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Abstract. The Learning with Errors (LWE) problem has gained a lot of attention in recent years leading to
a series of new cryptographic applications. Specifically, it states that it is hard to distinguish random linear
equations disguised by some small error from truly random ones. Interestingly, cryptographic primitives
based on LWE often do not exploit the full potential of the error term beside of its importance for security.
To this end, we introduce a novel LWE-close assumption, namely Augmented Learning with Errors (A-
LWE), which allows to hide auxiliary data injected into the error term by a technique that we call message
embedding. In particular, it enables existing cryptosystems to strongly increase the message throughput per
ciphertext. We show that A-LWE is for certain instantiations at least as hard as the LWE problem. This
inherently leads to new cryptographic constructions providing high data load encryption and customized
security properties as required, for instance, in economic environments such as stock markets resp. for
financial transactions. The security of those constructions basically stems from the hardness to solve the
A-LWE problem.
As an application we introduce (among others) the first lattice-based replayable chosen-ciphertext secure
encryption scheme from A-LWE.
Keywords: Lattice-Based Cryptography, Encryption Scheme, Lattice-Based Assumptions

1 Introduction

Lattice-based cryptography constitutes arguably one of the most promising alternatives to classical
cryptography. This observation is supported by various arguments such as the conjectured resistance
against quantum attacks. Moreover, lattice-based cryptography is equipped with a rich combinatorial
structure providing provable-security guarantees [Ajt96, Reg04, MR04], while carrying out low com-
plexity operations and thus allowing for efficient constructions. The security of such cryptosystems
is mainly based on the hardness of either solving the Small Integer Solution (SIS) problem or the
Learning With Errors (LWE) problems. The former is widely employed for building provably secure
primitives from Minicrypt, such as collision-resistant hash functions [LMPR08,ADL+08] and signature
schemes [GPV08,MP12,DDLL13,GLP12, Lyu12], while the latter mainly serves as a hard underlying
problem for the security of primitives from Cryptomania, such as key exchange [KV09,JD12,Pei14] and
oblivious transfer [PVW08]. Remarkably, both problems are strongly related as SIS is considered to be
the dual problem of LWE.

The LWE problem exists essentially in two variants, the decision and search version. Following this,
the challenger is given poly(n) number of independent samples (Ai,b

>
i ) ∈ Zn×mq × Zmq , where Ai ←R

Zn×mq , ei ←R χ and b>i = s>Ai + e>i mod q for s ∈ Znq where χ is some arbitrary distribution over
Zmq , typically discrete Gaussian. He is then asked to distinguish those samples from uniformly random
samples from Zn×mq ×Zmq . In search-LWE, however, the challenger is required to find the secret s. Besides
its presumably quantum hardness, one of the most noteworthy properties lattice-based assumptions offer
is worst-case hardness of average-case instances. Starting with the works of Ajtai [Ajt96] and Micciancio
and Regev [MR04], the hardness of some average-case instances of the SIS problem was shown to be
hard as long as worst-case instances of the (decision version of the) shortest vector problem, known as



GapSVP, are hard. The worst-case hardness for LWE was first stated by Regev [Reg05]. Regev showed
that if the error vector follows the discrete Gaussian distribution DZm,αq with parameter αq ≥ 2

√
n,

solving search-LWE is at least as hard as quantumly solving Õ(n/α)-SIVP and GapSVP in n-dimensional
worst-case lattices. Later, Peikert [Pei09] and Brakerski et al. [BLP+13] gave a classical reduction from
GapSVP to LWE. In [DMQ13] Döttling and Müller-Quade proved the hardness of LWE for uniformly
distributed errors. Subsequently, Micciancio and Peikert [MP13] show that LWE remains hard even for
binary errors.

In the realm of encryption, the first provably secure lattice-based encryption scheme was due to
Ajtai and Dwork [AD97]. The security of this scheme relies on the worst-case hardness of approximating
SVP within polynomial factors. Several other works followed with focus on improving the efficiency
[GGH97,Reg04]. Ever since the breakthrough work of Regev [Reg05], the learning with errors assumption
and its ring variant are widely used in lattice-based cryptography to base the security of cryptographic
schemes upon LWE. Indeed, since then lattice-based cryptography emerged and novel encryption schemes
have been built upon this assumption, such as fully homomorphic encryption [Gen09, BV11a, GH11,
Bra12, BGV12] and identity-based encryption [GPV08, CHKP10, ABB10a, ABB10b] besides of CPA-
secure [Reg05,PVW08,LPR10,LP11,LPR13] and CCA-secure encryption schemes [PW08,Pei09,MP12,
Pei14]. Many of those encryption schemes utilize LWE in order to blind certain sensitive data.

Cryptographic constructions which rely on the LWE assumption usually sample an error term ac-
cording to some distribution, most often Gaussian. Such a choice has many advantages over other
distributions. However, many of the existing LWE-based schemes do not exploit the full potential of the
error term. This observation is mainly due to three reasons, which can be summarized using the example
of encryption schemes.

– First, previous LWE-based encryption schemes produce ciphertexts mainly following the idea of one-
time pad encryption, where LWE samples play the role of random vectors. As a consequence, the
underlying constructions heavily rely on the error term to be short in order to correctly recover the
message. A major drawback of such schemes is the waste of bandwidth, i.e., all bits created for the
error term are sacrificed for a few message bits.

– Second, there exist no proposals using the error term or other involved random variables as additional
containers carrying auxiliary data, besides of its task to provide the required distributions. Once
recognizing its feasibility, it fundamentally changes the way of building cryptosystems. For instance,
in encryption schemes one may inject the message into the error term without necessarily changing
the target distributions.

– Third, there is a lack of efficient trapdoor functions that recover the secret and the error term from
an LWE instance, which is obviously a necessary condition for exploiting the error term. Only a few
works such as [SSTX09,MP12] provide mechanisms to recover the error term.1 The most promising
trapdoor construction is proposed by Micciancio and Peikert [MP12].

We make the following conclusions. The above limitations of LWE intuitively ask for an alternative LWE
definition that takes account for the modifications made to the error term, while ensuring essentially
the same hardness results as the traditional LWE problem. Since such an assumption already encom-
passes message data within the error term, one obtains, as a consequence, a generic and practically new
encryption scheme secure under the new variant of the LWE assumption, where the trapdoor function
is viewed as a black box recovering the secret and the error vector from a modified LWE instance. The
message is subsequently extracted from the error vector. This allows one to exploit the full bandwidth
of the error vector with full access to all its entries and not just its length. Remarkably, one could even
combine this approach with existing methods for encryption in order to further increase the message
throughput per ciphertext.
1 We show in Appendix 4.5 that the symmetric-key somewhat-homomorphic encryption scheme from [BV11b] can be
modified such that one also obtains the error term (in addition to the plaintext) when decrypting.



In this work we address this challenge and give a detailed description of how to exploit the error
vector.

Our Contribution. Based on these observations and subsequently made conclusions, we start by giv-
ing an alternative LWE definition, called Augmented LWE (A-LWE), that extends the existing one by
modifying the error term in such a way that it encapsulates additional information. We further show
which instantiations yield A-LWE samples that are indistinguishable from traditional LWE samples,
thereby enjoying the hardness of traditional LWE. In conjunction with the high quality trapdoor candi-
date from [MP12], we have full access to the error term. This result inherently yields new cryptographic
applications, which ensure security in various models while simultaneously allowing for high data load
encryption that are applicable, for instance, in financial environments such as stock markets operating
with huge amounts of stock information. It is even possible to encrypt lattice-based signatures much
more efficiently than ordinary messages, which is an interesting technique for internet protocols, where
the acknowledgement of ip-packets represents an important measure for reliability. In this case, the whole
entropy of the error term is supplied by lattice-based signatures.

For instance, this strategy allows us to derive a generic encryption scheme, where ciphertexts are rep-
resented by plain A-LWE samples. Besides of its evident security properties, that can directly be deduced
from A-LWE, our construction benefits from encrypting more message bits per ciphertext and a faster de-
cryption engine through a conceptually easier instantiation as compared to other proposals. Furthermore,
we give a detailed description of how to achieve publicly-detectable replayable CCA (pd-RCCA) secu-
rity [CKN03], a slightly relaxed version of CCA2, but strictly stronger than CCA1. In fact, we propose
the first lattice-based RCCA-secure encryption scheme. Due to the versatility of the error term, this func-
tionality does not involve ciphertext expansion. As a third application, it is possible to replace parts of
the error term by signatures that are generated according to the best known and widely used lattice-based
signature schemes. Specifically, we focus on the GPV signature scheme [GPV08] in combination with
the trapdoor construction [MP12] and the practical signature schemes presented in [DDLL13, Lyu12],
and thus realize an asymmetric authenticated encryption scheme. As a nice byproduct, one can imme-
diately transfer the proposed concepts to the CCA-secure construction provided in [MP12]. This allows
us to increase the message throughput per ciphertext, while enjoying RCCA-security at almost no costs.
Noteworthy, all the proposed concepts are also applicable to specific constructions such as the somewhat
homomorphic symmetric key encryption scheme due to [BV11b], which does not rely on the trapdoor
construction from [MP12].

1.1 Augmented Learning with Errors

In many lattice-based cryptographic schemes, one has to sample error terms following the discrete Gaus-
sian distribution as a requirement for the scheme to be secure. This is often due to an LWE-based security
reduction. The key concept underlying our proposal is to embed further information in the error term
e ∈ Zm, but in such a way that the distribution of the augmented error term is computationally close
to the discrete Gaussian distribution over Zm. We also show that one can embed messages in uniformly
distributed error vectors using the same methodology.

The idea of our technique is the following. We employ the gadget matrix G = I⊗g>, firstly introduced
in [MP12], with g> = (1, 2, . . . , 2k−1) and modulus q = 2k in order to sample vectors according to the
discrete Gaussian distribution DΛ⊥v (G),r. Vectors e ∈ Zmq distributed according to DΛ⊥v (G),r satisfy the

equation Ge ≡ v mod q for arbitrary v ∈ Zm/kq . Let H : {0, 1}∗ → {0, 1}m be some function and
(encode, decode) a pair of algorithms which allow one to switch between the representations Zm/kq and
{0, 1}m. We compute a random coset v = encode(H(seed)⊕m) ∈ Zm/k, where m ∈ {0, 1}m denotes an
arbitrary message of bit length m. We show that if H is instantiated by a cryptographic hash function
modeled as a random oracle, v is indeed indistinguishable from uniform. We only have to take care that



the input to the function H, namely the seed, has sufficient (computational) min-entropy. Whoever has
access to this seed can deterministically recover the message by m = decode(Ge mod q)⊕H(seed). This
result immediately impacts all schemes that allow for error term recovery, as it enhances the compactness
of the scheme.

Embedding auxiliary private information into the error term raises certain new computational prob-
lems. In addition to the secret and error vector of an LWE instance, also the new embedded message
is concealed. In fact, we claim that LWE samples modified as above are indistinguishable from uniform
even for adversarially chosen messages. To this end, we introduce a novel problem, namely the Aug-
mented LWE (A-LWE) problem, which differs from the traditional LWE problem only in the way the
error term is produced. More specifically, we split the error term e ∈ Zmq of LWE into e = (e1, e2),
where e1 ∈ Zm1

q and e2 ∈ Zm2
q . An A-LWE sample is then distributed as follows. For a given s ∈ Znq ,

first choose A ←R Zn×mq uniformly at random. Then, sample e1 ←R DZm1 ,αq and e2 ←R DΛ⊥v (G),αq,
where v = encode(H(s, e1) ⊕m) for some function H. The tuple (A,bt = s>A + e>) represents an
A-LWE sample. We show that distinguishing A-LWE samples from traditional LWE samples is hard
for properly chosen random function H. More formally, if H is a cryptographic hash function modeled
as a random oracle, the tuple (s, e1) has sufficient entropy in each sample and the LWE problem for
parameters m,n, α, q is hard to solve, then we obtain a negligible computational distance between LWE
and A-LWE distributions. Thus, we immediately deduce the hardness of A-LWE from LWE. As an
immediate consequence, the confidentiality of the message is protected as long as decision A-LWE and
hence decision LWE is hard.

Based on the A-LWE hardness, we present a novel and generic encryption scheme, where ciphertexts
are embodied by plain A-LWE samples. One merely employs an arbitrary suitable trapdoor construction
for the function gA(s, e) = s>A + e> that allows for error term recovery. Hence, the efficiency of
encryption and decryption greatly depends on the quality of the trapdoor and the inversion algorithm.
The currently most efficient candidate function is known from Micciancio and Peikert [MP12]. Note that
while some encryption schemes like [SSTX09,MP12] utilize such a trapdoor function, the error term
is left unpacked. To the best of our knowledge, we provide the first lattice-based encryption schemes
exploiting the error term as an (additional) data container in addition to its necessity for security.

1.2 Applications

CCA-Secure Encryption. Based on the A-LWE hardness, we build a conceptually new and very simple
CCA1 secure encryption scheme. In previous lattice-based encryption schemes such as [PW08,ABB10a,
MP12,LP11], ciphertexts are computed in a one-time pad manner by adding the message to a random
vector coming from the LWE distribution. Thus, an adversary succeeds in the respective security game,
if she is able to distinguish LWE samples from random ones with non-negligible advantage. Our scheme,
however, moves apart from this approach and focuses on the error term recovery of A-LWE samples
and subsequently decoding the error term. By this means, the ciphertext represents an A-LWE instance
in its purest form. This implies a direct security reduction of the scheme to A-LWE. Employing the
framework proposed in [MP12], we construct a random public key A that is endowed with a trapdoor.
In conjunction with the corresponding inversion algorithm, we can efficiently recover the secret and the
error term from the ciphertext c> = s>A + e> with e←R DΛ⊥v (G),αq for v = encode(H(s)⊕m).2 Due
to αq ≥ 2

√
n ≥ ηε(Λ

⊥
q (G)), we even do not impose any further restrictions to the parameters. Such a

construction is almost optimal, since we do not initiate any further transformations.
The bit size of the message is equal to the dimension of the ciphertext m resulting in a small message

expansion factor, which is lower than most of the existing schemes. In fact, due to this relationship there
is an incentive to increase the parameterm in order to efficiently encrypt large amounts of data involving
2 We show that if matrix A is fixed and for each sample vector s is uniformly sampled from Znq , the entropy of s is
sufficient and one can sample the entire error term from DΛ⊥v (G),αq.



m = c · nk, CCA1 CCA1 CCA1 CPA
k = log q [MP12] Constr. 4.1 Constr. 4.6 [LP11]
Ciphertext size m · k m · k m · k m · k
Signature size nk c log(αq)nk (c log(αq) + 1)nk cnk − n
Message size nk c · nk (c+ 1) · nk cnk − n
Message Expansion c · k k k − k

(c+1)
k + k

ck−1

Error rate α Õ(1/n) Õ(1/n) Õ(1/n) Õ(1/n)

public key size n ·m n ·m n ·m n · (m− 2n)
Table 1. Comparison of key figures among CCA1-secure encryption schemes

less computations per ciphertext as compared to lower dimensions. We considered this case and can even
show that decryption is essentially as fast as in lower dimensions. In particular, we provide an enhanced
encryption scheme for high data load, where parts of the ciphertext and thus the error term are ignored
when inverting the underlying A-LWE instance. That is, one extends any public key Au = [ Ā | ĀR−
h(u)Gnk ] ∈ Zn×m with trapdoor [ R> I ]> ∈ Znk×m to Aext

u = [ A′ | Ā | ĀR−h(u)Gnk ] ∈ Zn×(m′+m)

with trapdoor [ 0 R> I ]> ∈ Znk×(m′+m). When inverting a ciphertext c = (c1, c2) ∈ Zm′+m – that is,
an A-LWE instance – only the lower part of the ciphertext c2 is required to recover s and e. This idea
does not seem to carry over to the construction of [MP12]. In fact, their message are fixed to nk bits
and extending the public key as above cannot be applied to their scheme.

Nonetheless, we show that message embedding can enhance the CCA-secure scheme in [MP12] yield-
ing a decrease of the message expansion factor. Put it differently, with message embedding one could
choose smaller parameters for the scheme in [MP12] when encrypting the same message length. In terms
of security the original proof in [MP12] gets through without any major modifications. Table 1 gives an
overview of parameters and the corresponding sizes for various lattice-based encryption schemes where
we, for simplicity, fix the ciphertext size. Note here that c ∈ Q≥2, and consequently the message through-
put in our scheme is at least twice as the one from [MP12]. Here αq denotes the parameter of the discrete
Gaussian distribution used to sample the error vector. By this we can even embed c log(αq)nk bits of a
signature into the error term, which is due to the equally distributed signatures and error vectors. We
mainly focus on the most efficient ones including the CPA-secure encryption scheme from [LP11], which
is still superior due to its remarkable performance. Due to space reasons Table 1 does not include the
less efficient schemes from [PW08,Pei09,ABB10a], which are characterized by large public keys or small
LWE error-rates beside of high message expansion factors. For instance, in [PW08] the LWE error rate
α = Õ(1/n4) is quite small (yielding to an easier LWE instance) with public keys of size Õ(n2) bits.
In [Pei09], Peikert improved the LWE error rate to α = Õ(1/n) but with the cost of an increased public
key of size Õ(n3). The CCA-secure encryption scheme [ABB10a] provides a trade-off of the previous
proposals with an LWE error rate of Õ(1/n2) and public key size of Õ(n2) bits.

Replayable Chosen-Ciphertext Secure Encryption. The notion of replayable CCA-security, which con-
stitutes a relaxed version of CCA2-security, was firstly introduced by Canetti et al. [CKN03] and
addresses the ability of an adversary to replay ciphertexts that decrypt to the same message. An
RCCA-secure encryption scheme detects modifications carried out on the ciphertext that alter the
message. Valid encryptions of the same ciphertexts, however, are allowed. Canetti et al. have shown
that RCCA is sufficient for most practical applications. There exist a series of RCCA-secure encryption
schemes [Gro04,PSNT06,PR07,XF07, LV08]. However, to our knowledge, we are the first realizing an
RCCA-secure encryption scheme based on lattice problems, and hence relying on the worst-case hard-
ness of lattice problems. We show that RCCA security comes essentially through our message embedding
technique with only minor modifications. Our construction resembles GPV signatures generated for the
public matrix G. Just as for standard GPV signatures, it is required to hash all sensible (random) vari-
ables such as the tag u, the secret s and the lower part of the error term e2 containing the message to



v = H(u, s, e2) using a random oracle H. Subsequently, we sample a preimage e1 ← DΛ⊥v (G) that serves
as the upper-part of the error term. Due to the injectivity of the trapdoor function, altering the cipher-
text leads to different values for the corresponding variables such that the decryption routine outputs a
failure. But modifications caused to the upper part of the error term do not result in a failure as long
as short vectors from Λ⊥q (G) are added.

This obviously implies a publicly-detectable RCCA-secure encryption scheme (pd-RCCA), an even
stronger security guarantee than plain RCCA. In fact, we have the relation CCA2 ⇒ pd-RCCA ⇒
secretly-detectable RCCA ⇒ RCCA [CKN03]. Security in the pd-RCCA model implies that a public
party can check whether a modified ciphertext decrypts to the same message.

When it comes to CCA2 security, there exist many generic constructions [DDN00,CHJ+02,HLM03,
BCHK07] that ensure CCA2-security. For instance, one can use strongly unforgeable one-time signature
schemes [DDN00], commitment schemes or message authentication codes (MAC) in order to transform a
CPA-secure scheme into a CCA2-secure one. However, these generic constructions typically involve high
complexity and overhead resulting in a less efficient encryption scheme. Our approach works differently
as it uses the error term in order to provide this feature. Once having RCCA-security one can efficiently
convert the scheme into a CCA2-secure encryption scheme using generic solutions as provided in [CKN03]
or our individual approach at the expense of some small overhead.

Signature Embedding. There exist various approaches to provide message authentication of encrypted
data. Many of them are generic and thus coupled to overhead and loss of efficiency. For instance, one can
use MACs or digital signatures that are appended to the ciphertext. In our work we aim at providing
this feature without suffering from the drawbacks of generic solutions through a thorough analysis of
our encryption scheme.

Our goal is to replace parts of the error vector such as e1 completely by a lattice-based signature
rather than appending it to the ciphertext or including it as a part of the message. This allows us to
optimally exploit the full bandwidth of e1 due to some nice properties lattice-based signature schemes
offer. One of the features is to let signatures be distributed following the discrete Gaussian distribution.
For the underlying signature scheme itself, such a strategy has many advantages over other choices
as it allows to decouple the distribution of the signature from the secret key, while sampling short
signatures with higher probability. There exist many lattice-based proposals that have similar properties
and perform very well in practice [DDLL13,Lyu12,MP12].

Our construction inherently relies on the capability to recover the error term from an A-LWE instance.
As a result, we provide an authentication mechanism for encrypted data, since it is by construction
possible to retrieve back an arbitrary discrete Gaussian vector with support Zm, hence also a signature,
that was plugged into the error term. Therefore, we can embed signatures of sizem·log(αq) = O(m log n)
bits into the error vector, which is far more (see Table 1) than with the standard encryption schemes
that are restricted to the message size. Here, we denote by αq the parameter of the discrete Gaussian
vector of the error term. In fact, our proposal allows for a flexible selection of parameters, because we
do not impose any new constraints. However, the parameters of the signature scheme should not be too
large in order to correctly invert the underlying A-LWE instances.

Remarkably, when using the encryption scheme for high data load with an extended public key Aext
u

the upper part of the error term is ignored when decrypting the ciphertext. This allows us to select
the parameters in such a way that A-LWE (and LWE) is hard for arbitrarily chosen parameters of
the signature scheme. Therefore, one can employ the upper-part of the error term for signatures. The
resulting scheme has a CCA2-like behavior, where changes induced to the ciphertext are detected by the
receiver. These ideas immediately help to improve the construction provided in [MP12]. In particular,
we can apply the proposed techniques to the error term without changing the other ingredients. More
specifically, we still build the ciphertext in a one-time pad manner, while simultaneously endowing the
error vector with additional messages. The proof of security will subsequently be based on A-LWE rather
than plain LWE.



Embedding Auxiliary Data in Homomorphic Encryption. As already noticed, we improve the CCA1-
secure encryption scheme from [MP12], if we apply the proposed concepts from above to the error
term. As a result, we have the first message being encrypted following the one-time pad approach and a
second message injected into the error-term. However, this encryption scheme heavily relies on a trapdoor
construction. But we stress that it is also possible to improve other more specific constructions that do not
require trapdoors as such. For instance, if we consider the somewhat homomorphic encryption scheme due
to Brakerski and Vaikuntanathan [BV11b], we can apply essentially the same ideas without any major
modifications. Indeed, it is a symmetric key encryption scheme, where a ciphertext (c1 = a, c2 = b+m)
is derived by adding a ring-LWE samples b = as + te ∈ Rq = Z[X]/ 〈f(X)〉 to an arbitrary message
m ∈ Rt for t coprime to q and freshly sampled c1 = a ∈ Rq and error vector e ∈ Rq. The secret key
is given by the secret ring element s ∈ Rq. After decrypting the ciphertext, we get full access to the
error-term via e = t−1(c2− c1s−m). A quick view to this construction reveals, that the error term can
be recovered very efficiently. Clearly, this positively impacts the performance of the different concepts,
when applied to the error term. More details on this construction can be found in Appendix 4.5.

2 Preliminaries

We recall the CCA1, CCA2, and RCCA security model in Appendix A.

2.1 Notation

By ⊕ we denote the XOR operator. We let [`] denote the set {1, . . . , `} for any ` ∈ N≥1. We indicate
vectors by lower-case bold letters (e.g., x) and use upper-case bold letters for matrices (e.g., A). The set
of integers modulo q are denoted by Zq and reals by R. Throughout this paper we will mainly consider
the case q = 2k, k > N. If X is a set, we write x←R X to denote that x is sampled uniformly from X .
If X is a distribution, x←R X means that x was sampled according to X .

Let X = {Xn}n∈N and Y = {Yn}n∈N be two distribution ensembles. We say X and Y are (com-
putationally) indistinguishable, if for every polynomial time distinguisher A we have |Pr[A(X ) =
1] − Pr[A(Y) = 1]| = negl(n), and we write X ≈c Y (resp. X ≈s Y if we allow A to be unbounded).
The statistical distance of two distributions X1 and X2 denoted by ∆(X1,X2) over a countable set S is
defined by ∆(X1,X2) := 1

2

∑
s∈S |X1(s)−X2(s)|.

We define by ρ : Rn → (0, 1] the n-dimensional Gaussian function ρs,c(x) = e−π·
‖x−c‖22
s2 , ∀x, c ∈ Rn .

The discrete Gaussian distribution DΛ+c,s is defined to have support Λ+ c, where c ∈ R and Λ ⊂ Rn is
a lattice. For x ∈ Λ+ c, it basically assigns the probability DΛ+c,s(x) = ρs(x)/ρs(Λ+ c) .

Lemma 1. Let X1 be a distribution that is indistinguishable from X2 and M is an efficient non-uniform
PPT operation. Then, M(X1) is indistinguishable from M(X2).

The min-entropy of a random variable X is H∞(X) = − log maxx Pr[X = x], and measures how well X
can be predicted by the best (unbounded) algorithm.

2.2 Lattices

A lattice is an additive subgroup of Rn. For a basis B = {b1, . . . ,bn} ⊂ Rn consisting of n linearly
independent vectors, we define by Λ the n-dimensional lattice generated by the basis B where

Λ = L(B) = {B · c =
n∑
i=0

bi · ci : c ∈ Zn} .

We recall two related families of lattices that are come into use in many works. Therefore, let A ∈ Zn×mq

be a full-rank matrix, where n denotes the natural security parameter. The m-dimensional lattice Λ⊥(A)



consists of all vectors orthogonal to the parity-check matrix A, i.e., Λ⊥(A) = {e ∈ Zm | Ae = 0 mod q}.
Any partition Λ⊥v (A) = {e ∈ Zm | Ae = v mod q} for v ∈ Znq represents a shift of the lattice Λ⊥(A) to
x +Λ⊥(A) for arbitrary x ∈ Zm such that Ax = v mod q. The second lattice Λ(A) is generated by the
rows of A:

Λ(A) = {y ∈ Zm | y = A>z mod q for some z ∈ Zn} .

Definition 1. For any n-dimensional lattice Λ and positive real ε > 0, the smoothing parameter ηε(Λ)
is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε

Lemma 2. ( [MR04, Lemma 4.4]). Let Λ be any n-dimensional lattice. Then for any ε ∈ (0, 1),
s ≥ ηε(Λ), and c ∈ Rn, we have

ρs,c(Λ) ∈ [
1− ε
1 + ε

, 1] · ρs(Λ) .

Furthermore, we require the following corollary in order to sample a Gaussian over Λ that is close to
being uniformly-distributed modulo a sublattice Λ′ in case s ≥ ηε(Λ′) is satisfied.

Corollary 1. ( [GPV08, Corollary 2.8]). Let Λ,Λ′ be n-dimensional lattices, with Λ′ ⊆ Λ . Then
for any ε ∈ (0, 1/2), any s ≥ ηε(Λ′), and c ∈ Rn, the distribution of (DΛ,s,c mod Λ′) is within statistical
distance at most 2ε of uniform over (Λ mod Λ′) .

Lemma 3. ( [GPV08, Theorem 3.1]). Let Λ ⊂ Rn be a lattice with basis B, and let ε > 0 . We have

ηε(Λ) ≤‖ B̃ ‖ ·
√

ln(2n(1 + 1/ε))/π .

Specifically, we have ηε(Λ) ≤ b ·
√

ln(2n(1 + 1/ε))/π for basis B = b · I of Λ .

Lemma 4. ( [GPV08, Lemma 5.2]) Assume the columns of A ∈ Zn×mq generate Znq , and let ε ∈
(0, 1/2) and s ≥ ηε(Λ

⊥(A)) and e ∼ DZm,s, the distribution of the syndrome u = Ae mod q is within
statistical distance 2ε of uniform over Znq .

Below we define the LWE distribution. For our purposes, we only focus on the error sampled by the
discrete Gaussian distribution. One can easily define LWE with respect to any error distribution.

Definition 2 (LWE Distribution). Let n,m, q be integers and χe be distribution over Z. For s ∈ Znq ,
define the LWE distribution LLWE

n,m,αq to be the distribution over Zn×mq × Zmq obtained such that one first
draws A←R Zn×mq uniformly, e←R DZm,αq and returns (A,b>) ∈ Zn×mq × Zmq with b> = s>A + e>.

Definition 3 (Learning with Error (LWE)). Let (A,b) be a sample from LLWE
n,m,αq and c be uniformly

sampled from Zmq .

The Decision Learning with Error (decision LWEn,m,αq) problem asks to distinguish between (A,b>) and
(A, c>) for a uniformly sampled secret s←R Znq .

The Search Learning with Error (search LWEn,m,αq) problem asks to output the vector s ∈ Znq given LWE
sample (A,b) for a uniformly sampled secret s←R Znq .

We say decision LWEn,m,αq (resp. search LWEn,m,αq) is hard if all polynomial time algorithm solves
decision LWEn,m,αq (resp. search LWEn,m,αq) only with negligible probability.

Various algorithms for different tasks such as sampling from Λ⊥(G) or inverting LWE instances are
found in Appendix B.



3 Learning with Errors Augmented with Auxiliary Data

In this section, we show how one can augment further useful information in the error vectors of LWE
samples without necessarily changing its distribution. We call this technique ”message embedding” and
formulate a modified LWE problem definition, namely the Augmented LWE (A-LWE) problem, where
this technique is applied to LWE. We show that certain instantiations of the A-LWE problem are as
hard as the original LWE problem.

3.1 Message Embedding

We start explaining the core functionality of our work leading to conceptually new cryptographic ap-
plications such as encryption schemes. In particular, we show how to generate vectors that encapsulate
an arbitrary message while simultaneously following the discrete Gaussian distribution DZm,r. This
mechanism can be exploited in cryptographic applications in order to embed further information in
discrete Gaussian vectors. For instance, we can apply this technique to LWE-based encryption schemes
(e.g., [MP12]), that enable the recovery of the error term. As a result we take advantage of an in-
creased message throughput per ciphertext. In Appendix B.3 we provide a short description of how to
embed messages in error vectors that are uniformly distributed rather than from the discrete Gaussian
distribution.

Let the very simple operations encode : {0, 1}m → Zm/kq and decode : Zm/kq → {0, 1}m allow to
bijectively switch between the bit and vector representations. The embedding approach is realized by
use of the gadget G = I ⊗ g>. A first idea of doing this is to sample a preimage x ←R DΛ⊥v (G),r

with v = encode(m) for an arbitrary message m ∈ {0, 1}m such that Gx mod q = encode(m) holds.
Sampling from DΛ⊥v (G),r is performed very efficiently (see Algorithm Sample in Appendix B.1) and can
be reduced to samples from D2Z,r and D2Z+1,r. However, since the target Gaussian distribution of many
cryptographic schemes, such as the LWE encryption schemes, require to have support Zm, we modify the
message to m ⊕ r prior to invoking the preimage sampler for a randomly chosen vector r ←R {0, 1}m.
Below in Lemma 5 we show that given this setup we indeed obtain a sample x that is distributed just as
DZm,r with overwhelming probability. To illustrate this approach exemplary let e ∈ Zm denote the error
term with m ∈ O(nk). We then split the error term e = (e1, e2) ∈ Zm1+m2 into two subvectors, each
serving for a different purpose. The second part e2 is used for message embedding, whereas e1 provides
enough entropy in order to sample a random vector r. To this end, one has to find a proper trade-off for
the choice of m1 and m2, since a too large value for m2 implies low entropy of e1. A reasonable small
lower bound is given by m1 ≥ n, since the discrete Gaussian vector e1 has min-entropy of at least n− 1
bits as per [GPV08, Lemma 2.10].

The message embedding functionality comes at almost no costs. Let k be a factor of m2. One
samples e1 ← DZm1 ,r, computes v = encode(H(e1)) for some random function H : {0, 1}∗ → {0, 1}m2

and finally samples a preimage e2 ←R DΛ⊥v (G),r for the syndrome v = encode(m ⊕ v) (see Algorithm
Sample in Appendix B.1). Following this approach, the message is recovered by computing m = H(e1)⊕
decode(Gm2e2 mod q) where Gm2 = Im2/k⊗g>. In many cryptographic applications there are different
random sources available, which can replace the role of e1 such that e is completely used for message
embedding.

In the following theorems we prove that it is possible to simulate the discrete Gaussian distribution
DZm,r (statistically or computationally) by use of a preimage sampler for any full-rank matrix A. This
allows for embedding messages in the error vectors of LWE without changing noticeably the LWE
distribution. The proofs of these theorems can be found in Appendix D.1. For uniformly distributed
error vectors, for which there exist also worst-case reductions [DMQ13,MP13], we provide a sketch in
Appendix B.3 using essentially the same arguments.

Lemma 5 (statistical). Let A ∈ Zn×mq , k = dlog qe ≥ 1 with m = l ·k be an arbitrary full-rank matrix.
The statistical distance ∆(DZm,r,DΛ⊥v (A),r) for uniform v←R Zlq and r ≥ ηε(Λ⊥(A)) is negligible.



Lemma 6 (computational). Let A ∈ Zn×mq , k = dlog qe ≥ 1 with m = l · k be an arbitrary full-rank
matrix. If the distribution of v ∈ Zlq is computationally indistinguishable from the uniform distribution
over Zlq, then DΛ⊥v (A),r is computationally indistinguishable from DZm,r for r ≥ ηε(Λ⊥(A)).

3.2 Augmented LWE

Based on the message embedding approach as described above, we introduce an alternative LWE def-
inition that extends the previous one in such a way that the error term is featured with additional
information. We show how the modified error still coincides with DZm,r in order to allow a reduction
from LWE to our new assumption. Due to space reasons, we provide the proofs of our theorems in
Appendix D.

We make use of the gadget matrix G = I ⊗ g> constructed as described in Appendix B.1. For
simplicity, assume q = 2k. For general q, the preimage sampling algorithm for Λ⊥(G) is more involved
(see [MP12]).

Definition 4 (Augmented LWE Distribution). Let n,m,m1,m2, k, q be integers with k = log q and
m = m1 + m2, where k | m2. Let H : Znq × Zm1

q → {0, 1}m2 be a function. Let Gm2 = Im2/k ⊗ g> ∈
Zm2/k×m2
q . For s ∈ Znq , define the A-LWE distribution LA-LWE

n,m1,m2,αq(m) with m ∈ {0, 1}m2 to be the dis-
tribution over Zn×mq × Zmq obtained as follows:

– Sample A←R Zn×mq and e1 ←R DZm1 ,αq .

– Set v = encode(H(s, e1)⊕m) ∈ Zm2/k
q .

– Sample e2 ←R DΛ⊥v (G),αq .

– Return (A,b>) where b> = s>A + e> with e = (e1, e2) .

Accordingly, we define the augmented LWE problem(s) as follows. As opposed to the traditional LWE,
augmented LWE blinds, in addition to the secret vector s ∈ Znq , also some (auxiliary) data m ∈ {0, 1}m2 .
Thus, we have an additional assumption that the message m is hard to find given A-LWE samples. Note
that the decision version requires that any polynomial bounded number of samples (A,b>) from the
A-LWE distribution are indistinguishable from uniform random samples in Zn×mq × Zmq . Its hardness
implies that no information about s and m is leaked through A-LWE samples. In some scenarios, e.g.,
in security notions of an encryption scheme, the adversary may even choose the message m. Hence, we
require in the corresponding problems that their hardness holds with respect to A-LWE distributions
with adversarially chosen message(s) m except for the search problem of m.

Definition 5 (Augmented Learning with Errors (A-LWE)).
Let n,m1,m2, k, q be integers with k = log q. Let H be some function.

The Decision Augmented Learning with Errors (decision A-LWEHn,m1,m2,αq) problem asks upon input m ∈
{0, 1}m2 to distinguish in polynomial time (in n) between samples (Ai,b

>
i )←R L

A-LWE
n,m1,m2,αq(m) and

uniform random samples from Zn×mq × Znq for a secret s←R Znq .
The Search-Secret Augmented Learning with Errors (search-s A-LWEHn,m1,m2,αq) problem asks upon input

m ∈ Zm2/k
q to output in polynomial time (in n) the vector s ∈ Znq given polynomially many samples

(Ai,bi)←R L
A-LWE
n,m1,m2,αq(m) for secret s←R Znq .

The Search-Message Augmented Learning with Errors (search-m A-LWEHn,m1,m2,αq) problem asks to output
in polynomial time (in n) the vector m given polynomially many A-LWE samples (Ai,bi) for a secret
s←R Znq and m←R {0, 1}m2.

We say that decision/search-s/search-m A LWEHn,m1,m2,αq is hard if all polynomial time algorithms solve
the decision/search-s/search-m A LWEHn,m1,m2,αq problem only with negligible probability.



Throughout the paper, the functionH will be a cryptographic hash function modeled as a random oracle.
For this reason we simplify the notation and denote by decision/search-s/search-m A LWEn,m1,m2,αq the
ALWE problems where H is specified to be a random oracle in the A-LWE distribution.

In the following, we show that if the function H is instantiated by a random oracle, the hardness of
LWE is reducible to the hardness of A-LWE. To this end, we show that the LWE and A-LWE distribution
are computationally indistinguishable if we assume that the former search problem is hard and the inputs
to function H have sufficient entropy in each sample given previous samples.

Theorem 1. Let λ be the security parameter. Let n,m,m1,m2, k, q be integers where k = dlog qe,
m = m1 + m2. Let H : Znq × Zm1

q → {0, 1}m2 be a hash function modeled as a random oracle. Let
αq ≥ ηε(Λ

⊥
q (G)) for a real ε > 0. Furthermore, denote by χs and χe1 the distributions of the random

vectors s and e1 involved in each A-LWE sample. If search LWEn,m,αq is hard and H∞(s, e1) > λ, then
LA-LWE
n,m1,m2,αq(m) is computationally indistinguishable from LLWE

n,m,αq for arbitrary m ∈ {0, 1}m2.

Note that if the first error part e1 has entropy exceeding the security parameter λ, the (computa-
tional) entropy induced by s is not required. This is important, since a distinguisher could ask for many
A-LWE samples using the same secret s as input to the hash function. However, as typical in encryption
schemes (e.g., in [Pei09,LPR10,LP11,MP12] and in ours), if we fix a random matrix A and sample fresh
secret vectors s← Znq uniformly at random for each A-LWE sample, we can indeed choose m1 to be zero.
This corresponds to the case, where an A-LWE sample is drawn once for every fresh secret s resulting in
essentially unrelated A-LWE instances. Hence, the secret s provides the sufficient randomness required
as input to H.

It is not hard to see that Theorem 1 immediately entails the following statement.

Theorem 2. Let n,m,m1,m2, k, q be integers with k = log q and m = m1 + m2. Let H be a random
oracle as defined in Theorem 1. Let αq ≥ ηε(Λ

⊥
q (G)) for a real ε > 0. Furthermore, denote by χs and

χe1 the distributions of the random vectors s and e1 involved in each A-LWE sample. If H∞(s, e1) > λ,
then the following statements hold.

1. If search LWEn,m,αq is hard, then search-s A-LWEn,m1,m2,αq is hard.
2. If decision LWEn,m,αq is hard, then decision A-LWEn,m1,m2,αq is hard.
3. If decision LWEn,m,αq is hard, then search-m A-LWEn,m1,m2,αq is hard.

Proof. As per Theorem 1, LA-LWE
n,m1,m2,αq(m) is computationally indistinguishable from LLWE

n,m,αq. This proves
the hardness of decision A-LWEn,m1,m2,αq and search-m A-LWEn,m1,m2,αq. And by essentially the same ar-
guments we also deduce the hardness of search-s A-LWEn,m1,m2,αq, because solving the search problem
implies distinguishability of A-LWE instances from uniform due to the knowledge of (s, e) and by The-
orem 1 we obtain distinguishability of LWE instances from uniform, hence a contradiction. ut

3.3 Generic Encryption Scheme from A-LWE

In what follows we provide a generic construction of an A-LWE based encryption scheme. Due to our
new feature of embedding messages in the error term, we can employ any trapdoor function that allows
for error-term recovery. We restrict to the case, where function H takes only s as input (i.e., m1 = 0) as
discussed above.

Let TDF = (KeyGen, g, g−1) be a trapdoor function with gA(x,y) := x>A+y> ∈ Zm. The algorithm
KeyGen outputs a matrix A ∈ Zn×mq , that is close to uniform, with an associated trapdoor T used to
invert gA. The trapdoor function satisfies g−1

A (T, c) = (x,y) with c = gA(x,y) for arbitrary x ∈ Znq and
properly chosen y ∈ Zm.
Our generic encryption scheme from A-LWE is constructed as follows:

KGen(1n): Generate public key pk := A ∈ Zn×mq with trapdoor sk := T where (A,T)← TDF.KeyGen(1n).



Enc(pk,m ∈ {0, 1}l with 0 ≤ l ≤ m): Sample s ←R Znq and compute v = encode(H(s) ⊕m) ∈ Zm/kq .
Then, sample e←R DΛ⊥v (G),αq. The ciphertext is given by c = gA(s, e).

Dec(sk, c) : Compute g−1
A (T, c) = (s, e). Return m = decode(Ge mod q)⊕H(s).

The generic construction is mainly based on the capability of the scheme to recover the error vector. Thus,
the underlying trapdoor construction acts as a black box granting full access to the secret s and the error
term e, when applying the secret trapdoor on a corresponding A-LWE instance. Once having revealed
the error term, the message is recovered via the last step of the scheme involving the simple matrix
G and the function H(·). Improving the quality of the trapdoor and its inversion algorithm directly
impacts the efficiency of the encryption scheme, since decoding of the message from e is performed very
efficiently.

Theorem 3. The generic encryption scheme above is secure assuming the hardness of decision A-LWEn,0,m,αq
for αq ≥ 2

√
n ≥ 2 ·

√
ln(2n(1 + 1/ε))/π ≥ ηε(Λ⊥q (G)) .

Proof. Ciphertexts generated according to the generic encryption scheme from above correspond to
plain A-LWE samples with m1 = 0. By assumption decision A-LWEn,0,m,αq is hard, and consequently, an
adversary is not able to distinguish a challenge ciphertext from uniformly chosen samples. ut

One can apply Theorem 1 and Theorem 2 to have a direct reduction from traditional LWE.

4 New Chosen-Ciphertext Secure Encryption Schemes

Due to the new functionality of embedding messages in error vectors, we are able to propose a novel
secure encryption scheme providing full CCA security when adopting the tagging approach presented
in [Kil06,CHK04]. In fact, we get this feature for free, if we instantiate our generic construction from
Section 3.3 with the trapdoor provided in [MP12]. More specifically, the authors add a tag u to the
matrix A such that the modified matrix Au keeps changing for every encryption query.

Originally, in almost all previous encryption schemes ciphertexts are build in a one-time pad manner
by adding the message to a random-looking vector coming from an LWE instance. By our modifications,
we omit the way of encoding messages and the restrictions made to the parameters. Our aim is to let
the ciphertexts resemble an ordinary A-LWE instance such that the hardness of the scheme can be
directly reduced to the plain A-LWE problem. Indeed, the error term hides the message while following
the required distribution. This allows for more flexibility, efficiency and larger messages per ciphertext
at no costs. Even more, this greatly simplifies the security proof. As we show later, we can even lift
up the security to publicly-detectable RCCA (pd-RCCA) with a simple trick ensuring non-malleability
of ciphertexts. When applying these functionalities to the error term in the CCA1-secure scheme due
to [MP12], the message throughput is at least twice as large while simultaneously providing pd-RCCA
security instead of CCA1, as before. In addition to that, we give an intuition of how to get a CCA2-secure
encryption scheme involving only minor modifications.

4.1 CCA1-Secure Encryption Scheme

We start with a detailed description of the CCA1 secure encryption scheme and the involved algorithms.
Let H : Znq → {0, 1}

m be some function. Let R = Zq[x]/(f(x)) be a ring as constructed in [MP12], where
f(x) denotes a monic irreducible polynomial of degree n. Furthermore, let h : R → Zn×nq be an injective
ring homomorphism mapping elements a ∈ R to the matrix h(a). By U = {u1, . . . , u`} we denote a large
set with “unit differences” property. That is, for any two ring elements ai and aj ∈ R∗ with i 6= j we
have ai− aj ∈ R∗ and h(ai− aj) = h(ai)− h(aj) is invertible. By Gm we denote the matrix Im/k ⊗ g> .
Our encryption scheme works as follows.



KGen(1n): Let k = log q and m, m̄ > 0 with k | m and m = m̄+nk. Invoking TDF.KeyGen(1n) outputs
keys (A,R), where A = [ Ā |ĀR ] for randomly selected matrix Ā ∈ Zn×m̄q and R←R D is sampled
from a desired distribution D, typically the discrete Gaussian distribution. For instance, one chooses
m̄ = nk and D = Dm̄×nk

Z,t for t ∈ ω(
√

log n). The public and secret key are given by pk = A ∈ Zn×mq

and sk = R ∈ Zm̄×nkq .
Enc(pk,m ∈ {0, 1}l with 0 < l < m): Select a nonzero u ∈ U . Set Au = [ Ā |ĀR − h(u)Gnk ] with

Gnk = In ⊗ g>. Then, select s←R Znq and e←R DΛ⊥v (Gm),αq where v = encode(H(s)⊕m) ∈ Zm/kq

and αq ≥ 2
√
n ≥ 2 ·

√
ln(2n(1 + 1/ε))/π. Output the ciphertext

c = (u,b) ∈ U × Zmq with b> = gAu(s, e) = s>Au + e> mod q .

Dec(sk, c) : Determine Au = [ Ā |ĀR− h(u)Gnk ].
1. If parsing c causes an error or u = 0, output ⊥. Otherwise invoke the inversion algorithm in

Appendix B.2 with input parameters (R,Au,b), which outputs a failure ⊥ or g−1
Au

(b>) = (s′, e′).
2. Check ‖e′‖ ≤ αq

√
m. If it is satisfied, compute r = H(s′) and m = r⊕ decode(Gme′ mod q).

3. Output m as the message.

Theorem 4. The encryption scheme above is CCA1-secure assuming the hardness of decision A-LWEn,0,m,αq
for αq ≥ 2

√
n ≥ ηε(Λ⊥q (G)).

Proof. The proof is greatly simplified as compared to [MP12], since we are not required to perform any
transformations to the initial A-LWE samples. In fact, we draw samples (A,b>)←R L

A-LWE
n,0,m,α,q(m) from

the A-LWE distribution, where b> = s>A + e>, s←R Znq , A←R Zn×mq and e←R DZm1 ,αq×DΛ⊥v (G),αq

with v = encode(H(s) ⊕m) and αq ≥ 2
√
n ≥ 2 ·

√
ln(2n(1 + 1/ε))/π ≥ ηε(Λ

⊥
q (G)). Distinguishing

these samples from random ones is as hard as solving decision A-LWEn,0,m,αq for the given parameters
(see Theorem 3).
Encryption queries in our scheme are represented by ordinary A-LWE queries, thus we can give a
direct reduction. Indeed, we have b1 = s>Ā + e1 mod q and b2 = s>(h(u)G − ĀR) + e2 mod q,
where (Ā, h(u)G− ĀR) is statistically close to uniform by the leftover hash lemma and h(u)G− ĀR
is negl(n)-uniform for any choice of u ∈ U following essentially the same argumentation as in [MP12].
Hence, the advantage of the adversary in the CCA1 security game with our scheme from above is
negligible. ut

For instance, if one chooses m = c · nk corresponding to a statistical instantiation of the scheme – that
is, A is statistically close to uniform – one can encrypt messages of length c · nk bits.

High Data Load Encryption. In certain application scenarios one wishes to encrypt huge amounts of
data such as secure backups, etc. In this case, a fast encryption and decryption engine is desired. The
key idea underlying this goal is to extend the public key by an arbitrary number of random vectors
in order to ensure a more efficient encryption scheme at essentially the same security level. Assume,
the initial public key is given by Au = [ Ā |ĀR − h(u)G ] ∈ Zn×m. Extending the public key to
Aext
u = [ A′ | Ā |ĀR − h(u)G ] ∈ Zn×(m′+m) allows one to encrypt c = b(m′ + m̄ + nk)/kc · k bits of

data simultaneously using the message embedding approach from above. This is obviously not possible
with the CCA encryption scheme in [MP12] (see Appendix C.1), since the maximum message size is
solely determined by n and k amounting to nk bits. The input to the inversion algorithm described in
Appendix B.2 is the modified trapdoor [0 R> I]> and the ciphertext b, which then recovers s and
e′′ = (e′, e). Interestingly, we observe that the norm bound on the error term is only related to the part
e due to

∥∥∥e′′ [ 0
R
I

]∥∥∥ =
∥∥e [RI ]∥∥ < q/(4 ·

√
s1(R)2 + 1) in our scheme. Thus, extending the public key

has no impact on how to choose e′ in the decryption routine, except for ensuring a reasonable level of



security of the underlying A-LWE instance. We now briefly explain the benefits of such a construction
for a predefined amount of data.

As an advantage for encryption, we do not need to initiate so many generations of s, u and com-
putations of h(u) as compared to the original public key, because we use the same s and u for a larger
message size. For decryption, one notices that the inversion algorithm works almost as fast as with the
original public key, since

(b′,b)>

0
R
I

 = s>Aext
u

0
R
I

+ e′′
>

0
R
I

 = s>G + e>
[
R
I

]
.

This strategy is not directly applicable to the CCA1-secure encryption scheme presented in [MP12].
However, in combination with our technique to embed auxaliary data in the error term it is possible to
furtherly take advantage of this feature.

4.2 Lifting to RCCA security

The notion of CCA2 security is a desirable feature in most encryption schemes. Many of the current
solutions are generic and thus coupled to overhead and loss of efficiency. Generic solutions to CCA2-secure
LWE-based encryption schemes include the usage of strongly unforgeable one-time signatures [DDN00]
or message authentication codes with a weak form of bit commitments [BCHK07]. Regarding the first
approach the user is required to encrypt the verification key vk together with the message yielding
the ciphertext c. Next, the signature is computed over the ciphertext and is subsequently transmitted
together with c and vk to the receiver.

In many encryption schemes we require only RCCA security, which is strictly stronger than CCA1,
but slightly weaker than CCA2 security. It has been shown in [CKN03] that RCCA security is sufficient
for many of the major applications of CCA secure encryption such as authentication and key exchange
etc. In particular, it ensures non-malleability in any ways that alter the message.

We introduce here an elegant way to easily modify the scheme from above in order to achieve publicly
detectable RCCA security (pd-RCCA) without suffering from the disadvantages of generic solutions. In
fact, this is the first lattice-based construction that allows for this feature. In our scheme, ciphertexts
that decrypt to the same plaintext as the challenge ciphertext (u∗, c∗) can publicly be detected by any
party.

As an advantage by our construction, the transmitted data is solely restricted to the ciphertext c
and we omit to send additional verification keys and signatures as compared to the generic approach.
Let q = 2k, m = m1 + m2 with k = log q and k | m1,m2. Furthermore, let H1 : {0, 1}∗ → Zm1/k

q and
H2 : Znq → {0, 1}m2 be cryptographic hash functions modeled as random oracle. The key concept of
the RCCA-secure encryption scheme consists in replacing the upper-part of the error term by e1 ←
DΛ⊥v1

(Gm2 ),αq with v1 = H1(s, e2, u). It allows the receiver to check for modifications made to the
ciphertext or its ingredients (s, e2, u) and is to be thought of a GPV signature for the public matrix
Gm2 . The lower part of the error vector, however, remains essentially unchanged e2 ← DΛ⊥v2

(Gm2 ),αq,
where v2 = encode(H2(s) ⊕m). We then change the encryption and decryption routine of the CCA1-
secure scheme in Section 4.1 as follows:

Enc(pk,m ∈ {0, 1}m1): Select a nonzero u ∈ U . And determine Au = [ Ā |ĀR − h(u)Gnk ], with
Gnk = In ⊗ g>. Then, select s ←R Znq and e2 ← DΛ⊥v2

(Gm2 ),αq where v2 = encode(H2(s) ⊕m) and

αq ≥ 2
√
n ≥ 2·

√
ln(2n(1 + 1/ε))/π. Subsequently, sample e1 ← DΛ⊥v1

(Gm2 ),αq with v1 = H1(s, e2, u).
The ciphertext is given by

c = (u,b) ∈ U × Zmq with b> = s>Au + (e1, e2)> mod q .



Dec(sk, c) : Determine Au = [ Ā |ĀR− h(u)Gnk ].

1. If parsing c causes an error or u = 0, output ⊥. Otherwise invoke the inversion algorithm Invertin
Appendix B with input parameters (R,Au,b), which outputs the values s′ and e′ or a failure ⊥.

2. (Non-malleability) Check Gm1e
′
1

?
= H1(s, e′2, u).

3. (Message Recovery) Check ‖e′‖ ≤ αq
√
m. If it is satisfied, compute r = H(s′) and m = r ⊕

decode(Gm2e
′
1 mod q).

4. Output m as the message.

Theorem 5. The scheme from above is pd-RCCA secure assuming the hardness of decision A-LWEn,0,m,αq
for αq ≥ 2

√
n ≥ ηε(Λ⊥q (G)) in the random oracle model.

The proof of Theorem 5 can be found in Appendix D.3. Similarly, one can apply this technique
to [MP12] in order to obtain pd-RCCA security. The construction of [MP12] can be found in Ap-
pendix C.1. One requires to compute the hash value on all possible malleable variables that could be
changed when calling the encryption routine.

4.3 Upgrading RCCA to CCA2

There exist different approaches to turn any RCCA-secure encryption scheme into an CCA2-secure
scheme. A generic way of doing this, is presented in [CKN03], which does not involve any further
computational assumptions. Specifically, it aims at combining an RCCA-secure public key encryption
scheme with an CCA-secure symmetric key encryption scheme in order to attain CCA2-security. It is
well-known that an CCA-secure symmetric encryption scheme can be build from any secure encryption
scheme. Hence, the resulting CCA2-secure scheme is said to be efficient if the underlying encryption
schemes are efficient.

The second approach, that we suggest, requires to append the hash value H ′(e1) to the ciphertext
output by the RCCA-secure scheme presented in the previous section. We note here that it suffices if hash
functionH ′ is merely collision-resistance. Following this, the new challenge ciphertext consists of the tuple
(u∗,b∗, H(e∗1)). We now analyze the behavior of the decryption oracle, in case the ciphertext has been
modified. Assuming RCCA-security we only focus on the last case in the security game Expind−cca2

E,A (n)
(see Appendix A). Thus, we need only to prove that the adversary cannot modify the error vector e1,
since all other cases are covered due to RCCA-security.

1. If b1 6= b∗1,b2 = b∗2 and H(e1) = H(e∗1), then the attacker must have found a collision.
2. If b1 6= b∗1, b2 = b∗2 and H(e1) 6= H(e∗1), then Dec(·) outputs ⊥, because otherwise the attacker

must have known e1 = b1 − s∗>Ā and hence s∗, which is equivalent to solving A-LWE.

This proofs that the attacker is not able to derive new information about the encrypted message, even
when he is given access to the decryption oracle after issuance of the challenge ciphertext.

4.4 Asymmetric Authenticated Encryption

Theoretically, one can embed to our encryption schemes as second message – the one which is embedded
to the error term – a digital signature authenticating the plaintext. One could use any signatures which
satisfy the length requirements to be a bit string of lengthm (if not satisfied, one expands the public key).
However, many of the well-known lattice-based signature schemes produce signatures that are already
distributed just like discrete Gaussians. Such a choice causes short signatures to be selected with higher
probability and more importantly it allows to decouple the distribution of the signatures from the secret
keys. Considering the fact that the error term is sampled from a discrete Gaussian distribution as well,
we can build an authenticated encryption scheme, where parts of the error term are directly replaced



by signatures. Doing this, we achieve security guarantees similar to CCA2 and moreover the receiver is
able to identify the originator of the message through his embedded signature.

Lattice-based signatures due to [DDLL13, Lyu12, GPV08,MP12] are qualified for this task. It has
recently been shown that these schemes are very efficient and perform very well in practice. Thus, the
efficiency directly impacts our schemes allowing for fast encryption in conjunction with an authentication
subroutine. Hence, there is no need for the usage of strongly unforgeable one-time signatures as before,
where the verification keys have to be encrypted before transmitting the ciphertext together with the
signature and the verification keys to the receiver. This obviously increases the data size to be sent
and further does not allow identifying the originator of the message. Indeed, this functionality is also
achieved by the more efficient non-malleability mechanisms presented in the previous sections. Notably,
all of our proposals can be applied essentially without increasing the ciphertext size.

Let q = 2k, m = m1 + m2 with k = log q and k | m2. Furthermore, let H : {0, 1}∗ → Zm2/k
q be

a hash function and S = (KeyGen,Sign,Verify) be a signature scheme where a part of the resulting
signature is distributed following the discrete Gaussian distribution such as the efficient constructions
given in [DDLL13,Lyu12,GPV08,MP12]. For instance, in [DDLL13] signatures are represented by the
tuple (c, z), where z is distributed as DZm1 ,s and c occupies very few bits (≈ 100 − 200 bits) and can
thus be appended to the ciphertext. Essentially, the same approach is taken for the GPV signature
scheme [GPV08,MP12].

Enc(pk,m ∈ {0, 1}m1): Select a nonzero u ∈ U . And determine Au = [ Ā |ĀR − h(u)Gnk ], with
Gnk = In ⊗ g>. Then, select s ←R Znq and e2 ← DΛ⊥v2

(Gm2 ),αq where v2 = encode(H(s) ⊕m) and

αq ≥ 2
√
n ≥ 2 ·

√
ln(2n(1 + 1/ε))/π. Subsequently, sample e1 = Sign(s, e2, u). The ciphertext is

given by
c = (u,b) ∈ U × Zmq with b> = s>Au + (e1, e2)> mod q .

Dec(sk, c) : Determine Au = [ Ā |ĀR− h(u)Gnk ].
1. If parsing c causes an error or u = 0, output ⊥. Otherwise invoke the inversion algorithm in

Appendix B.2 with input parameters (R,Au,b), which outputs the values s′ and e′ or a failure ⊥.
2. (Signature Verification) Check signature, Verify(s, e′2, u)

?
= 1.

3. (Message Recovery) Check ‖e′‖ ≤ αq
√
m. If it is satisfied, compute r = H(s′) and m = r ⊕

decode(Gm2e
′
1 mod q).

4. Output m as the message.

We shortly discuss how to instantiate the scheme. If the signature scheme in [MP12] is applied, one
requires to use the probabilistic GPV signature scheme, which outputs signatures (r, z) being distributed
asDΛ⊥

H(s,e2,u,r)
(B),s ∼ DZm1 ,s with r←R {0, 1}l according to Lemma 5. This is due to the random seed that

is appended before generating the signature. As described in Section 4.2, the signature e1 ← DΛ⊥v (B),s

has to be computed on all malleable variables v = H(u, e2, s, r). Embedding signatures in the error
vector has a flavor of CCA2 security, when considering the last case in the proof of Theorem 5. In this
particular case, building a replay is equivalent to e1 − e∗1 ∈ Λ⊥q (B) and the length of e1 − e∗1 is short,
which is obviously a difficult task assuming the hardness of SIS. Note, that the Gaussian parameter
s = Õ(n) is also used for sampling the second part of the error term e1 ← DΛ⊥

H(s)⊕m
(Gm1 ),s containing

the message, since s ≥ 2
√

ln(2n(1 + 1/ε))/π ≥ ηε(Λ
⊥(B)) is always satisfied. It is also noteworthy to

mention, that it can be reasonable to adopt the high data load approach from Section 4.1, where e1 is
suitable for signatures. Similar steps are taken when e1 is replaced by a signature generated according
to the signature schemes [DDLL13,Lyu12] (see Appendix C.2).

4.5 Enhancing the Symmetric-Key Encryption Scheme from [BV11b]

In this section, we show that our message embedding technique can be applied to the symmetric key
encryption scheme as provided in [BV11b]. The authors propose a symmetric key encryption scheme that



entails the properties of a somewhat homomorphic encryption scheme. Based on this construction they
build a fully homomorphic public key encryption scheme that is KDM-secure, meaning that the scheme
remains secure even when encrypting polynomial functions of the secret key. In fact, the symmetric key
encryption scheme is a very efficient construction that is directly based on ring-LWE (or PLWE [BV11b]).
Ciphertexts are built in a one-time pad manner. The secret key shared among the participants is the
secret s ∈ Rq = Z[X]/ 〈f(X)〉 coming from ring-LWE. One typically chooses f(X) = Xm+ 1 for m = 2l

and l ∈ N. We now present the encryption scheme that is enriched with our message embedding technique
required to increase the message throughput. But for the sake of simplicity, we ignore the homomorphic
properties of the scheme with regard to the message m1. Interested readers are referred to the respective
descriptions in [BV11b].

KGen(1n): Let n1, n2 > 0 such that n1 +n2 = n, k | n2 and let t be coprime to q. Sample the coefficients
of s←R Rq and set the secret key sk := s

Enc(sk,m1 ∈ Rt = Zt[X]/ 〈f(X)〉 ,m2 ∈ {0, 1}l, with 0 < l < n2): The first message is encoded
to be a polynomial in Rt. Sample (a,as + te), where a ←R Rq. The coefficients of e1 and e2 are
sampled from DZn1 ,r respectively DΛ⊥v (Gn2 ),αq for v = encode(H(s)⊕m2) ∈ Zn2/k

q with αq ≥ 2
√
n ≥

2 ·
√

ln(2n(1 + 1/ε))/π. Set e = (e1, e2). Output the ciphertext

c = (c1, c2) with c1 = a, c2 = as + te + m1

Dec(sk, c) : Compute the first message m1 = c2−c1s mod t. We then have te = c2−c1s−m1. If we di-
vide t out, we obtain e = (e1, e2) and finally recover the second message m2 = decode ((Gn2 · e2)⊕H(e1)).

A quick view to this construction shows, that the error vector is efficiently obtained, because c1s has
already been computed during decryption. And multiplication by a constant t−1 is performed very fast.
We omit a formal proof here. Essentially, the same arguments of the proof from the original construc-
tion [BV11b] work here as well with the difference, that we reduce the security to the ring variant of
the A-LWE problem. After this modification, we can additionally embed messages of size n2 bits into
the error term. However, we stress that the homomorphic property does not carry over to this addi-
tional slot of message. We basically obtain an encryption scheme working on message pairs (m1,m2)
which is homomorphic only with respect to m1. This scheme may be of independent interest for novel
applications.

4.6 Embedding Approach Applied to [MP12]

All the features provided in the previous sections can be utilized in order to optimize the encryption
scheme MP12 (see Appendix C.1). We particularly focus on the error term (ē, e1) that is recovered by
the LWE inversion algorithm. The other scheme ingredients remain unchanged. One observes that the
error term is unused and offers additional space for messages of size m bits as compared to nk bits
in the original scheme. This allows us to increase the message throughput per ciphertext by a factor
of m/nk = c, where m = c · nk and c ∈ Q≥2. The way RCCA-security is guaranteed resembles the
message embedding approach. Hence, we can use a small part of the error term to lift up the scheme
to RCCA (or CCA2). Due to αq, α′q ≥ 2

√
n ≥ ηε(Λ

⊥
q (G)) the modified parts of the error term always

follow the correct distributions. All these properties can be included at essentially the same efficiency.
But one has to take care about the parameters in case the error term is augmented with authentication
data as described in Appendix 4.4. Current state-of-the art signature schemes such as [DDLL13] are
characterized by very small parameters and efficient instantiations. This allows one to realize the desired
authentication subroutine without violating any conditions.



5 Parameter selection

We consider a statistical instantiation of the schemes with m̄ = O(nk) such that the public key A =
[ Ā | ĀR] is statistically close to uniform. The corresponding ring variant and the involving algorithms
are presented in [MP12, BB13]. In both schemes from above (see Section 4.1 and Appendix C.1), we
sample the trapdoor R ← Dm̄×nkZ,t for t ∈ ω(

√
log n). For instance, the parameter t is chosen to satisfy

t ≥ 2ηε(Z) and m̄ = nk+ ω(
√

log n), but other choices are also possible (see [MP12]). When setting the
parameters, one has to take care of the maximum error length in order to correctly invert the underlying
LWE instance in the decryption routine. By [MP12, Theorem 5.4], the maximum length of the error term
is bounded by ‖e‖ < q/(4 ·

√
s1(R)2 + 1) for s1(R) ≤ (

√
m̄+

√
nk) · t, where s1(R) denotes the largest

singular value of R. As a consequence, selecting α ≤ 1/(4 ·
√
s1(R)2 + 1) for the error term allows for

correct inversion, except with negligible probability. In case it is required to embed discrete Gaussians
with larger parameters such as signatures from other schemes, one could apply the encryption scheme
for high data load from Section 4.1. To this end m′ is chosen in such a way that e′ is completely replaced
by the signature and one chooses arbitrary αq ≥ 2

√
n such that the corresponding A-LWE instance is

hard.
Below you find a candidate set of parameters to instantiate our proposed encryption schemes.

Parameter Selection
n e.g. n ≥ 256 (cf. Table 1)
q e.g. power of 2 with q ≥ 219

k dlog2(q)e
m m̄+ nk = c · nk, c ≥ 2

t Parameter for matrix R, e.g. R← DZm̄×nk,t

s1(R) ≈ 1/
√

2π · (
√
n · k +

√
m̄) · t

r r ≥ 2 ·
√

ln(2n(1 + 1
ε
))/π

α 1/(4 ·
√
s1(R)2 + 1) ≥ α > 2

√
n/q
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A Chosen Ciphertext Security and Variants

We recall the definitions of (replayable) chosen ciphertext security of encryption schemes. Let
E = (KGen,Enc,Dec) be a public key encryption scheme and consider the following experiments for
atk ∈ {cca1, cca2, rcca}:

Experiment Expind−atk
E,A (n)

(pk, sk)← KGen(1k)

(µ0, µ1)← ADec(·)(choose, pk)
cb ← Encpk(µb) for b←R {0, 1}
b′ ← AO2(·)(guess, cb)
Output 1 iff

1. b′ = b
2. |µ0| = |µ1|
3. cb was not queried to O2

If A queries O2(c), and
- if atk = cca1, then return ⊥.
- if atk = cca2, then return Dec(sk, c).
- if atk = rcca and Dec(sk, c) /∈ {µ0, µ1},

then return Dec(sk, c).
- Otherwise, return ⊥.

Definition 6 (Chosen-ciphertext secure encryption). Let E = (KGen,Enc,Dec) be a public-key
encryption scheme.

CCA1 security. We say E is secure against non-adaptive chosen-ciphertext attacks (CCA1) if we have

Pr[Expatk−cca1
E,A (n) = 1] ≤ negl(n) .

CCA2 security. We say E is secure against adaptively chosen-ciphertext attacks (CCA2) if we have

Pr[Expatk−cca2
E,A (n) = 1] ≤ negl(n) .

RCCA security. We say E is secure against replayable chosen-ciphertext attacks (RCCA) if we have

Pr[Expatk−rcca
E,A (n) = 1] ≤ negl(n) .

for all polynomial-time algorithms A.



There exists a strict hierarchy in the security notions. That is, CCA2 security implies RCCA security
which in turn implies CCA1 security. All the above security notions are formulated following the indis-
tinguishability approach. We note that alternatively one could define the security in a non-malleability
approach yielding NM-CCA1, NM-CCA2, and NM-RCCA. Here, an adversary given an encryption of
µb is essentially not able to output an encryption of µ1−b. The non-malleability notions imply the in-
distinguishability counterparts. However, the other direction does not hold in general, for instance for
CCA1 security. Moreover, the notion of non-malleable replayable CCA is strictly stronger than the
indistinguishably notion of replayable CCA for polynomial message spaces [CKN03].

B Lattice-Related Algorithms

B.1 Sampling from Λ⊥(G)

Let k = dlog qe. We recall the primitive matrix Gnk = In ⊗ g> with g> = (1, 2, . . . , 2k−1) from [MP12],
which plays a major role in our constructions due to its simple structure and the efficiency when sampling
short vectors from the sets Λ⊥v (Gnk) for any syndrome v ∈ Znq . We denote by Gm the matrix Im/k⊗g>,
otherwise we refer to G = Gnk in case we omit the index. This matrix induces a lattice Λ⊥q (Gnk) =

{x ∈ Znk | Gnkx ≡ 0 mod q} with generator matrix S = In ⊗ Sk, where

Sk =


2 0
−1 2

. . . . . .
0 −1 2

 ∈ Zk×kq .

Partitions are represented by Λ⊥v (Gnk) = x + Λ⊥q (Gnk), where x denotes an arbitrary vector satisfying
Gx = v mod q. The corresponding smoothing parameter is bounded by ‖S‖

√
ln(2n(1 + 1/ε))/π ≥

ηε(Λ
⊥
q (Gnk)). The sampling algorithm for any partition Λ⊥v (G) with v ∈ Znq works as desecribed in

Algorithm 1. This algorithm is applied on each component of v yielding a sample x distributed as
DΛ⊥v (G),r.

Algorithm 1: Algorithm Sample to sample from Λ⊥(G)

Input: G,v
Output: t = (t0, . . . , tk−1)T

B The algorithm initializes a0 with an entry vi ∈ Zq of the syndrome v and outputs a vector t ∈ Λ⊥vi(g
>)

distributed as DΛ⊥vi (g>),r.

for i = 0, . . . , k − 1 do
ti ← D2Z+ai,r

ai+1 = (ai − ti)/2

B.2 LWE Inversion (Invert Algorithm)

We briefly describe the inversion algorithm for the trapdoor function gA(s, e) = s> ·A + e> as provided
in [MP12], which represents the core decryption subroutine in the generic encryption scheme from Section
3.3. Specifically, it employs a trapdoor matrix R to solve LWE instances b> = s>A + e> mod q
generated by a handcrafted random matrix of the form A = [Ā | HG− ĀR] for an invertible matrix H
and the primitive matrix G. Without the knowledge of the trapdoor it is hard to find a solution s and e



for a given b such that b = gA(s, e) assuming the hardness of LWE. For q = 2k, the inversion algorithm
works as follows. Suppose we are given a vector b> corresponding to A. Applying R, we obtain

b> ·
[
R
I

]
= s>HG + e> ·

[
R
I

]
= s′>G + e′> .

Now, for every scalar s′i in s′, we have to solve the equation b>(i) = s′i · g> + e>(i), where e′(i) =

(e′i·k, . . . , e
′
i·k+(k−1)). Considering the binary expansion s′i =

k−1∑
j=0

cj · 2j one starts from the last entry

in b>(i), which is bi·k+(k−1) = 2k−1 · c0 + ei·k+(k−1) mod q = (q/2)c0 + ei·k+(k−1). One sets c0 = 0 in case
bi·k+(k−1) ∈ [− q

4 ,
q
4), else c0 = 1. Subtracting 2k−1 · ck−1 from s′i one recovers c1 by the same testing

procedure etc. This is successively applied on all entries s′i, which subsequently returns s′. Finally, one
recovers e> = b> − s′>G and s = s′H−1.

B.3 Message Embedding for Uniform Random Errors

In this subsection we briefly explain how to embed messages into error vectors that are uniformly
distributed over a set [0, 2l − 1]m with l ≥ 2. This set can subsequently be transformed into a desired
representation. In fact, by slightly modifying the strategy from Section 3.1 one obtains the required
distributions. Therefore, let again G = Im/l ⊗ g> and p = 2l with m = l · r and g> = (1, 2, . . . , 2l−1)

as shown in Appendix B.1. We know from Appendix D.1 that Zm =
·⋃

v∈Znq
Λ⊥v (A) holds for any full-rank

matrix A ∈ Zn×mq and so for G. It then follows U(Zm) ∼ U(Λ⊥v (G)) for v←R Znq , where U(B) denotes
the uniform distribution over the set B. Our aim is to let v be statistically (resp. computationally)
indistinguishable from uniform similar to Lemma 5 and Lemma 6. We slightly change the algorithm from
Section B.1 and explain how to sample a vector uniformly at random from the set [0, 2l − 1]m ∩ Λ⊥v (G)
for any fixed choice of v.

Algorithm 2: Algorithm SampleU to sample from Λ⊥(G)

Input: G,v
Output: t = (t0, . . . , tl−1)T

B The algorithm initializes a0 with an entry vi ∈ Zq of the syndrome v and outputs a vector t ∈ Λ⊥vi(g
>)

distributed as DΛ⊥vi (g>),r.

for i = 0, . . . , l − 1 do
ti ←R {2Z + ai} ∩ [0, 2l − 1]
ai+1 = (ai − ti)/2

In each step ti is chosen from a set containing 2l−1 odd or even elements dependent on ai. Thus, the
algorithm outputs uniform random elements from [0, 2l − 1]m ∩Λ⊥v (G). As a consequence, we can prove
the statistical or computational indistinguishability in essentially the same way as in Lemma 5 and 6.

Following this approach, we sample the error vector as follows. Let m ∈ {0, 1}m be the message and
v = encode(m ⊕H(s)) ∈ Znq . Then, we obtain a vector that is computationally indistinguishable from
uniform. Subsequently, we sample e←R [0, 2l− 1]m ∩Λ⊥v (G) using Algorithm 2. Here, we have assumed
that vector s is freshly sampled uniformly from Znq in each sample. If this is not the case, one takes also
some part of the error term as input to the function H, in order to provide sufficient entropy.



C Lattice-Based Cryptosystems

C.1 CCA1-Secure Encryption Scheme by Micciancio and Peikert

Recently, Micciancio and Peikert [MP12] introduced new methods to derive trapdoors in cryptographic
lattices with higher quality compared with previous constructions [Bab86, Kle00, AP09, Pei10]. One
application is a new CCA1-secure encryption scheme, denoted by MP12, whose security is based on
the hardness of LWEn,αq for αq ≥ 2

√
n. The construction makes use of the gadget matrix G with

k = O(log q) = O(log n). Further, let m̄ = O(nk) and D = DZm̄×nk,ω(
√

logn). The public key and cipher-
text size are determined by m = m̄+nk. The error rate α for LWE is given by 1/α = O(nk) ·ω(

√
log n).

For realizing the tag-based approach, we recall the construction from [MP12]. Let R = Zq[x]/(f(x))
be a ring as constructed in [MP12], where f(x) denotes a monic irreducible polynomial of degree n.
Furthermore, let h : R → Zn×nq be an injective ring homomorphism mapping elements a ∈ R to the
matrix h(a). By U = {u1, . . . , u`} we denote a large set with “unit differences” property. That is, for
any two ring elements ai and aj ∈ R∗ with i 6= j we have ai − aj ∈ R∗ and h(ai − aj) = h(ai) − h(aj)
is invertible. Adopting the notation from [MP12] the map encode allows to bijectively switch between
{0, 1}nk and the cosets of Λ/2Λ with encode−1 being its inverse, where Λ = Λ(Gt).

The encryption scheme MP12 = (KGen,Enc,Dec) works as follows:

KGen(1n) : Upon input the security parameter n, choose Ā← Zn×m′q and R←R D. Let A1 = −ĀR mod
q. The public key is pk = A = [Ā|A1] ∈ Zn×mq while the secret key is determined by sk = R.

Enc(pk, µ) : Upon input public key pk = [Ā|A1] and message µ ∈ {0, 1}nk, do the following:
– Set Au = [Ā|A1 + h(u)G] where u←R U is nonzero.
– Choose s←R Znq , e1 ←R Dm

′
Z,αq, and e2 ←R DnkZ,s where s2 = (‖e1‖2 +m′(αq)2) · ω(

√
log n)2.

– Set bt = 2(stAu mod q) + et + (0, encode(µ))t mod 2q, where e = (e1, e2) ∈ Zm and 0 is of
dimension m′.

The ciphertext c consists of c = (u,b) ∈ U × Zm2q.
Dec(pk, sk, c) : Upon input public key pk = [Ā|A1], secret key sk = R, and ciphertext c = (u,b), do

the following:
– Set Au = [Ā|h(u)G−A1R].
– Call Invert(R,Au, b mod q) from Section B.2 and obtain z ∈ Znq and e = (e1, e2) ∈ Zm′ ×Znk for

which bt = zAu + et mod q.
– Let v = b− e mod 2q, parsed as v = (v1,v2) ∈ Zm′2q × Znk2q .

If none of the following conditions is true, output message µ = encode−1(vt
[
R
I

]
mod 2q) ∈ Znk.

Otherwise, output ⊥.
1. c does not parse or u = 0,
2. the function Invert failed for any reason,
3. ‖e1‖ ≥ αq

√
m′ or ‖e2‖ ≥ αq

√
2m′nk · ω(

√
log n),

4. v1 /∈ 2Λ(Āt), or
5. the function encode−1(·) does not exist.

C.2 Lattice-based Signatures by Ducas et al.

Here, we recall the lattice-based signature scheme by Ducas et al. [DDLL13] which qualifies as the state-
of-the-art in terms of lattice signatures. It follows the Fiat-Shamir paradigm [FS87], and its security is
based on SIS problem and proven in the random oracle model. The idea is as follows. Let Dm

σ define a
discrete Gaussian distribution for standard deviation σ ∈ R. To sign a message µ, first sample a short
vector y ∈ Dm

σ and set c = H(Ay mod 2q, µ) where A ∈ Zn×m2q is the public key. Now, choose a random
bit b ∈ {0, 1}. The signature consists of (c, z = y + (−1)bSc) where S ∈ Zn×m2q is a secret key, which



satisfies AS = qIn(mod 2q). However, the security of this scheme holds only, if vector z output by the
signature algorithm is distributed according to Dm

σ . This is achieved by rejection sampling, i.e., (c, z) is
output only with probability 1/(M exp(−‖Sc‖

2

2σ2 ) cosh(− 〈z,Sc〉
σ2 )).

D Missing Proofs

D.1 Proofs for Message Embedding

Proof (of Lemma 5). Consider the statistical distance between DZm,r and DΛ⊥v (A),r, where v ∈ Znq is cho-

sen at random. Since A is a full-rank matrix, we have Zm =
·⋃

b∈Znq
Λ⊥b (A) and ρr(Zm) =

∑
b∈Znq

ρr(Λ
⊥
b (A)) ∈

[1−ε
1+ε , 1]·qn ·ρr(Λ⊥q (A)). In the latter distribution DΛ⊥v (A),r the process of sampling z ∈ Zm can be reduced
to the tasks of selecting the correct partition Λ⊥v (A) with probability 1

qn and subsequently sampling z

from Λ⊥v (A) with probability ρr(z)

ρr(Λ⊥Az(A))
. Following this, DΛ⊥v (A),r outputs a sample z with probability

P [X = z] = 1
qn ·

ρr(z)

ρr(Λ⊥Az(A))
.

∆(DZm,r,DΛ⊥v (A),r) =
∑
z∈Zm

∣∣∣∣ ρr(z)

ρr(Zm)
− 1

qn
· ρr(z)

ρr(Λ⊥Az(A))

∣∣∣∣
Lemma 2
∈

∑
z∈Zm

∣∣∣∣∣ ρr(z)

ρr(Zm)
− ρr(z)

qn · [1−ε
1+ε , 1] · ρr(Λ⊥q (A))

∣∣∣∣∣
Lemma 2
∈

∑
z∈Zm

∣∣∣∣∣∣∣
ρr(z)

ρr(Zm)
− ρr(z)

[1−ε
1+ε ,

1+ε
1−ε ] ·

∑
b∈Znq

ρr(Λ⊥b (A))

∣∣∣∣∣∣∣
=

∑
z∈Zm

∣∣∣∣∣ ρr(z)

ρr(Zm)
−

[1−ε
1+ε ,

1+ε
1−ε ] · ρr(z)

ρr(Zm)

∣∣∣∣∣
∈ [0,

2ε

1− ε
] ·
∑
z∈Zm

∣∣∣∣ ρr(z)

ρr(Zm)

∣∣∣∣
≤ 2ε

1− ε
ut

Here you find the proof of Lemma 6 for the computational counterpart.

Proof (of Lemma 6). Let v′ ∼ U(Zlq) be a vector chosen at random. By contradiction, we assume

that e ∼ DΛ⊥v (A),r is distinguishable from e′ ∼ DΛ⊥
v′ (A),r

Lemma 5
≈s DZm,r in polynomial time for the

given parameters and v chosen as above. Then, v is computationally distinguishable from v′ by Lemma
1 with M(vi) = DΛ⊥vi (A),r. Hence, we have a contradiction. Therefore, the distribution DΛ⊥v (A),r is
computationally indistinguishable from DZm,r . ut

D.2 Proof of Theorem 1

Proof (of Theorem 1). We need to show that samples from LLWE
n,m,α,q are indistinguishable from LA-LWE

n,m1,m2,α,q(m)
if we assume that the search LWEn,m,α,q problem is hard to solve in polynomial time and tuples (s, (e1)i)



for each sample i have sufficient entropy . That is,

LLWE
n,m,α,q ≈c LA-LWE

n,m1,m2,α,q(m)

for arbitrary m ∈ {0, 1}m2 .
We consider a series of intermediate hybrid experiments. In the first hybrid, we modify the A-LWE

samples in such a way that we replace H(s, e1) with a uniformly sampled value u. Here, we use the fact,
that H∞(s, e1) > λ. Consequently, v = encode(H(s, e1)⊕m) becomes uniformly distributed. The next
hybrid replaces e2 by value e∗2 which is sampled according to DZm2 ,r. The final distribution is identically
distributed as the original LWE. In the following we describe the hybrids more formally.

Hybrid1. In the first hybrid, in each A-LWE sample we replace the value H(s, e1) by a uniformly
sampled value u ∈ {0, 1}m2 . We argue that a (polynomial-time) distinguisher notices the difference
only if it queries the random oracle on input (s, e1). Otherwise, if (s, e1) has not been queried before,
the distribution of H(s, e1) is statistically close to the uniform distribution in {0, 1}m2 due to the
property of a random oracle and given sufficient entropy. This holds, in particular, if many samples
are given to the distinguisher and all H(s, (e1)i) have been replaced because by assumption we have
that every pair (s, (e1)i) in sample i has fresh entropy, more than λ.
We comment on a distinguisher which queries the random oracle at a certain point on (s, e1) below
in the proof, and assume for now, that no such distinguisher exists.

Hybrid2. In the next hybrid, we replace the error term e2 by value e∗2 which is sampled according
to DZm2 ,r. Note that A-LWE samples from Hybrid1 satisfy that v = encode(u ⊕m) is uniformly
distributed since u is uniformly picked (even if m is chosen by the distinguisher). Now, Lemma 6
implies that DΛ⊥v (A),r is computationally indistinguishable from DZm2 ,r for r ≥ ηε(Λ

⊥(A)). For this
reason, replacing e2, which is distributed according to DΛ⊥v (A),r, by vector e∗2 is unnoticeable to a
distinguisher.

We argue that A-LWE samples from hybrid Hybrid2 are indistinguishable from LWE samples. This
follows from the fact that the error term in A-LWE is now identically distributed as LWE which is the
only difference between A-LWE and LWE samples. We still need to argue that it is very unlikely that a
distinguisher queries the random oracle H on input (s, e1) for some e1 used in an A-LWE sample.

Suppose that there exists an algorithm A which distinguishes in polynomial time original A-LWE
samples from A-LWE samples from Hybrid1 with non-negligible probability. We then construct an ad-
versary ALWE with black-box access to algorithm A that solves the search LWEn,m,α,q problem in polyno-
mial time with non-negligible probability. This contradicts the theorem assumption that search LWEn,m,α,q
is hard.

Adversary ALWE is given samples from LLWE
n,m,α,q and is asked to find the secret vector s. Let us denote

the query (s, e1) on H made by A by q∗ where q∗ is polynomially bounded by the security parameter.
Whenever algorithm A asks for new samples, ALWE asks for samples in her challenge and forwards
them to A. That is, A obtains samples from LLWE

n,m,α,q instead of either version of LA-LWE
n,m1,m2,α,q(m). We

have already shown via hybrids that LA-LWE
n,m1,m2,α,q(m) is indistinguishable to LLWE

n,m,α,q if (s, e1) was not
sent to oracle H. This means that before A makes query q∗ to H, those samples are indistinguishable.
As a result, A must query H on input (s, e1) even if given LWE samples. We stress that after returning
the hash value of (s, e1) to A it may be noticing that ALWE has tricked her. However, eavesdropping
the input to oracle H suffices to ALWE to break her search LWEn,m,α,q problem independently whether
A aborts at this time. Hence, if A queries H on input (s, e1) with non-negligible probability, so does
ALWE solve the search LWEn,m,α,q problem with the very same probability. By assumption there does
not exist such a successful algorithm.

We conclude that the step from the original A-LWE samples to Hybrid1 will be unnoticeable to
a distinguisher if search LWEn,m,α,q is hard, and both distributions LLWE

n,m,α,q and LA-LWE
n,m1,m2,α,q(m) are

computationally indistinguishable.
ut



D.3 Proof of Theorem 5

Proof (of Theorem 5). First, we have to show that the error term e = (e1, e2) has the proper distribution.
Since the coset selection for e2 is based on the entropy of s and hence the randomness of H(s), the
distribution of e2 is negligible close to DZm1 ,αq according to Lemma 5. The same argument also holds
for e1, which uses e2 as the source for entropy, when computing the random coset H(s, e2, u). Thus,
it follows that the vector b is then distributed from a distribution which is indistinguishable from the
LA-LWE
n,0,m,α,q(m) distribution.
Hence, the scheme above satisfies CCA1 security following the reasonings in Section 4.1. Suppose

(u∗,b∗) is the challenge ciphertext. We will show that any decryption oracle query cannot further
help the attacker in guessing the correct message according to the security model Expind−rcca

E,A (n) (see
Appendix A).
If the attacker queries (u,b∗) to the decryption oracle for u other than u∗, the oracle will respond with
⊥, since Gm1e

∗
1 = H(s∗, e∗2, u

∗) does not hold anymore. In case b 6= b∗ for arbitrary selected u, we
differentiate 3 cases:

1. b1 = b∗1 and b2 6= b∗2, then Dec(·) outputs ⊥ since Gm1e
∗
1 = H(s∗, e∗2, u), but either s 6= s∗ or

e2 6= e∗2.
2. b1 6= b∗1 and b2 6= b∗2, then s, e or both must have been changed. In case s changed and e = e∗,

Dec(·) outputs ⊥. If e altered while s = s∗ is still the same, the adversary must have known s∗ in
order to obtain H(s∗, e2, u) – and hence a preimage for a random oracle which we can use to solve the
underlying A-LWE problem. Finally, if both values s 6= s∗ and e 6= e∗ and Dec(·) outputs a message
other than ⊥, the attacker must have selected s and e or the message such that Gm1e1 = H(s, e2, u)
is satisfied.

3. b1 6= b∗1 and b2 = b∗2, then the decryption oracle outputs replay in case e2 − e∗2 ∈ Λ⊥q (Gm1) with
u = u∗ and short e2 − e∗2 indicating that b and b∗ decrypt to the same plaintext. Otherwise Dec(·)
outputs ⊥.

In all cases, the attacker learns nothing about the message concealed in b∗. Thus we have an IND-RCCA
secure encryption scheme, which is equivalent to NM-RCCA due to the large message space. The last
case implies a publicly detectable RCCA (pd-RCCA) scheme, where an arbitrary party is able to detect
modified ciphertexts that decrypt to the same plaintext. Based on the relation CCA2 ⇒ pd-RCCA ⇒
sd-RCCA ⇒ RCCA [CKN03], we even have a stronger security guaranty than plain RCCA. ut


