KeySetIDs not supported by the IFD
one at a time, resulting in 216− ` interactions in order to determine exactly which of the keys the ICC
knows. Together with the first phase, this approach leads to 216 interactions to fingerprint a card.

2. In the binary search approach, the set of KeySetIDs is partitioned along a binary tree with the full set
of all 216 − ` KeySetIDs at the root, the first half of them as the left child, the second half of them as
the right child, etc. In Phase 2, first the root (i.e., all 216 − ` KeySetIDs) is prepended. If the IFD
replies, the ICC knows none of these keys and we have thus completed the keyset fingerprinting for
the card. Otherwise, both the left half and the right half are prepended (sequentially) and, again,
if the IFD replies then the ICC knows none of the prepended keys. This process can be repeated
recursively until the IFD replies for each branch.
Using this approach, we can quickly rule out those parts of the KeySetID space where the ICC does
not know any key. More precisely, denote by n the number of keys the ICC knows in total and by `′

the number of keys the ICC knows amongst the ` keys supported by the IFD. Then we can upper
bound the number of interactions needed to fingerprint a card by (n−`′) · log(216)+` = (n−`′) ·16+`,
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since a traversal of the binary search tree in order to pinpoint a single key requires at most log(216)
(i.e., height of the tree) additional interactions.

3. The binary search with known maximum approach is a further optimization which is applicable in
scenarios where the highest KeySetID in the system, MaxID, is known in advance. In this case, the
binary tree can be reduced to the tree having only the MaxID− ` remaining unknown KeySetIDs
(instead of all 216 − `) as leaves. The number of interactions to fingerprint a card therefore is reduced
to (n− `′) · dlog(MaxID)e+ `.

When comparing the strategies for the second phase, in the (unlikely) worst case where the card knows all
216 possible keys, the basic approach requires 216 interactions whereas the binary search approach takes
approximately 220 interactions. We observe however that the binary search is more efficient as long as the
card holds less than 212 keys (which we assume to be the case in any practical scenario).

A practical example. For the sake of providing the reader with some estimates on a more realistic, but
still large-scale example, consider a scenario where MaxID = 5000 keys are deployed (enough for, e.g., a
large building or a small campus) and the considered terminal and card both hold ` = n = 10 keys, from
which `′ = 1 key is known by both.

We chose these parameters in the light of the targeted execution time for PLAID and the resource
restrictions imposed by the terminal and card hardware. First, in every execution of the PLAID protocol,
the terminal has to perform ` RSA decryptions, which is an expensive cryptographic operation for a
computationally constrained embedded device.10 But since the previous ISO draft aims at an overall
protocol execution time of less than 300ms [ISO13, p. 27], this means that ` cannot be too large. Second,
the card has to store all of its n keys in a protected, tamper-proof memory [ISO14, Annex B]. As this
kind of memory is very expensive, it is reasonable to assume that a card can store only a small number
of keys. With these parameters, the binary search approach would require (10 − 1) · 16 + 10 = 154
interactions to fingerprint the card which, knowing the highest KeySetID MaxID, can be optimized to
(10− 1) · log(5000) + 10 ≈ 121 interactions using the binary search with known maximum.

4.3 Potential Countermeasures Against Our Attack

As the keyset fingerprinting attack relies heavily on the malleability of the initial KeySetIDs message sent
by the terminal, tamper-protecting this message is the obvious way to prevent this attack. One potential
and immediate remedy to detect and to prevent tampering with the initial message would be to let the
ICC include a hash value of the KeySetIDs value in the plaintext of STR1. The terminal could then check
whether the ICC obtained the unmodified initial message by comparing the hash value that it receives with
the hash of the original KeySetIDs value. However, a rigorous analysis would be required to put this idea
on a profound foundation.

5 Further Security Considerations
Here we discuss further security considerations, and mainly the secrecy of the established keys which,
according to the standard, can be optionally used “as a secure messaging, session or encryption key in
subsequent sessions.” We also point out that the design of PLAID also deviates in several ways from
good cryptographic practice. We observe that some of these issues have already been pointed out in the
comments on the previous ISO draft version [ISO13].

10For 2048-bit RSA decryptions or signatures, [RPHJ11] reports times of over 100ms for mobile devices, while our simulations
on an Intel Core i7 2.4 GHz are around 10 ms.

15



5.1 Forward (In)security

Forward security [BPR00] demands that one cannot recover session keys generated in the past, even if the
long-term secrets of a party become known. In the case of PLAID, the long-term secrets correspond to
the secret RSA keys and the FAKey on the terminal side, and to the public RSA keys, DivData, and the
diversified keys FAKey(Div) on the card side. The loss of keys of either party immediately reveals all past
session keys, and also of future sessions, even if they are executed honestly between the parties and the
adversary merely observes these execution traces. Furthermore, revealing a card’s secrets also allows the
identification, a-posteriori, of traces belonging to that card and so breaches privacy in this sense.

Assume first that a terminal’s long-term secrets become known to the adversary, and consider the
trace of an execution between this terminal with an arbitrary card: the adversary can, analogously to the
genuine server, try to decrypt the ciphertext encrypting string eSTR1 under all possible RSA private keys
of the terminal, until it succeeds with one key. It then obtains DivData, hence can compute FAKey(Div) by
executing AESFAKey

Encrypt(DivData) and then decrypt eSTR2 sent by the honest terminal to recover the session
key KeysHash.

Next, suppose that the adversary gets hold of the diversification data DivData and the diversified key
FAKey(Div) of a card. It can then try to decrypt eSTR2 with this key to obtain some candidate KeysHash
for the session key. The adversary can verify the validity of this candidate by checking that eSTR3 decrypts
under the candidate key to the given DivData. This way, the adversary is able to identify traces belonging
to the specific card and to determine correct session keys of the card.

Most importantly, any such breach would lead to the disclosure of the payload data which may be
highly sensitive (for example, a user’s biometric data).

5.2 Key (In)security in the Bellare–Rogaway Model

The PLAID protocol specifies the option of reusing the negotiated session key KeysHash for subsequent
secure communication. We comment on possible consequences of doing so. Our starting point is the
widely-used Bellare–Rogaway (BR) security model [BR93] for key exchange protocols. This model demands
that all session keys should look random to the adversary. Neglecting technical details, this is formalized by
presenting the adversary either the genuine session key or an independent random key and challenging it to
decide which is the case. This immediately requires of a protocol that its session keys are not themselves
used in a non-trivial way in the key exchange steps, otherwise the adversary can try to test the given key
against a protocol execution trace. In the specific case of PLAID, the adversary can try to decrypt eSTR3
with the given key, and will recover a meaningful plaintext with overwhelming probability if and only if
this key equals the genuine key KeysHash. Thus PLAID cannot achieve security in the BR model.

Note that the lack of security in the BR sense does not necessarily imply that a protocol is insecure. It
merely means that other models must be used to assess its security. PLAID is not unique in this respect:
a prominent example of a protocol not achieving BR security is TLS, leading researchers to investigate
various alternative security evaluations [JKSS12, KPW13, BFS+13, GKS13, BFK+14]. The usage of the
session key in the exchange step is often alleviated by the fact that messages in this part and in the channel
protocol differ in format, e.g., if a counter value is used and incremented with each application. This form
of “domain-separation”, however, is not necessarily given in case of PLAID, because the subsequent channel
message format has not been specified.

Interestingly, PLAID could easily avoid the problems with the session key being used in the key exchange
phase. Recall that the session key KeysHash for AES (with 128 bits) is derived as the first 128 bits of the
hash value SHA-256(RND1 ‖RND2). Since the hash value has 256 bits one could easily use the remaining
128 bits as the AES-128 key for the final message in the key exchange step, and then switch to KeysHash
as before in the channel protocol. In the original protocol the card in some sense demonstrates knowledge
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of FAKey(Div) by being able to decrypt the terminal’s message and answer under the derived key. This
would still be true with the proposed modification. Note however that this modification still requires a
formal security treatment.

5.3 On the Applicability of Bleichenbacher’s Attack

Recall that PLAID uses PKCS#1 v1.5 padding for RSA encryption. The accompanying protocol description
[Cen09] argues that there is no need to use OAEP padding, because “PLAID doesn’t expose the modulus
or any other RSA primitive” and that “there is a significant performance advantage in using PKCS#1 v1.5
padding.” While we do not feel inclined to comment on the performance related issue, the first part of
the argument is debatable in light of the fact that exposure of a card’s secrets does reveal the public keys.
Further, our attacks in the previous sections show that some information about the moduli is revealed, and
the exponent e may be fixed. We note that the comments section in the previous ISO version of PLAID
[ISO13] also asks for investigations of the possibility of mounting Bleichenbacher’s attack.

Once the RSA public key is known one can in principle mount Bleichenbacher’s attack [Ble98] on
PKCS# v1.5 padding. In this attack the adversary takes a ciphertext c ∈ Z∗N of some unknown padded
message m and “shifts” the message by multiplying c with a random se mod N . With sufficiently high
probability the derived “message” sm mod N is PKCS#1 v1.5 padding compliant. The adversary could
thus potentially deduce information about m in case of an error message11 indicating correct or incorrect
padding, and given sufficiently many error messages, recover m. The attack has been significantly improved
in a series of papers, e.g., [JSS12, MSWS14].

For PLAID, the message format carries some redundancy in terms of repeating RND1. Hence, most
likely the shifted message sm mod N will not be accepted by the terminal in any case, independently
of the padding. However, the detailed behaviour is implementation-specific. For example, the current
implementation is based on the JavaCard framework and the decryption procedure of PKCS#1 v1.5 merely
throws an exception in case of incorrect padding and leaves it up to the higher level program to treat this
exception.

5.4 CBC-mode Encryption

PLAID proposes to use CBC-mode encryption based on AES. The standard explicitly demands that the
initialization vector IV is set to the all-zero string for both eSTR2 (from the terminal to the card) and
eSTR3 (from the card to the terminal). This usage does not conform with standard practice, which demands
the use of random IVs to achieve security against chosen plaintext attacks. As remarked before, the PLAID
specification states that padding is only applied “if necessary” and is thus not compliant with ISO/IEC
9797-1 padding method 2, where padding is always applied. Indeed, this imprecision makes the standard
unimplementable as currently specified, since there will be cases arising during decryption where it is not
possible to discern whether padding should be removed or not. It is well-known that CBC-mode encryption
is especially vulnerable to padding oracle attacks [Vau02], and that careful implementation is needed to
avoid them. The lack of precision in this aspect of the PLAID specification does not bode well.

It is also now well-understood in the cryptographic community that CBC-mode encryption does not
offer sufficient integrity guarantees on its own to provide adequate security against active attacks. The
usual solution is to add explicit integrity protection through the application of a MAC algorithm to the
CBC-mode ciphertext. PLAID does not do so, and a justification for why this lack of integrity does not
endanger security was requested in the comments of the previous ISO standard draft [ISO13], but was not
addressed in the latest version [ISO14].

11The protocol explicitly notes that no error messages should be issued, but wrong implementations or side-channel attacks
may reveal such information.
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PLAID does offer mild forms of plaintext integrity. For example, STR2 contains the session key
KeysHash computed as the hash of RND1 ‖RND2 while STR3 contains DivData. These elements can be
checked for after decryption by the relevant party, and this would detect some forms of adversarial plaintext
manipulation through simple bit-flipping in the corresponding ciphertexts eSTR2 and eSTR3. However, it is
easy to see that an attacker can still manipulate other fields in STR2 and STR3 by bit-flipping in ciphertexts
(even with a fixed IV). While this lack of integrity has not led us to the discovery of specific attacks
on PLAID, it is a worrying feature that could be easily avoided through the application of mainstream
cryptographic design principles.

5.5 Entity Authentication

Note that both parties, IFD (reader) and ICC (card), basically authenticate one another by proving
knowledge of a secret key. For the terminal this is done via the secret RSA key, whereas the card uses its
unique DivData and therefore unique key FAKey(Div) = AESFAKey

Encrypt(DivData). The standard mechanism
to do so would be either to compute a signature or a message authentication code for a random challenge,
or to return, in clear, a nonce encrypted under the party’s key.

PLAID follows the encryption-based approach. Yet the usual security argument for this type of
authentication requires chosen-ciphertext security for the deployed encryption scheme. PLAID, on the
other hand, uses two encryption schemes which are known not to provide this level of security, i.e., RSA-
PKCS#1 v1.5 and plain AES-CBC-encryption. This does not mean that the protocol is insecure and does
not provide any form of entity authentication. However one cannot infer security from known results but
would instead need carefully constructed de novo arguments.

5.6 Payload Insecurity

During the ISO standardization process the PLAID protocol was changed to introduce an optional
payload field in the third protocol message, the second message from the IFD to the card (see Step 5 in
Figure 1) [ISO13]. The standard motivates the purpose of this payload field—this field should not be
confused with the payload field in the last message by the card in Step 7 (Figure 1)—for scenarios where,
for example, a user enters a PIN and the verification should be done on the card. In this case, the PIN is to
be sent to the card within the payload field [ISO14, Annex G]. The problem is that sensitive information
send by the IFD can always be intercepted via a simple man-in-the-middle attack, assuming an adversary
has corrupted any card. Breaking a card allows the attacker to learn the diversified FAKey(Div) of the card,
the card’s DivData field as well as the public part of one (or more) IAKeys. Thus, an adversary can simply
replace the second message during an honest execution with one corresponding to the broken card. This
will lead to the IFD encrypting the third message under the FAKey(Div) of the broken card and hence,
if a PIN (or any other payload) is included, the adversary can trivially learn it by a simple decryption
operation. Note that this problem is not due to the payload being sent in the third message, but that a
user, when entering a PIN, cannot tell whether or not the terminal is actually communicating with his/her
card. Therefore, PIN comparison on the card as proposed [ISO14, Annex G] is generically insecure due to
the given attack scenario.

5.7 On the Impossibility of Key Revocation

Although PLAID uses a public-key encryption system (i.e. RSA) during the initial authentication phase,
the overall setup resembles more a symmetric setting where all static keys used by parties are exchanged
during system setup (abstracting away the diversification procedure of PLAID). As a consequence, it is not
possible to revoke any compromised keys within PLAID. In order to exemplify the resulting consequences,
assume that an attacker is able to break into an IFD (terminal). The IFD contains a list of IAKeys and a
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list of FAKeys which thereby are revealed to the attacker. With this information, the attacker can generate
arbitrary new cards with the capabilities of any of the KeySetIDs known by the broken IFD. Furthermore,
there is no way to revoke the compromised keys in the system without issuing new cards, as the keys known
by IFDs are hardcoded into the cards. Thus, even the break of a single IFD can lead to an entire PLAID
setup becoming insecure.

5.8 Key Legacy Attack

A key legacy attack is related to the same issues allowing for the KeySet fingerprinting attack, namely,
the lack of authentication in the list of keys used by a card and a terminal to establish a connection.
Recall that the protocol specifies that the first commonly shared key in the list has to be used, even if
there are other shared keys. This means that an adversary could force the card to use one particular key
(among those supported by both card and terminal) by reordering the list of keys sent by the terminal
in a man-in-the-middle fashion. This could be dangerous in case one or more of the keys in the system
are compromised, or turn out to provide inferior security for any reason, even if the use of these keys is
de-prioritized (e.g., by having the terminals set them always last in order of preference). We note that this
type of attack was already mentioned in the national body comments to the first ISO draft [ISO13], but
remained unconsidered in the current version [ISO14].

6 Conclusion
Our results show that PLAID has significant privacy weaknesses. The shill key attack and the keyset
fingerprinting attack reveal card identifying information and, via access authorizations, information about the
card holder. As for entity authentication and the secrecy of established keys for subsequent communication,
in several places the design of PLAID follows some uncommon strategies and reveals potential attack
vectors, such as the lack of forward security. The case of PLAID also shows that standards should specify
details thoroughly, in order to avoid vulnerable implementations. An example here is the ISO/IEC 9797-1
non-compliant CBC padding in PLAID, which potentially enables padding attacks (see our remark in
Section 5).

We do not recommend the indiscriminate usage of PLAID in its current form, especially not for
privacy-critical scenarios. While our proposed countermeasures seem to thwart our attacks on privacy, a
more comprehensive analysis of the protocol in light of clearly stated security goals would be necessary. The
PLAID description promises that the protocol should be scrutinized by “the most respected cryptographic
organisations, as well as the broader cryptographic community” [Cen09]. Unfortunately, we are not aware
of any available documents in this regard. Indeed, standardization processes in general would benefit if
supporting material, arguing the security of a proposal, was available at the time of evaluation.
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