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Abstract In this paper, we propose an efficient and provably secure certificateless public
key cryptography (CL-PKC) based authenticated group key agreement (CL-AGKA) proto-
col that meets practicability, simplicity, and strong notions of security. Our protocol focuses
on certificateless public key cryptography (CL-PKC) which simplifies the complex certifi-
cate management in the traditional public key cryptography (PKC) and resolves the key es-
crow problem in identity-based cryptography (IBC). The authenticated group key exchange
(AGKA) protocols allow participants to communicate over a public network to exchange a
shared secret key. The CL-AGKA protocol is designed to established a group key between
group of participants by ensuring that no other outsiders can learn any information about
the agreed session key. Our CL-AGKA protocol presents a security notion in random ora-
cle model. It is formally proven that our CL-AGKA protocol provides strong Authenticated
Key Exchange (AKE) security. Thus, the proposed protocol provides provable security along
with low message exchange cost and computational cost to form the shared group key.

Keywords Certificateless public key cryptography · Authenticated group key agreement ·
Provable security · Random oracle model · Bilinear pairing

1 Introduction

Recently, different online group-oriented services like collaborative computer softwares,
video conferences and chatting increase with the advancement of wireless networks. In a
group communication over any hostile networks, message security, message integrity and
source authentication are the main important factors. Therefore, there is a increase demand
to develop a robust and efficient authenticated group key agreement (AGKA) protocol. In a
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AGKA protocol, a group of users are allowed to established a common secret key in each
session. The generated session key will help the group members to achieve above three
security attributes for group communication.

In the literature, AGKA protocols can be classified in three ways: (1) public key infras-
tructure (PKI)-based AGKA protocol (PKI-AGKA) (1; 2; 3; 4; 5; 6; 7; 8; 9); (2) identify-
based AGKA protocol (ID-AGKA) (10; 11; 12) and (3) certificateless AGKA protocol (CL-
AGKA) (13; 14; 15; 16; 17; 18). In PKI-AGKA protocols, a global certificate authority (CA)
manages the public keys and the related certificates of the users and thus, it leads to high
computational burden and reduces the efficiency of the PKI-based protocols. On the other
hand, the ID-AKGA protocols, based on Shamir’s (19) identity-based cryptography (IBC),
exclude the cost due to the complicated PKI. In any ID-AKGA protocol, user’s public iden-
tity (i.e., physical address, e-mail, etc.) is considered as the public key and anyone can use
it directly. Thus, ID-AKGA protocols have no certificate management costs. However, an
inherent problem known as private-key escrow problem of ID-AKGA protocols make them
less applicable for practical applications. Since, in ID-AKGA protocols, a third party, called
key generation center (KGC) computes the private key of all the users and thus there is
a possibility that PKG can impersonate the users. In any CL-AKGA protocol, based on
the certificateless public key cryptography (CL-PKC) proposed by Al-Riyami and Paterson
citeAP, does not required any global PKI and it removes the private-key escrow problem of
ID-AKGA protocol. Thus, the ID-AKGA protocols are most promising and efficient com-
pared to other protocols.

Based on the Diffie-Hellman key agreement (DH-KE) protocol (20), Bresson et al. firstly
put forwarded the provably secure AGKA protocols (1; 2; 3) in the random oracle model
(21). The number of communication rounds of these protocols (1; 2; 3) is O(n), i.e., varies
linearly with the number of participants, n of the group. In (4), Bresson and Manulis dis-
cussed the strong security properties of AGKA protocol, proposed a strong security model
and then designed a provably secure three-round AGKA protocol. The proposed protocol
(4) provides the strong security in their security model. Another two AGKA protocols pro-
posed in (5; 6) require O(log2n) communication rounds. The AGKA protocols proposed
in (7; 8; 9) provide provable security in the random oracle model. These are constant round
protocols and require only two rounds to established a session key with in a group. The
protocols (1; 2; 3; 4; 5; 6; 7; 8; 9) are deployed with the help of public key infrastructure
(PKI).

Based on Joux’s one round three party key agreement protocol (22) and bilinear map-
ping (23), in 2003, Barua et al. (10) proposed an identity-based unauthenticated group key
agreement protocols and its authenticated version as well. The communication round of (10)
is O(log2n). Based on the one-way hash function, in 2002, Reddy and Nalla proposed an
ID-AGKA protocol (11) with O(log2n) rounds. Based on bilinear pairing, Choi et al. (12)
designed a constant round and formally secure ID-AGKA protocol protocol in the random
oracle model.

Based on the CL-PKC concept (24) and bilinear pairing, Heo et al. (13) introduced a
new CL-AGKA protocol without any formal security analysis. Unfortunately, Lee et al. (14)
analyzed that Heo et al.’s protocol (13) has session key forward security problem. To ex-
clude the problem of (13), Lee et al. (14) designed an improved CL-AGKA protocol. The
communication round is O(log2n) for both the protocols in (13; 14). In (15), the authors
have designed a CL-AGKA protocol including session key forward secrecy, provable secu-
rity and constant round features. However, Geng et al. R16 improved the protocol in (15) by
eliminating the forward secrecy problem of the session key. In (17), Teng and Wu proposed
a CL-AGKA protocol and its security model. The protocol is constant round and provable
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secure in the random oracle model. Based on the elliptic curve and CL-PKC, in (18), Lu
et al. proposed a CL-AGKA protocol with privacy-preservation for group communication
on an open network through resource-limited mobile devices. However, the scheme is not
formally secured.

In this article, we propose a robust provably secure CL-AGKA protocol that meets prac-
ticability, simplicity, and strong notions of security. Our proposed CL-AGKA protocol is
implemented based on CL-PKC, elliptic curve and bilinear maps. We also constructed two
security models against the adversaries AI andAII . We then proved that our CL-AGKA is
formally secured and provides strong authenticate key exchange (AKE) security in the pres-
ence of our adversarial models. In addition, formal security of the proposed scheme is based
on the intractability of bilinear Diffie-Hellman (BDH) problem and computational Diffie-
Hellman (CDH) problem. The proposed CL-AGKA protocol is a one round protocol that
requires low computational and communication costs than previous CL-AGKA protocols.
The security, computation and communication cost comparisons of our protocol with others
proved that the proposed protocol is secure and efficient. With the low computation cost and
strong security features of the proposed protocol makes it applicable in the areas where the
requirement of computation cost, storage space and communication are low.

We structured the rest of the part of the paper as follows. We explained the bilinear
pairing, mathematical hard problems and related assumptions in Section 2. The adversarial
models of CL-AGKA protocol against different adversaries are introduced in Section 3. We
demonstrated the proposed CL-AGKA protocol in Section 4. The security analysis and effi-
ciency analysis of the present protocol are described in Section 5 and Section 6, respectively.
This article is concluded in Section 7.

2 Preliminaries

2.1 Bilinear pairing

The field of bilinear pairing-based cryptography (23) has exploded over the past years. The
central idea is the construction of a mapping between two useful cryptographic groups which
allows for new cryptographic schemes based on the reduction of one problem in one group
to a different, usually easier problem in the other group.

Let Gp be an additive group of prime order p and Gm be a multiplicative group of same
order p. A bilinear map e : Gp ×Gp → Gm is a mapping such that for all P,Q ∈ Gp and
a, b ∈ Z∗p has following properties:

– e(aP, bQ)=e(P,Q)ab

– e(P,Q+R)=e(P,Q)e(P,R)

Definition 1 (Non-degenerate bilinear map). A bilinear map e is said to be non-degenerate
if there exists P ∈ Gp such that e(P, P ) generates the group Gm.

Definition 2 (Computable bilinear map). There exists an efficient polynomial time algo-
rithm to compute e(P,Q) for all P,Q ∈ Gp.

Definition 3 (Admissible bilinear map). A mapping e : Gp × Gp → Gm is said to be
an admissible bilinear map if (1) e is a bilinear map, (2) e is non-degenerate and (3) e is
efficiently computable.
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2.2 Computational hard problem and assumption

Definition 4 (Negligible function). A function ε(k) is said to be negligible if, for every
c > 0, there exists k0 such that ε(k) ≤ 1

kc for every k ≥ k0.

Definition 5 (Computational Diffie-Hellman (CDH) problem). Given a random instance
(P, aP, bP ), where P ∈ Gp, and a, b ∈ Z∗p , computation of abP is computationally hard
by a polynomial-time bounded algorithm. The probability that a polynomial time-bounded
algorithm A can solve the CDH problem is defined as AdvCDHA,Gp

= Pr[A(P, aP, bP ) =
abP : P ∈ Gp; a, b ∈ Z∗p ].

Definition 6 (Computational Diffie-Hellman (CDH) assumption). For any probabilistic
polynomial time-bounded algorithm A, AdvCDHA,Gp

≤ ε.

Definition 7 (Bilinear Diffie-Hellman (BDH) Problem). Let Gp and Gm be two groups of
prime order p and P be a generator ofGp. Let e : Gp×Gp → Gm be an admissible bilinear,
then the BDH problem states that for given a tuple (P , aP , bP , cP ) for some a, b, c ∈ Z∗p ,
it is hard to compute e(P, P )abc. The probability that a polynomial time-bounded algorithm
A can solve the BDH problem is defined as AdvBDHA,Gp,Gm

= Pr[A(P, aP, bP, cP ) =

e(P, P )abc : P ∈ Gp; a, b, c ∈ Z∗p ].

Definition 8 (Bilinear Diffie-Hellman (BDH) assumption). For any probabilistic polyno-
mial time-bounded algorithm AdvBDHA,Gp,Gm

≤ ε.

3 The formal security model

3.1 Security notions

The fundamental security notion for any AGKA protocol is to achieve authenticated key
exchange (AKE). Mutual authentication (MA) between protocol participants is also an im-
portant aspect of any AGKA protocol. We defined AKE security and ME of an AGKA
protocol as follows:

Definition 9 (AKE security). An AGKA protocol is said to achieve AKE security, if each
user is guaranteed that no user other than the legitimate protocol participant has knowledge
about the session key.

Definition 10 (Mutual authentication (MA)). An AGKA protocol is said to achieve MA, if
each user is assured that only its partners actually have possession of the shared session key.

3.2 Protocol participants and variables

We define, U={u1, u2, · · · , un} be the set of n participants. In order to established a group
key, some of the participants from U may wish to execute the protocol at any time any u
may associated with different participants of U to execute simultaneously more than one
instance of the protocol.Now we define the followings:

– Πi
u: The ith instance of u executing the protocol. Πi

u maintains a set of variables to
store the state of the protocol that gets updated during the course of protocol run.

– stateiu: The internal state information of Πi
u and it consisting of private and ephemeral

secret values used during the protocol execution.
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– sidiu: The session identity, which helps to identify each session uniquely. The sidiu is
known to all oracles in the corresponding session. It is publicly known to all.

– pidiu: The partner identity of Πi
u, which is the group of users with whom user u has

agreed to establish the session (including u). It is publicly known to all.

Definition 11 (Accepted state). The instance Πi
u enters an accepted state if it is successful

in calculating a valid group session key SKi
u 6= null.

Definition 12 (Accepted state). Two instances Πi
u and Πi

v are said to be partnered if and
only if,

1. Πi
u and Πi

v are in the accepted state.
2. sidiu = sidjv .
3. pidiu = pidjv .

3.3 Adversaries

An adversaryA is a probabilistic polynomial time (PPT) machine that has complete control
over the network. It interacts with the group users through queries. The adversary may delay,
replay, drop, modify, inject and change the delivery order of the messages. We considered
the following adversaries:

(a) Type I Adversary AI : AI adversary is modeled as a dishonest user who knows the
secret key of the user. However AI does not have access to partial private key of the
user. It cannot request the secret key for any user if the corresponding public key has
already been replaced.

(b) Type II Adversary AII : AII adversary is a malicious PKG and has access to the
master secret key of PKG. This type of adversary can compute the partial private keys
of users but may not query for the secret keys of users.

At any time, the adversary A ∈ {AI ,AII} has access to the following oracles for interac-
tion with the entities of the system:

– Send(Πi
u,M) : This query models adversaryA sending a message M to Πi

u of user u.
This query returns A with the output that would have generated by u after processing
M . If M is unexpected or erroneous then returned result is an empty string.

– Reveal Session Key(Πi
u): If Πi

u is accepted then this query returns the corresponding
session key SKi

u, otherwise a null value.
– Reveal Master Secret Key(PKGU ): This query returns the master secret key s of

PKG, who issued the identity-based partial private keys of the users of U .
– Reveal Partial Private Key(u): This oracle returns the identity-based partial private

key of user u to A.
– Reveal Secret Value(u): This oracle returns the secret value of user u to A.
– Corrupt(u): This query returns the full private key sku of u to A.
– Request Public Key(u): This query returns the public key of u to A.
– Reveal State(Πi

u): This oracle returns stateiu of Πi
u to A.

– Test(Piiu): This query can be accessed only once by A during the entire execution of
the challenge for a user u which is fresh. This oracle randomly chooses a bit b. If b = 1,
the session key SKi

u corresponding to Πi
u is returned to A, otherwise a random value

is returned.
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After the Test query,Amay execute other queries until the session remains fresh. At the end
of the challenge, A outputs a bit b′ and wins the game if b = b′. The advantage of A in
breaching the protocol is given by: AdvA(k) = |2P [b = b

′
]− 1|

Definition 13 (Correctness). An AGKA protocol is said to be correct if Πi
u and Πj

v are
partners for a given session, are in the accepted state of the protocol and both generate the
same session key i.e., SKi

u = SKj
v .

Definition 14 (Corrupted user and instance). The user u is said to be corrupted if A issued
a Corrupt(u) for Πi

u. We can say that the instance Πi
u is corrupted, if A issued a Reveal

State(Πi
u) query to Πi

u.

Definition 15 (Week/Strong Freshness Model). An instanceΠi
u is said to be fresh in a week

corruption model if the following conditions hold true:

(i) Πi
u enters into an accepted state.

(ii) A has not been asked Reveal Session Key(Πi
u) or Reveal State(Πi

u) query to Πi
u or any

of its partners.
(iii) A has not corrupted any user in pidiu before every instance associated with SKi

u had
terminated.

In the strong freshness model an instance Πi
u is said to be fresh if (i) and (ii) holds as above

and (iii) the adversary did not corrupt any user in pidiu before Πi
u terminated.

Definition 16 (Week/Strong Corruption Model). A PPT adversary A is said to operate in
a weak corruption model if it is given access to Send, Reveal Session Key, Reveal Secret
Value, Reveal Partial Private Key, Request Public Key, Corrupt and Test queries. In
the strong corruption model the adversary has Reveal State query in addition to the above
queries of the weak corruption model.

Definition 17 (Week/Strong AKE Security). A CL-AGKA protocol is AKE secure if for
any PPT adversary A the AdvA(k) is negligible in k. If A has access to the Reveal State
query then it provides strong AKE security otherwise the protocol operates in weak AKE
security.

Definition 18 (Week/Strong MA Security). An adversaryA violates the MA security notion
of a correct CL-AGKA protocol if at some point during the protocol run, there exist an
uncorrupted user ui whose instance Πm

i has accepted SKm
i and another uncorrupted user

uj ∈ pidmi , such that

(i) There exists no instance Πn
j with (pidmi , sid

m
i ) = (pidnj , sid

n
j ); or

(ii) There exists an instance Πn
j with (pidmi , sid

m
i ) = (pidnj , sid

n
j ) that has accepted with

SKm
i 6= SKn

j .

Definition 19. SuccMA
A (k) be the success probability of A in winning the MA security. A

protocol is said to provide MA security if SuccMA
A (k) is negligible for any A. If A is al-

lowed to issue Reveal State query then the protocol achieves strong MA security otherwise,
the protocol achieves weak MA security.

4 Proposed one-round CL-AGKA protocol

In this section, we will present our CL-AGKA protocol using bilinear pairing and elliptic
curve. We listed different notations in Table 1.

The protocol is divided into following three phases:
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Table 1 List of notations used in the proposed one-round CL-AGKA protocol.

Notations Description
PKG Private key generator
k Security parameter
p Large prime number, p ≥ 2k

ui ith user (1 ≤ i ≤ n)
IDi Identity of the user ui (1 ≤ i ≤ n)
Gp Additive cyclic group of order p
Gm Multiplicative group of of order p
e Admissible bilinear map, where e : Gp ×Gp → Gm
Zp Set of points {0, 1, 2, · · · , p− 1}
Z∗p Multiplicative group of points {1, 2, · · · , p− 1}
s/P0 Private/public key of PKG, P0 = sP
xi Secret value of the user ui (1 ≤ i ≤ n)
Pi Public value of the user ui, Pi = xiP (1 ≤ i ≤ n) ,
Qi Identity-based public key of the user ui, Qi = H1(IDi||Pi) (1 ≤ i ≤ n)
Di Identity-based secret key of the user ui, Di = sQi (1 ≤ i ≤ n)
ski Full private key of the user ui, ski = 〈Di, xi〉 (1 ≤ i ≤ n)
pki Full public key of the user ui, pki = 〈Qi, Pi〉 (1 ≤ i ≤ n)
SK Secret session key computed by the users {u1, u2, · · · , un}
AI ,AII Polynomial time bounded adversary of Type I and Type II
C Polynomial time bounded algoriothm/challenger
Hi, i = 1, 2, 3, 4 Secure hash functions, H1 : {0, 1}∗ → Gp, H2 : {0, 1}∗ → Z∗p ,

H3 : {0, 1}∗ ×Gm ×Gm → Z∗p and H4 : {0, 1}∗ → {0, 1}k
‖ Concatenation operation
⊕ Bitwise XOR operation

4.1 Setup phase

In this phase, 1k is given as input to the PKG where k is the security parameter. Then the
PKG

(a) chooses a k-bit prime number p and two groups Gp (additive group) and Gm (multi-
plicative group) of the same order p.

(b) chooses an admissible bilinear pairing e : Gp ×Gp → Gm.
(c) selects a generator P of Gp with order n and computes g = e(P, P ) ∈ Gm.
(d) chooses s ∈R Z∗p as the master secret key and sets P0 = sP as its public key.
(e) selects cryptographic secure hash functions: H1 : {0, 1}∗ → Gp, H2 : {0, 1}∗ → Z∗p ,

H3 : {0, 1}∗ ×Gm ×Gm → Z∗p and H4 : {0, 1}∗ → {0, 1}k.
(f) publishes the system parameters params = {Gp, Gm, e, P, P0, g,H1, H2, H3, H4}.

4.2 Set secret value phase

This algorithm takes params and IDi of the user ui as input and outputs the secret value
xi ∈R Z∗p .

4.3 Set public value phase

The user ui takes params and xi as input and computes the public key as Pi = xiP .
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4.4 Partial private key extract phase

The user ui sends 〈IDi, Pi〉 to PKG through a secure channel. PKG takes as input params
and 〈IDi, Pi〉, then computes Qi = H1(IDi||Pi) as the partial public key and Di = sQi
as the partial private key. PKG then secretly communicates Di to ui.

4.5 Set private key phase

The user ui sets its full private key as ski=〈Di, xi〉.

4.6 Set public key phase

The user ui sets its full public key as pki=〈Qi, Pi〉.

4.7 Authenticated group key agreement phase

Round 1. The users {u1, u2, · · · un} execute the following:
(a) Each ui (1 ≤ i ≤ n) computes hij=H2(xiPj), gij=e(hijDi, Qj) for (1 ≤ i ≤

n, i 6= j).
(b) Each ui chooses ri ∈R Z∗p and computesRi=H2(ri)P , σij=H2(ri)⊕H3(IDi||Ri||gij)

for (1 ≤ i ≤ n, i 6= j). The user ui then unicasts 〈IDi, Ri, σij〉 to uj for
(1 ≤ j ≤ n, j 6= i) and keeps H2(ri) secret.

(c) Upon receipt of 〈IDj ,Rj , σji〉 from uj , ui computesR′j=(σji⊕H3(IDj ||Rj ||gji)P
and then authenticates uj by checking whether R′j=Rj holds. If it is true, ui com-
putes H2(rj)=σji ⊕H3(IDj ||Rj ||gji) for (1 ≤ j ≤ n, j 6= i) and computes the
session key as SK=H4(sidi||pidi||H2(r1)||H2(r2)|| · · · ||H2(rn)).

5 Security analysis

Theorem 1 The proposed model CL-AGKA protocol provides strong AKE security against
AI in the random oracle model provided BDH problem is intractable.

Proof Let there be a Type I adversary AI against the protocol with a non-negligible advan-
tage AdvAKEAI

(k) in polynomial time. Therefore the adversary AI can win the game with
non-negligible probability ε, then we can show that there exists an algorithm C that helps
AI to solve an random instance of the BDH problem. SupposeAI is given an random tuple
of the BDH problem 〈P , aP , bP , cP 〉, the adversary then tries to compute e(P, P )abc. At
the beginning of the game C chooses a random instance 〈P , aP , bP , cP 〉 and then sets
P0 = aP as the public key of PKG, where a ∈R Z∗p is unknown to AI . It then publishes
system parameters params = {Ep, Gp, Gm, e, P , P0 = aP , g, H1, H2, H3, H4} to
AI as public parameters. C maintains following lists to avoid inconsistency and for quick
response to the adversary AI :

– List for H1 oracle HList
1 : This list stores tuple of the form of 〈IDi, Pi, Qi, xi, Di〉.

– List for H2 oracle HList
2 : This list stores tuple of the form of 〈Mij , Nij〉.

– List PublicKeyList: This list stores tuple of the form of 〈IDi, Πt
i , xi, Pi〉.
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All the lists HList
1 , HList

2 and PublicKeyList are initially empty and are updated by
C as the execution of protocol progresses. Now C simulates the queries as follows:

– Hash queries to H1: Assume that AI can ask at most q1 queries. Let us suppose AI
submits H1 query with 〈IDi, Pi〉 to C. Now C responds as given below:
(a) If 〈IDi, Pi〉 already appears in a tuple 〈IDi, Pi, Qi, xi, Di〉 in HList

1 where Qi
and Di are not null then C responds with pre-computed Qi.

(b) If 〈IDi, Pi〉 = 〈IDA, PA〉, then C sets QA = bP , updates the tuple as 〈IDA, PA,
QA, xA, ⊥〉 in HList

1 and returns QA.
(c) If 〈IDi, Pi〉 = 〈IDB , Pb〉, then C sets QB = cP , updates the tuple as 〈IDB , PB ,

QB , xB , ⊥〉 in HList
1 and returns QB .

(d) Otherwise C chooses ri ∈R Z∗p , which have not been chosen earlier, and stores
〈IDi, Pi, Qi = riP , xi, Di = riaP 〉 into list HList

1 . C then replies back with
H1(IDi||Pi) = Qi.

– Hash queries to H2: Assume that AI can ask at most q2 queries. Let us suppose AI
submits H2(Mij) query to C. Now C responds as given below:
(a) If the tuple 〈Mij , Nij〉 exists in the list HList

2 , C returns H2(Mij) = Nij .
(b) Otherwise, C chooses a new random value Nij ∈R Z∗p , updates the list HList

2 by
inserting the tuple 〈Mij , Nij〉 and returns H2(Mij) = Nij .

– Public key queries to PublicKeyList: When AII submits query for public key for
〈IDi,Πt

i 〉, then C responds as follows:
(a) If 〈IDi, Πt

i 〉 exists in the tuple as 〈IDi, Πt
i , xi, Pi〉 in the list PublicKeyList,

then C replies with Pi.
(b) Otherwise, C chooses a random number xi ∈R Z∗p computes the public key as

Pi = xiP and updates this information in PublicKeyList. C also updates the
HList

1 as 〈IDi, Pi, Qi, xi, ⊥〉.
– Send(Πl

i ,M ): If M is not an empty string then C responds according to the description
of the security model. If M is empty, then C looks through the list HList

1 and checks
whether the pair 〈IDi, Pi,Qi, xi,Di〉 and each user who has an instance partnered with
Πl
i are in the list HList

1 . If 〈IDi1 , Pi1 , Qi1 , xi1 , Di1〉, 〈IDi2 , Pi2 , Qi2 , xi2 , Di2〉,
· · · , 〈IDim , Pim , Qim , xim , Dim〉 are not in the list, then C issues H1(IDi1 ||Pi1),
H1(IDi2 ||Pi2), · · · , H1(IDim ||Pim) queries. Now C performs following action:
(a) If Πl

i is not equal to any instance that is a partner of Πt
A or Πr

B then C computes
hij = H2(xiPj) and gij = e(hijDi, Qj) (1 ≤ j ≤ n, j 6= i). C then returns 〈hij ,
gij) (1 ≤ j ≤ n, j 6= i).

(b) If the instanceΠl
i is a partner ofΠt

A orΠr
B , then C does the computation as follows:

– hij = H2(xiPj)
– gij = e(hijDi, Qj) where (1 ≤ j ≤ n, j 6= i, j 6= A, j 6= B).

Now C computes for j = {A,B} as shown below:
– hiA = H2(xiPA)
– hiB = H2(xiPB)
– giA = e(hiADi, QA)
– giB = e(hiBDi, QB)

Finally, C responds with 〈hij , gij〉 (1 ≤ j ≤ n, j 6= i, j 6= A, j 6= B) and 〈hiA, giA, hiB , giB〉.
– Reveal Session Key(Πt

i ): C initially keeps an empty listRSList. Each tuple inRSList

is of the form 〈Πt
i , SKt

i 〉 Then C proceeds as follows:
(a) If Πt

i already appears in RSList then C returns SKt
i .
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(b) Otherwise, if there exists a partner instance Πs
j of Πt

i in RSList as 〈Πs
j , SKs

j 〉,
then C responds with SKs

j as the session key of instance Πt
i .

(c) Else, C chooses random value SKt
i ∈ {0, 1}k that has not been chosen previously

and updates the list RSList by inserting 〈Πt
i , SKt

i 〉. Then C returns SKt
i .

– Reveal Partial Private Key(IDi, Pi): C does a lookup in the list HList
1 . If 〈IDi, Pi〉

is not in the list, then C executes H1(IDi||Pi). If Di =⊥ then C aborts the game,
otherwise returns Di = riaP from the list.

– Reveal Secret Value((IDi, Pi)): C looks through the list HList
1 . If 〈IDi, Pi〉 is not in

the list, then C executes H1(IDi||Pi) and returns xi.
– Reveal State(Πi

u): If Πi
u is in accepted state then C responds with stateiu. Otherwise,

C returns an empty string.
– Request Public Key(Πi

u): C issues a query with the pair 〈IDu,Πi
u〉 to the listPublicKeyList.

PublicKeyList query returns the public key as Pu. Now C further relays this informa-
tion to the adversary.

– Test(Πi
u): C aborts the game if any of the following conditions hold true:

(a) If Πi
u 6= Πt

A or Πi
u 6= Πr

B .
(b) If Πi

u is not partnered with Πt
A or Πr

B .
(c) There exists a user ul ∈ pidtA or ul ∈ pidrB who has been corrupted.
(d) Πt

A or Πr
B or any of their partners has been asked the Reveal Session Key or Reveal

State query.
Otherwise, C randomly chooses a bit b. If b = 1, the session key SKi

u corresponding
to the instance Πi

u is returned to the adversary otherwise a random value in the session
key space is returned.

The adversary executes the protocol for i = A, j = B and finally returns its guess to C.
Now C computes hAB = H2(xAPB) and gAB = e(hABDA, QB) = e(DA, QB)

hAB =
e(aQA, QB)

hAB = e(abP, cP )hAB = e(abP, cP )hAB = e(P, P )abchAB . Therefore, C
is able to compute e(P, P )abc = (gAB)

−hAB . Thus, the given BDH problem is solved as
e(P, P )abc = (gAB)

−hAB for the given random tuple 〈P , aP , bP , cP 〉. However, it is
assumed that the BDH assumption holds true for any PPT algorithm and hence our model
provides strong AKE security against an active PPT adversary AI of Type I, in the random
oracle model.

Reduction cost analysis: Let E1, E2 and E3 be the events as described below:

– Event E1: The challenger C aborts the game.
– Event E2: The query H2(xAPB) has been asked.
– Event E3: The challenger C chooses H2(xAPB) from the list HList

2 correctly.

Claim 1. Pr[E1] ≥ 1
nqs

where n is the number of protocol participants and qs be the
number of Send queries.

Proof Consider the following events:
Event L1: The adversary has asked the Reveal Partial Private Key(IDI , Pi) query.
Event L2: The adversary queried for Reveal State(Πl

i ) or Reveal Session Key(Πl
i ) where

Πl
i = Πt

I or Πl
i is partnered with πtI .

Event L3: There exists a user ui ∈ pidtI which has been corrupted.
Event L4: The adversary does not choose Πt

I or any of its partners as a challenge fresh
oracle.
Thus we can write Event E1 = L1 ∧ L2 ∧ L3 ∧ L4. If the adversary chooses Πt

I or
any of its partners as a challenge fresh oracle, then no user in pidtI is corrupted and no
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instance partnered with Πt
I (including instance Πt

I ) has been asked the Reveal State or
Reveal Session Key query. Thus L4 ⇒ L2∧L3. So we haveE1 = L1∧L4. Hence we have
Pr[E1] = Pr[L1 ∧ L4] ≥ 1

nqs
.

Claim 2. For the event E2 we have Pr[E2] ≥ 2ε .

Proof As per the assumption of our model,H2 is a random oracle and thus Pr[Succ|E2] =
1
2 . By assumption, we have |Pr[Succ]− 1

2 | ≥ ε.
NowPr[Succ] = Pr[Succ|E2]Pr[E2]+Pr[Succ|E2]Pr[E2] ≤ Pr[Succ|E2]Pr[E2]+

Pr[E2] =
1
2Pr[E2] + Pr[E2] =

1
2 + 1

2Pr[E2] and Pr[Succ]Pr[Succ|E2]Pr[E2] =
1
2−

1
2Pr[E2], so we have ε ≤ |Pr[Succ]− 1

2 | ≤
1
2Pr[E2] which implies thatPr[E2] ≥ 2ε.

Claim 3. Pr[E3] =
1
q2

.

Proof The probability that challenger C chooses H2(xAPB) from the list HList
2 correctly

is 1
q2

as C can make at most q2 queries to the list HList
2 . Hence Pr[E3] =

1
q2

.

Claim 4. The probability that C solves the BDH problem isPr[C(P, aP, bP, cP, e(P, P )abc =
1 : a, b, c ∈ Z∗p )] ≥ 2ε

nqsq2
.

Proof The probability that C solves the BDH problem 〈P, aP, bP, cP 〉 for some a, b, c ∈
Z∗p is Pr[E1 ∧ E2 ∧ E3]. Thus Pr[C(P, aP, bP, cP, e(P, P )abc = 1 : a, b, c ∈ Z∗p )] =
Pr[E1 ∧ E2 ∧ E3] ≥ 2ε

nqsq2
.

Theorem 2 The proposed CL-AGKA protocol provides strong AKE security against the
adversaryAII of Type II, in the random oracle model provided CDH problem is intractable.

Proof Suppose there is a PPT adversary AII of Type II, which can successfully breach
our protocol with non-negligible probability ε, then there exists a PPT algorithm C that can
solve an instance of CDH problem with non-negligible probability. That is if AII is given
a random instance 〈P , aP , bP 〉 of CDH then AII will return abP in polynomial time. At
the beginning of the game, C chooses s ∈ Z∗p as the master secret key and sets P0 = sP
as PKG’s public key. It then publishes system parameters params = {Ep, Gp, Gm, e, P ,
P0 = sP , g, H1, H2, H3, H4} and master secret key s to AII as public parameters. C
responds to AII for H2 oracle, Request Public Key oracle, Reveal Session Key oracle
and Reveal State oracle in the same way as for Type I adversary AI explained earlier. C
responds to hash queries ofH1, public key queries of PublicKeyList, Reveal Secret Value
oracle, Send and Test oracles as follows:

– Public key queries to PublicKeyList: When AII submits query for public key for
〈IDi, Πt

i 〉, then C responds as follows:
(a) If 〈IDi, Πt

i 〉 exists in the tuple ask 〈IDi, Πt
i , xi, Pi〉 of the list PublicKeyList,

then C replies with Pi.
(b) IfAII queries for any instance of IDA, then C assigns xA =⊥, PA = aP updates

the list PublicKeyList as 〈IDA,Πt
A,⊥, PA = aP 〉 andHList

1 list as 〈IDA, PA,
QA, ⊥, DA〉 correspondingly. then replies with PA.

(c) If AII queries for any instance of IDB , then C assigns xB =⊥, PB = bP updates
the list PublicKeyList as 〈IDB , Πt

B , ⊥, PB = bPrangle and HList
1 list as

〈IDB , PB , QB , ⊥, DB〉 correspondingly. C then replies with PB .
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(d) Otherwise, C chooses a random number xi ∈ Z∗p computes the public key as Pi =
xiP and updates this information in PublicKeyList. C also updates HList

1 list as
〈IDi, Pi, Qi, xi, Di〉. Finally, C returns Pi.

– Hash queries to H1: C maintains HList
1 list that stores tuples of the form of 〈IDi, Pi,

Qi, xi, Di〉. The list is initially empty and gets updated during the protocol run. Let us
suppose AII submits H1 query with 〈IDi, Pi〉 to C. Now C responds as given below:
(a) If 〈IDi, Pi〉 already appears in a tuple 〈IDi, Pi, Qi, xi, Di〉 in HList

1 where Qi is
not null, then C responds with pre-computed Qi = H1(IDi||Pi).

(b) If 〈IDi, Pi〉 = 〈IDA, PA〉, then C computes QA = H1(IDA||PA), updates the
tuple as 〈IDA, PA, QA, ⊥, DA〉 in HList

1 and returns QA.
(c) If 〈IDi, Pi〉 = 〈IDB , PB〉, then C computes QB = H1(IDB ||PB), updates the

tuple as 〈IDB , PB , QB , ⊥, DB〉 in HList
1 and returns QB .

(d) Otherwise, C chooses random value Qi from Gp, which have not been chosen ear-
lier, and stores 〈IDi, Pi, Qi, xi, Di〉 into list HList

1 . C then replies back with
H1(IDi||Pi) = Qi.

– Reveal Secret Value(IDi, Pi): C looks through the list HList
1 . If 〈IDi, Pi〉 is not in

the list then C queries H1(IDi||Pi) and returns xi.
– Send(Πl

i ,M ): If M is not an empty string then C responds according to the description
of the security model. If M is empty, then C looks through the list HList

1 and checks
whether the pair 〈IDi, Pi〉 and each user who has an instance partnered with Πt

i are in
the list HList

1 . If 〈IDi1 , Pi1 , Qi1 , xi1 , Di1〉, 〈IDi2 , Pi2 , Qi2 , xi2 , Di2〉, · · · , 〈IDim ,
Pim , Qim , xim , Dim〉 are not in the list then C issues H1(IDi1 ||Pi1), H1(IDi2 ||Pi2),
· · · , H1(IDim ||Pim) queries. Now C performs following action:
(a) If Πl

i is not equal to any instance that is a partner of Πt
A then C computes hij =

H2(xiPj) and gij = e(hijDi, Qj) (1 ≤ j ≤ n, j 6= i). C then returns 〈hij , gij〉.
(b) If the instance Πl

i is a partner of Πt
A, then C does the computation as follows:

– hij = H2(xiPj)
– gij = e(hijDi, Qj) where (1 ≤ j ≤ n, j 6= i, A).

Now C computes for j = A as shown below:
– hiA = H2(xiPA)
– giA = e(hiADi, QA) Finally, C responds with 〈hij , gij〉 (1 ≤ j ≤ n, j 6=
i, A) and 〈hiA, giA〉.

– Test(Πi
u): C aborts the game if any of the following conditions hold true:

(a) If Πi
u 6= Πt

A and Πi
u is not partnered with πtA.

(b) There exists a user ul ∈ pidtA who has been corrupted.
(c) Πt

A or any of their partners has been asked the Reveal Session Key or Reveal State
query.

Otherwise, C randomly chooses a bit b. If b = 1, the session key SKi
u corresponding

to the instance Πi
u is returned to the adversary otherwise a random value in the session

key space is returned.
The adversary finishes all the queries and returns its guess to C. Now C queries the
list HList

2 for the tuple 〈MAB , NAB〉. If there is no tuple for the queried input then
C outputs failure otherwise if the tuple corresponding to MAB is found then C com-
putes abP = MAB . Note that the value of MAB according to the protocol is MAB =
xAPB = abP .

Thus the given CDH problem is solved as abP = MAB for the given random tuple 〈P ,
aP , bP 〉. However it is assumed that the CDH assumption holds true for any PPT algorithm
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and hence our CL-AKGA protocol provides strong AKE security against an active PPT
adversary AII of Type II in the random oracle model.

Reduction cost analysis: Let E1, E2 and E3 be the events as described below:

– Event E1: The challenger C aborts the game.
– Event E2: The query H2(xAPB) has been asked.
– Event E3: The challenger C chooses H2(xAPB) from the list HList

2 correctly.

Claim 5. Pr[E1] ≥ 1
nqs

where n is the number of protocol participants and qs be the
number of Send queries.

Proof Consider the following events:
Event L1: The adversary has asked the Reveal SEcret Value(IDI , PI ) query.
Event L2: The adversary queried for Reveal State(Πl

i ) or Reveal Session Key(Πl
i ) where

Πl
i = Πt

I or Πl
i is partnered with πtI .

Event L3: There exists a user ui ∈ pidtI whose secret value has been revealed to the
adversary by being asked the Revel Secret Value query.
Event L4: The adversary does not choose Πt

I or any of its partners as a challenge fresh
oracle.
Thus, we can write event E1 = L1 ∧ L2 ∧ L3 ∧ L4. If the adversary chooses Πt

I or
any of its partners as a challenge fresh oracle, then no user in pidtI is corrupted and no
instance partnered with Πt

I (including instance Πt
I ) has been asked the Reveal State or

Reveal Session Key query. Thus L4 ⇒ L2∧L3. So we haveE1 = L1∧L4. Hence we have
Pr[E1] = Pr[L1 ∧ L4] ≥ 1

nqs
.

Claim 6. For the event E2 we have Pr[E2] ≥ 2ε .

Proof As per the assumption of our model,H2 is a random oracle and thus Pr[Succ|E2] =
1
2 . By assumption, we have |Pr[Succ]− 1

2 | ≥ ε.
NowPr[Succ] = Pr[Succ|E2]Pr[E2]+Pr[Succ|E2]Pr[E2] ≤ Pr[Succ|E2]Pr[E2]+

Pr[E2] =
1
2Pr[E2] + Pr[E2] =

1
2 + 1

2Pr[E2] and Pr[Succ]Pr[Succ|E2]Pr[E2] =
1
2−

1
2Pr[E2], so we have ε ≤ |Pr[Succ]− 1

2 | ≤
1
2Pr[E2] which implies thatPr[E2] ≥ 2ε.

Claim 7. Pr[E3] =
1
q2

.

Proof The probability that challenger C chooses H2(xAPB) from the list HList
2 correctly

is 1
q2

as C can make at most q2 queries to the list HList
2 . Hence Pr[E3] =

1
q2

.

Claim 8. The probability that challenger C solves the given CDH problem isPr[C(P, aP, bP, abP ) =
1 : a, b ∈ Z∗p )] ≥ 2ε

nqsq2
.

Proof The probability that challenger C solves the CDH problem 〈P , aP , bP 〉 for some
a, b ∈ Z∗p is Pr[E1 ∧ E2 ∧ E3]. Thus Pr[C(P, aP, bP, abP ) = 1 : a, b ∈ Z∗p )] =
Pr[E1 ∧ E2 ∧ E3] ≥ 2ε

nqsq2
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Table 2 Notation for execution time while performing different mathematical operations and their conver-
sion.

Notations Definition and conversion
Tm Time required for executing a modular multiplication operation
Te Time required for executing a modular exponentiation operation, Te ≈ 240Tm
Tb Time required for executing a bilinear pairing operation, Tb ≈ 87Tm
Tpm Time required for executing an elliptic curve scalar point multiplication operation, Tpm ≈ 29Tm
Th Time required for executing a map-to-point function, Th ≈ 29Tm
Ti Time required for executing a modular inversion operation, Ti ≈ 11.6Tm

6 Efficiency analysis

In this section we will discuss the efficiency of our protocol with other schemes. For the
performance comparison with respect to computation cost, we define following notations
(25; 26) in Table 2.

Now we will compare computation cost of various protocols against our proposed pro-
tocol. We analyzed the overall computation cost of key agreement phase of the proposed
scheme as follows:

– In step (a), each user ui (1 ≤ i ≤ n) computes hij=H2(xiPj), gij=e(hijDi, Qj) for
the user uj (1 ≤ j ≤ n, i 6= j). Thus, the computation overhead for the user ui is
(n− 1)Tpm + (n− 1)Tb. Thus the

– In step (b), the user ui computes Ri=H2(ri)P , σij=H2(ri) ⊕ H3(IDi||Ri||gij) for
(1 ≤ i ≤ n, i 6= j). Hence the computation cost for the user ui is nTpm.

– In step (c), the user uj , ui executes R′j=(σji ⊕ H3(IDj ||Rj ||gji)P . Hence the com-
putation cost for the user ui is (n− 1)Tpm.

Therefore, for the key agreement phase, the computational overhead of the user ui is (3n−
2)Tpm + (n − 1)Tb ≈ (174n − 145)Tm. In the same fashion, we have calculated the
computation costs of other protocols in (13; 14; 15; 17; 18). Since the the computation
cost of the general hash function (not map-to-point hash function) is very low against other
cryptographic operations, therefore in the comparative analysis, we ignored the the general
hash function. The comparative analysis is included in Table 3, which shows that our key
agreement protocol is computation costs efficient.

Table 3 Efficiency Analysis of proposed scheme with others.

Protocol No. of Round Provably Secure Computation Cost for Ui
Hao et al. (13) log2n No (4n− 3)Tb ≈ (368n− 261)Tm
Lee et al. (14) log2n No (3n− 2)Tpm + (2n− 2)Tb ≈ (261n− 232)Tm
Geng et al. (16) Two No (4n− 4)Tpm + 4nTb + nTi ≈ (496n− 116)Tm
Teng and Wu (17) Two Yes (3n− 2)Tpm + (n− 1)Tb + (n− 1)Te ≈ (414n− 385)Tm
Lu et al. (18) Two No (9n+ 1)Tpm + nTi ≈ (271n+ 29)Tm
Proposed One Yes (3n− 2)Tpm + (n− 1)Tb ≈ (174n− 145)Tm

In the following, we evaluate the communication overheads of the our protocol against
the protocols in (13; 14; 15; 17; 18). In the key agreement phase of our scheme, the user
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ui (1 ≤ i ≤ n) unicasts the message 〈IDi, Ri, σij〉 to the user uj (1 ≤ j ≤ n, j 6= i).
Therefore the keeping communication costs for the user ui is (n− 1)|p|. Here, |p| denotes
that the length of a point in Gp and we assume that |Z∗p | = |Gp|. In Table 4, we listed
the communication costs of our protocol and other existing group key agreement protocols
proposed in (13; 14; 15; 17; 18). The Table 4 demonstrates that our protocol is efficient in
terms of communication costs. In addition, our protocol is analyzed against the adversaries
with different attack capabilities and it is shown to be provably secure in the random oracle
model against BDH and CDH problems. Compared to the protocols in (13; 14; 15; 17; 18),
only our protocol is a one-round group key agreement protocol in which a group of users
U={u1, u2, · · · , un} established a secure and common session key between them in each
session.

Table 4 Communication cost in various CL-AGKA protocols.

Protocol Communication overhead for Ui
Hao et al. (13) (n− 1)|p|
Lee et al. (14) 5(n− 1)|p|
Geng et al. (16) 3(n− 1)|p|
Teng and Wu (17) 2(n− 1)|p|
Lu et al. (18) (n− 1)|p|
Proposed (n− 1)|p|

7 Conclusion

We developed a shared group key agreement protocol based on certificateless public key
cryptography and elliptic curve cryptography using bilinear maps to maximize the effi-
ciency. A formal model of adversaries of Type I and II, represented as AI and AII were
constructed. We provided a formal proof of strong AKE in the presence of the mentioned ad-
versarial model in the random oracle model. Our authenticated one round protocol reduces
the message exchange cost. The computation cost is further reduced by using the concepts
of elliptic curve cryptography. However, it may be noted that the security of the proposed
scheme is based on the intractability of BDH and CDH problems. Security and computation
cost comparisons of our protocol with other existing schemes prove to be secure and effi-
cient. Due to the low computation cost and strong security features, the proposed scheme
is applicable in the areas where the computation cost, storage space and communication
bandwidth are limited.
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