
Eliminating Leakage in Reverse Fuzzy Extractors

André Schaller
Security Engineering Group

Technische Universität Darmstadt
and CASED

Darmstadt, Germany
Email: schaller@seceng.

informatik.tu-darmstadt.de

Boris Škorić
SEC group

Eindhoven University of Technology
Eindhoven, The Netherlands

Email: b.skoric@tue.nl

Stefan Katzenbeisser
Security Engineering Group

Technische Universität Darmstadt
and CASED

Darmstadt, Germany
Email: katzenbeisser@seceng.

informatik.tu-darmstadt.de

Abstract—In recent years Physically Unclonable Functions
(PUFs) have been proposed as a promising building block for
security related scenarios like key storage and authentication.
PUFs are physical systems and as such their responses are
inherently noisy, precluding a straightforward derivation of
cryptographic key material from raw PUF measurements. To
overcome this drawback, Fuzzy Extractors are used to eliminate
the noise and guarantee robust outputs. A special type are
Reverse Fuzzy Extractors, shifting the computational load of
error correction towards a computationally powerful verifier.
However, the Reverse Fuzzy Extractor reveals error patterns to
any eavesdropper, which may cause privacy issues (if the PUF key
is drifting, the error pattern is linkable to the identity) and even
security problems (if the noise is data-dependent and multiple
protocol transcripts can be linked to the same user). In this work
we investigate this leakage and propose a modified protocol that
eliminates the problem.

I. INTRODUCTION

In the past decade Physically Unclonabe Functions (PUFs)
have attracted increasing attention. With their desirable prop-
erty of unclonability they were proposed as a promising
security building block that could be applied to various iden-
tification and authentication applications. Since then several
protocols featuring PUFs have been proposed, such as key
storage, authentication and remote attestation schemes [1]–
[3]. In this paper we focus on key storage. This application
is sometimes referred to as ‘Physically Obfuscated Key’. In
particular, we will consider the use of a PUF key in the context
of privacy-preserving protocols that are designed to hide the
identity of the prover from eavesdroppers.

PUFs are physical systems and thus their measurements
always contain a certain amount of noise. However, cryp-
tographic primitives like hashes and ciphers do not tolerate
any noise. Thus, the noise in a PUF measurement must be
dealt with before the measurement can be given as input
to a cryptographic primitive. This introduces a complication:
redundancy data (for the error correction) needs to be stored
somewhere as part of the PUF enrollment data. The usual
attacker model states that enrollment data is always visible
to the adversary. Hence, error correction needs to be designed
such that the redundant data hardly leaks information about
the PUF key. An error correction scheme that satisfies this
requirement is variously known as Helper Data Scheme (HDS),
Secure Sketch (SS) or Fuzzy Extractor (FE). FEs have the
additional property that they generate a (nearly) uniform key. A
FE can be trivially derived from a SS. One of the most popular

HDSs is the Code Offset Method that employs a linear Error-
Correcting Code (ECC). Particularly compact implementations
are possible if syndrome decoding is used.

In many PUF applications the prover is assumed to be a
resource-constrained device. In the key reconstruction phase
the prover needs to perform an ECC decoding step, which may
be infeasible given the constraints. An elegant solution was
proposed in [4], where it was detailed how the ECC decoding
can be securely outsourced to the verifier. The scheme was
dubbed ‘Reverse Fuzzy Extractor’. The most difficult HDS task
for the prover is now merely to compute a syndrome, which
can be done very efficiently in hardware. On the downside, in
each protocol run the Reverse FE reveals to eavesdroppers
which error pattern is present in the PUF measurement as
compared to the enrollment measurement. It was argued in
[4] that the PUF key is secure as long as the measurement
noise is independent of the PUF value itself.

In this paper we argue that this assumption is likely not
fulfilled by many practical PUF realizations. Our results are
based on the observation that PUF instances and thus their
measurements exhibit a ‘drift’ in the values of PUF response
bits. This drift is a function of time and it is characteristic
to individual PUF instances. Considering this drift an attacker
might be able to identify PUF instances by analyzing the error
pattern that is communicated between client and server, since
the drift is directly reflected in the error pattern. This creates
a privacy risk, in particular if the PUF is used in privacy-
preserving protocols.

Furthermore, once the adversary is able to distinguish
between different PUF devices, the revealed error patterns may
cause a security risk on top of the privacy issue. This risk exists
if the probability distribution of the noise is data-dependent;
then the noise reveals information about the PUF key.

In this work we are elaborating on both issues – the privacy
risk of linking error patterns to individual PUF devices, and the
security risk of error patterns leaking information about PUF
keys – by analyzing real PUF measurements. In particular,
we show that several PUF types indeed show a drift, which
can be modeled. Subsequently, we propose a protocol that
improves the Reverse Fuzzy Extractor and eliminates security
and privacy risks stemming from this drift.

The rest of the paper is organized as follows. In Section II
we give a brief overview on PUFs and Fuzzy Extractors.
Section III defines notations and introduces the Reverse Fuzzy

Extractor. The problem statement is explained in Section IV.
In Section V we evaluate our assumptions on real data. We
introduce an improved version of the Reverse Fuzzy Extractor
protocol in Section VI. Lastly, we conclude our work in
Section VII.

II. RELATED WORK

A. Physically Unclonable Functions

A Physically Unclonable Function (PUF) is a complex
physical structure that generates a response to a pysical stim-
ulus. The response depends on the challenge as well as on the
micro- or nanoscale physical structure of the PUF itself. One
typically assumes that the PUF can not be cloned, not even by
the manufacturer of the device. Furthermore, the challenge-
response behavior of the physical system is assumed to be
complex enough such that the response to a given challenge
can not be predicted.

Several different PUF constructions exist; for an overview
we refer to [5]. Among them are memory-based PUFs, such
as SRAM PUFs, which exploit biases in memory cells. At
the power-up phase these cells initialize to either the value of
zero or one. Most cells show a significant tendency to initialize
to one of both values. The entirety of the the start-up values
creates a start-up pattern, which is taken as PUF response.
PUFs can also exploit random timing characteristics of circuits,
among them ring oscillator PUFs and Arbiter PUFs.

Due to physical characteristics of the device, measurments
of a PUF response are subject to noise; thus, subsequent
measurements will be slightly different. In order to use them in
cryptographic protocols, a stable response must be generated.
This is done by employing a Fuzzy Extractor [6], which
extracts the stable part of the PUF response and transforms
it to a uniformly distributed value.

B. Fuzzy Extractors

The authors of [6] introduced Fuzzy Extractors as a means
to deal with the noise. Commonly, Fuzzy Extractors work
in two phases, a generation phase Gen() performed upon
enrollment and a reconstruction phase Rec() performed after
each measurement. During Gen(), a secret key K and a public
Helper Data W are derived from a noisy PUF reference
(enrollment) measurement X . The algorithm Rec() transforms
a noisy PUF measurement X ′ back into the key K, thereby
using the Helper Data W . This works as long as X and X ′

are close enough (e.g. are two PUF responses to the same
challenge). Usually the reconstruction is achieved using an
error correcting code.

III. PRELIMINARIES

A. Notation

The notation ‘log’ stands for the base-2 logarithm. Random
variables are written in capital letters and their values in
lowercase. The binary entropy function is written as

h(p)
def
= −p log p− (1− p) log(1− p). (1)

The Shannon entropy of a random variable X is denoted as
H(X), and mutual information as I(X;Y).

B. The Reverse Fuzzy Extractor

We briefly review the Reverse Fuzzy Extractor protocol
[4].1 We omit all details that are not critical for the key
reconstruction itself (i.e., signal processing of the raw PUF
data, additional protection of the helper data, hashes of the
key, quantities derived from the key, usage of the key, etc.).
The description below is identical to the ‘Syndrome-Only’
Code Offset Method [7] with the sole difference that syndrome
decoding is outsourced to the verifier.

System setup:
The parties agree on a linear error correcting code C, with mes-
sage length k and codeword length n. The encoding algorithm
is Enc : {0, 1}k → {0, 1}n, and the algorithm for computing
the syndrome is denoted as Syn : {0, 1}n → {0, 1}n−k.
The code is chosen such that an efficient syndrome decoder
SynDec : {0, 1}n−k → {0, 1}n exists. The parties also agree
on a key derivation function KeyDeriv : {0, 1}n → {0, 1}`.

Enrollment:
A PUF enrollment measurement X ∈ {0, 1}n is obtained. The
helper data W = Syn(X) is computed. The prover stores W ,
while the verifier stores K = KeyDeriv(X).

Reconstruction:
1) The prover performs a fresh measurement X ′ ∈ {0, 1}n.
He computes Σ = W ⊕ Syn(X ′) and sends Σ to the verifier.
2) The verifier computes the error pattern E = SynDec(Σ)
and sends E to the prover.
3) The prover computes the estimators X̂ = X ′ ⊕ E and
K̂ = KeyDeriv(X̂).

Note that this protocol is extremely lightweight, as the
prover only has to perform one Syn and one KeyDeriv
operation. Note further that Σ = Syn(X ⊕ X ′) due to the
linearity of the code C. Hence, if there is not too much noise,
E is the error pattern that maps X ′ back to X . Also note
that E does not leak anything about X only if the noise is
independent of the data.

IV. PROBLEM STATEMENT

The Reverse Fuzzy Extractor protocol as described in [4]
and Section III-B has two potential problems.

If the PUF noise is not independent of the measurement X ,
then some information about X is leaked to eavesdroppers
via the error pattern E, communicated in step 2 of the
reconstruction. For instance, imagine that for a single bit of
the PUF response a 0 → 1 transition is much more likely
than a 1 → 0 transition. Then the error locations in E point
to locations where a zero in X is much more likely than a
one. This is a security risk. It will become a serious threat
if the adversary observes multiple transcripts from the same
prover, carrying different information about X , and is able
to link those transcripts together. Note that this problem is
only mitigated by construction if the PUF is used in privacy-
preserving identification protocols (i.e., protocols in which an
eavesdropper does not learn the PUF identity). In this case
the adversary cannot link different protocol transcripts to the
same PUF so that it is difficult for him to properly combine the

1We actually describe a more general primitive: a Secure Sketch.

different pieces of information that he has. For other protocols
we show in the next section that this security risk is present.

Another problem arises from the fact that biases in bits
of the PUF response tend to drift over time as the PUF ages.
This can lead to error patterns that are unique for each PUF.
Even if there is no leakage about X , the error pattern E may
leak the identity of the PUF. If the prover is using the PUF to
run a privacy-preserving identification protocol (as opposed to
authentication), then this identity leakage is a privacy risk. If
this problem is not solved, it is impossible to use the Reverse
Fuzzy Extractor for privacy-preserving identification.

Note that there is an interaction between the two problems:
the identity leakage makes it easier for the adversary to exploit
the key leakage from the error patterns.

V. EVALUATION OF THE LEAKAGE

Some PUF instances show a bias of individual response bits
towards either zero or one. In this section we show that these
biases change over time, which we call the drift of a PUF.
Furthermore, we provide a model for the drift and estimate
the information leakage due to the drift in Reverse Fuzzy
Extractors.

A. Drift model

We adopt the bias-based PUF model proposed in [8]. We
refer to this work for a detailed explanation. In brief, we denote
the bias of a PUF resonse bit i during enrollment as a value
bi ∈ [0, 1]; it can be estimated by counting the number xi
of occurrences of a ‘1’ bit at position i during k enrollment
measurements: bi = xi/k. A PUF is fully characterized by a
vector of biases, b = (bi)

n
i=1. Similarly, b′i represents the bias

of bit i at a later time. It can be estimated from the number
x′i of ‘1’ bits in position i in a series of l PUF responses:
b′i = x′i/l.

Finally, we model the drift by a transition probability
τ(b′|b) indicating how likely it is that the PUF has bias
vector b′ at a later time given that it had bias vector b
at enrollment. Assuming that the n PUF response bits are
mutually independent (this assumption seems justified as we
did not see any correlation between response bits in the PUF
types under investigation), and that drift behavior is the same
for all bits, we can express the transition probability for the
entire PUF as

τ(b′|b) =
∏
i∈[n]

τ0(b′i|bi). (2)

The function τ0 does not depend on the bit index i. To estimate
τ0 we made single-bit histograms of drifted bit biases, condi-
tioned on the enrolled bit bias, i.e., for each possible value of
bi we made a histogram counting bi → b′i occurrences. Here
the bi → b′i transitions were collected from all bits. Finally we
converted the histograms to probability distributions.

B. Drift results

We made use of PUF measurement data obtained in
the UNIQUE project2. During this project custom ASICS

2http://www.unique-project.eu

with different PUF types, including SRAM, latch, D-Flip-
Flop (DFF), Arbiter and ring oscillator PUFs, were developed
and tested under different conditions. The UNIQUE data set
includes PUF measurements of devices which were exposed
to an accelerated aging process. The simulation of aging is
based on the Negative Bias Temperature Instability (NBTI)
mechanism, carried out by by operating the ASICs at an
extreme temperature of +85 ◦C and with high supply voltage
of 1.44V (120% of the 1.2V standard Vdd). The treatment
lasted for 2150 hours corresponding to an aging factor of 18.2.
This way, continuous use of the PUF-enhanced device can be
simulated in short time.

Three different datasets were available for our experiments:
enrollment data taken right after manufacturing (referred to as
time t0), measurements at the beginning of the aging process
(at time t1) and measurements after the aging process had
terminated (time t2). Measurements of t1 correspond to a
simulated operating time of approximately 1 week with respect
to t0 whilst the dataset at t2 contains measurements of devices
with a simulated operating time of approximately 4.5 years.
For our bias transition model we compared t0 versus t1 and
t0 versus t2.

Figure 1 shows τ0 for SRAM, latch, DFF and Ring
Oscillator (RO) PUFs, computed between enrollment data and
measurements taken at time t1 (‘beginning of aging’) and t2
(‘end of aging’), respectively.

In Figures 1a, 1c and 1e we can observe a diagonal ‘saddle’
between (0, 0) and (1, 1) for the data taken at time t1. This
indicates that SRAM, latch and DFF PUFs show a stable
behavior regarding their bits and keep the same bias over
a short operating time. The RO PUF (see Figure 1g) is an
exception, featuring an ‘island’ of high probabilities in the
middle of the plot area, indicating more transitions to bias 0.5
(random behavior); this is expected, as ring oscillators can be
used to generate random numbers as well.

After the aging process, we see a flattening of the ‘saddle’
for all PUF types (Figures 1b, 1d, 1f, 1h). This indicates, as
expected, that there is significant drift after a longer operation
time. Note that not all the transition probabilities are symmetric
under 0 ↔ 1 reversal; this phenomenon can mainly be
observed for the latch and RO PUFs.

The FE reconstruction phase typically employs only a
single measurement (l = 1). Hence, in practice FEs usually
do not use fine-grained information about the biases to derive
stable keys. Instead, fine-grained bias information is used only
for the selection of reliable bits. A FE will typically store
pointers to stable bits (i.e., bits that have an enrollment bias
close to 0 or 1); only those response bits are then used for key
derivation.

In Fig. 2 we show the aging effect on bits with enrollment
bias bi ∈ [0, 0.05] ∪ [0.95, 1]. The vertical axis depicts the
bit error rate, considering only those bits. Again, we compute
the error rate between enrollment measurements (t0) and data
obtained at times t1 or t2. In the boxplots the red line in each
box indicates the median bit error rate. The colored bottom and
top of each box marks the 25th/75th percentile of the bit error
rate. The height of the boxes display the inter quartile range
(IQR). The whisker’s ends indicate the lowest and highest bit

(a) SRAM: beginning of aging (b) SRAM: end of aging

(c) Latch: beginning of aging (d) Latch: end of aging

(e) DFF: beginning of aging (f) DFF: end of aging

(g) RO: beginning of aging (h) RO: end of aging

Fig. 1. Bias transition probabilities τ0(b′|b) between enrollment and
beginning of aging (left) and end of aging (right) for SRAM, latch, DFF
and ring oscillator (RO) PUFs.

error rates that are within 1.5 times the IQR of the box edges.
Single outsider values are marked by red plus signs.

The results indicate that the t0 → t2 bit error rate is higher
for the SRAM and ring oscillator PUFs with respect to the
t0 → t1 bit error rate.

SRAM t1 SRAM t2 LATCH t1LATCH t2 DFF t1 DFF t2 RO t1 RO t2

0

0.02

0.04

0.06

0.08

0.1

Dataset pairs: beginning of aging (t1) versus end of aging (t2)

Bi
t e

rro
r r

at
es

 o
f s

ta
ble

 ce
lls

 w
ith

 re
sp

ec
t t

o
t0

Fig. 2. Comparison of bit error rate (fractional Hamming Distance) between
the enrollment measurements (t0) the measurements from the beginning of
the aging process (t1), respectively the end of the aging process (t2)

C. Leakage analysis

The results of Section V-A show that aging indeed causes
drifting of the PUF measurement X ′ over time. Thus, the noise
E = X ′ ⊕X in the Reverse FE protocol contains a part D ∈
{0, 1}n (the drift) that changes only over long time scales,
while the rest of E consists of short-timescale random noise
N unrelated to aging. We can represent E as E = D ⊕N .

In order to analyze leakage, we introduce a simplified drift
model in which the biases are binarized to 0/1 values, and
only reliable components are taken into account. The model
has only two parameters: p0, the probability of a 0 → 1
bit transition, and p1, the probability of a 1 → 0 transition.
The numerical values of these parameters slowly vary as a
function of time. Table I shows the transition probabilities
0 → 1 and 0 → 1 of stable cells with enrollment biases
bi ∈ [0, 0.05] ∪ [0.95, 1]. As expected the numbers show a
significant imbalance for SRAM, DFF and latch PUFs with
respect to the two transition probabilities.

We first quantify the privacy leakage of the Reverse FE
protocol by observing the drift.

Lemma 1: Let X1 and X2 be the enrollment measurements
of two different PUFs, uniformly distributed on {0, 1}n. Let
D1 and D2 be their respective drifts. Let the drift be inde-
pendent in each bit, with parameters p0, p1 as defined above.
Then the Hamming distance between D1 and D2 is binomial-
distributed, with parameters n and Puneq, where

Puneq =
1

2
− 1

2
(p0 − p1)2. (3)

Proof: In bit i we have the following conditional probabilities,

Prob[D1,i 6= D2,i|X1 = x1, X2 = x2]

=

{
2p0(1− p0) if x1,i = x2,i = 0
2p1(1− p1) if x1,i = x2,i = 1

p0p1 + (1− p0)(1− p1) if x1,i 6= x2,i
(4)

We compute Puneq
def
= Prob[D1,i 6= D2,i]

= Ex1x2Prob[D1,i 6= D2,i|X1 = x1, X2 = x2]
= 1

4

∑
x1,ix2,i

Prob[D1,i 6= D2,i|X1 = x1, X2 = x2].
Performing the summation and then simplifying the result

TABLE I. TRANSITION PROBABILITIES 0→ 1 AND 0→ 1 FOR t0 VS. t1 AND t0 VS. t1
(BIASES bi ∈ [0, 0.05] ∪ [0.95, 1]. MEAN±STANDARD DEVIATION).

Transition SRAM LATCH DFF RING

t0 vs. t1

0→ 1 0.0036± 0.0002 0.0025± 0.0007 0.0017± 0.0003 0.0076± 0.0055
1→ 0 0.0020± 0.0001 0.0012± 0.0003 0.0019± 0.0004 0.0050± 0.0043

t0 vs. t2

0→ 1 0.0130± 0.0004 0.0222± 0.0135 0.0062± 0.0028 0.0350± 0.0199
1→ 0 0.0091± 0.0004 0.0041± 0.0038 0.0029± 0.0010 0.0323± 0.0184

yields (3). The drift in each bit position is independent;
therefore the Hamming weight is the result of n independent
events, each of which increments the Hamming weight with
probability Puneq.

Corollary 2: Let X1 and X2 be the enrollment measure-
ments of two different PUFs, uniformly distributed on {0, 1}n.
Let D2 and D2 be their respective drifts. Let the drift be inde-
pendent in each bit, with parameters p0, p1. Then the expected
Hamming distance between D1 and D2 is µHD = nPuneq, and
the variance is σ2

HD = nPuneq(1− Puneq).

Proof: Follows from Lemma 1 and the properties of the
binomial distribution.

If p0 and p1 are large enough, the drift D becomes a
unique characterizing property for each PUF, as quantified
in Corollary 2. Furthermore, if the short-timescale noise does
not mask the drift, D is observable by the adversary through
the error pattern E in the Reverse FE protocol transcripts
(Section III-B): The adversary can observe multiple instances
of an authentication protocol run by the same PUF device; by
averaging he gets a good estimate of D.

Next we quantify the key leakage. Since we did not specify
the KeyDeriv algorithm, we cannot compute the mutual
entropy between D and the PUF key in general. Instead, we
compute the mutual information between D and X .

Theorem 3: Let X be a PUF enrollment measurement,
uniformly distributed on {0, 1}n. Let D be the drift. Let the
drift be independent in each bit position, with parameters p0,
p1. Then

H(D) = nh(
p0 + p1

2
), (5)

I(D;X) = n

[
h(
p0 + p1

2
)− h(p0) + h(p1)

2

]
. (6)

Proof: Since all PUF bits are independent, we focus on a
single (arbitrary) bit i. We have Prob[Di = 1] = Prob[Xi =
0]Prob[Di = 1|Xi = 0]+Prob[Xi = 1]Prob[Di = 1|Xi = 1]
= (p0+p1)/2. This yields H(Di) = h(p0+p1

2). Eq. (5) follows.
Next we have

H(Di|Xi) = ExiH(Di|Xi = xi)

= Pr[Xi = 0]H(Di|Xi = 0)

+Pr[Xi = 1]H(Di|Xi = 1)

=
1

2
h(p0) +

1

2
h(p1). (7)

We multiply H(Di|Xi) by n and use I(D;X) = H(D) −
H(D|X).

Theorem 3 shows precisely how much the adversary learns
about X from the observed D. Only if the drift direction is
independent of X (parameters p0 = p1), then I(D;X) = 0,
meaning that there is no leakage. In the case p1 = p0+α, with
small |α| � 1, a Taylor expansion of (6) gives I(D;X) =
α2/(8p0(1− p0) ln 2) +O(α3).

VI. SOLVING THE LEAKAGE PROBLEMS

In this section we present a modified Reverse Fuzzy
Extractor in which the bias drift does not cause leakage. We
use a combination of two ideas. First, the prover keeps track of
the computed error patterns E over time. If E starts to exhibit
behavior constant in time (a drift D), then the prover device
modifies its stored helper data in such a way that the drift is
compensated; future error patterns E will thus not reveal the
drift.

Second, the prover adds a small amount of binary-
symmetric-channel noise R to his PUF measurement in order
to improve privacy: the syndrome of X ′ is slightly changed
by this modification, and the communicated error pattern E
changes to E ⊕ R. The noise characteristics of R have to be
tuned such that the error correction is not hampered. Note,
however, that the drift compensation reduces the amount of
noise; hence there is ‘room’ for R.

A. Proposed Solution

We assume that the prover device has additional non-
volatile (NV) memory in which it can store a drift vector
D ∈ {0, 1}n and a list L of up to Nmax error patterns observed
during the previous executions of the protocol.

The vector D serves to keep track how far the PUF has
drifted away from the enrolled PUF measurement X . The
reconstruction protocol does error correction with respect to
the drifted PUF value Xdrifted, and then shifts the result by
the amount of D. Taking the drifted value Xdrifted as the zero
point for error correction has the advantage that the number
of bit errors is reduced. Note that the stored helper data W̃ is
the syndrome of Xdrifted.

System setup:
The same as in Section III-B.

Enrollment:
The same as in Section III-B. In addition, the prover’s list L
is initialized to ∅, and D is initialized to the zero string.

Reconstruction:
1) The prover

(a) performs a fresh measurement Y ∈ {0, 1}n,

(b) adds a small amount of (pseudo)random noise R to Y
obtaining Y ′ = Y ⊕R,
(c) computes Σ = W̃ ⊕ Syn(Y ′) and sends Σ to the
verifier.

2) The verifier computes the error pattern E = SynDec(Σ)
and sends E to the prover.
3) The prover computes Xdrifted = Y ′⊕E and the estimators
X̂ = Xdrifted ⊕D and K̂ = KeyDeriv(X̂).
4) If K̂ = K then the prover performs the following actions.

(a) Add the error pattern E⊕R to the list L. If necessary,
the oldest entry in L is discarded to make place.
(b) If L contains Nmax entries, check if there are bit
positions that occur in most of the entries. If so, construct
an error pattern e ∈ {0, 1}n consisting of these positions,
replace D by D ⊕ e, replace the helper data W̃ by
Syn(Xdrifted ⊕ e), and set L = ∅.

B. Security analysis of the proposed protocol

Our solution as proposed in Section VI-A obviously hides
the drift D from adversaries who observe E. Thus, the
privacy and security problems mentioned in the introduction
are mitigated.

Nevertheless, the proposed solution requires storing addi-
tional data in the prover’s NV memory, namely the drift D
and the list L of error patterns besides the code-offset helper
data W̃ . In an extended adversary model, one assumes that
the adversary has access to all stored data. In this section we
study how the security is affected by the additional information
revealed to these adversaries.

Theorem 4: An adversary who observes the prover’s NV
memory has the following amount of uncertainty about X ,

H(X|W̃DL) = H(X|W)− [H(W̃ |D)− H(W)] (8)
−I(D;X)− [H(L|DW̃)− H(L|Xdrifted)].

Proof: We write

H(X|W̃DL) = H(XW̃DL)− H(W̃DL). (9)

Applying the chain rule again we expand these terms as

H(XW̃DL) = H(X) + H(W̃DL|X)

= H(X|W) + H(W) (10)
+H(D|X) + H(W̃ |DX)︸ ︷︷ ︸

0

+H(L|W̃DX)︸ ︷︷ ︸
H(L|Xdrifted)

and

H(W̃DL) = H(D) + H(W̃ |D) + H(L|DW̃). (11)

In (10) we have used the fact that L is noise on Xdrifted and
therefore can depend at most on Xdrifted itself. We substitute
(10) and (11) into (9). �

In Theorem 4, the term H(X|W) is the ‘old’ result, for the
ordinary code offset method. The three other expressions are
corrections.

• If all noise is data-independent, then all three correction
terms vanish.

• The correction term H(W̃ |D)− H(W) is always small.
• If X is uniform and the simple noise model with the

parameters p0, p1 is adopted, then the correction I(D;X)
follows from Theorem 3.

• If the noise is strongly data-dependent, then the correction
terms I(D;X) and H(L|DW̃) − H(L|Xdrifted) are not
negligible.

Theorem 4 reveals a security issue if a) the noise is data-
dependent and b) if the drift significantly breaks the 0 ↔ 1
symmetry. The new part of the helper data – drift D and
List L – reveals more information about the PUF key (via
leakage about X) then the old part of W . Thus, in the worst
case scenario with a data-dependent noise and an asymmetric
drift our proposed protocol shifts the vulnerable part of the
old Reverse FE procotol (the error pattern) to the device non-
volatile memory (the Helper Data).

VII. CONCLUSION

We addressed leakage issues of the Reverse Fuzzy Ex-
tractor. In particular, we argued that a) a security risk exists
if the PUF bias drift is not independent of the PUF biases
themselves, and b) the drift causes a privacy risk. We modeled
the drift and evaluated our model on real data, confirming the
existence of the drift. We analyzed the leakage in a simplified
model. We proposed a modified Reverse FE protocol that
solves most of the leakage issues. In the case of eavesdropping
adversaries, the privacy leakage and key leakage are com-
pletely eliminated. In the case of adversaries who have access
to the enrollment data, our solution’s security is specified by
the correction terms in Theorem 4, which can be dangerous
only if the noise is strongly data-dependent. In future work
we will test our improved Fuzzy Extractor on real data to get
detailed insights in its resilience.

REFERENCES

[1] P. Tuyls, G.-J. Schrijen, F. Willems, T. Ignatenko, and B. Škorić, “Secure
key storage with PUFs,” Security with Noisy Data-On Private Biometrics,
Secure Key Storage and Anti-Counterfeiting, pp. 269–292, 2007.

[2] U. Rührmair, H. Busch, and S. Katzenbeisser, “Strong PUFs: Models,
Constructions, and Security Proofs,” in Towards Hardware-Intrinsic
Security, 2010, pp. 79–96.

[3] S. Schulz, A.-R. Sadeghi, and C. Wachsmann, “Short Paper: Lightweight
Remote Attestation Using Physical Functions,” in Proceedings of the
Fourth ACM Conference on Wireless Network Security, ser. WiSec ’11,
2011, pp. 109–114.

[4] A. Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R. Sadeghi,
I. Verbauwhede, and C. Wachsmann, “Reverse Fuzzy Extractors: En-
abling Lightweight Mutual Authentication for PUF-Enabled RFIDs,”
in Financial Cryptography and Data Security, ser. Lecture Notes in
Computer Science, 2012, vol. 7397, pp. 374–389.

[5] R. Maes and I. Verbauwhede, “Physically Unclonable Functions: A Study
on the State of the Art and Future Research Directions,” in Towards
Hardware-Intrinsic Security, ser. Information Security and Cryptography,
2010, pp. 3–37.

[6] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors:
How to Generate Strong Keys from Biometrics and Other Noisy Data,”
SIAM Journal on Computing, vol. 38, no. 1, pp. 97–139, 2008.

[7] B. Škorić and N. de Vreede, “The Spammed Code Offset Method,” IEEE
Transactions on Information Forensics and Security, vol. 9, no. 5, pp.
875–884, May 2014.

[8] R. van den Berg, B. Škorić, and V. van der Leest, “Bias-based Modeling
and Entropy Analysis of PUFs,” in Proceedings of the 3rd International
Workshop on Trustworthy Embedded Devices, ser. TrustED ’13, 2013,
pp. 13–20.

