
Faster Binary-Field Multiplication
and Faster Binary-Field MACs

Daniel J. Bernstein1,2 and Tung Chou2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the
Netherlands

blueprint@crypto.tw

Abstract. This paper shows how to securely authenticate messages us-
ing just 29 bit operations per authenticated bit, plus a constant overhead
per message. The authenticator is a standard type of “universal” hash
function providing information-theoretic security; what is new is com-
puting this type of hash function at very high speed.

At a lower level, this paper shows how to multiply two elements of a
field of size 2128 using just 9062 ≈ 71 · 128 bit operations, and how to
multiply two elements of a field of size 2256 using just 22164 ≈ 87 · 256
bit operations. This performance relies on a new representation of field
elements and new FFT-based multiplication techniques.

This paper’s constant-time software uses just 1.89 Core 2 cycles per
byte to authenticate very long messages. On a Sandy Bridge it takes
1.43 cycles per byte, without using Intel’s PCLMULQDQ polynomial-
multiplication hardware. This is much faster than the speed records for
constant-time implementations of GHASH without PCLMULQDQ (over
10 cycles/byte), even faster than Intel’s best Sandy Bridge implementa-
tion of GHASH with PCLMULQDQ (1.79 cycles/byte), and almost as
fast as state-of-the-art 128-bit prime-field MACs using Intel’s integer-
multiplication hardware (around 1 cycle/byte).

Key words: Performance · FFTs · Polynomial multiplication · Universal
hashing · Message authentication

1 Introduction

NIST’s standard AES-GCM authenticated-encryption scheme uses GHASH to
authenticate ciphertext (produced by AES in counter mode) and to authenticate
additional data. GHASH converts its inputs into a polynomial and evaluates that

This work was supported by the National Science Foundation under grant 1018836
and by the Netherlands Organisation for Scientific Research (NWO) under grant
639.073.005. Permanent ID of this document: 393655eb413348f4e17c7ec451b9e159.
Date: 2020.12.28.

2 Daniel J. Bernstein and Tung Chou

polynomial at a secret element of F2128 = F2[x]/(x128+x7+x2+x+1), using one
multiplication in F2128 for each 128-bit input block. The cost of GHASH is an
important part of the cost of GCM, and it becomes almost the entire cost when
large amounts of non-confidential data are being authenticated without being
encrypted, or when a denial-of-service attack is sending a flood of forgeries to
consume all available processing time.

Most AES-GCM software implementations rely heavily on table lookups and
presumably leak their keys to cache-timing attacks. Käsper and Schwabe [35]
(CHES 2009) addressed this problem by introducing a constant-time implemen-
tation of AES-GCM using 128-bit vector instructions. Their GHASH implemen-
tation takes 14.4 cycles/byte on one core of an Intel Core 2 processor. On a
newer Intel Sandy Bridge processor the same software takes 13.1 cycles/byte.
For comparison, HMAC-SHA1, which is widely used in Internet applications,
takes 6.74 Core 2 cycles/byte and 5.18 Sandy Bridge cycles/byte.

1.1 Integer-Multiplication Hardware. Much better speeds than GHASH
were already provided by constant-time MACs that used integer multiplication
rather than multiplication of polynomials mod 2. Examples include UMAC [15],
Poly1305 [5], and VMAC [36]. Current Poly1305 software from [22] runs at
1.89 Core 2 cycles/byte and 1.22 Sandy Bridge cycles/byte. VMAC, which uses
“pseudo dot products” (see Section 4), is even faster than Poly1305.

CPUs include large integer-multiplication units to support many different ap-
plications, so it is not a surprise that these MACs are much faster in software
than GHASH (including non-constant-time GHASH software; see [35]). How-
ever, integer multiplication uses many more bit operations than multiplication
of polynomials mod 2, so for hardware designers these MACs are much less at-
tractive. MAC choice is a continuing source of tension between software designers
and hardware designers.

1.2 New Speeds for Binary-Field MACs. This paper introduces Auth256,
an F2256 -based MAC at a 2255 security level; and a constant-time software im-
plementation of Auth256 running at just 1.89 cycles/byte on a Core 2. We also
tried our software on a Sandy Bridge; it runs at just 1.43 cycles/byte. We also
have a preliminary Cortex-A8 implementation below 14 cycles/byte.

This new binary-field MAC is not quite as fast as integer-multiplication MACs.
However, the gap is quite small, while the hardware advantages of binary fields
are quite important. We plan to put our software into the public domain.

Caveat: All of the above performance figures ignore short-message overhead,
and in particular our software has very large overhead, tens of thousands of
cycles. For 32-, 64-, 128-kilobyte messages, our software takes 3.07, 2.44, 2.14
Core 2 cycles per byte. and 2.85, 2.09, 1.74 Sandy Bridge cycles per byte. This
software is designed primarily for authenticating large files, not for authenticat-
ing network packets. However, a variant of Auth256 (b = 1 in Section 6) takes
only 0.81 additional cycles/byte and has much smaller overhead. We also expect
that, compared to previous MAC designs, this variant will allow significantly
lower area for high-throughput hardware, as explained below.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 3

1.3 New Bit-Operation Records for Binary-Field Multiplication. The
software speed advantage of Auth256 over GHASH, despite the much higher se-
curity level of Auth256, is easily explained by the following comparison. School-
book multiplication would take 1282 ANDs and approximately 1282 XORs for
each 128 bits of GHASH input, i.e., approximately 256 bit operations per au-
thenticated bit. Computing a 256-bit authenticator in the same way would use
approximately 512 bit operations per authenticated bit. Auth256 uses just 29
bit operations per authenticated bit.

Of course, Karatsuba’s method saves many bit operations at this size. See, e.g.,
[4], [42], [18], [48], [45], [41], [8], [9], and [21]. Bernstein’s Karatsuba/Toom
combination in [9] multiplies 256-bit polynomials using only about 133 · 256
bit operations. Multiplying 256-bit field elements has only a small overhead.
However, 133 bit operations is still much larger than 29 bit operations.

Our improved number of bit operations is a combination of four factors. The
first factor is faster multiplication: we reduce the cost of multiplication in F2256

from 133 · 256 bit operations to just 22292 ≈ 87 · 256 bit operations. The second
factor, which we do not take credit for, is the use of pseudo dot products to reduce
the number of multiplications by a factor of 2, reducing 87 below 44. The third
factor, which reduces 44 to 32, is an extra speedup from an interaction between
the structure of pseudo dot products and the structure of the multiplication
algorithms that we use. The fourth factor, which reduces 32 to just 29, is to
use a different field representation for the input to favor the fast multiplication
algorithm we use.

Specifically, we use a fast Fourier transform (FFT) to multiply polynomials
in F28 [x]. The FFT is advertised in algorithm courses as using an essentially
linear number of field additions and multiplications but is generally believed
to be much slower than other multiplication methods for cryptographic sizes.
Bernstein, Chou, and Schwabe showed at CHES 2013 [11] that a new “additive
FFT” saves time for decryption in McEliece’s code-based public-key cryptosys-
tem, but the smallest FFT sizes in [11] were above 10000 bits (evaluation at
every element in F2m , where m ≥ 11). We introduce an improved additive FFT
that uses fewer bit operations than any previously known multiplier for fields as
small as F264 , provided that the fields contain F28 . Our additive FFT, like many
AES hardware implementations, relies heavily on a tower-field representation of
F28 , but benefits from this representation in different ways from AES. The extra
speedup inside pseudo dot products comes from merging inverse FFTs, which
requires breaking the standard encapsulation of polynomial multiplication; see
Section 4.

The fact that we are optimizing bit operations is also the reason that we
expect our techniques to produce low area for high-throughput hardware. Opti-
mizing the area of a fully unrolled hardware multiplier is highly correlated with
optimizing the number of bit operations. We do not claim relevance to very small
serial multipliers.

1.4 Polynomial-Multiplication Hardware: PCLMULQDQ. Soon after
[35], in response to the performance and security problems of AES-GCM soft-

4 Daniel J. Bernstein and Tung Chou

ware, Intel added “AES New Instructions” to some of its CPUs. These instruc-
tions include PCLMULQDQ, which computes a 64-bit polynomial multiplication
in F2[x].

Krovetz and Rogaway reported in [37] that GHASH takes 2 Westmere cy-
cles/byte using PCLMULQDQ. Intel’s Shay Gueron reported in [26] that heav-
ily optimized GHASH implementations using PCLMULQDQ take 1.79 Sandy
Bridge cycles/byte. Our results are faster at a higher security level, although
they do require switching to a different authenticator.

Of course, putting sufficient resources into a hardware implementation will
beat any software implementation. To quantify this, consider what is required
for GHASH to run faster than 1.43 cycles/byte using PCLMULQDQ. GHASH
performs one multiplication for every 16 bytes of input, so it cannot afford more
than 22.88 cycles for each multiplication. If PCLMULQDQ takes t cycles and t is
not very small then presumably Karatsuba is the best approach to multiplication
in F2128 , taking 3t cycles plus some cycles for latency, additions, and reductions.

The latest version of Fog’s well-known performance survey [23] indicates that
t = 7 for AMD Bulldozer, Piledriver, and Steamroller and that t = 8 for Intel
Sandy Bridge and Ivy Bridge; on the other hand, t = 2 for Intel Haswell and
t = 1 for AMD Jaguar. Gueron, in line with this analysis, reported 0.40 Haswell
cycles/byte for GHASH.

It is quite unclear what to expect from future CPUs. Intel did not put
PCLMULQDQ hardware into its low-cost “Core i3” lines of Sandy Bridge, Ivy
Bridge, and Haswell CPUs; and obviously Intel is under pressure from other
manufacturers of small, low-cost CPUs. To emphasize the applicability of our
techniques to a broad range of CPUs, we have avoided PCLMULQDQ in our
software.

2 Field Arithmetic in F28

This section reports optimized circuits for field arithmetic in F28 . We write
“circuit” here to mean a fully unrolled combinatorial circuit consisting of AND
gates and XOR gates. Our main cost metric is the total number of bit operations,
i.e., the total number of AND gates and XOR gates, although as a secondary
metric we try to reduce the number of registers required in our software.

Subsequent sections use these circuits as building blocks. The techniques also
apply to larger F2s , but F28 is large enough to support the FFTs that we use in
this paper.

2.1 Review of Tower Fields. We first construct F22 in the usual way as
F2[x2]/(x22 +x2 + 1). We write α2 for the image of x2 in F22 , so α2

2 +α2 + 1 = 0.
We represent elements of F22 as linear combinations of 1 and α2, where the
coefficients are in F2. Additions in F22 use 2 bit operations, namely 2 XORs.

We construct F24 as F22 [x4]/(x24 + x4 + α2), rather than using a polynomial
basis for F24 over F2. We write α4 for the image of x4 in F24 . We represent
elements of F24 as linear combinations of 1 and α4, where the coefficients are in
F22 . Additions in F24 use 4 bit operations.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 5

Finally, we construct F28 as F24 [x8]/(x28 + x8 +α2α4); write α8 for the image
of x8 in F28 ; and represent elements of F28 as F24 -linear combinations of 1 and
α8. Additions in F28 use 8 bit operations.

2.2 Variable Multiplications. A variable multiplication is the computation
of ab given a, b ∈ F2s as input. We say “variable multiplication” to distinguish
this operation from multiplication by a constant; we will optimize constant mul-
tiplication later.

For variable multiplication in F22 , we perform a multiplication of a0+a1x, b0+
b1x ∈ F2[x] and reduction modulo x2 +x+ 1. Here is a straightforward sequence
of 7 operations using schoolbook polynomial multiplication: c0 ← a0 ⊗ b0; c1 ←
a0 ⊗ b1; c2 ← a1 ⊗ b0; c3 ← a1 ⊗ b1; c4 ← c1 ⊕ c2; c5 ← c0 ⊕ c3; c6 ← c4 ⊕ c3. The
result is c5, c6.

For F24 and F28 we use 2-way Karatsuba. Note that since the irreducible
polynomials are of the form x2 +x+α the reductions involve a different type of
multiplication described below: multiplication of a field element with a constant.

We end up with just 110 bit operations for variable multiplication in F28 . For
comparison, Bernstein [9] reported 100 bit operations to multiply 8-bit polyno-
mials in F2[x], but reducing modulo an irreducible polynomial costs many extra
operations. A team led by NIST [19], improving upon various previous results
such as [31], reported 117 bit operations to multiply in F2[x] modulo the AES
polynomial x8 + x4 + x3 + x+ 1.

2.3 Constant Multiplications. A constant multiplication in F2s is the com-
putation of αb given b ∈ F2s as input for some constant α ∈ F2s . This is trivial
for α ∈ F2 so we focus on α ∈ F2s\F2. One can substitute a specific α into
our 110-gate circuit for variable multiplication to obtain a circuit for constant
multiplication, and then shorten the circuit by eliminating multiplications by 0,
multiplications by 1, additions of 0, etc.; but for small fields it is much better to
use generic techniques to optimize the cost of multiplying by a constant matrix.

Our linear-map circuit generator combines various features of Paar’s greedy
additive common-subexpression elimination algorithm [40] and Bernstein’s two-
operand “xor-largest” algorithm [10]. For α ∈ F28\F2 our constant-multiplication
circuits use 14.83 gates on average. Compared to Paar’s results, this is slightly
more gates but is much better in register use; compared to Bernstein’s results,
it is considerably fewer gates.

The real importance of the tower-field construction for us is that constant
multiplications become much faster when the constants are in subfields. Mul-
tiplying an element of F28 by a constant α ∈ F24\F2 takes only 7.43 gates on
average, and multiplying an element of F28 by a constant α ∈ F22\F2 takes only
4 gates on average. The constant multiplications in our FFT-based multiplica-
tion algorithms for F2256 (see Section 3) are often in subfields of F28 , and end up
using only 9.02 gates on average.

2.4 A Circuit Generator for Invertible Linear Maps over F2. Given
an invertible linear map φ : Fn

2 → Fn
2 , our circuit generator generates a circuit,

represented as a sequence of XOR gates, that carries out the map. That is, the

6 Daniel J. Bernstein and Tung Chou

resulting circuit, given an n-bit string representing ~v ∈ Fn
2 , computes an n-bit

string representing ~w = φ(~v) ∈ Fn
2 .

Such sequence must exist since the map is the composition of a sequence of
elementary row (if Fn

2 is treated as a space of column vectors) operations that
add one row to another, and each of such operations can be carried out by a
XOR gate. Here we ignore the row swapping operations for a moment, which
will be justified later.

Assume a circuit for the map takes as input a bit string a1, a2, . . . , an. Each
bit in the output bit string is then

∑
i∈I ai for some I ⊆ {1, . . . , n}. Each output

bit is thus represented as a polynomial
∑

i∈I xi ∈ F2[x1, x2, . . . , xn]; the resulting
array of polynomials is called the final state. The input can also be expressed in
similar way: simply express ai as xi; the resulting array of polynomials is called
the initial state.

The circuit generator starts with initializing an array A to the final state.
The goal is to move from the final state to the initial state by a sequence of
in-place additions. Each in-place addition A[i]← A[i] +A[j] represents a “gate”
ai ← ai ⊕ aj ; When the goal is reached the sequence of gates is reversed. With
proper renaming of the inputs and outputs of the gates the circuit is obtained.

The sequence finding is done by finding operations in the sequence one-by-
one. To generate the next operation, all n(n − 1) possibilities are considered
and evaluated. Now let |s| denote the number of unknowns appearing in s ∈
F2[x1, x2, . . . , xn]. The evaluation is based on how much progress the operation
brings, which is quantified as

∑
i |A′[i]| −

∑
i |A[i]|, where A′ is the result of

applying the operation on A. This makes sense since the smaller
∑

i |A[i]| is,
the closer A is to the initial state: the minimum value is exactly n =

∑
i |xi|.

After evaluating all the possibilities, we pick at random one of the operations
that makes the most progress. The same step is repeated until

∑
i |A[i]| = n.

Here are some details about the code generator:

– Our circuit generator takes a greedy approach; it does not necessarily gener-
ate optimal result. Also since randomness is involved in our circuit generator,
it can generate a different result each time. Sometimes it can not even reach
the initial state and thus fails to generate a circuit. We always run the gen-
erator several times and pick the best result.

– Precisely speaking the circuit generator move from the final state to the
initial state but up to some permutation. This is something that needs to be
taken care of by the renaming.

2.5 Subfields and Decomposability. A further advantage of the tower-field
construction, beyond the number of bit operations, is that it allows constant
multiplications by subfield elements to be decomposed into independent subcom-
putations. For example, when an F28 element in this representation is multiplied
by a constant in F22 , the computation decomposes naturally into 4 independent
subcomputations, each of which takes 2 input bits to 2 output bits.

Decomposability is a nice feature for software designers; it guarantees a smaller
working set, which in general implies easier optimization, fewer memory opera-
tions and cache misses, etc. The ideal case is when the working set can fit into

Faster Binary-Field Multiplication and Faster Binary-Field MACs 7

registers; in this case the computation can be done using the minimum number
of memory accesses. Section 5 gives an example of how decomposability can be
exploited to help optimization of a software implementation.

The decomposition of multiplication by a constant in a subfield has the extra
feature that the subcomputations are identical. This allows extra possibilities for
efficient vectorization in software, and can also be useful in hardware implemen-
tations that reuse the same circuit several times. Even when subcomputations
are not identical, decomposability increases flexibility of design and is desirable
in general.

3 Faster Additive FFTs

Given a 2m−1-coefficient polynomial f with coefficients in F28 , a size-2m addi-
tive FFT computes f(0), f(βm), f(βm−1), f(βm + βm−1), f(βm−2), etc., where
βm, . . . , β2, β1 are F2-linearly independent elements of F28 specified by the algo-
rithm. We always choose a “Cantor basis”, i.e., elements βm, . . . , β2, β1 satisfying
β2
i+1 + βi+1 = βi and β1 = 1; specifically, we take β1 = 1, β2 = α2, β3 = α4 + 1,
β4 = α2α4, β5 = α8, and β6 = α2α8 + α2α4 + α2 + 1. We do not need larger
FFT sizes in this paper.

Our additive FFT is an improvement of the Bernstein–Chou–Schwabe [11]
additive FFT, which in turn is an improvement of the Gao–Mateer [24] additive
FFT. This section presents details of our size-4, size-8, and size-16 additive FFTs
over F28 . All of our improvements are already visible for size 16. At the end of the
section gate counts for all sizes are collected and compared with state-of-the-art
Karatsuba/Toom-based methods.

3.1 Size-4 FFTs: the Lowest Level of Recursion. Given a polynomial
f = a+ bx ∈ F28 [x], the size-4 FFT computes f(0) = a, f(β2) = a+ β2b, f(1) =
a+b, f(β2 +1) = a+(β2 +1)b. Recall that β2 = α2 so β2

2 +β2 +1 = 0. The size-4
FFT is of interest because it serves as the lowest level of recursion for larger-size
FFTs.

As mentioned in Section 2, since β2 ∈ F22 , the size-4 FFT can be viewed as a
collection of 4 independent pieces, each dealing with only 2 out of the 8 bits.

Let a0, a1 be the first 2 bits of a; similarly for b. Then a0, a1 and b0, b1 represent
a0+a1β2, b0+b1β2 ∈ F22 . Since β2(a0+a1β2) = a1+(a0+a1)β2, a 6-gate circuit
that carries out the size-4 FFTs operations on the first 2 bits is c00 ← a0; c01 ←
a1; c20 ← a0⊕b0; c21 ← a1⊕b1; c10 ← a0⊕b1; c31 ← a1⊕b0; c11 ← c31⊕b1; c30 ←
c10⊕b0. Then c00, c01 is the 2-bit result of a; c10, c11 is the 2-bit result of a+β2b;
similarly for c20, c21 and c30, c31. In conclusion, a size-4 FFT can be carried out
using a 6 · 4 = 24-gate circuit.

The whole computation costs the same as merely 3 additions in F28 . This
is the result of having evaluation points to be in the smallest possible subfield,
namely F22 , and the use of tower field construction for F28 .

3.2 The Size-8 FFTs: the First Recursive Case. Given a polynomial f =
f0+f1x+f2x

2+f3x
3 ∈ F28 [x], the size-8 FFT computes f(0), f(β3), f(β2), f(β2+

8 Daniel J. Bernstein and Tung Chou

β3), f(1), f(β3 + 1), f(β2 + 1), f(β2 + β3 + 1). Recall that β3 = α4 + 1 so β2
3 +

β3 + β2 = 0. The size-8 FFT is of interest because it is the smallest FFT that
involves recursion.

In general, a recursive size-2m FFT starts with a radix conversion that com-
putes f (0) and f (1) such that f = f (0)(x2 + x) + xf (1)(x2 + x). When f is a
2m−1-coefficient polynomial we call this a size-2m−1 radix conversion. Since the
size-4 radix conversion can be viewed as a change of basis in F4

2, each coefficient
in f (0) and f (1) is a subset sum of f0, f1, f2, and f3. In fact, f (0) = f0+(f2+f3)x
and f (1) = (f1 + f2 + f3) + f3x can be computed using exactly 2 additions.

After the radix conversion, 2 size-4 FFTs are invoked to evaluate f (0), f (1) at
02 + 0 = 0, β2

3 +β3 = β2, β2
2 +β2 = 1, and (β2 +β3)2 + (β2 +β3) = β2 + 1. Each

of these size-4 FFTs takes 24 bit operations.
Note that we have

f(α) = f (0)(α2 + α) + αf (1)(α2 + α),

f(α+ 1) = f (0)(α2 + α) + (α+ 1)f (1)(α2 + α).

Starting from f (0)(α2+α) and f (1)(α2+α), Gao and Mateer multiply f (1)(α2+α)
by α and add f (0)(α2 +α) to obtain f(α), and then add f (1)(α2 +α) with f(α)
to obtain f(α+ 1). We call this a muladdadd operation.

The additive FFT thus computes all the pairs f(α), f(α + 1) at once: given
f (0)(0) and f (1)(0) apply muladdadd to obtain f(0) and f(1), given f (0)(β2) and
f (1)(β2) apply muladdadd operation to obtain f(β3) and f(β3 + 1), and so on.

The way that the output elements form pairs is a result of having 1 as the
last basis element. In general the Gao–Mateer FFT is able to handle the case
where 1 is not in the basis with some added cost, but here we avoid the cost by
making 1 the last basis element.

Generalizing this to the case of size-2m FFTs implies that the i-th output
element of f (0) and f (1) work together to form the ith and (i+ 2m−1)th output
element for f . We call the collection of muladdadds that are used to combine
2 size-2m−1 FFT outputs to form a size-2m FFT output a size-2m combine
routine.

We use our circuit generator introduced in Section 2 to generate the circuits
for all the constant multiplications. The muladdadds take a total of 76 gates.
Therefore, a size-8 FFT can be carried out using 2 · 8 + 2 · 24 + 76 = 140 gates.

Note that for a size-8 FFT we again benefit from the special basis and the F28

construction. The recursive calls still use the good basis β2, 1 so that there are
only constant multiplications by F22 elements. The combine routine, although
not having only constant multiplications by F22 elements, at least has only con-
stant multiplications by F24 elements.

3.3 The Size-16 FFTs: Saving Additions for Radix Conversions. The
size-16 FFT is the smallest FFT in which non-trivial radix conversions happen
in recursive calls. Gao and Mateer presented an algorithm performing a size-
2n radix conversion using (n − 1)2n−1 additions. We do better by combining
additions across levels of recursion.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 9

The size-8 radix conversion finds f (0), f (1) such that f = f (0)(x2 + x) +
xf (1)(x2 + x). The two size-4 radix conversion in size-8 FFT subroutines find
f (i0), f (i1) such that f (i) = f (i0)(x2+x)+xf (i1)(x2+x) for i ∈ {0, 1}. Combining
all these leads to f = f (00)(x4 + x) + (x2 + x)f (01)(x4 + x) + xf (10)(x4 + x) +
x(x2 + x)f (11)(x4 + x).

In the end the size-8 and the two size-4 radix conversions together compute
from f the following: f (00) = f0 + (f4 + f7)x, f (01) = (f2 + f3 + f5 + f6) +
(f6 + f7)x, f (10) = (f1 + f2 + f3 + f4 + f5 + f6 + f7) + (f5 + f6 + f7)x, and
f (11) = (f3 + f6) + f7x. The Gao–Mateer algorithm takes 12 additions for this
computation, but one sees by hand that 8 additions suffice. One can also obtain
this result by applying the circuit generator introduced in Section 2. Here is

an 8-addition sequence generated by the circuit generator: f
(00)
0 ← f0; f

(11)
1 ←

f7; f
(00)
1 ← f4 + f7; f

(01)
0 ← f2 + f5; f

(11)
0 ← f3 + f6; f

(01)
1 ← f6 + f7; f

(10)
0 ←

f1 + f
(00)
1 ; f

(10)
1 ← f5 + f

(01)
1 ; f

(01)
0 ← f

(01)
0 + f

(11)
0 ; f

(10)
0 ← f

(10)
0 + f

(01)
0 .

We applied the circuit generator for larger FFTs and found larger gains. A
size-32 FFT, in which the input is a size-16 polynomial, requires 31 rather than
48 additions for radix conversions. A size-64 FFT, in which the input is a size-32
polynomial, requires 82 rather than 160 additions for radix conversions.

We also applied our circuit generator to the muladdadds, obtaining a 170-
gate circuit for the size-16 combined routine and thus a size-16 FFT circuit
using 8 · 8 + 4 · 24 + 2 · 76 + 170 = 482 gates.

3.4 Size-16 FFTs Continued: Decomposition at Field-Element Level.
The size-16 FFT also illustrates the decomposability of the combine routines of
a FFT. Consider the size-16 and size-8 combine routines; the computation takes
as input the FFT outputs for the f (ij)’s to compute the FFT output for f .

Let the output for f be a0, a1, . . . , a15, the output for f (i) be a
(i)
0 , a

(i)
1 , . . . , a

(i)
7 ,

and similarly for f (ij). For k ∈ {0, 1, 2, 3}, ak, ak+8 are functions of a
(0)
k and

a
(1)
k , which in turn are functions of a

(00)
k , a

(01)
k , a

(10)
k , and a

(11)
k ; ak+4, ak+12 are

functions of a
(0)
k+4 and a

(1)
k+4, which in turn are functions of the same 4 elements.

We conclude that ak, ak+4, ak+8, ak+12 depend only on a
(00)
k , a

(01)
k , a

(10)
k , and

a
(11)
k . In this way, the computation is decomposed into 4 independent parts;

each takes as input 4 field elements and outputs 4 field elements. Note that
here the decomposition is at the field-element level, while Section 2 considered
decomposability at the bit level.

More generally, for size-2m FFTs we suggest decomposing k levels of combine
routines into 2m−k independent pieces, each taking 2k F28 elements as input and
producing 2k F28 elements as output.

3.5 Improvements: a Summary. We have two main improvements to the
additive FFT: reducing the cost of multiplications and reducing the number of
additions in radix conversion. We also use these ideas to accelerate size-32 and
size-64 FFTs, and obviously they would also save time for larger FFTs.

The reduction in the cost of multiplications is a result of (1) choosing a “good”
basis for which constant multiplications use constants in the smallest possible

10 Daniel J. Bernstein and Tung Chou

b forward pointwise inverse total competition

16 2 · 24 4 · 110 60 448 ≈ 14 · 2 · 16 350 ≈ 10.9 · 2 · 16
32 2 · 140 8 · 110 228 1388 ≈ 21.7 · 2 · 32 1158 ≈ 18.1 · 2 · 32
64 2 · 482 16 · 110 746 3470 ≈ 27.1 · 2 · 64 3682 ≈ 28.8 · 2 · 64

128 2 · 1498 32 · 110 2066 8582 ≈ 33.5 · 2 · 128 11486 ≈ 44.9 · 2 · 128
256 2 · 4068 64 · 110 5996 21172 ≈ 41.4 · 2 · 256 34079 ≈ 66.6 · 2 · 256

Table 1. Cost of multiplying b/8-coefficient polynomials over F28 . “Forward” is the
cost of two size-b/4 FFTs with size-b/8 inputs. “Pointwise” is the cost of pointwise
multiplication. “Inverse” is the cost of an inverse size-b/4 FFT. “Total” is the sum of
forward, pointwise, and inverse. “Competition” is the cost from [9] of an optimized
Karatsuba/Toom multiplication of b-coefficient polynomials over F2; note that slight
improvements appear in [21].

subfield; (2) using a tower-field representation to accelerate those constant mul-
tiplications; and (3) searching for short sequences of additions. The reduction
of additions for radix conversion is a result of (1) merging radix conversion at
different levels of recursion and again (2) searching for short sequences of addi-
tions.

3.6 Polynomial Multiplications: a Comparison with Karatsuba and
Toom. Just like other FFT algorithms, any additive FFT can be used to mul-
tiply polynomials. Given two 2m−1-coefficient polynomials in F2s , we apply a
size-2m additive FFT to each polynomial, a pointwise multiplication consisting
of 2m variable multiplications in F2s , and a size-2m inverse additive FFT, i.e.,
the inverse of an FFT with both input and output size 2m. An FFT (or inverse
FFT) with input and output size 2m is slightly more expensive than an FFT
with input size 2m−1 and output size 2m: input size 2m−1 is essentially input
size 2m with various 0 computations suppressed.

Table 1 summarizes the number of bit operations required for multiplying
b-bit (i.e., b/8-coefficient) polynomials in F28 [x]. Field multiplication is slightly
more expensive than polynomial multiplication. For F2256 we use the polynomial
x32 +x17 +x2 +α8; reduction costs 992 bit operations. However, as explained in
Section 4, in the context of Auth256 we can almost eliminate the inverse FFT
and the reduction, and eliminate many operations in the forward FFTs, making
the additive FFT even more favorable than Karatsuba.

4 The Auth256 Message-Authentication Code: Major
Features

Auth256, like GCM’s GHASH, follows the well-known Wegman–Carter [47]
recipe for building an MAC with (provably) information-theoretic security. The
recipe is to apply a (provably) “δ-xor-universal hash” to the message and en-
crypt the result with a one-time pad. Every forgery attempt then (provably) has
success probability at most δ, no matter how much computer power the attacker
used.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 11

Of course, real attackers do not have unlimited computer power, so GCM
actually replaces the one-time pad with counter-mode AES output to reduce
key size. This is safe against any attacker who cannot distinguish AES output
from uniform random; see, e.g., [33, comments after Corollary 3]. Similarly, it is
safe to replace the one-time pad in Auth256 with cipher output.

This section presents two important design decisions for Hash256, the hash
function inside Auth256. Section 4.1 describes the advantages of the Hash256
output size. Section 4.2 describes the choice of pseudo dot products inside
Hash256, and the important interaction between FFTs and pseudo dot prod-
ucts. Section 4.3 describes the use of a special field representation for inputs to
reduce the cost of FFTs.

Section 6 presents, for completeness, various details of Hash256 and Auth256
that are not relevant to this paper’s performance evaluation.

4.1 Output size: Bigger-Birthday-Bound Security. Hash256 produces
256-bit outputs, as its name suggests, and Auth256 produces 256-bit authenti-
cators. Our multiplication techniques are only slightly slower per bit for F2256

than for F2128 , so Auth256 is only slightly slower than an analogous Auth128
would be. An important advantage of an increased output size is that one can
safely eliminate nonces.

Encrypting a hash with a one-time pad, or with a stream cipher such as AES
in counter mode, requires a nonce, and becomes insecure if the user accidentally
repeats a nonce; see, e.g., [30]. Directly applying a PRF (as in HMAC) or PRP
(as in WMAC) to the hash, without using a nonce, is much more resilient against
misuse but becomes insecure if hashes collide, so b-bit hashes are expected to be
broken within 2b/2 messages (even with an optimal δ = 2−b) and already provide
a noticeable attack probability within somewhat fewer messages.

This problem has motivated some research into “beyond-birthday-bound”
mechanisms for authentication and encryption that can safely be used for more
than 2b/2 messages. See, e.g., [38]. Hash256 takes a different approach, which
we call “bigger-birthday-bound” security: simply increasing b to 256 (and cor-
respondingly reducing δ) eliminates all risk of collisions. For the same reason,
Hash256 provides extra strength inside other universal-hash applications, such
as wide-block disk encryption; see, e.g., [28].

In applications with space for only 128-bit authenticators, it is safe to sim-
ply truncate the Hash256 and Auth256 output from 256 bits to 128 bits. This
increases δ from 2−255 to 2−127.

4.2 Pseudo Dot Products and FFT Addition. Hash256 uses the same basic
construction as NMH [29, Section 5], UMAC [15], Badger [16], and VMAC [36]:
the hash of a message with blocks m1,m2,m3,m4, . . . is (m1 + r1)(m2 + r2) +
(m3 + r3)(m4 + r4) + · · · . Halevi and Krawczyk [29] credit this hash to Carter
and Wegman; Bernstein [6] credits it to Winograd and calls it the “pseudo dot
product”. The pseudo-dot-product construction of Hash256 gives δ < 2−255; see
Appendix A for the proof.

A simple dot product m1r1+m2r2+m3r3+m4r4+· · · uses one multiplication
per block. The same is true for GHASH and many other polynomial-evaluation

12 Daniel J. Bernstein and Tung Chou

hashes. The basic advantage of (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·
is that there are only 0.5 multiplications per block.

For Auth256 each block contains 256 bits, viewed as an element of the finite
field F2256 . Our cost of Auth256 per 512 authenticated bits is 29 · 512 = 58 · 256
bit operations, while the our cost for a multiplication in F2256 is 87 · 256 bit
operations. We now explain one of the two sources of this gap.

FFT-based multiplication of two polynomials f1f2 has several steps: apply an
FFT to evaluate f1 at many points; apply an FFT to evaluate f2 at many points;
compute the corresponding values of the product f1f2 by pointwise multiplica-
tion; and apply an inverse FFT to reconstruct the coefficients of f1f2. FFT-based
multiplication of field elements has the same steps plus a final reduction step.

These steps for F2256 , with our optimizations from Section 3, cost 4068 bit
operations for each forward FFT, 64 · 110 bit operations for pointwise multipli-
cation, 5996 bit operations for the inverse FFT (the forward FFT is less expensive
since more polynomial coefficients are known to be 0), and 992 bit operations
for the final reduction. Applying these steps to each 512 bits of input would cost
approximately 15.89 bit operations per bit for the two forward FFTs, 13.75 bit
operations per bit for pointwise multiplication, 11.71 bit operations per bit for
the inverse FFT, and 1.94 bit operations per bit for the final reduction, plus 1.5
bit operations per bit for the three additions in the pseudo dot product.

We do better by exploiting the structure of the pseudo dot product as a sum
of the form f1f2+f3f4+f5f6+ · · · . Optimizing this computation is not the same
problem as optimizing the computation of f1f2. Specifically, we apply an FFT
to each fi and compute the corresponding values of f1f2, f3f4, etc., but we then
add these values before applying an inverse FFT. See Figure 1. There is now only
one inverse FFT (and one final reduction) per message, rather than one inverse
FFT for every two blocks. Our costs are now 15.89 bit operations per bit for the
two forward FFTs, 13.75 bit operations per bit for pointwise multiplication, 1
bit operation per bit for the input additions in the pseudo dot product, and 1 bit
operation per bit for the pointwise additions, for a total of 31.64 bit operations
per bit, plus a constant (not very large) overhead per message.

This idea is well known in the FFT literature (see, e.g., [7, Section 2]) but
we have never seen it applied to message authentication. It reduces the cost of
FFT-based message authentication by a factor of nearly 1.5. Note that this also
reduces the cutoff between FFT and Karatsuba.

UMAC and VMAC actually limit the lengths of their pseudo dot products,
to limit key size. This means that longer messages produce two or more hashes;
these hashes are then further hashed in a different way (which takes more time
per byte but is applied to far fewer bytes). For simplicity we instead use a key
as long as the maximum message length. We have also considered the small-key
hashes from [6] but those hashes obtain less benefit from merging inverse FFTs.

4.3 Embedding Invertible Linear Operations into FFT Inputs. Sec-
tion 4.2 shows how to achieve 31.64 bit operations per message bit by skipping
the inverse FFTs for almost all multiplications in the pseudo dot product. Now

Faster Binary-Field Multiplication and Faster Binary-Field MACs 13

m1 k1 m2 k2

+ +

FFT FFT

×

m3 k3 m4 k4

+ +

FFT FFT

×

+

m5 k5 m6 k6

+ +

FFT FFT

×

+

m7 k7 m8 k8

+ +

FFT FFT

×

+

IFFT, reduction

Hash256k(m)

Fig. 1. Hash256 flowchart

we show how Auth256 achieves 29 bit operations per message bit by skipping
operations in the forward FFTs.

Section 3.3 shows that the radix conversions can be merged into one invertible
F28-linear (actually F2-linear) map, which takes place before all other operations
in the FFT. The input is a F2256 element which is represented as coefficients in
F28 with respect to a polynomial basis. Applying an invertible linear map on
the coefficients implies a change of basis. In other words, the radix conversions
convert the input into another 256-bit representation. If we define the input to
be elements in this new representation, all the radix conversions can simply be
skipped. Note that the authenticator still uses the original representation. See
Section 6.2 for a definition of the new representation.

This technique saves a significant fraction of the operations in the forward
FFT. As shown in Section 3, one forward FFT takes 4068 bit operations, where
82 · 8 = 656 of them are spent on radix conversions. Eliminating all radix con-
versions then gives the 29 bit operations per message bit.

The additive FFTs described so far are “2-way split” FFTs since they require
writing the input polynomial f(x) in the form f (0)(x2 + x) + xf (1)(x2 + x).
It is easy to generalize this to a “2k-way split” in which f(x) is written as∑2k−1

i=0 xif (i)(ψk(x)), where ψ(x) = x2+x. In particular, Gao and Mateer showed

how to perform 22
k−1

-way-split FFTs for polynomials in F
22k

[x]. The technique
of changing input representation works for any 2k-way split. In fact we found
that with 8-way-split FFTs, the number of bit operations per message bit can
be slightly better than 29. However, for simplicity, Auth256 is defined in a way
that favors 2-way-split FFTs.

14 Daniel J. Bernstein and Tung Chou

5 Software Implementation

Our software implementation uses bitslicing. This means that we convert each
bit in previous sections into w bits, where w is the register width on the machine;
we convert each AND into a bitwise w-bit AND instruction; and we convert each
XOR into a bitwise w-bit XOR instruction.

Bitslicing is efficient only if there is adequate parallelism in the algorithm.
Fortunately, the pseudo-dot-product computation is naturally parallelizable: we
let the jth bit position compute the sum of all products (m2i+1 +r2i+1)(m2i+2 +
r2i+2) where i ≡ j (mod w). After all the products are processed, the results in
all bit positions are summed up to get the final value.

The detailed definition of Auth256 (see Section 6) has a parameter b. Our
software takes b = w, allowing it to simply pick up message blocks as vectors. If b
is instead chosen as 1 then converting to bitsliced form requires a transposition of
message blocks; in our software this transposition costs an extra 0.81 cycles/byte.

5.1 Minimizing Memory Operations in Radix Conversions. We exploit
the decomposability of additions to minimize memory operations for a radix con-
version. When dealing with size-2k radix conversions with k ≤ 4, we decompose
at bit level the computation into 2k parts, each of which deals with 16/2k bit
positions. This minimizes the number of loads and stores. The same technique
applies for a radix conversion combined with smaller-size radix conversions in
the FFT subroutines.

Our implementation uses the size-16 FFT as a subroutine. Inside a size-16
FFT the size-8 radix conversion is combined with the 2 size-4 radix conversions
in FFT subroutines. Our bit-operation counts handle larger radix conversions
in the same way, but in our software we sacrifice some of the bit operations
saved here to improve instruction-level parallelism and register utilization. For
size-16 radix conversion the decomposition method is adopted. For size-32 radix
conversion the decomposition method is used only for the size-16 recursive calls.

5.2 Minimizing Memory Operations in Muladdadd Operations. For a
single muladdadd operation a← a+ αb; b← b+ a, each of a and b consumes 8
vectors; evidently at least 16 loads and 16 stores are required. While we showed
how the sequence of bit operations can be generated, it does not necessarily
mean that there are enough registers to carry out the bit operations using the
minimum number of loads and stores.

Here is one strategy to maintain both the number of bit operations and the
lower bound on number of loads and stores. First load the 8 bits of b into 8
registers t0, t1, . . . , t7. Use the sequence of XORs generated by the code gener-
ator, starting from the ti’s, to compute the 8 bits of αb, placing them in the
other 8 registers s0, s1, . . . , s7. Then perform si ← si ⊕ a[i], where a[i] is the
corresponding bit of a in memory, to obtain a+ αb. After that overwrite a with
the si’s. Finally, perform ti ← ti⊕si to obtain a+(α+1)b, and overwrite b with
the ti’s.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 15

In our software muladdadd operations are handled one by one in size-64 and
size-32 combine routines. See below for details about how muladdadds in smaller
size combine routines are handled.

5.3 Implementing the Size-16 Additive FFT. In our size-16 FFT imple-
mentation the size-8 radix conversion is combined with the two size-4 ones in
the FFT subroutines using the decomposition method described earlier in this
section. Since the size-4 FFTs deal with constants in F22 , we further combine
the radix conversions with size-4 FFTs.

At the beginning of one of the 4 rounds of the whole computation, the 2·8 = 16
bits of the input for size-8 radix conversion are loaded. Then the logic operations
are carried out in registers, and eventually the result is stored in 2 · 16 = 32 bits
of the output elements. The same routine is repeated 4 times to cover all the bit
positions.

The size-16 and size-32 combine routines are also merged as shown in Section
3. The field-level decomposition is used together with a bit-level decompostion:
in size-16 FFT all the constants are in F24 , so it is possible to decompose any
computation that works on field elements into a 2-round procedure and handle 4
bit positions in each round. In conclusion, the field-level decomposition turns the
computation into 4 pieces, and the bit-level decompostion further decomposes
each of these into 2 smaller pieces. In the end, we have an 8-round procedure.

At the beginning of one of the 8 rounds of the whole computation, the 4·4 = 16
bits of the outputs of the size-4 FFTs are loaded. Then the logic operations are
carried out in registers, and eventually the result is stored in 4 · 4 = 16 bits of
the output elements. The same routine is repeated 8 times to cover all the bit
positions.

6 Auth256: Minor Details

To close we fill in, for completeness, the remaining details of Hash256 and
Auth256.

6.1 Review of Wegman–Carter MACs. Wegman–Carter MACs work as
follows. The authenticator of the nth message m is H(r,m)⊕sn. The key consists
of independent uniform random r, s1, s2, s3, . . .; the pad is s1, s2, s3,

The hash functionH is designed to be “δ-xor-universal”, i.e., to have “differen-
tial probability at most δ”. This means that, for every message m, every message
m′ 6= m, and every difference ∆, a uniform random r has H(r,m)⊕H(r,m′) = ∆
with probability at most δ.

6.2 Field Representation. We represent an element of F2s as a sequence
of s bits. If we construct F2s as F2t [x]/φ then we recursively represent the ele-
ment c0 + c1x+ · · ·+ ct/s−1x

t/s−1 as the concatenation of the representations of
c0, c1, . . . , ct/s−1. At the bottom of the recursion, we represent an element of F2

as 1 bit in the usual way. See Sections 2 and 3.6 for the definition of φ for F22 ,
F24 , F28 , and F2256 .

16 Daniel J. Bernstein and Tung Chou

As mentioned in Section 4.3, we do not use the polynomial basis 1, x, . . . , x31

for F2256 inputs. Here we define the representation for them. Let y(bk−1bk−2···b0)2 =∏k−1
i=0 (ψi(x))bi , where ψ(x) follows the definition in Section 4.3. Then each F2256

input c0y0 + c1y1 + · · ·+ c31y31 is defined as the concatenation of the represen-
tations of c0, c1, . . . , c31. One can verify that y0, y1, . . . , y31 is the desired basis
by writing down the equation between f(x) and f (00000)(x), f (00001)(x), . . . ,
f (111111)(x) as in Section 3.3.

If s ≥ 8 then we also represent an element of F2s as a sequence of s/8 bytes, i.e.,
s/8 elements of {0, 1, . . . , 255}. The 8-bit sequence b0, b1, . . . , b7 is represented
as the byte b =

∑
i 2ibi.

6.3 Hash256 Padding and Conversion. Hash256 views messages as elements
of K0 ∪K2 ∪K4 ∪ · · · , i.e., even-length strings of elements of K, where K is the
finite field F2256 . It is safe to use a single key with messages of different lengths.

In real applications, messages are strings of bytes, so strings of bytes need
to be encoded invertibly as strings of elements of K. The simplest encoding is
standard “10∗” padding, where a message is padded with a 1 byte and then as
many 0 bytes as necessary to obtain a multiple of 64 bytes. Each 32-byte block
is then viewed as an element of K.

We define a more general encoding parametrized by a positive integer b; the en-
coding of the previous paragraph has b = 1. The message is padded with a 1 byte
and then as many 0 bytes as necessary to obtain a multiple of 64b bytes, say 64bN
bytes. These bytes are split into 2N segmentsM0,M

′
0,M1,M

′
1, . . . ,MN−1,M

′
N−1,

where each segment contains 32b consecutive bytes. Each segment is then trans-
posed into b elements of K: segment Mi is viewed as a column-major bit matrix
with b rows and 256 columns, and row j of this matrix is labeled cbi+j , while
c′bi+j is defined similarly using M ′i . This produces 2bN elements of K, namely
m0,m

′
0,m1,m

′
1,m2,m

′
2, . . . ,mbN−1,m

′
bN−1.

The point of this encoding is to allow a simple bitsliced vectorized imple-
mentation; see Section 5. Our 1.59 cycle/byte implementation uses b = 256. We
have also implemented b = 1, which costs 0.81 cycles/byte extra for transpo-
sition and is compatible with efficient handling of much shorter messages. An
interesting intermediate possibility is to take, e.g., b = 8, eliminating the most
expensive (non-bytewise) transposition steps while still remaining suitable for
authentication of typical network packets.

6.4 Hash256 and Auth256 Keys and Authenticators. The Hash256 key
is a uniform random byte string of the same length as a maximum-length padded
message, representing elements r0, r

′
0, r1, r

′
1, . . . ofK. If the key is actually defined

as, e.g., counter-mode AES output then the maximum length does not need to
be specified in advance: extra key elements can be computed on demand and
cached for subsequent use.

The Hash256 output is (m0 + r0)(m′0 + r′0) + (m1 + r1)(m′1 + r′1) + · · · . This
is an element of K.

The Auth256 key is a Hash256 key together with independent uniform random
elements s1, s2, . . . of K. The Auth256 authenticator of the nth message mn is
Auth256(r,mn)⊕ sn.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 17

References

[1] — (no editor), Information theory workshop, 2006. ITW ’06 Chengdu, IEEE,
2006. See [45].

[2] — (no editor), Design, automation & test in Europe conference & exhibition,
2007. DATE ’07, IEEE, 2007. See [41].

[3] — (no editor), Proceedings of the 6th WSEAS world congress: applied computing
conference (ACC 2013), WSEAS, 2013. See [21].

[4] Daniel J. Bernstein, Fast multiplication (2000). URL: http://cr.yp.to/talks.
html#2000.08.14. Citations in this document: §1.3.

[5] Daniel J. Bernstein, The Poly1305-AES message-authentication code, in FSE 2005
[25] (2005), 32–49. URL: http://cr.yp.to/papers.html#poly1305. Citations in
this document: §1.1.

[6] Daniel J. Bernstein, Polynomial evaluation and message authentication (2007).
URL: http://cr.yp.to/papers.html#pema. Citations in this document: §4.2,
§4.2.

[7] Daniel J. Bernstein, Fast multiplication and its applications, in [17] (2008),
325–384. URL: http://cr.yp.to/papers.html#multapps. Citations in this doc-
ument: §4.2.

[8] Daniel J. Bernstein, Batch binary Edwards, in Crypto 2009 [27] (2009), 317–336.
URL: http://cr.yp.to/papers.html#bbe. Citations in this document: §1.3.

[9] Daniel J. Bernstein, Minimum number of bit operations for multiplication (2009).
URL: http://binary.cr.yp.to/m.html. Citations in this document: §1.3, §1.3,
§2.2, §1, §1.

[10] Daniel J. Bernstein, Optimizing linear maps modulo 2, in Workshop Record of
SPEED-CC: Software Performance Enhancement for Encryption and Decryp-
tion and Cryptographic Compilers (2009), 3–18. URL: http://cr.yp.to/papers.
html#linearmod2. Citations in this document: §2.3.

[11] Daniel J. Bernstein, Tung Chou, Peter Schwabe, McBits: fast constant-time code-
based cryptography, in CHES 2013 [12] (2013), 250–272. Citations in this docu-
ment: §1.3, §1.3, §3.

[12] Guido Bertoni, Jean-Sébastien Coron (editors), Cryptographic hardware and em-
bedded systems—CHES 2013—15th international workshop, Santa Barbara, CA,
USA, August 20–23, 2013, proceedings, Lecture Notes in Computer Science, 8086,
Springer, 2013. ISBN 978-3-642-40348-4. See [11].

[13] Eli Biham (editor), Fast software encryption ’97, Lecture Notes in Computer
Science, 1267, Springer, 1997. ISBN 3-540-63247-6. See [29].

[14] Eli Biham, Amr M. Youssef (editors), Selected areas in cryptography, 13th inter-
national workshop, SAC 2006, Montreal, Canada, August 17–18, 2006, revised
selected papers, Lecture Notes in Computer Science, 4356, Springer, 2007. ISBN
978–3–540–74461–0. See [36].

[15] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, Phillip Rogaway, UMAC:
fast and secure message authentication, in Crypto 1999 [49] (1999), 216–233.
URL: http://www.cs.ucdavis.edu/~rogaway/umac/. Citations in this docu-
ment: §1.1, §4.2.

[16] Martin Boesgaard, Ove Scavenius, Thomas Pedersen, Thomas Christensen, Erik
Zenner, Badger—a fast and provably secure MAC, in [32] (2005), 176–191. Cita-
tions in this document: §4.2.

[17] Joe P. Buhler, Peter Stevenhagen (editors), Surveys in algorithmic number theory,
Mathematical Sciences Research Institute Publications, 44, Cambridge University
Press, New York, 2008. See [7].

http://cr.yp.to/talks.html#2000.08.14
http://cr.yp.to/talks.html#2000.08.14
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#multapps
http://cr.yp.to/papers.html#bbe
http://binary.cr.yp.to/m.html
http://cr.yp.to/papers.html#linearmod2
http://cr.yp.to/papers.html#linearmod2
http://www.cs.ucdavis.edu/~rogaway/umac/

18 Daniel J. Bernstein and Tung Chou

[18] Nam Su Chang, Chang Han Kim, Young-Ho Park, Jongin Lim, A non-redundant
and efficient architecture for Karatsuba-Ofman algorithm, in [50] (2005), 288–299.
Citations in this document: §1.3.

[19] Circuit Minimization Team, Multiplication circuit for GF(256) with irreducible
polynomial X8 + X4 + X3 + X + 1 (2010). URL: http://cs-www.cs.yale.edu/
homes/peralta/CircuitStuff/slp_84310.txt. Citations in this document: §2.2.

[20] Christophe Clavier, Kris Gaj (editors), Cryptographic hardware and embed-
ded systems—CHES 2009, 11th international workshop, Lausanne, Switzerland,
September 6–9, 2009, proceedings, Lecture Notes in Computer Science, 5747,
Springer, 2009. ISBN 978-3-642-04137-2. See [35].

[21] Davide D’Angella, Chiara Valentina Schiavo, Andrea Visconti, Tight upper
bounds for polynomial multiplication, in [3] (2013). URL: http://www.wseas.us/
e-library/conferences/2013/Nanjing/ACCIS/ACCIS-03.pdf. Citations in this
document: §1.3, §1, §1.

[22] Andrew M. “Floodyberry”, Optimized implementations of Poly1305, a fast
message-authentication-code (2014). URL: https://github.com/floodyberry/

poly1305-opt. Citations in this document: §1.1.
[23] Agner Fog, Instruction tables (2014). URL: http://www.agner.org/optimize/

instruction_tables.pdf. Citations in this document: §1.4.
[24] Shuhong Gao, Todd Mateer, Additive fast Fourier transforms over finite fields,

IEEE Transactions on Information Theory 56 (2010), 6265–6272. URL: http://
www.math.clemson.edu/~sgao/pub.html. Citations in this document: §3.

[25] Henri Gilbert, Helena Handschuh (editors), Fast software encryption: 12th in-
ternational workshop, FSE 2005, Paris, France, February 21–23, 2005, revised
selected papers, Lecture Notes in Computer Science, 3557, Springer, 2005. ISBN
3-540-26541-4. See [5].

[26] Shay Gueron, AES-GCM software performance on the current high end CPUs
as a performance baseline for CAESAR (2013). URL: http://2013.diac.cr.yp.
to/slides/gueron.pdf. Citations in this document: §1.4.

[27] Shai Halevi (editor), Advances in cryptology—CRYPTO 2009, 29th annual inter-
national cryptology conference, Santa Barbara, CA, USA, August 16–20, 2009,
proceedings, Lecture Notes in Computer Science, 5677, Springer, 2009. See [8].

[28] Shai Halevi, Invertible universal hashing and the TET encryption mode, in Crypto
2007 [39] (2007), 412–429. URL: http://eprint.iacr.org/2007/014. Citations
in this document: §4.1.

[29] Shai Halevi, Hugo Krawczyk, MMH: software message authentication in the
Gbit/second rates, in FSE 1997 [13] (1997), 172–189. URL: http://www.

research.ibm.com/people/s/shaih/pubs/mmh.html. Citations in this docu-
ment: §4.2, §4.2.

[30] Helena Handschuh, Bart Preneel, Key-recovery attacks on universal hash function
based MAC algorithms, in [46] (2008), 144–161. Citations in this document: §4.1.

[31] José Luis Imaña, Román Hermida, Francisco Tirado, Low-complexity bit-parallel
multipliers based on a class of irreducible pentanomials, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 14 (2006), 1388–1393. Citations in
this document: §2.2.

[32] John Ioannidis, Angelos D. Keromytis, Moti Yung, Applied cryptography and net-
work security, third international conference, ACNS 2005, New York, NY, USA,
June 7-10, 2005, proceedings, Lecture Notes in Computer Science, 3531, 2005.
ISBN 3-540-26223-7. See [16].

http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/slp_84310.txt
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/slp_84310.txt
http://www.wseas.us/e-library/conferences/2013/Nanjing/ACCIS/ACCIS-03.pdf
http://www.wseas.us/e-library/conferences/2013/Nanjing/ACCIS/ACCIS-03.pdf
https://github.com/floodyberry/poly1305-opt
https://github.com/floodyberry/poly1305-opt
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.math.clemson.edu/~sgao/pub.html
http://www.math.clemson.edu/~sgao/pub.html
http://2013.diac.cr.yp.to/slides/gueron.pdf
http://2013.diac.cr.yp.to/slides/gueron.pdf
http://eprint.iacr.org/2007/014
http://www.research.ibm.com/people/s/shaih/pubs/mmh.html
http://www.research.ibm.com/people/s/shaih/pubs/mmh.html

Faster Binary-Field Multiplication and Faster Binary-Field MACs 19

[33] Tetsu Iwata, Keisuke Ohashi, Kazuhiko Minematsu, Breaking and repairing GCM
security proofs, in Crypto 2012 [44] (2012), 31–49. URL: http://eprint.iacr.
org/2012/438. Citations in this document: §4.

[34] Antoine Joux (editor), Fast software encryption—18th international workshop,
FSE 2011, Lyngby, Denmark, February 13–16, 2011, revised selected papers, Lec-
ture Notes in Computer Science, 6733, Springer, 2011. ISBN 978-3-642-21701-2.
See [37].

[35] Emilia Käsper, Peter Schwabe, Faster and timing-attack resistant AES-GCM, in
CHES 2009 [20] (2009), 1–17. URL: http://eprint.iacr.org/2009/129. Cita-
tions in this document: §1, §1.1, §1.4.

[36] Ted Krovetz, Message authentication on 64-bit architectures, in SAC 2006 [14]
(2007), 327–341. Citations in this document: §1.1, §4.2.

[37] Ted Krovetz, Philip Rogaway, The software performance of authenticated-
encryption modes, in FSE 2011 [34] (2011), 306–327. URL: http://www.cs.

ucdavis.edu/~rogaway/papers/ae.pdf. Citations in this document: §1.4.
[38] Will Landecker, Thomas Shrimpton, R. Seth Terashima, Tweakable blockciphers

with beyond birthday-bound security, in Crypto 2012 [44] (2012), 14–30. Citations
in this document: §4.1.

[39] Alfred Menezes (editor), Advances in cryptology—CRYPTO 2007, 27th annual in-
ternational cryptology conference, Santa Barbara, CA, USA, August 19–23, 2007,
proceedings, Lecture Notes in Computer Science, 4622, Springer, 2007. ISBN 978-
3-540-74142-8. See [28].

[40] Christof Paar, Optimized arithmetic for Reed–Solomon encoders (1997). URL:
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/19/

cnst.ps. Citations in this document: §2.3.
[41] Steffen Peter, Peter Langendörfer, An efficient polynomial multiplier in GF(2m)

and its application to ECC designs, in DATE 2007 [2] (2007). URL: http://

ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=

4211979&count=305&index=229. Citations in this document: §1.3.
[42] Francisco Rodŕıguez-Henŕıquez, Çetin Kaya Koç, On fully parallel Karatsuba mul-

tipliers for GF(2m), in [43] (2003), 405–410. Citations in this document: §1.3.
[43] S. Sahni (editor), Proceedings of the international conference on computer science

and technology, Acta Press, 2003. See [42].
[44] Reihaneh Safavi-Naini, Ran Canetti (editors), Advances in cryptology—CRYPTO

2012—32nd annual cryptology conference, Santa Barbara, CA, USA, August 19–
23, 2012, proceedings, Lecture Notes in Computer Science, 7417, Springer, 2012.
ISBN 978-3-642-32008-8. See [33], [38].

[45] Joachim von zur Gathen, Jamshid Shokrollahi, Fast arithmetic for polynomials
over F2 in hardware, in ITW 2006 [1] (2006), 107–111. Citations in this document:
§1.3.

[46] David Wagner (editor), Advances in cryptology—CRYPTO 2008, 28th annual in-
ternational cryptology conference, Santa Barbara, CA, USA, August 17–21, 2008,
proceedings, Lecture Notes in Computer Science, 5157, Springer, 2008. ISBN 978-
3-540-85173-8. See [30].

[47] Mark N. Wegman, J. Lawrence Carter, New hash functions and their use in
authentication and set equality, Journal of Computer and System Sciences 22
(1981), 265–279. ISSN 0022-0000. MR 82i:68017. Citations in this document: §4.

[48] André Weimerskirch, Christof Paar, Generalizations of the Karatsuba algorithm
for efficient implementations (2006). URL: http://eprint.iacr.org/2006/224.
Citations in this document: §1.3.

http://eprint.iacr.org/2012/438
http://eprint.iacr.org/2012/438
http://eprint.iacr.org/2009/129
http://www.cs.ucdavis.edu/~rogaway/papers/ae.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/ae.pdf
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/19/cnst.ps
http://www.emsec.rub.de/media/crypto/veroeffentlichungen/2011/01/19/cnst.ps
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4211749&arnumber=4211979&count=305&index=229
http://eprint.iacr.org/2006/224

20 Daniel J. Bernstein and Tung Chou

[49] Michael Wiener (editor), Advances in cryptology—CRYPTO ’99, Lecture Notes in
Computer Science, 1666, Springer, 1999. ISBN 3-5540-66347-9. MR 2000h:94003.
See [15].

[50] Jianying Zhou, Javier Lopez, Robert H. Deng, Feng Bao (editors), Information
security, 8th international conference, ISC 2005, Singapore, September 20–23,
2005, proceedings, Lecture Notes in Computer Science, 3650, Springer, 2005. ISBN
3-540-29001-X. See [18].

A Security Proof

This appendix proves that Hash256 has differential probability smaller than
2−255. This is not exactly the same as the proofs for the pseudo-dot-product
portions of UMAC and VMAC: UMAC and VMAC specify fixed lengths for
their pseudo dot products, whereas we allow variable lengths.

Theorem 1. Let K be a finite field. Let `, `′, k be nonnegative integers with ` ≤ k
and `′ ≤ k. Let m1,m2, . . . ,m2`−1,m2` be elements of K. Let m′1,m

′
2, . . . ,m

′
2`′−1,

m′2`′ be elements of K. Assume that (m1,m2, . . . ,m2`) 6= (m′1,m
′
2, . . . ,m

′
2`′). Let

∆ be an element of K. Let r1, r2, . . . , r2k be independent uniform random ele-
ments of k. Let p be the probability that h = h′ +∆, where

h = (m1 + r1)(m2 + r2) + (m3 + r3)(m4 + r4) + · · ·
+ (m2`−1 + r2`−1)(m2` + r2`),

h′ = (m′1 + r1)(m′2 + r2) + (m′3 + r3)(m′4 + r4) + · · ·
+ (m′2`′−1 + r2`′−1)(m′2`′ + r2`′).

Then p < 2/#K. If ` = `′ then p ≤ 1/#K, and if ` 6= `′ then p < 1/#K +

1/#K|`−`
′|.

Proof. Case 1: ` = `′. Then h = h′ +∆ if and only if

r1(m2 −m′2) + r2(m1 −m′1) + r3(m4 −m′4) + r4(m3 −m′3) + · · ·
= ∆+m′1m

′
2 −m1m2 +m′3m

′
4 −m3m4 + · · · .

This is a linear equation in r1, r2, . . . , r2k. This linear equation is nontrivial:
by hypothesis (m1,m2, . . . ,m2`) 6= (m′1,m

′
2, . . . ,m

′
2`′), so there must be some i

for which mi −m′i 6= 0. Consequently there are most #K2k−1 solutions to the
equation out of the #K2k possibilities for r; i.e., p ≤ 1/#K as claimed.

Case 2: ` < `′ and (m1, . . . ,m`) 6= (m′1, . . . ,m
′
`). Define

f = (m′2`+1 + r2`+1)(m2`+2 + r2`+2) + · · ·+ (m′2`′−1 + r2`′−1)(m′2`′ + r2`′).

Then h = h′ +∆ if and only if

r1(m2 −m′2) + r2(m1 −m′1) + r3(m4 −m′4) + r4(m3 −m′3) + · · ·
+ r2`−1(m2` −m′2`) + r2`(m2`−1 −m′2`−1)

= f +∆+m′1m
′
2 −m1m2 +m′3m

′
4 −m3m4 + · · ·+m′2`−1m

′
2` −m2`−1m2`.

Faster Binary-Field Multiplication and Faster Binary-Field MACs 21

This is a linear equation in r1, . . . , r2`, since f is independent of r1, . . . , r2`.
For each choice of (r2`+1, r2`+2, . . . , r2k), there are at most #K2`−1 choices of
(r1, . . . , r2`) satisfying this linear equation. Consequently p ≤ 1/#K as above.

Case 3: ` < `′ and (m1, . . . ,m`) = (m′1, . . . ,m
′
`). Then h = h′ + ∆ if and

only if 0 = f + ∆, where f is defined as above. This is a linear equation in
r2`+2, r2`+4, . . . , r2`′ for each choice of r2`+1, r2`+3, . . . , r2`′−1. The linear equa-
tion is nontrivial except when r2`+1 = −m′2`+1, r2`+3 = −m′2`+3, and so on

through r2`′−1 = −m′2`′−1. The linear equation thus has at most #K`′−`−1 so-

lutions (r2`+2, r2`+4, . . . , r2`′) for #K`′−`−1 choices of (r2`+1, r2`+3, . . . , r2`′−1),
plus at most #K`′−` solutions (r2`+2, r2`+4, . . . , r2`′) for 1 exceptional choice
of (r2`+1, r2`+3, . . . , r2`′−1), for a total of #K2`′−2`−1 −#K`′−`−1 + #K`′−` <
#K2`′−2`(1/#K + 1/#K`′−`) solutions. Consequently p < 1/#K + 1/#K`′−`

as claimed.
Case 4: `′ < `. Exchanging `,m with `′,m′ produces Case 2 or Case 3.

