
Resizable Tree-Based Oblivious RAM

Tarik Moataz1,∗,§, Travis Mayberry2,§, and Erik-Oliver Blass2

1 Dept. of Computer Science, Colorado State University, Fort Collins, CO
and IMT, Telecom Bretagne, France

tmoataz@cs.colostate.edu
2 College of Computer and Information Science, Northeastern University, Boston, MA

{travism|blass}@ccs.neu.edu

Abstract. Although newly proposed, tree-based Oblivious RAM schemes are
drastically more efficient than older techniques, they come with a significant
drawback: an inherent dependence on a fixed-size database. This capability
is vital for real-world use of Oblivious RAM since one of its most promising
deployment scenarios is for cloud storage, where scalability and elasticity are
crucial. We revisit the original construction by Shi et al. [16] and propose
several ways to support both increasing and decreasing the ORAM’s size with
sublinear communication. We show that increasing capacity can be accom-
plished by adding leaf nodes to the tree, but that it must be done carefully in
order to preserve the probabilistic integrity of the data structures. We also pro-
vide new, tighter bounds for the size of interior and leaf nodes in the scheme,
saving bandwidth and storage over previous constructions. Finally, we define
an oblivious pruning technique for removing leaf nodes and decreasing the size
of the tree. We show that this pruning method is both secure and efficient.

1 Introduction

Oblivious RAM has been a perennial research topic since it was first introduced by
Goldreich [6]. ORAM allows for an access pattern to an adversarially controlled RAM
to be effectively obfuscated. Conceptually, a client’s data is stored in an encrypted and
shuffled form in the ORAM, such that accessing pieces of data will not produce any
recognizable pattern to an adversary which observes these accesses. Being a powerful
cryptographic primitive, many additional uses besides storage can be envisioned
for ORAM, such as an aid for homomorphic circuit evaluation, secure multi-party
computation, and privacy-preserving data outsourcing. Given the advent of cloud
computing and storage, and all their potential for abuse and violation of privacy,
ORAM schemes are important for the real-world today.

A crucial aspect of ORAM schemes is their implied overhead. In today’s cloud
settings, the choice to use the cloud is chiefly motivated by cost savings. If the over-
head is enough that it negates any monetary advantages the cloud can offer, the use

∗Work done while at Northeastern University.
§Both authors are first authors.

of ORAM will be impractical. Previous ORAM schemes have had a common, major
drawback that has hindered real-world use: due to eventually necessary “reshuffling”
operations, their worst-case communication complexity was linear in the size of the
ORAM. Recent works on ORAM, e.g., by Shi et al. [16], Stefanov et al. [17], and
many derivatives, have proposed new ORAM schemes that are tree-based and have
only poly-logarithmic worst-case communication complexity.

However, new tree-based approaches have exposed another barrier to the real-world
adoption of ORAMs: the maximum size of the data structure must be determined
during initialization, and it cannot be changed. This is not an issue in previous linear
schemes, because the client always had the option of picking a new size during the
“reshuffling”, being effectively a “reinitialization” of the ORAM. In tree-based ORAMS,
though, a reinitialization ruins the sublinear worst-case communication complexity.

Resizability is a vital property of any ORAM to be used for cloud storage. One
of the selling points of cloud services is elasticity, the ability to start with a particular
footprint and seamlessly scale resources up or down to match demand. Imagine a
startup company that wants to securely store their information in the cloud using
ORAM. At launch, they might have only a handful of users, but they expect sometime
in the long-term to increase to 10,000. With current solutions, they would have to
either pay for the 10,000 users worth of storage starting on day one, even though
most of it would be empty, or pay for the communication to repeatedly reinitialize
their database with new sizes as they become more popular. Reinitializing the ORAM
would negate any benefit from the new worst-case constructions. Additionally, one can
imagine a company that is seasonal in nature (e.g. a tax accounting service) and would
like the ability to downsize their storage during off-peak times of the year to save costs.

Consequently, the problem of resizing these new tree-based ORAMs is important
for practical adoption in real-world settings. In light of that, we study several techniques
for both increasing and decreasing the size of recent tree-based ORAMs to reduce both
communication and storage complexity. We focus on constant client memory ORAM
(the Shi et al. [16] ORAM), and are able to show that, although the resizing techniques
themselves are intuitive, careful analysis is required to ensure security and integrity of
ORAMs. In addition, we show that it is nontrivial to both allow for sublinear resizing
and maintain the constant client memory property of Shi et al. [16] ORAM.

Our contributions in this paper are as follows:

1. Three strategies for increasing the size of tree-based ORAMs, along with a rigor-
ous analysis showing the impact on communication and storage complexity and
security.

2. A method for pruning the trees to decrease the size of a tree-based ORAM,
again including rigorous analysis showing that security and integrity of the data
structures is preserved.

3. A new, tighter analysis for the Shi et al. [16] ORAM which allows for smaller
storage requirements and less communication per query than previous work.

2 Building Blocks

We will briefly revisit the constant-client memory tree-based ORAM of Shi et al.
[16], focusing on the relevant details which are necessary to understand our resizing
techniques.

2.1 Preliminaries

Recall that an Oblivious RAM is a cryptographic data structure which stores blocks of
data in such a way that a client’s pattern of accesses to those blocks is hidden from the
party which holds them. ORAMs offer block reads and writes. That is, they provide
Read(a) and Write(d,a) operations, where a is the address of a block, and d notes
some data. Let N be the total number of blocks the ORAM can store. Each ORAM
block is uniquely addressable by a∈{0,1}logN , and the size of each block is ` bits.

Data in the ORAM [16] is stored as a binary tree with N leaves. Each node in the
tree represents a smaller ORAM bucket [7] which holds k (encrypted) blocks. When
clear from the context, we will use the terms node and bucket interchangeably. Each
leaf in the tree is uniquely identified by a tag t∈{0,1}logN . With P(t), we denote
the path which starts at the root of the tree and ends at the leaf node tagged t.

Blocks in the ORAM are associated with leaves in the tree. The association between
blocks and their addresses is a lookup table with size equal to N ·logN . This table is
called the position map, and in order to maintain efficiency it is recursively stored in se-
ries of smaller ORAMs [16]. The central invariant of tree-based ORAMs is that a block
tagged with tag t will always be found in a bucket somewhere on the path P(t). Blocks
will enter the tree at the root and propagate toward the leaves depending on their tag.

2.2 Tree-based Construction

Shi et al. [16]’s ORAM implements Read and Write operations by applying, first, a
ReadAndRemove(a) operation, followed by anAdd(d,a). The idea is thatReadAndRemove(a)
will first fetch the tag t from the position map, thereby determining the path P(t) in
the ORAM tree on which that block exists. The client will download all logN nodes
in P(t), and decrypt all blocks. For each block a′ 6=a on path P(t), the client will
upload back to the server a re-encrypted version of that block. For block a, the client
will upload an encrypted dummy block, which is a special value signifying that the
block is empty. The client does this in a bucket-by-bucket, block-by-block decrypt
and encrypt manner, to keep client memory constant in N . As long as the encryption
is secure, the server will not learn which block the client was interested because all he
will see is fresh encryptions replacing every block in the path. For the Add operation,

the client uniformly at random chooses a new tag t
$←{0,N−1} that associates block

a to a new leaf, encrypts d and inserts the resulting ciphertext block into the root.
After every access an eviction is performed to percolate blocks towards the leaves,

freeing up space for new blocks to enter at the root. The eviction is a random process
that chooses, in every level, ν buckets and evacuates randomly one real element to
the corresponding child (as determined by its tag). To stay oblivious, the eviction
accesses both child buckets in turn, modifying only the appropriate one. Again, this
is done in a step-by-step manner to keep client memory constant.

3 Resizable ORAM

3.1 Technical Challenges

The challenge behind resizing tree-based ORAMs is threefold:

1. Increasing the size of the tree will have an impact on the bucket size. A leaf node
may become an interior node while increasing the ORAM, and vice versa in
the decreasing case. In [16], the analysis done in the original paper differentiates
between the interior and the leaf node, while for resizing we will a general analysis
that considers both cases at once.

2. For n>N elements, we must determine the most effective strategy of increasing
the number of nodes that enables the best storage usage and communication for
the client.

3. Reducing the size of the tree is non-trivial, especially when hoping to perform
it with low communication complexity and constant client memory. Careful
consideration must be taken to ensure that elements can be moved from the
pruned nodes into other buckets in an oblivious way which also maintains overflow
probabilities and can be done efficiently.

3.2 Resizing Operations

Besides having Read and Write operations, we introduce two new basic operations
that represents the mechanisms by which a client can resize an ORAM, namely, Alloc
and Free:

– Alloc: Increase the size of the ORAM so that it can hold one additional element
of size `.

– Free: Decrease the size of the ORAM so that it holds one fewer elements.

3.3 Security Definition

Resizing an ORAM should not leak any information besides the maximum number
of elements. Thus, resizable ORAM has to verify the obliviousness requirement taking
into account the resizing operations.

Definition 31 Let −→y ={(op1,d1,a1),(op2,d2,a2),...,(opM ,dM ,aM)} be a sequence of
M operations (opi,di,ai), where opi denotes a Read, Write, Alloc or Free operation,
ai equals the address of the block if opi∈{Add,ReadAndRemove} and di the data to
be written if opi=Add.

Let A(−→y) be the access pattern induced by sequence −→y . We say that resizable
ORAM is secure iff, for any PPT adversary D and any two same-length sequences
−→y and −→z with Alloc and Free at the same positions such that ∀i∈ [M] verifying
−→y (i)=Alloc,−→z (i)=Alloc (the same applies for Free),

|Pr[D(A(−→y))=1]−Pr[D(A(−→z))=1]|≤ε(λ),

where λ is a security parameter, and ε(λ) a negligible function in λ.

For sake of completeness, considering buckets in resizable ORAM as trivial ORAMs
[7], all blocks are IND-CPA encrypted. Also, whenever a block is accessed by any
type of operation, its bucket is re-encrypted.

4 Adding

We begin by describing a “naive” solution that will add a new level of leaves when
n>N . This leads to a problem, however: when n is only slightly larger than N , we are
using twice as much storage as we should need. The second strategy, “lazy expansion”,
will postpone creation of an entire new level until we have enough elements to need
it. However, in both the naive and second solution, there are thresholds which cause
huge jumps in storage space. This can be counterintuitive for users, so we propose
a third solution dubbed “dynamic expansion”. This strategy progressively adds leaf
nodes to gradually increase capacity of the tree. This case is interesting because it
results in an unbalanced tree, which requires careful analysis to ensure that the overall
failure probability of the ORAM does not exceed the parameterized threshold.

4.1 Tightening the bounds

Since communication and storage complexities represent the core comparative factor
between strategies, and both are dependent primarily on the bounds we can establish
for sizes of the buckets, it is important to get a tight analysis for both interior and
leaf buckets in each situation. The bounds given in [16] are substantially larger than
necessary, as has been shown in other work [5]. Therefore, as a first contribution, we
give new, tighter bounds for these interior and leaf nodes.

Interior Nodes We will first tackle the size of the interior nodes, which is governed
by a queuing theory analysis. Let Ii denote the random variable for the size of interior
nodes of the ith level of the tree. For eviction rate ν, we can compute the probability of
a bucket on levels i> logν having a load of at least k (i.e. the bucket has overflown) to:

Pr(Ii≥k)=ν−k. (1)

In [16], the eviction rate was chosen to be equal to 2 with an overflow proba-
bility equal to 2−k. However, if we adjust the bucket size to be k

log(ν) , the overflow

probability is still 2−k, namely: Pr(Ii≥ k
log(ν))=2−k.

This follows from Eq. 1 by replacing k by k
log(ν) . Also, we can investigate the opti-

mal value for the eviction rate ν in terms of communication cost. For ν=4, we obtain
the same overflow probability as with ν=2 with buckets of half the size. The communi-
cation complexity does not change, as we are evicting twice as much, but with buckets
of half the size. For larger eviction rate ν>4 the communication complexity becomes
larger. Note that this also reduces the storage by a factor of 2. For N elements stored
in the ORAM, the probability that an interior node overflows can be computed to:

Pr(∃i∈ [ν ·logN] : Ii≥
k

log(ν)
) = 1−Pr(∀i∈ [ν ·logN] : Ii<

k

log(ν)
) (2)

= 1−
ν·logN∏
i=1

(1−Pr(Ii≥
k

log(ν)
)) (3)

= 1−(1−2−k)ν·logN .

In particular for ν=4, which is the optimal choice of the eviction rate:

Pr(∃i∈ [4·logN] : Ii≥
k

2
)=1−(1−2−k)4·logN

The buckets that can overflow during an access are limited to those in the paths
accessed during the eviction, i.e., ν ·logN buckets accessed. Also, the number of buckets
taken into account is actually ν ·logN instead of 2ν ·logN . This follows from the fact
that for every parent, we write only one real element to one child. Consequently, per
eviction, per level, only one child can overflow. For the Eq. 3, an equality still holds
since the buckets can be considered independent in the steady state[11].

Given a security parameter λ, to compute the size of interior buckets we solve

the equation 2−λ=1−(1−2−k)ν·logN to k=−log(1−(1−2−λ)
1

ν·logN).
For example, to have an overflow probability equal to: 2−64, λ=64, N=230, ν=4,

the bucket size needs only to be 36, while in [16] the bucket size has to be equal to
72 to achieve 2−64 overflow probability. Moreover, since N , the number of elements
in the ORAM, has a logarithmic effect on the overflow probability, the size of interior
nodes will not change for large fluctuations of the number of elements N . For example,
for N=280, the interior node still has size 36 with overflow probability 2−64.

Leaf Nodes Let Bi denote the random variable describing the size of the ith leaf
node. Thinking of a leaf node as a bin, a standard balls and bins game argument
provides us the following upper bound:

Pr(Bi≥k)≤
(
N

k

)
· 1

Nk
≤ e

k

kk
.

The second inequality follows from an upper bound of the binomial coefficient
using Stirling’s approximation. For N leaves, we have:

Pr(∃i∈ [N] : Bi≥k) = Pr(

N⋃
i=1

Bi≥k)

≤
N∑
i=1

Pr(Bi≥k) (4)

≤ N

ek·(ln(k)−1)
.

Note that in Eq. 4, we have used the union bound inequality. Based on the same
parameters as in the previous example, the size of the leaf node has to be set only to 28
to have an overflow probability equal to 2−64. To compute this result, one should solve

the equation: k=eW(log2λ·N
e)+1, where W(.) is the product log function. While the

size of the interior node can be considered constant for large fluctuations of N , the size
of the leaf node should be carefully chosen depending on N . Every time the number of
elements increases by a multiplicative factor of 25, based on the overflow upper bound,
we have to increase the size of the leaf node by 1 to keep the same overflow probability.

Note that for both interior and leaf node size computations, we do not take into
account the number of operations (accesses) performed by the client. As related work,
the number of operations is typically considered as part of security parameter λ. The
larger the number of operations performed, the larger the security parameter has to be.

4.2 1st Strategy: naive expansion

Let N and n respectively denote the number of leaf nodes and elements in the ORAM.
The naive solution is simply adding a new leaf level, as soon as the condition n>N
occurs. The main drawback of this first naive solution is the waste of storage which
can be explained from two different perspectives. The first storage waste consists
on creating, in average, more leaf nodes then elements in the ORAM. The second
storage waste in the under-usage of the leaf nodes while they can hold more elements
with a slight size increase. Our second strategy will try to get rid of this drawback.

4.3 2nd Strategy: lazy expansion

This technique consists of creating a new tree level when the number of elements
added is equal to α times the number of leaf nodes in the ORAM. For N leaves
ORAM, the client is allowed to store up to α·N new elements without increasing
the size of the ORAM. If n>α·N, the client asks the server to create a new level
of leaves with 2·N leaf nodes.

This lazy increase strategy is performed recursively. For example, if the size of the
ORAM tree is now equal to 2N, then the client will work with the same structure
as long as α·N<n≤α·2N. Once n>α·2N, a new level of leaves containing now
4N leaf buckets is created. To be able to store more elements, we should increase
the leaf bucket size, so we can keep the same overflow probability. There is a balance
to consider between increasing the size of the leaf node and the communication
complexity of the ORAM. To read or write an element in the ORAM, the client
downloads the path starting from the root to the leaf node. If the size of this path
(when increasing the size of the bucket) is larger than a normal ORAM tree with
the same number of elements, then this technique would not be worth applying.

Gentry et al. [5] showed that by increasing the leaf node size from k to α+k,
we can reduce the storage overhead while handling more elements than leaf nodes.
For N leaf nodes, we can have up to α·N elements. While in [5] α has been chosen
to optimize the storage cost for a given overflow probability, we target instead the
computation of the value α for the optimal communication complexity. Note that in

our subsequent analysis, the bounds for interior and leaf nodes computed in Section
4.1 will be used.

We are first interested on finding a relation between the size of the leaf bucket
x and the factor α for our 2nd strategy. Then, we compute the optimal value of α as
a function of the security parameter λ, the size of the interior nodes and the current
number of leaves. For calculating the overflow, we focus on the worst case which
occurs when there are α·N elements in a structure that has N leaves.

Lemma 41 Let us denote by x the optimal size bucket for the 2nd strategy. Then,
we can show that:

α=
x

e
·(2−λ

N
)

1
x , (5)

where λ is the security parameter and N the number of leaf nodes.

Proof. By analogy to the balls and bins game, we are in a scenario where we insert
uniformly at random α ·N balls into N bins. The ith bin overflows if there are x
balls from α·N that went to the same ith bin. The possible number of combinations
equals

(
α·N
x

)
. By applying the upper bound inequality to the probability of the union

of events (possible combinations) we obtain:

Pr(Bi≥x) ≤
(
α·N
x

)
· 1

Nx

≤ (
e·α·N
x

)x· 1

Nx

= (
e·α
x

)x

By union bound over all the leaf nodes:

Pr(∃i∈ [N] : Bi≥x)≤N ·(e·α
x

)x.

In order to have the same overflow probability equal to 2−λ, we should verify that:

N ·(e·αx)x=2−λ which is equivalent to: α= x
e ·(

2−λ

N)
1
x . ut

Corollary 41 Let z denote the size of the interior node. The best communication
complexity for the 2nd strategy is acquired iff the leaf bucket size x is equal to:

x=

z
ln2+

√
z−4·z·log2−λ

N

2

Proof. First, note that if N leaf nodes can handle α·N elements, the tree is flatter
compared to the naive solution where the tree will have height logN instead of logα·N .
However the downside of the 2nd strategy consists on the leaf bucket size increase. In
order to take the maximal advantage of this height reduction, we should define the
optimal leaf buck size, x, that can have the best communication complexity compared
to the naive solution. Let us denote by C1 and C2 respectively the communication
complexity needed to download one path for the first and second strategy. For an

interior node with a size z and a leaf bucket for the naive strategy with size y, the
communication complexities C1 and C2 equal:

C1=(logα·N−1)·z+y and C2=(logN−1)·z+x.

The best value of x for a fixed value of y, z and λ is the maximum value of the
function f defined as follows:

f(x)=C1−C2=y−x+z·logα.

The first derivative of f is equal to: df
dx(x)=x2− z

ln(2) ·x+z ·log 2−λ

N , this quadratic

equation has only one valid solution for non-negative leaf buckets size and 2λ>>N .

The only valid root for the first derivative is: x=
z

ln2+

√
z−4·z·log 2−λ

N

2 . ut

Once we have computed the optimal leaf node size, we can plug the result into
Eq. 5 to compute the optimal value α. For example, for N=230 leaves, the size of
the leaf bucket in the naive strategy is y=28, the size of the interior node z=36.
Applying the result of the Corollary 41 outputs the size of the leaf bucket for an
optimal communication complexity which is equal to x≈85. Applying the result of
Lemma 41, we obtain that α≈15. The communication complexity saving compared
to the naive strategy is around 7% while the storage savings is 87%.

One disadvantage of the 2nd strategy is the possibility of memory underutilization.
Imagine the client has α·N elements in the ORAM, when adding a new element it
will trigger the creation of a new leaf level, which is a waste of storage. For example,
the client can have α·N+1 elements in his ORAM structure, then performs a loop
which respectively adds and deletes two elements. This loop will imply the allocation
of an unused large amount of memory (in O(N)). Also, this loop implies leaf node
pruning which is more expensive (in term of communication complexity) compared
to leaf increasing (see section 5).

4.4 3rd strategy: dynamic expansion

The dynamic solution tackles the underutilization of memory described in the previous
section. Instead of adding entire new levels to the tree, we will progressively add pairs
of leaf nodes to gradually increase the capacity of the tree. This has the advantage of
matching a user’s expectation: every time capacity is increased, storage requirements
increase proportionally. Unlike previous techniques, we are no longer guaranteed to
have a full binary tree, which means that we must calculate the overflow probabilities
of two different levels of leaf nodes.

Let us assume that we start with a full binary tree containing N=2l leaf nodes.
Dynamic insertion results on the creation of two different level of leaves. The first
one belongs to the lth level while the other one to the (l+1)th level. In general, after
adding η·α elements, the number of leaves in the lth level is equal to N−η while the
number of leaves in the (l+1)th level is equal to 2η.

At this point, we must consider how to tag new elements that are added to the
tree. If we choose a uniform distribution over all the leaves, which is in this case

equal to 1
N+η , an adversary will be able to distinguish with non-negligible advantage

between two elements respectively added before and after increasing the number of
leaf nodes in the ORAM, because the assignment probabilities will be substantially
different at varying points in the tree’s lifecycle.

A direct and efficient solution to this security issue will be to keep the probability
assignment of leaf nodes equally likely for any subtrees with common root. We can
satisfy this constraint by setting the leaves’ assignment probability in the lth level
to 1

2l
while leaves in the (l+1)th level to 1

2l+1 . In the following, we are interested

in studying the size of the leaf bucket with an overflow probability equal to 2−λ.
We study the general case where we add η<N leaf nodes to the ORAM where N
denotes the initial number of leaves.

Lemma 42 Let Bi denote the random variable describing the size of the ith leaf
node, we show that based on the 3rd strategy we compute:

Pr(∃i∈ [N+η] : Bi≥k)≤ 2N

k+1
·2−k(1

2 ·log(k)−1)

Our proof strategy is similar to what we have done above, but with separate
analysis for the two different levels of leaf nodes. We show that, with a very small
increase in bucket size, we can guarantee the same overflow probability as before and
support this more intuitive dynamic resizing. Refer to the full proof in the appendix B.

4.5 Strategies Comparison

We present a comparison between our three strategies in term of storage complexity
(figure 2), as well as in term of communication complexity per access (figure 1). Our
comparison is done in term of blocks, so we are independent of the choice of the block
size.

For communication complexity, the 2nd solution is the best compared to the others.
This is due to a shorter path because the tree is flatter compared to the naive solution.
Also, compared to the dynamic one, the leaf buckets have smaller size. In term of
storage complexity, there is no clear winner. Depending on the user’s usage strategy,
the dynamic solution can be considered the best since it provides more intuitive and
granular control over storage size. However if the insertion of elements follows a well
defined pattern such that the client is always expanding their capacity by a factor of
α, then, the 2nd strategy will be cheaper. In general, both the 2nd and 3rd strategies
outperform the naive one in term of communication and storage complexities.

5 Pruning

Let us assume that at the beginning the ORAM stores N elements. The client
proceeds to the deletion of η elements from the ORAM structure. Consequently, the
naive ORAM construction now contains N−η elements, but still has N leaves. At this
stage, the client aims to save unnecessary memory costs and free a number of nodes
from the ORAM. By analogy to the previous section that studies the allocation of new

 5000

 10000

 15000

 20000

 25000

 30000

2
10

2
15

2
20

2
25

2
30

N
u

m
b

e
r

o
f

b
lo

c
k
s

Number of elements

Naive
Lazy increase

Dynamic

Fig. 1: Comparison of communication in
blocks per access

0

1

3

5

7

2
10

2
27

2
28

2
29

2
30

N
u
m

b
e
r

o
f
b
lo

c
k
s
 (

in
 1

0
1

0
)

Number of elements

Naive
Lazy increase

Dynamic

Fig. 2: Comparison of storage cost in
blocks

nodes, we will tackle the pruning problem from two perspectives. The first one, a lazy
pruning, that prunes the entire leaves of the deepest level and merge them with the
upper level. The second solution consists on a dynamic pruning which deletes two leaf
nodes for a defined number of elements removed from the ORAM. In the following, we
will study the overflow probability induced by such pruning and its overall complexity.

5.1 Lazy pruning

In Section. 4.3, we have demonstrated that the leaves can store more elements while
slightly increasing their size. We will use this result to construct our algorithm for lazy
pruning. Let us assume that the leaf level contains N leaves for α·N elements stored.
Let us denote by η the number of elements deleted by the client. For sake of clarity,
let us assume that at the beginning, we have η=0 and N leaf nodes. The pruning
technique is very similar to the lazy insertion previously described. Whenever we have
α·N2 <η≤α·N , we keep the same number of leaves. Within this interval, the client
can add or delete elements without applying any change to the structure, as long
as the number of elements does not go beyond the defined interval. If the number
of deletion is now equal to α·N2 , the client proceeds to remove an entire level of leaf
nodes. The client proceeds to read every leaf node, along with its sibling, and merge
them with their common parent. While it seems straightforward, oblivious merging of
siblings into their parent is more complicated under constant-client memory constraint.
We depict this issue in more details in the following section.

Besides, the major disadvantage of such technique is the possibility to have a
pattern that oscillates around the pruning value. For example, the client deletes the
α·N2 elements, he prunes the entire level, then adds a new element back. Now the

ORAM structure has more than α · N2 elements in N
2 leaves, then the client has

to again double the number of leaves. This pattern may be devastating in term of
communication complexity.

5.2 Dynamic pruning

Given that pruning an entire level at once can be very inefficient, we now investigate
how pruning can be done in a more gradual way. For every α elements we delete,

we will prune two children and merge their contents into their parent node. The
pruning will fail if the number of elements in both children and parent is more than k,
which can only occur if there are more than k elements associated (tagged) to these
children. The following lemma states the upper bound of the overflow probability
for the parent node after a merging. Recall that we begin by a full binary tree that
has N leaves and α·N elements. Let us assume that we have already deleted α(η−1)
elements and we are aiming to delete an additional α elements.

Lemma 51 Let us denote by Pη the random variable of the size of the ηth parent
node, we show that based on the dynamic pruning strategy the probability that pruning
will fail is equal to:

Pr(Pη>k)≤(
2e·α
k

)k

Proof. The pruning will fail if and only if there are more than k elements between
the parent and children. Any element in these three buckets must be tagged for either
the left or the right child. In order to compute the overflow probability of the parent,
we must simply compute the probability that more than k elements are tagged to
both children:

Pr(Pη>k) =

(
α·(N−η)

k

)
·(2

N
)k

≤ (
e·α·(N−η)

k
)k ·(2

N
)k

≤ (1− η

N
)k ·(2e·α

k
)k

≤ (
2e·α
k

)k

Complexity of oblivious merging The cost of dynamic pruning boils down to
the cost to obliviously merge three buckets of size k, which are guaranteed to have
in total no greater than k real elements, into a single bucket of size k. With some
care, we can achieve this with only O(k) communication. First, note that we don’t
have to merge all three buckets at once. All that is required is an algorithm which
obliviously merges two buckets, and we can apply it successively to merge three into
one. Since the adversary already knows that the two buckets being merged have no
more than k real elements in them together (as we have shown above, this is true
with high probability for any two buckets), the idea will be to retrieve the elements
from each bucket in a more efficient way that takes advantage of this property.

Using algorithm 1 (see appendix A) the client randomly permutes the order of
the elements in one bucket, subject to the constraint that, for all indices, at most
one of the elements between both buckets is real. That is, the permutation “lines up”
the two buckets so that they can be merged efficiently. Special care must be given
to generate this permutation using only constant memory. The client makes use of
“configuration maps” which simply indicate, for every slot in a bucket, whether that

5

3

2

1

4

5

1

3

2

4

Permute Merge

(1) (2) (3)

Fig. 3: Illustration of permute-and-merge process. Bucket (2) is permuted and then merged
with bucket (1) to create a new, combined bucket (3).

slot is currently full or empty. These maps can be stored encrypted on the server and
take up O(1) space each in terms of blocks (because the buckets contain O(logN)
elements and a single block is at least logN bits). Then they iterate through the
slots in one bucket, randomly pairing them with compatible slots in the other (i.e.
a full slot cannot be lined up with another full slot). An additional twist is that an
empty slot can be lined up with either a full or empty slot in the other bucket, but
not at the expense of “using up” an empty slot that might be needed later since we
cannot match full with full. Therefore, we have to also keep a counter of the difference
between empty slots in the target bucket and full slots in the source bucket.

As seen in figure 3, once the client generates the permutation, they can retrieves
the elements pairwise from both buckets (i.e. slot i from one bucket and the slot
which is mapped to i via the permutation from the other bucket), writing back the
single real one to the merged bucket.

It remains to show that this permutation does not reveal any information to the
adversary. If it was a completely random permutation, it would certainly contain no in-
formation. However, we are choosing from a reduced set: all permutations which cause
the bucket to “line up” with its sibling. Fortunately, we can show that permutation
does not reveal any information beyond what the adversary already knows. This is
because there are no permutations which are inherently “special” and are more likely
to occur, over all possible initial configurations of the bucket. For every permutation
and load of a bucket, there are an equal number of bucket configurations (i.e. which
slots contain real elements and which do not) for which that permutation is valid.

To make this approach work, we need to slightly modify the behavior of the
bucket ORAMs. Previously, when a new element was added to a bucket, it did not
matter which slot it went into in that bucket. It was possible, for instance, that all
the real elements would be kept at the top of the bucket and, when adding a new one,
the client would simply insert that element into the first empty slot that it could find.
However, to use this permutation method we require that the buckets be in a random
“configuration” in terms of which slots are empty and which are filled. Therefore, when
inserting an element, the client should choose randomly amongst the free slots. With
this behavior, applying the above logic leads to the conclusion that the adversary
learns nothing about the load of the bucket from seeing the permutation. Refer to
appendix B for the full proof.

5.3 Privacy analysis

Theorem 51 Resizable ORAM is a secure ORAM following Definition 31, if every
node is a secure trivial ORAM.

Proof (Sketch). Given that ORAM buckets are secure trivial ORAMs, we have to show
that two access patterns induced by two same-length −→y and −→z are indistinguishable.
Compared to the classical ORAM, resizable ORAM includes two new operations,
namely, Alloc and Free. Note that those operations should be in the same positions
for both sequences, otherwise, distinguishing between the access pattern will be
straightforward. Furthermore, we have underlined that for increasing the size of the
ORAM, Alloc operation for 2nd and 3rd strategies, will not induce any leakage. Also,
lazy or dynamic pruning strategies will not leak any information about the load
of the buckets based on the result of the proof in appendix B, i.e., Free operation
is oblivious vis-a-vis the adversary. Finally, knowing on the one hand that these
additional operations do not leak any other information besides the actual number
of elements (or a window that frames the current number of elements for strategies
1 and 2), and on the other hand, the access patterns induced by other operations
in both sequences −→y and −→z are indistinguishable (see the proof in [16]), we can
conclude that resizable ORAM is a secure ORAM following the definition 31. ut

6 Related Work

As far as we know we are the first to investigate the topic of resizing modern,
tree-based ORAMs [4, 5, 13, 16, 17] and tackle all the challenges that can arise
from resizing these ORAMs. Our work especially focuses on tree-based ORAM
constructions [4, 5, 13, 16, 17] for the constant client memory setting.

Oblivious RAM was introduced by Goldreich and Ostrovsky [7]. Much work
[1–10, 12–19] has been published to reduce the communication complexity between
client and storage. Early schemes were able to optimize amortized cost to be poly-
logarithmic, but still maintained linear worst-case cost [8, 15, 18, 19], due to the fact
that they all eventually require an expensive reshuffling. Yet, resizing these types
of ORAM is straightforward. Adjusting the size can be done at the same time as
reshuffling, for no cost. The only leakage in this case will be the information about
the total number of elements stored in the ORAM.

Avoiding the expensive reshuffling, Shi et al. [16] presented the first tree-based
construction that involves partial reshuffling of the ORAM structure for every access.
Thus, the amortized cost equals the worst-case cost with communication complexity
of O(log3N) blocks. An additional advantage of this construction is its constant
client memory requirement (in term of blocks). Constant client memory ORAM
constructions are especially attractive in scenarios with, for example, embedded
devices or otherwise constrained hardware.

Further results show that we can improve communication complexity if poly-
logarithmic client memory is acceptable [4, 5, 17]. Gentry et al. [5] optimize [16]
by introducing a k-ary structure with a new deterministic eviction algorithm. This

results in O(log3N
loglogN) for a branching factor equal to O(logN), but the client must

have O(log2N) client memory available. Inspired by [16], for a client memory equal
to Θ(logN), Stefanov et al. [17] presented Path ORAM, a construction with commu-
nication complexity in O(log2N). A subsequent work by Fletcher et al. [4] reduces
communication complexity by a factor of 2 by reducing the size of the buckets. We
leave the problem of resizing these non-constant memory ORAMs to future work.

7 Conclusion

We have shown in this paper how to dynamically resize constant-client memory
tree-based Oblivious RAM. This allows for use cases where the client does not know
ahead of time exactly how much storage they will need and/or wishes to scale their
storage needs efficiently and cheaply. We have shown that the naive solution of adding
leaf nodes when capacity is exceeded induces a considerable unnecessary overhead.
Moreover, we have shown that the presented advanced strategies, lazy insertion
and dynamic insertion, can save dramatically on communication and storage cost
compared to the naive solution, although neither strategy is clearly superior to the
other. Furthermore, we have demonstrate that the size of a tree-based ORAM can be
decreased efficiently using an oblivious pruning technique. Throughout the paper, we
have rigorously analyzed the overflow probability for each technique and presented
a tight analysis of necessary sizes for both interior and leaf nodes.

Bibliography

[1] Dan Boneh, David Mazìeres, and Raluca Ada Popa. Re-
mote oblivious storage: Making oblivious RAM practical.
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-
2011-018.pdf, March 2011.

[2] Kai-Min Chung and Rafael Pass. A Simple ORAM. IACR Cryptology ePrint
Archive, 2013:243, 2013.

[3] Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly Secure
Oblivious RAM without Random Oracles. In Proceedings of Theory of Cryp-
tography Conference –TCC , pages 144–163, Providence, RI, USA, March 2011.

[4] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil
Stefanov, and Srinivas Devadas. RAW Path ORAM: A Low-Latency, Low-Area
Hardware ORAM Controller with Integrity Verification. IACR Cryptology
ePrint Archive, 2014:431, 2014.

[5] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana
Raykova, and Daniel Wichs. Optimizing ORAM and Using It Efficiently for
Secure Computation. In Proceedings of Privacy Enhancing Technologies, pages
1–18, 2013.

[6] Oded Goldreich. Towards a Theory of Software Protection and Simulation
by Oblivious RAMs. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing –STOC , pages 182–194, New York, NY, USA, 1987.

[7] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious rams. J. ACM , 43(3):431–473, 1996.

[8] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access
of outsourced data via oblivious ram simulation. In Proceedings of Automata,
Languages and Programming –ICALP, pages 576–587, Zurick, Switzerland, 2011.

[9] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. Oblivious ram simulation with efficient worst-case access overhead.
In Proceedings of the 3rd ACM Cloud Computing Security Workshop –CCSW ,
pages 95–100, Chicago, IL, USA, 2011.

[10] Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. Privacy-preserving group data access via stateless oblivious RAM
simulation. In Proceedings of the Symposium on Discrete Algorithms –SODA,
pages 157–167, Kyoto, Japan, 2012.

[11] J Hsu and P Burke. Behavior of tandem buffers with geometric input and marko-
vian output. Communications, IEEE Transactions on, 24(3):358–361, 1976.

[12] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of
hash-based oblivious ram and a new balancing scheme. In Proceedings of the
Symposium on Discrete Algorithms –SODA, pages 143–156, Kyoto, Japan, 2012.

[13] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Path-pir: Lower
worst-case bounds by combining oram and pir. In Proceedings of the Network
and Distributed System Security Symposium, San Diego, CA, USA, 2014.

[14] Rafail Ostrovsky and Victor Shoup. Private information storage (extended
abstract). In Proceedings of the Symposium on Theory of Computing –STOC ,
pages 294–303, El Paso, Texas, USA, 1997.

[15] Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In Advances in
Cryptology – CRYPTO, pages 502–519, Santa Barbara, CA, USA, 2010.

[16] E. Shi, T.-H.H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O(log3(N))
Worst-Case Cost. In Proceedings of Advances in Cryptology – ASIACRYPT ,
pages 197–214, Seoul, South Korea, 2011. ISBN 978-3-642-25384-3.

[17] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In ACM Conference on Computer and Communications
Security, pages 299–310, 2013.

[18] Peter Williams and Radu Sion. Usable pir. In Proceedings of the Network and
Distributed System Security Symposium, San Diego, CA, USA, 2008.

[19] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of
mud: practical access pattern privacy and correctness on untrusted storage. In
ACM Conference on Computer and Communications Security, pages 139–148,
Alexandra, Virginia, USA, 2008.

A Oblivious-Pruning permutation generation

Input: Configuration of buckets A and B
Output: A permutation which randomly “lines up” bucket B to bucket A
// Slots in A and B start either empty or full

// We progressively mark slots

in A as ‘‘assigned’’ when a block from B is assigned to it in π
x← number of empty slots in A ;
y← number of full slots in B ;
d←x−y ;
for i from 1 to k do

if B[i] is full then

z
$← all empty slots in A;

else
if d>0 then

z
$← all non-assigned slots in A;

d←d−1;
else

z
$← all full slots in A;

end

end
π[i]←z ;
A[z]← assigned ;

end
return π ;

Algorithm 1: GeneratePermutation(A,B)

B Proofs

B.1 Dynamic expansion-proof of lemma

Lemma B1 Let Bi denote the random variable describing the size of the ith leaf
node, we show that based on the 3rd strategy we compute:

Pr(∃i∈ [N+η] : Bi≥k)≤ 2N

k+1
·2−k(1

2 ·log(k)−1)

Proof. After adding η leaf nodes to the structure, the ORAM contains N+η leaves.
The probability that any leaf node has a size larger than k equals:

Pr(∃i∈ [N+η] : Bi≥k) = Pr(

N+η⋃
i=1

Bi≥k)

≤
2η∑
i=1

Pr(Bi≥k)+

N+η∑
i=2η+1

Pr(Bi≥k) (6)

Note that the leaf nodes ranging from 1 to 2η are in the (l+1)th level with an
assignment probability equal to 1

2N while leaves ranging from 2η+1 to N+η belongs
to the upper level and have an assignment probability equal to 1

N . We obtain:

For 1≤i≤2η:

Pr(Bi≥k)≤
(
α·(N+η)

k

)
·(1

2N
)k

For 2η+1≤i≤N+η:

Pr(Bi≥k)≤
(
α·(N+η)

k

)
·(1

N
)k

Note that α·(N+η) is the current number of elements in the ORAM. We plug
both inequalities in Eq. 6:

Pr(∃i∈ [N+η] : Bi≥k) ≤ 2η·
(
α·(N+η)

k

)
·(1

2N
)k+(N−η)·

(
α·(N+η)

k

)
·(1

N
)k

≤ (
2η

2k
+N−η)·(1+

η

N
)k ·(e·α

k
)k.

The bound above is depending on η. Thus, we should find the maximum value
of η<N that maximize the bound, so the resulting upper bound is independent of
η. This leads us to study the behavior of the function g(η)=(2η

2k
+N−η)·(1+ η

N)k.
The function g has a local maximum value for any η s.t. 1 ≤ η ≤ N equal to
ηmax= N

A ·
k−A
A(k+1) where A=1− 1

2k−1 . We replace ηmax in g in order to have an upper

bound for any any η s.t. 1≤η≤N and k≥2:

Pr(∃i∈ [N+n] : Bi≥k) ≤ g(nmax)·(e·α
k

)k

≤ N ·A+1

k+1
·(k(A+1)

A(k+1)
)k ·(e·α

k
)k

≤ 2N

k+1
·(2e·α

k
)k,

because for k≥2 we have (k(A+1)
A(k+1))

k≤2k and A+1
k+1 ≤

2
k+1 . ut

B.2 Oblivious permute-and-merge

Lemma B2 Given two buckets with maximum size k and load m and n respectively,
over the random configurations of those buckets, algorithm 1 will output a uniformly
random permutation which is independent of m and n.

Proof. We can determine the probability of a particular permutation π being chosen,
given m and n, with a counting argument. It will be equal to:

of configurations for which π is a valid permutation

total # of configurations ×# of valid permutations for a given configuration
(7)

The number of configurations for which π is a valid permutation depends on
m and n, but not on π itself. This can be seen if you consider that applying the
permutation to a fixed configuration of the bucket simply creates another, equally
likely configuration. The number of configurations for the sibling bucket that will
“match” with that bucket are exactly the same no matter what the actual configuration
of the first bucket is. Knowing this, combined with the fact that the probabilities must
sum to one, tells us immediately that every permutation is equally likely. However,
we can continue and express the total quantity for our first expression as(

k

m

)(
k−m
n

)
(8)

This can be thought of as choosing the m full slots for one bucket freely and then
choosing the n full slots in the second bucket to line up with the free slots in the
already chosen first bucket. The number of valid permutations per configuration can
equally be determined via a counting argument as(

k−m
n

)
·(k−n)!·n! (9)

That is, choosing free slots for the n elements in the second bucket and then all
permutations of those elements times the permutations of the free blocks. That gives
us a final expression for the probability of choosing permutation π of(

k
m

)(
k−m
n

)(
k
m

)(
k
n

)(
k−m
n

)
·(k−n)!·n!

(10)

With some algebraic computations, we can show that the Eq. 10 can be sim-
plified to 1

k! . That is, this shows that the number of permutations, for any random
distribution of load in a bucket, is independent of the current load. Again, since this
does not depend on π (but only on the size of the bucket), every permutation must
be equally likely over the random configurations of the buckets. ut

Corollary B1 A permutation π chosen by the algorithm 1 gives no information
about the load of the buckets being merged.

Proof. By our above lemma, independent of the load each permutation is chosen
uniformly over the configurations of the two buckets. Therefore the permutation
cannot reveal any information about the load ut

