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Abstract. To gain strong confidence in the security of a public-key scheme, it is most desirable for the
security proof to feature a tight reduction between the adversary and the algorithm solving the under-
lying hard problem. Recently, Chen and Wee (Crypto ’13) described the first Identity-Based Encryption
scheme with almost tight security under a standard assumption. Here, “almost tight” means that the
security reduction only loses a factor O(λ) – where λ is the security parameter – instead of a factor
proportional to the number of adversarial queries. Chen and Wee also gave the shortest signatures whose
security almost tightly relates to a simple assumption in the standard model. Also recently, Hofheinz
and Jager (Crypto ’12) constructed the first CCA-secure public-key encryption scheme in the multi-user
setting with tight security. These constructions give schemes that are significantly less efficient in length
(and thus, processing) when compared with the earlier schemes with loose reductions in their proof of
security. Hofheinz and Jager’s scheme has a ciphertext of a few hundreds of group elements, and they
left open the problem of finding truly efficient constructions. Likewise, Chen and Wee’s signatures and
IBE schemes are somewhat less efficient than previous constructions with loose reductions from the same
assumptions. In this paper, we consider space-efficient schemes with security almost tightly related to
standard assumptions. As a step in solving the open question by Hofheinz and Jager, we construct an ef-
ficient CCA-secure public-key encryption scheme whose chosen-ciphertext security in the multi-challenge,
multi-user setting almost tightly relates to the DLIN assumption (in the standard model). Quite remark-
ably, the ciphertext size decreases to 69 group elements under the DLIN assumption whereas the best
previous solution required about 400 group elements. Our scheme is obtained by taking advantage of a
new almost tightly secure signature scheme (in the standard model) we develop here and which is based
on the recent concise proofs of linear subspace membership in the quasi-adaptive non-interactive zero-
knowledge setting (QA-NIZK) defined by Jutla and Roy (Asiacrypt ’13). Our signature scheme reduces
the length of the previous such signatures (by Chen and Wee) by 37% under the Decision Linear assump-
tion, by almost 50% under the K-LIN assumption, and it becomes only 3 group elements long under the
Symmetric eXternal Diffie-Hellman assumption. Our signatures are obtained by carefully combining the
proof technique of Chen and Wee and the above mentioned QA-NIZK proofs.

Keywords. CCA-secure encryption, multi-user, multi-challenge, signature, IND-CCA2 security, QA-
NIZK proofs, tight security, efficiency.

1 Introduction

Security of public-key cryptographic primitives is established by demonstrating that any successful
probabilistic polynomial time (PPT) adversary A implies a PPT algorithm B solving an (assumed)
hard problem. In order to be convincing, such “reductionist” arguments should be as tight as possible.
Ideally, algorithm B’s probability of success should be about as large as the adversary’s advantage. The
results of Bellare and Rogaway [9] initiated an important body of work devoted to the design of prim-
itives validated by tight security reductions in the random oracle model [22,23,39,20,21,10,24,49,1,38]
and in the standard model [21,7,49].

Tight security proofs may be hard to achieve and are even known not to exist at all in some
situations [23,38,34]. On the positive side, long-standing open problems have been resolved in the
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recent years. Hofheinz and Jager [32] showed the first public-key encryption scheme whose chosen-
ciphertext security [46,47] in the multi-user setting tightly relates to a standard hardness assumption,
which solved a problem left open by Bellare, Boldyreva and Micali [6] although their ciphertext is a
few hundreds group elements long. Chen and Wee [25] answered an important open question raised by
Waters [53] by avoiding the concrete security loss, proportional to the number of adversarial queries,
that affected the security reductions of all prior identity-based encryption (IBE) [15,50] schemes based
on simple assumptions, including those based on the dual system paradigm [54,41]. The results of [25]
also implied the shortest signatures almost tightly related to simple assumptions5 in the standard
model. In the terminology of [25], “almost tight security” refers to reductions where the degradation
factor only depends on the security parameter λ, and not on the number q of adversarial queries,
which is potentially much larger as it is common to assume λ = 128 and q ≈ 230.

The tighter security results of Chen and Wee [25] overcame an important barrier since, as
pointed out in [25], all earlier short signatures based on standard assumptions in the standard model
[53,35,33,55,56,12] suffered a Θ(q) loss in terms of exact security. On the other hand, the Chen-Wee
schemes are less efficient than previous solutions based on similar assumptions [53,41,19,12]. Likewise,
encryption schemes with tight multi-challenge chosen-ciphertext security [32,5] come at the expense
of much longer ciphertexts than constructions (e.g., [26]) in the single-challenge setting.6 In order to
exploit concrete security improvements in the choice of parameters, it is desirable to keep schemes
as efficient —from both computational and space viewpoints— as their counterparts backed by loose
reductions. This paper aims at rendering the constructions and techniques of [32,25] truly competitive
with existing signatures and encryption schemes based on simple assumptions in the standard model.

Our Contributions. In this paper, we construct a new public-key encryption scheme with almost
tight chosen-ciphertext (IND-CCA2) security in the multi-user, multi-challenge setting [6] under the
DLIN assumption. As in the setting of Chen and Wee, the underlying reduction is not as tight as those
of [32,5] since we lose a factor of O(λ). On the other hand, our construction provides much shorter
ciphertexts than previous tightly IND-CCA2-secure systems [32,5] based on the same assumption.
Moreover, our security bound does not depend on the number of users or the number of challenges, so
that our scheme can be safely instantiated in environments involving arbitrarily many users encrypting
as many ciphertexts as they like.

As an tool for achieving our encryption scheme (and a result of independent interest), we devise
a variant of the Chen-Wee signature scheme [25], which has been proved almost tightly secure under
the DLIN assumption, with shorter signatures in prime-order groups. Under the DLIN assumption,
each signature consists of 6 groups elements, instead of 8 in [25]. Under the K-linear assumption
(which is believed weaker than DLIN when K > 2), we reduce the signature length of [25] from 4K
to 2K + 2 and thus save Θ(K) group elements.

By combining our technique and the recent non-interactive proof systems of Jutla and Roy [37],
we can further shorten our signatures and obtain of 5 group elements per signature under the DLIN
assumption and 2K + 1 elements under the K-linear assumption. Our DLIN-based (resp. K-linear-
based) system thus improves upon the Chen-Wee constructions [25] by 37% (resp. nearly 50%) in
terms of signature length. Under the Symmetric eXternal Diffie-Hellman assumption (namely, the
hardness of DDH in G and Ĝ for asymmetric pairings e : G× Ĝ→ GT ), the same optimizations yield
signatures comprised of only 3 group elements, which only exceeds the length of Waters signatures [53]
by one group element. Since the SXDH-based signatures of [25] live in G4, we also shorten them by

5 By “simple assumptions”, we mean non-interactive (and thus falsifiable [44]) assumptions that can be described
using a constant number of group elements. In particular, the number of input elements in the description of the
assumption does not depend on the number of adversarial queries.

6 Using a hybrid argument, Bellare, Boldyreva and Micali [6] showed that any CCA2-secure encryption scheme in the
single-challenge setting remains secure if the adversary is given arbitrarily many challenge ciphertexts. However, the
reduction is linearly affected by the number q of challenge ciphertexts.
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one element (or 25%) under the same assumption. Our SXDH-based scheme turns out to be the
shortest known signature with nearly tight security under a simple assumption.

While randomizable in their basic variant, our schemes can be made strongly unforgeable in a
direct manner, without any increase of the signature length. In particular, we do not need generic
transformations based on chameleon hash functions, such as the one of Boneh el al. [16], which tend
to lengthen signatures by incorporating the random coins of the chameleon hashing algorithm. Using
the SXDH assumption and asymmetric pairings, we thus obtain the same signature length as the
CDH-based strongly unforgeable signatures of Boneh, Shen and Waters [16] with the benefit of a
much better concrete security (albeit under a stronger assumption).

Our signature schemes readily apply to construct a new efficient public-key encryption scheme
with almost tight chosen-ciphertext (IND-CCA) security in the multi-user, multi-challenge setting
[6]. Indeed, they easily lend themselves to the construction of new unbounded simulation-sound proof
systems (where the adversary remains unable to prove false statements after having seen polynomially
many simulated proofs for possibly false statements) with almost tight security. In turn, this yields
the most efficient constructions, to date, of IND-CCA-secure public-key encryption schemes in the
multi-challenge setting. By following the approach of [30,32], we obtain an almost tightly simulation-
sound proof system by showing that either: (i) a set of pairing product equations is satisfiable; and (ii)
committed group elements form a valid signature on the verification key of a one-time signature. In
this case, our randomizable signatures are very interesting candidates since they reduce the number
of signature components that must appear in committed form. In addition, the specific algebraic
properties of our signature scheme make it possible to construct an optimized simulation-extractable
proof system that allows proving knowledge of the plaintext using only 62 group elements, which
reduces our ciphertexts to only 69 group elements under the DLIN assumption. This dramatically
improves upon previous tightly secure constructions based on the same assumption [32,5] which
require several hundreds of group elements per ciphertext. Moreover, unlike [5], our system can also
be instantiated in asymmetric pairing configurations. We stress that, unlike [43] (which has a loose
security reduction), our simulation-sound proof system does not provide constant-size proofs of linear
subspace membership. Still, for the specific application of nearly tight CCA-security, our proof system
suffices to obtain relatively concise ciphertexts.

Concurrent to our work, Blazy, Kiltz and Pan [11] independently gave different constructions of
signature schemes with tight security under the SXDH, DLIN and other simple assumptions. Their
technique extends to provide (hierarchical) identity-based encryption schemes. Under the DLIN and
SXDH assumption, our optimized signatures are as short as theirs. Our approach bears similiarities
with theirs in that each signature can be seen as a NIZK proof that a message authentication code
is valid w.r.t. a committed key.

Our Techniques. Underlying our results is a methodology of getting security proofs with a short
chain of transitions from actual games to ideal ones. Our constructions build upon a signature scheme
of Jutla and Roy [36, Section 5], which is itself inspired by [17, Appendix A.3]. In [36], each signature
is a CCA2-secure encryption of the private key, where the message is included in the label [52] of
the ciphertext. The signer also computes a non-interactive zero-knowledge proof that the encrypted
value is the private key. The security proof uses the dual system encryption method [54,40,29] and
proceeds with a sequence of hybrid games heading for a game where all signatures encrypt a random
value while the NIZK proofs are simulated.

While Camenisch el al. [17] used Groth-Sahai proofs, Jutla and Roy obtained a better efficiency
using quasi-adaptive NIZK (QA-NIZK) proofs, i.e., where the common reference string (CRS) may
depend on the specific language for which proofs are being generated but a single CRS simulator
works for the entire class of languages. For the common task of proving that a vector of n group
elements belongs to a linear subspace of rank t, Jutla and Roy [36] gave computationally sound QA-
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NIZK proofs of length Θ(n−t) where the Groth-Sahai (GS) techniques entail Θ(n+t) group elements
per proof. They subsequently refined their techniques, reducing the proof’s length to a constant [37],
regardless of the number of equations or the number of variables. Libert el al. [43] independently
obtained similar improvements using different techniques.

Our signature schemes rely on the observation that the constant-size QA-NIZK proofs of [43,37]
make it possible to encode the label (which contains the message) in a bit-by-bit manner without
affecting the signature length. In turn, this allows applying the technique of Chen and Wee [25] so as
to avoid the need for q transitions, where q is the number of signing queries. As in the security proof
of [25], the signing oracle uses a semi-functional private key which is obtained by shifting a normal
private key by a factor consisting of a random function that depends on increasingly many bits of the
message in each transition. In the last game, the random function depends on all the message bits,
so that the shifting factor is thus totally unpredictable by the adversary.

Our construction of almost tightly CCA2-secure encryption scheme is based on a modification of
the Naor-Yung [46] paradigm due to [27,5]. The latter consists in combining an IND-CPA encryption
and a simulation-extractable proof of knowledge of the plaintext. In order to build an optimized
simulation-extractable proof, we take advantage of the simple algebraic structure of our signature
scheme and its randomizability properties. Our proof system is a simplification of the one in [5] and
shows that either: (i) A commitment is an extractable commitment to a function of the encryption
exponents; or (ii) Another commitment contained in the proof contains a valid signature on the
verification key of a one-time signature. Our signature scheme allows implementing this very efficiently.
Specifically, a real proof used by the encryption algorithm involves a commitment to a pseudo-
signature – which can be generated without the signing key – whereas a simulated proof uses a
real signature instead of a pseudo-signature. The perfect witness indistinguishability of Groth-Sahai
proofs on a NIWI CRS guarantees that the adversary will not be able to distinguish committed
pseudo-signatures from real signatures.

2 Background and Definitions

2.1 Hardness Assumptions

We consider groups (G, Ĝ,GT ) of prime-order p endowed with a bilinear map e : G× Ĝ→ GT . In this
setting, we rely on the standard Decision Linear assumption, which is a special case of the K-linear
assumption (see Definition 4 in Appendix E)) for K = 2.

Definition 1 ([14]). The Decision Linear Problem (DLIN) in G, is to distinguish the distributions

(ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), with a, b, c, d
R← Zp, z

R← Zp. The Decision Linear as-
sumption asserts the intractability of DLIN for any PPT distinguisher.

It will sometimes be convenient to use the following assumption, which is weaker than DLIN. As
noted in [18], any algorithm solving SDP immediately yields a DLIN distinguisher.

Definition 2. The Simultaneous Double Pairing problem (SDP) in (G, Ĝ,GT ) is, given a tuple of
group elements (ĝz, ĝr, ĥz, ĥu) ∈ Ĝ4, to find a non-trivial triple (z, r, u) ∈ G3\{(1G, 1G, 1G)} such that
e(z, ĝz) · e(r, ĝr) = 1GT and e(z, ĥz) · e(u, ĥu) = 1GT .

2.2 One-Time Linearly Homomorphic Structure-Preserving Signatures

Structure-preserving signatures [3,2] are signature schemes where messages and public keys all con-
sist of elements of a group over which a bilinear map e : G × Ĝ → GT is efficiently computable.
Constructions based on simple assumptions were put forth in [4,5].
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Libert el al. [42] considered structure-preserving with linear homomorphic properties (see Ap-
pendix B for formal definitions). This section recalls the one-time linearly homomorphic structure-
preserving signature (LHSPS) of [42].

Keygen(λ, n): Given a security parameter λ and the dimension n ∈ N of the subspace to be signed,

choose bilinear group (G, Ĝ,GT ) of prime order p. Then, choose ĝz, ĝr, ĥz, ĥu
R← Ĝ. For i = 1 to

n, pick χi, γi, δi
R← Zp and compute ĝi = ĝz

χi ĝr
γi , ĥi = ĥz

χi
ĥu

δi
. The private key is defined to be

sk = {(χi, γi, δi)}ni=1 while the public key is pk =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}ni=1

)
∈ Ĝ2n+4.

Sign(sk, (M1, . . . ,Mn)): To sign a vector (M1, . . . ,Mn) ∈ Gn using sk = {(χi, γi, δi)}ni=1, output

σ = (z, r, u) ∈ G3, where z =
∏n
i=1M

−χi
i , r =

∏n
i=1,M

−γi
i and u =

∏n
i=1M

−δi
i .

SignDerive(pk, {(ωi, σ
(i))}`i=1): given pk as well as ` tuples (ωi, σ

(i)), parse σ(i) as σ(i) =
(
zi, ri, ui

)
for i = 1 to `. Compute and return σ = (z, r, u), where z =

∏`
i=1 z

ωi
i , r =

∏`
i=1 r

ωi
i , u =

∏`
i=1 u

ωi
i .

Verify(pk, σ, (M1, . . . ,Mn)): Given a signature σ = (z, r, u) ∈ G3 and a vector (M1, . . . ,Mn),
return 1 if and only if (M1, . . . ,Mn) 6= (1G, . . . , 1G) and (z, r, u) satisfy

1GT = e(z, ĝz) · e(r, ĝr) ·
n∏
i=1

e(Mi, ĝi) , 1GT = e(z, ĥz) · e(u, ĥu) ·
n∏
i=1

e(Mi, ĥi) .

The one-time security of the scheme (in the sense of Definition 3 in Appendix B) was proved [42]
under the SDP assumption under a tight reduction. In short, the security notion implies the infeasibil-
ity of deriving a signature on a vector outside the subspace spanned by the vectors authenticated by
the signer. Here, “one-time” security means that a given public key allows signing only one subspace.

3 Shorter Signatures Almost Tightly Related to the DLIN Assumption

This section shows that LHSPS schemes and constant-size QA-NIZK proofs for linear subspaces can
be used to construct shorter signatures with nearly optimal reductions under the DLIN assumption.

The scheme builds on ideas used in a signature scheme suggested by Jutla and Roy [36, Section 5],
where each signature is a CCA2-secure encryption —using the message to be signed as a label— of the
private key augmented with a QA-NIZK proof (as defined in [36] and recalled in Appendix A) that
the encrypted value is a persistent hidden secret. As in [54,40,29], the security proof uses a sequence
of hybrid games which gradually moves to a game where all signatures contain an encryption of a
random value while the QA-NIZK proofs are simulated. At each step of the transition, increasingly
many signatures are generated without using the private key and the CCA2-security of the encryption
scheme ensures that this should not affect the adversary’s probability to output a signature that does
encrypt the private key. In the security proof of [36], the latter approach implies that: (i) the number
of transitions depends on the number of signing queries; and (ii) a CCA2-secure encryption scheme is
needed since, at each transition, the reduction has to decrypt the ciphertext contained in the forgery.

Here, our key observation is that, by using a QA-NIZK proof system where the proof length is
independent of the dimension of the considered linear subspace, the approach of [36] can be combined
with the proof technique of Chen and Wee [25] so as to reduce the number of game transitions while
retaining short signatures. In addition, the techniques of [25] allow us to dispense with the need for a
CCA2-secure encryption scheme. The security analysis actually departs from that of [36] and rather
follows the one of Chen and Wee [25]. The techniques of [36,17,29] argue that, even if the adversary
is given signatures where the private key is blinded by a semi-functional component, its forgery will
retain the distribution of a normal signature unless some indistinguishability assumption is broken.
Here, we follow [25] and blind the outputs of the signing oracle by a random function of increasingly
many bits of the message. Instead of using the same argument as in [36], however, we argue that
the adversary’s forgery will always have the same distribution as the signatures produced by the
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signing oracle. In the last game of the hybrid sequence, we prove that the adversary cannot retain
the same behavior as the signing oracle since the latter’s outputs are blinded by a random function
of all the message bits. In order to come up with the same kind of signature as the signing oracle,
the adversary would have to predict the value of the random function on the forgery message M?,
which is information-theoretically infeasible.

As in [25], by guessing exactly one bit of the target message, the reduction can efficiently test
whether the forgery has the same distribution as outputs of the signing oracle while remaining able
to embed a DLIN instance in outputs of signing queries. For L-bit messages, by applying arguments
similar to those of [45,25], we need L game transitions to reach a game where each signature encrypts
a random —and thus unpredictable— function of the message. As a result, we obtain DLIN-based
signatures comprised of only 6 group elements.

Keygen(λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p together with f, g, h, u1, u2
R← G.

1. For ` = 1 to L, choose V`,0, V`,1,W`,0,W`,1
R← G to assemble row vectors

V = (V1,0, V1,1, . . . , VL,0, VL,1) ∈ G2L , W = (W1,0,W1,1, . . . ,WL,0,WL,1) ∈ G2L .

2. Define the matrix M =
(
Mi,j

)
i,j

given by

M =


V > Idf,2L 12L×2L 12L×1 12L×1

W> 12L×2L Idh,2L 12L×1 12L×1

g 11×2L 11×2L u1 1

g 11×2L 11×2L 1 u2

 ∈ G(4L+2)×(4L+3) (1)

with Idf,2L = f I2L ∈ G2L×2L, Idh,2L = hI2L ∈ G2L×2L, where I2L ∈ Z2L×2L
p is the identity

matrix.
3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homomorphic signature of Sec-

tion 2.2 in order to sign vectors of dimension n = 4L+ 3. Let skhsps = {(χi, γi, δi)}4L+3
i=1 be the

private key, of which the corresponding public key is pkhsps =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
.

4. Using skhsps = {χi, γi, δi}4L+3
i=1 , generate one-time homomorphic signatures {(Zj , Rj , Uj)}4L+2

j=1

on the rows M j = (Mj,1, . . . ,Mj,4L+3) ∈ G4L+3 of M. These are obtained as

(Zj , Rj , Uj) =

(
4L+3∏
i=1

M−χij,i ,
4L+3∏
i=1

M−γij,i ,
4L+3∏
i=1

M−δij,i

)
, ∀j ∈ {1, . . . , 4L+ 2}

and, as part of the common reference string for the QA-NIZK proof system of [43], they will
be included in the public key.

5. Choose ω1, ω2
R← Zp and compute Ω1 = uω1

1 ∈ G, Ω2 = uω2
2 ∈ G.

The private key consists of SK = (ω1, ω2) and the public key is

PK =
(
f, g, h, u1, u2, Ω1, Ω2, V , W , pkhsps =

(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
,

{(Zj , Rj , Uj)}4L+2
j=1

)
.

Sign(SK,M): Given an L-bit message M = M [1] . . .M [L] ∈ {0, 1}L and SK = (ω1, ω2):

1. Choose r, s
R← Zp and compute

σ1 = gω1+ω2 ·H(V ,M)r ·H(W ,M)s , σ2 = f r , σ3 = hs , (2)

where H(V ,M) =
∏L
`=1 V`,M [`] and H(W ,M) =

∏L
`=1W`,M [`].
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2. Using {(Zj , Rj , Uj)}4L+2
j=1 , derive a one-time homomorphic signature (Z,R,U) which will serve

as a non-interactive argument showing that the vector

(σ1, σ
1−M [1]
2 , σ

M [1]
2 , . . . , σ

1−M [L]
2 , σ

M [L]
2 , σ

1−M [1]
3 , σ

M [1]
3 , . . . , σ

1−M [L]
3 , σ

M [L]
3 , Ω1, Ω2) (3)

is in the row space of M, which ensures that (σ1, σ2, σ3) is of the form (2). Namely, compute
Z = Zω1

4L+1 · Z
ω2
4L+2 ·

∏L
i=1

(
Zr
2i−M [i]

· Zs
2L+2i−M [i]

)
R = Rω1

4L+1 ·R
ω2
4L+2 ·

∏L
i=1

(
Rr

2i−M [i]
·Rs

2L+2i−M [i]

)
U = Uω1

4L+1 · U
ω2
4L+2 ·

∏L
i=1

(
U r
2i−M [i]

· U s
2L+2i−M [i]

) . (4)

Return the signature σ =
(
σ1, σ2, σ3, Z,R, U

)
∈ G6.

Verify(PK,M,σ): Parse σ as
(
σ1, σ2, σ3, Z,R, U

)
∈ G6 and return 1 if and only if

e(Z, ĝz) · e(R, ĝr) = e(σ1, ĝ1)
−1 · e(σ2,

L∏
i=1

ĝ2i+M [i])
−1 · e(σ3,

L∏
i=1

ĝ2L+2i+M [i])
−1

· e(Ω1, ĝ4L+2)
−1 · e(Ω2, ĝ4L+3)

−1

e(Z, ĥz) · e(U, ĥu) = e(σ1, ĥ1)
−1 · e(σ2,

L∏
i=1

ĥ2i+M [i])
−1 · e(σ3,

L∏
i=1

ĥ2L+2i+M [i])
−1

· e(Ω1, ĥ4L+2)
−1 · e(Ω2, ĥ4L+3)

−1 .

Each signature consists of 6 elements of G, which is as short as Lewko’s DLIN-based signatures [41,
Section 4.3] where the security proof incurs a security loss proportional to the number of signing
queries. Under the same assumption, the Chen-Wee signatures [25] require 8 group elements.

We emphasize that our security proof allows using any QA-NIZK proof system for linear subspaces
and not only the one of [43] (which we used in order to keep the description as simple and self-contained
as possible). Our constructions can thus be optimized if we replace the QA-NIZK proof system of [43]
—which entails K+ 1 group elements under the K-LIN assumption— by those recently suggested by
Jutla and Roy, where only K group elements per proof are needed. Under the DLIN (resp. K-linear)
assumption, each signature is only comprised of 5 (resp. 2K + 1) group elements. We thus shorten
signatures by 37% under the DLIN assumption. Under the K-Linear assumption, our improvement
is more dramatic since, when K increases, our signatures become almost 50% shorter as we reduce
the signature length of [25] from 4K to 2K + 1.

Under the SXDH assumption (namely, the 1-linear assumption), a direct adaptation of the above
scheme entails 4 elements of G per signature, which is as long as [25]. However, as explained in
Appendix E, the QA-NIZK proof system of Jutla and Roy [37] can supersede the one of [43] since,
under the SXDH assumption, it only requires one group element per proof, instead of two in [43]. The
signature thus becomes a triple (σ1, σ2, Z) = (uω ·H(V ,M)r, f r, Z), where Z is a QA-NIZK proof of
well-formedness for (σ1, σ2).

Theorem 1. The scheme provides existential unforgeability under chosen-message attacks if the
DLIN assumption holds in G and Ĝ. For L-bit messages, for any adversary A, there exist DLIN
distinguishers B and B′ in Ĝ and G such that

AdvA(λ) ≤ AdvDLIN
B (λ) + 2 · L ·AdvDLIN

B′ (λ) +
2

p

and with running times tB, tB′ ≤ tA + q · poly(λ, L).
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Proof. We proceed using a sequence of games where several kinds of signatures will be used.

Type A signatures are those produced by the real signing algorithm. If V = fv and W = hw for
vectors v = (v1,0, v1,1, . . . , vL,0, vL,1) ∈ Z2L

p , w = (w1,0, w1,1, . . . , wL,0, wL,1) ∈ Z2L
p and if we define

functions F (v,M) =
∑L

`=1 v`,M [`] and F (w,M) =
∑L

`=1w`,M [`], these signatures are such that

gω1+ω2 = σ1 · σ−F (v,M)
2 · σ−F (w,M)

3

and (Z,R,U) is a valid linearly homomorphic signature on the vector (3).

Type B signatures are valid signatures that are not Type A signatures. These are of the form

σ1 = gω1+ω2+τ ·H(V ,M)r ·H(W ,M)s , σ2 = f r , σ3 = hs ,

for some τ ∈R Zp, r, s ∈R Zp, and
Z = g−τ ·χ1 · Zω1

4L+1 · Z
ω2
4L+2 ·

∏L
i=1

(
Zr
2i−M [i]

· Zs
2L+2i−M [i]

)
R = g−τ ·γ1 ·Rω1

4L+1 ·R
ω2
4L+2 ·

∏L
i=1

(
Rr

2i−M [i]
·Rs

2L+2i−M [i]

)
U = g−τ ·δ1 · Uω1

4L+1 · U
ω2
4L+2 ·

∏L
i=1

(
U r
2i−M [i]

· U s
2L+2i−M [i]

) .

Note that Type B signatures also satisfy the verification algorithm since (Z,R,U) is a valid
homomorphic signature on the vector (3). The term gτ will be henceforth called the semi-functional
component of the signature. Type B signatures include the following sub-classes.

Type B-k signatures (1 ≤ k ≤ L) are generated by choosing r, s
R← Zp and setting

σ1 = gω1+ω2 ·Rk(M|k) ·H(V ,M)r ·H(W ,M)s , σ2 = f r , σ3 = hs ,

where H(V ,M) =
∏L
`=1 V`,M [`] and H(W ,M) =

∏L
`=1W`,M [`] and Rk : {0, 1}k → G,M|k 7→

Rk(M|k) is a random function that depends on the first k bits of M . The (Z,R,U) components

are simulated QA-NIZK proofs of subspace membership. They are obtained using {(χi, γi, δi)}4L+3
i=1

to generate a homomorphic structure-preserving signature on the vector (3) by computing
Z = σ−χ1

1 · σ−
∑L
i=1 χ2i+M [i]

2 · σ−
∑L
i=1 χ2L+2i+M [i]

3 ·Ω−χ4L+2

1 ·Ω−χ4L+3

2

R = σ−γ11 · σ−
∑L
i=1 σ2i+M [i]

2 · σ−
∑L
i=1 γ2L+2i+M [i]

3 ·Ω−γ4L+2

1 ·Ω−γ4L+3

2

U = σ−δ11 · σ−
∑L
i=1 δ2i+M [i]

2 · σ−
∑L
i=1 δ2L+2i+M [i]

3 ·Ω−δ4L+2

1 ·Ω−δ4L+3

2

.

To prove the result, we consider the following sequence of games. For each i, we call Si the event
that the adversary wins in Game i. We also define Ei to be the event that, in Game i, A’s forgery
has the same type as the signatures it observes. Namely, if A obtains a Type A (resp. Type B-k)
signature at each query, it should output a Type A (resp. Type B-k) forgery.

Game 0: This game is the real game. Namely, the adversary obtains Type A signatures at each
signing query. At the end of the game, however, the challenger B checks if A’s forgery is a Type A
signature and we define E0 to be the event that the forgery σ? is a Type A forgery. We obviously
have Pr[S0] = Pr[S0 ∧ E0] + Pr[S0 ∧ ¬E0]. Lemma 1 shows that, if the DLIN assumption holds
in Ĝ, the adversary can only output a Type B signature with negligible probability. We have
Pr[S0 ∧ ¬E0] ≤ AdvDLIN

Ĝ (λ) + 1/p. We are thus left with the task of bounding Pr[S0 ∧ E0]. To
this end, we proceed using a sequence of L games.
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Game 1: This game is identical to Game 0 with the difference that, at each signing query, the
signature components (Z,R,U) are obtained as simulated QA-NIZK proofs of linear subspace
membership. Namely, instead of computing (Z,R,U) as per (4), the challenger uses {χi, γi, δi}4L+3

i=1

to compute (Z,R,U) as a one-time linearly homomorphic signature on the vector (3). Clearly
(Z,R,U) retains the same distribution as in Game 0, so that A’s view remains unchanged. We
have Pr[S1 ∧ E1] = Pr[S0 ∧ E0], where E1 is the counterpart of event E0 in Game 1.

Game 2.k (1 ≤ k ≤ L): In Game 2.k, all signing queries are answered by returning Type B-k
signatures. For each k, we call E2.k the event that A outputs a Type B-k forgery in Game 2.k.
Lemma 2 provides evidence that Game 2.1 is computationally indistinguishable from Game 1
under the DLIN assumption in G: we have |Pr[S2.1 ∧ E2.1] − Pr[S1 ∧ E1]| ≤ 2 · AdvDLIN

G (λ).
In Appendix D, Lemma 3 shows that, under the DLIN assumption in G, the probability of A’s
forgery to be of the same type as the outputs of signing queries is about the same in Game 2.k
and in Game 2.(k− 1). We thus have |Pr[S2.k ∧E2.k]−Pr[S2.(k−1) ∧E2.(k−1)]| ≤ 2 ·AdvDLIN

G (λ).

When we reach Game 2.L, we know that |Pr[S2.L ∧ E2.L]− Pr[S2.0 ∧ E2.0]| ≤ 2 · L ·AdvDLIN
G (λ) by

the triangle inequality. However, in Game 2.L, it is easy to prove that, even though A only obtains
Type B-k signatures throughout the game, its probability to output a Type B-k forgery is negligible
even with an unbounded computational power. Indeed, a legitimate adversary that outputs a forgery
on a new message M? has no information on RL(M?). Hence, it can only produce a Type B-k forgery
by pure chance and we thus have Pr[S2.L ∧ E2.L] ≤ 1/p. ut

Lemma 1. In Game 0, any PPT adversary outputting a Type B forgery with non-negligible proba-
bility implies an algorithm breaking the DLIN assumption in Ĝ with nearly the same advantage.

Proof. Let A be a PPT adversary that outputs a Type B forgery with probability ε in Game 0.
We construct an algorithm B that takes as input an SDP instance (ĝz, ĝr, ĥz, ĥu) ∈ Ĝ4 and finds
a non-trivial (Z,R,U) ∈ G3 such that e(Z, ĝz) · e(R, ĝr) = 1GT and e(Z, ĥz) · e(U, ĥu) = 1GT with
probability ε · (1− 1/p), which implies a DLIN distinguisher with the same advantage in Ĝ.

We actually use A to build a forger B against the one-time linearly homomorphic signature of
Section 2.2 or, equivalently, an adversary defeating the soundness of the QA-NIZK proof system in
[43]. Indeed, Type A signatures are exactly those for which the vector (3) is in the row space of M and
A only obtains honestly generated Type A signatures at each query in Game 0. Hence, any adversary
A creating a valid Type B signature in this game can be turned into a soundness adversary faking a
QA-NIZK proof (Z?, R?, U?) for a vector (3) that is linearly independent of the rows of M.

In details, algorithm B receives as input a public key pkhsps for an instance of the LHSPS scheme
allowing to sign vectors of dimension n = 4L+ 3. It runs Steps 1, 2 and 5 of the real key generation
algorithm on its own to obtain f, g, h, u1, u2 and (Ω1, Ω2) = (uω1

1 , uω2
2 ), for randomly chosen ω1, ω2

R←
Zp. It then queries its own LHSPS challenger to obtain signatures {(Zi, Ri, Ui)}4L+2

i=1 on the rows of
the matrix (1). The adversary A is run on input of

PK =
(
f, g, h, u1, u2, Ω1 = uω1

1 , Ω2 = uω2
2 , V , W ,

pkhsps =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
, {(Zj , Rj , Uj)}4L+2

j=1

)
.

Since B knows ω1, ω2 ∈R Zp, it can answer all signing queries by faithfully running the real signing
algorithm, which does not require {(χi, γi, δi)}4L+3

i=1 . The game ends with the adversary outputting
Type B signature σ? = (σ?1, σ

?
2, σ

?
3, Z

?, R?, U?) on a message M?. This implies that (Z?, R?, U?) is a
valid homomorphic signature on the vector

(σ?1, σ
?
2
1−M?[1], σ?2

M?[1], . . . , σ?2
1−M?[L], σ?2

M?[L], σ?3
1−M?[1], σ?3

M?[1], . . . , σ?3
1−M?[L], σ?3

M?[L], Ω1, Ω2) .
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Moreover, the latter is outside the row space of M since (σ?,M?) is a Type B forgery. Consequently,
B can output (Z?, R?, U?) and the above vector as a valid forgery against the LHSPS scheme. The
result of [42] implies that B can in turn be used to solve the SDP problem —and thus the DLIN
assumption in Ĝ— with probability ε · (1− 1/p) ≥ ε− 1/p. ut

Lemma 2. If the DLIN assumption holds in G, A’s probability to output a Type B-1 signature in
Game 2.1 is about the same as its probability to output a Type A signature in Game 1.

Proof. Let us assume that events S2.1 ∧E2.1 and S1 ∧E1 occur with noticeably different probabilities
in Game 2.1 and Game 1, respectively. We construct a DLIN distinguisher B in G. Our algorithm B
takes as input (f, g, h, fa, hb, T ) with the task of deciding if T = ga+b or T ∈R G. Similarly to [25,
Lemma 6], B uses the random self-reducibility of DLIN to build q tuples (Fj = faj , Hj = hbj , Tj)
such that, for each j ∈ {1, . . . , q}, we have

Tj =

{
gaj+bj if T = ga+b

gaj+bj+τ0 if T ∈R G

for some τ0 ∈R Zp. This is done by picking ρ0
R← Zp and ρaj , ρbj

R← Zp, for j ∈ {1, . . . , q}, and setting

(Fj , Hj , Tj) =
(
(fa)ρ0 · fρaj , (hb)ρ0 · hρbj , T ρ0 · gρaj+ρbj

)
, ∀j ∈ {1, . . . , q} .

In addition, B generates an extra tuple (u1, u2, Ω1, Ω2) ∈ G4 by choosing αu,1, αu,2
R← Zp and setting

u1 = fαu,1 , u2 = hαu,2 , Ω1 = (fa)αu,1 , Ω2 = (hb)αu,2 .

Before generating the public key of the scheme, B flips a coin b†
R← {0, 1} hoping that the first bit

of the target message M? = M [1]? . . .M [L]? ∈ {0, 1}L will coincide with b†. To construct the public

key PK, B chooses α = (α1,0, α1,1, . . . , αL,0, αL,1)
R← Z2L

p , β = (β1,0, β1,1, . . . , βL,0, βL,1)
R← Z2L

p and

ζ
R← Zp. It defines the vectors V = (V1,0, V1,1, . . . , VL,0, VL,1), W = (W1,0,W1,1, . . . ,WL,0,WL,1) as

(V`,0, V`,1) = (fα`,0 , fα`,1) , (W`,0,W`,1) = (hβ`,0 , hβ`,1) , if ` 6= 1

(V1,1−b† , V1,b†) = (f
α
1,1−b† · gζ , fα1,b† ) , (W1,1−b† ,W1,b†) = (h

β
1,1−b† · gζ , hβ1,b† ) .

The rest of PK, including (skhsps, pkhsps) and {(Zi, Ri, Ui)}4L+2
i=1 , is generated as in the real setup.

The adversary A is run on input of

PK =
(
f, g, h, u1, u2, Ω1 = u1

a, Ω2 = u2
b, V , W ,

pkhsps =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
, {(Ẑj , R̂j , Ûj)}4L+2

j=1

)
and the challenger B keeps ({χi, γi, δi}4L+3

i=1 ) to itself. Note that a, b ∈ Zp are part of the original
DLIN instance and are not available to B. However, B will use the challenge value T – which is either
ga+b or a random element of G – to answer signing queries.

Throughout the game, signing queries are answered as follows. In order to handle the j-th signing
query M j = M [1]j . . .M [L]j ∈ {0, 1}L, the answer of B depends on the first bit M [1]j of M j .
Specifically, B considers the following cases.

– If M [1]j = b†, B chooses r, s
R← Zp and sets

σ1 = T ·H(V ,M)r ·H(W ,M)s , σ2 = f r , σ3 = hs ,
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where H(V ,M) =
∏L
`=1 V`,M [`] and H(W ,M) =

∏L
`=1W`,M [`]. The (Z,R,U) components of the

private key are computed by generating a homomorphic structure-preserving signature on the
vector

(σ1, σ
1−M [1]
2 , σ

M [1]
2 , . . . , σ

1−M [L]
2 , σ

M [L]
2 , σ

1−M [1]
3 , σ

M [1]
3 , . . . , σ

1−M [L]
3 , σ

M [L]
3 , Ω1, Ω2) ,

by computing
Z = σ−χ1

1 · σ−
∑L
i=1 χ2i+M [i]

2 · σ3−
∑L
i=1 χ2L+2i+M [i] ·Ω−χ4L+2

1 ·Ω−χ4L+3

2

R = σ−γ11 · σ−
∑L
i=1 γ2i+M [i]

2 · σ−
∑L
i=1 γ2L+2i+M [i]

3 ·Ω−γ4L+2

1 ·Ω−γ4L+3

2

U = σ−δ11 · σ−
∑L
i=1 δ2i+M [i]

2 · σ−
∑L
i=1 δ2L+2i+M [i]

3 ·Ω−δ4L+2

1 ·Ω−δ4L+3

2

. (5)

Note that, if T = ga+b+τ for some τ ∈R Zp, the obtained (Z,R,U) can be written
Z = g−χ1·τ · Za4L+1 · Zb4L+2 ·

∏L
i=1

(
Zr
2i−M [i]

· Zs
2L+2i−M [i]

)
R = g−γ1·τ ·Ra4L+1 ·Rb4L+2 ·

∏L
i=1

(
Rr

2i−M [i]
·Rs

2L+2i−M [i]

)
U = g−δ1·τ · Ua4L+1 · U b4L+2 ·

∏L
i=1

(
U r
2i−M [i]

· U s
2L+2i−M [i]

) .

We observe that (σ1, σ2, σ3, Z,R, U) matches the distribution of signatures in both Game 2.1 if
τ 6= 0 and Game 1 if τ = 0. Indeed, in the former case, we implicitly define the constant function
R0(ε) = gτ and define the function R1 so that R1(b

†) = R0(ε).

– If M [1]j = 1− b†, B implicitly defines

R1(M
j
|1) = R1(1− b†) =

{
R0(ε) · gζ·τ0 if T ∈R G
1 if T = ga+b

.

Namely, B uses the j-th tuple (Fj , Hj , Tj) to set

σ1 = T · F
∑L
`=1 α`,M [`]

j ·H
∑L
`=1 β`,M [`]

j · T ζj , σ2 = Fj = faj , σ3 = Hj = hbj .

If T = ga+b (and thus Tj = gaj+bj ), this implicitly defines σ1 = ga+b ·H(V ,M j)aj ·H(W ,M j)bj ,
so that (σ1, σ2, σ3) has the same distribution as in Game 1. If T = ga+b+τ (so that Tj = gaj+bj+τ0),
we can write

σ1 = ga+b ·R1(M
j
|1) ·H(V ,M j)aj ·H(W ,M j)bj ,

since R1(M
j
|1) = R0(ε) · gζ·τ0 , which is distributed as in Game 2.1. In either case, (Z,R,U) are

computed using skhsps = {(χi, γi, δi)}4L+3
i=1 as in the previous case (i.e., as per (5)).

In the forgery stage, A outputs a new message M? and a signature σ? = (σ?1, σ
?
2, σ

?
3, Z

?, R?, U?).
Our distinguisher B must determine if this forgery has the same type as the outputs of the simulated
signing oracle. At this point, B halts and outputs a random bit if it turns out that M [1]? 6= b†.
Otherwise, B can compute F (v,M?) =

∑L
`=1 α`,M [`]? and F (w,M?) =

∑L
`=1 β`,M [`]? , which yields

η? = σ?1 · σ?2
−F (v,M?) · σ?3

−F (w,M?) .

If η? = T , B considers (σ?,M?) as a forgery of the same type as outputs of the signing oracle and
returns 1. Recall that R0(ε) = T/ga+b, so that σ? matches the output distribution of the signing
oracle in both Game 1 and Game 2.1. Otherwise, B decides that σ? has a different distribution than
signatures produced by the signing oracle and outputs 0. If the difference between A’s probability to
output the same kind of signatures as the signing oracle in games 2.1 and 2.1 is ε, then B’s advantage
as a DLIN distinguisher is at least ε/2 since B’s choice for b† ∈ {0, 1} is independent of A’s view. ut
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We remark that, while its signatures are randomizable, the system can be made strongly unforge-
able in a simple manner and without increasing the signature length. In particular, we do not need
a chameleon-hash-function-based transformation such as [16]. Using the QA-NIZK proofs of [37], we
thus obtain strongly unforgeable signatures based on the SXDH assumption which are short as those
of Boneh, Shen and Waters [16] with a nearly tight reduction. The details are given in Appendix F.

We believe that, analogously to Waters signatures [53], the above scheme can serve as a basis
for signature schemes with enhanced properties. For example, it can conceivably lead to threshold
signatures [13] that are simultaneously short and non-interactive while providing tighter reductions
in the standard model.7 In particular, unlike the prime-order-group constructions of [25], our key
generation algorithm does not involve any non-linear operation “in the exponent” and seems amenable
to an efficient distributed key generation phase.

4 Almost Tightly CCA-Secure Encryption with Shorter Ciphertexts

Equipped with our signature scheme, we now present a public-key encryption scheme whose IND-
CCA2 security in the multi-challenge-multi-user setting is almost tightly related to the DLIN assump-
tion. Like [32], our scheme instantiates a variant of the Naor-Yung paradigm using Groth-Sahai proofs
(which are recalled in Appendix C) and the cryptosystem of Boneh, Boyen and Shacham (BBS) [14].

The construction can be seen as an instantiation of a technique suggested by Dodis et al. [27]
as a modification of the Naor-Yung paradigm, where only one IND-CPA secure encryption suffices
(instead of two in [46,48]) if it is accompanied with a NIZK proof of knowledge of the plaintext
that is simulation-extractable (and not only simulation-sound). In [5], Abe et al. used a simulation-
extractable proof system showing that either: (i) The IND-CPA encryption scheme encrypts the
message containted in an extractable commitment; (ii) Another commitment included in the proof
is a valid signature on the verification key VK of a one-time signature. Here, we show that, if this
simulation-extractable proof system is combined with the BBS cryptosystem, it can be simplified by
removing the commitment to the message and the proof that this commitment contains the encrypted
plaintext. The reason is that, in each simulation-extractable proof, the commitments to the encryption
exponents suffice to guarantee the extractability of the plaintext.

While our reduction is not quite as tight as in the results of [32,5] since we lose a factor of Θ(λ),
our scheme is much more space-efficient as the ciphertext overhead reduces to 68 group elements. In
comparison, the most efficient solution of [5] incurs 398 group elements per ciphertext.

For simplicity, the description below uses symmetric pairings e : G × G → GT (i.e., G = Ĝ) but
extensions to asymmetric pairings are possible.

Par-Gen(λ): Choose bilinear groups (G,GT ) with generators g, f, h
R← G. Define common public

parameters par = ((G,GT ), g, f, h).

Keygen(par): Parse par as
(
(G,GT ), g, f, h

)
and conduct the following steps.

1. Choose random exponents x1, y1
R← Zp and set f1 = gx1 , h1 = gy1 .

2. Choose a strongly unforgeable one-time signature Σ = (G,S,V) with verification keys of length
L ∈ poly(λ).

3. For ` = 1 to L, choose V`,0, V`,1,W`,0,W`,1
R← G to assemble row vectors

V = (V1,0, V1,1, . . . , VL,0, VL,1) ∈ G2L , W = (W1,0,W1,1, . . . ,WL,0,WL,1) ∈ G2L .

4. Choose ω1, ω2
R← Zp, u1, u2

R← G, and compute Ω1 = uω1
1 ∈ G, Ω2 = uω2

2 ∈ G.

7 Note that, even in the random oracle model, non-interactive threshold signatures like [51,13] all have a loose reduction
since the techniques of [23,39] cannot be applied without interaction.
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5. Define the matrix M =
(
Mi,j

)
i,j
∈ G(4L+2)×(4L+3) as

(
Mi,j

)
i,j

=


V > Idf,2L 12L×2L 12L×1 12L×1

W> 12L×2L Idh,2L 12L×1 12L×1

g 11×2L 11×2L u1 1

g 11×2L 11×2L 1 u2


with Idf,2L = f I2L ∈ G2L×2L, Idh,2L = hI2L ∈ G2L×2L, where I2L ∈ Z2L×2L

p is the identity
matrix. Then, generate a key pair for the linearly homomorphic one-time signature of Sec-
tion 2.2 with n = 4L + 3. Let pkhsps =

(
gz, gr, hz, hu, {gi, hi}4L+3

i=1

)
be the public key and

let skhsps = {χi, γi, δi}4L+3
i=1 be the underlying private key.

6. Generate one-time linearly homomorphic signatures {(zj , rj , uj)}4L+2
j=1 on the rows of M.

7. Choose a perfectly witness indistinguishable Groth-Sahai CRS g = (G1,G2,G3) defined by

vectors G1 = (G1, 1, G), G2 = (1, G2, G) and G3 ∈ G3, with G,G1, G2
R← G and G3

R← G3.

8. Define the private key as SK = (x1, y1) ∈ Z2
p. The public key is defined to be

PK =
(
g, f1, h1, V , W , u1, u2, Ω1, Ω2, pkhsps, {(zj , rj , uj)}4L+2

j=1 ,g = (G1,G2,G3), Σ
)
,

whereas ω1, ω2 ∈ Zp and skhsps are erased.

Encrypt(M,PK): To encrypt M ∈ G, generate a one-time signature key pair (SK,VK)← G(λ) and
conduct the following steps:

1. Choose θ1, θ2
R← Zp and compute (C0, C1, C2) = (M · gθ1+θ2 , fθ11 , h

θ2
1 ).

2. Choose r, s
R← Zp and compute a pseudo-signature

σ1 = H(V ,VK)r ·H(W ,VK)s , σ2 = f r , σ3 = hs ,

where H(V ,VK) =
∏L
`=1 V`,VK[`] and H(W ,VK) =

∏L
`=1W`,VK[`].

3. Define the variables (W1,W2) = (gθ1 , gθ2) and compute Groth-Sahai commitments {CWi}2i=1

to these.

4. Define the bit b = 1 and generate a commitment Cb = (1, 1, Gb) · Grb
1 · G

sb
2 · G

tb
3 , where

rb, sb, tb
R← Zp to it. Then, compute a Groth-Sahai commitment Cσ1 to σ1 and commitments

CΘ1 ,CΘ2 ∈ G3 and CΓg to the variables

Θ1 = Ω1−b
1 , Θ2 = Ω1−b

2 , Γg = gb. (6)

The vector

(σ1, σ
1−VK[1]
2 , σ

VK[1]
2 , . . . , σ

1−VK[L]
2 , σ

VK[L]
2 ,

σ
1−VK[1]
3 , σ

VK[1]
3 , . . . , σ

1−VK[L]
3 , σ

VK[L]
3 , Θ1, Θ2) ∈ G4L+3 (7)

belongs to the subspace spanned by the first 4L rows of the matrix M ∈ G(4L+2)×(4L+3).
Hence, the algorithm can use r, s ∈ Zp to derive a one-time linearly homomorphic signature
(Z,R,U) ∈ G3 on the vector (7). Note that (σ1, σ2, σ3, Z,R, U) can be seen as a signature on
VK, for the degenerated private key (ω1, ω2) = (0, 0).

5. Generate commitments CZ ,CR,CU ∈ G3. Then, compute a NIWI proof πb ∈ G9 that b
satisfies b2 = b (which ensures that b ∈ {0, 1}) and NIWI proofs πPPE1,πPPE2 ∈ G3 that
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committed variables (σ1, Z,R, U,Θ1, Θ2) satisfy the pairing product equations

e(Z, gz) · e(R, gr) = e(σ1, g1)
−1 · e(σ2,

L∏
i=1

g2i+VK[i])
−1 · e(σ3,

L∏
i=1

g2L+2i+VK[i])
−1

· e(Θ1, g4L+2)
−1 · e(Θ2, g4L+3)

−1 ,

e(Z, hz) · e(U, hu) = e(σ1, h1)
−1 · e(σ2,

L∏
i=1

h2i+VK[i])
−1 · e(σ3,

L∏
i=1

h2L+2i+VK[i])
−1

· e(Θ1, h4L+2)
−1 · e(Θ2, h4L+3)

−1 .

6. Generate NIWI proofs πg, {πΘi}2i=1 that elements (b, Γg, Θ1, Θ2), which are committed in
Cb,CΓg ,CΘ1 ,CΘ2 , satisfy (6). Each such proof requires 3 elements of G.

7. Generate a simulation-extractable proof that (W1,W2) satisfy

e(C1, g) = e(f1,W1) , e(C2, g) = e(h1,W2) . (8)

To this end, prove that (W1,W2, Γg) satisfy

e(C1, Γg) = e(f1,W1) , e(C2, Γg) = e(h1,W2) . (9)

This requires proofs π1,π2 for linear pairing product equations, which cost 3 group elements
each.

8. Finally, compute a one-time signature sig = S(SK, C0, C1, C2, π) and output the ciphertext
C = (VK, C0, C1, C2, π, sig), where

π = (Cb,πb,Cσ1 , σ2, σ3, {CWi}2i=1,CZ ,CR,CU , {CΘi}2i=1,CΓg ,

πg, {πΘi}2i=1,πPPE1,πPPE2,π1,π2) (10)

is a simulation-extractable proof of plaintext knowledge consisting of 62 elements of G.

Decrypt(SK,C): Parse C as C = (VK, C0, C1, C2, π, sig) and do the following.

1. Return ⊥ if V(VK, (C0, C1, C2, π), sig) = 0 or if π does not properly verify.

2. Using SK = (x1, y1) ∈ Z2
p, compute and return M = C0 · C−1/x11 · C−1/y12 .

Note that π forms a proof that either (σ1, σ2, σ3) is a valid signature or {CWi}2i=1 are commitments
to (W1,W2) = (gθ1 , gθ2), where θ1, θ2 ∈ Zp are the encryption exponents. A simulator holding the
private key (ω1, ω2) ∈ Z2

p of the signature scheme can thus simulate a proof π of plaintext knowledge
by computing (σ1, σ2, σ3) as a real signature, by setting b = 0 at step 4 of the encryption algorithm
and using the witnesses (W1,W2) = (1G, 1G) to prove relations (9).

From an efficiency standpoint, we remark that each ciphertext must contain a proof comprised
of 62 group elements. In an instantiation using the one-time signature of Hofheinz and Jager [32],
the entire ciphertexts thus costs 69 group elements. The scheme can also be adapted to asymmetric
pairings in a simple manner.

For the sake of simplicity, we follow [5] and only prove security in the single-user, multi-challenge
case. However, as pointed out in [5], the single-user security results can always be simply extended to
the scenario of multiple public keys by leveraging the random self-reducibility of the DLIN assumption
in a standard manner.
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Theorem 2. The scheme is (1, qe)-IND-CCA secure provided: (i) Σ is a strongly unforgeable one-
time signature; and (ii) the DLIN assumption holds in G. For any adversary A, there exist a one-time
signature forger B′ and a DLIN distinguisher B with running times tB, tB′ ≤ tA + qe · poly(λ, L) such
that

Adv
(1,qe)-cca
A (λ) ≤ 2 ·Advn-suf-otsB′ (λ) + (4 · L+ 5) ·AdvDLIN

B (λ) + 5/p ,

where L is the length of one-time verification keys and qe denotes the number of encryption queries.

Proof. The proof is given in Appendix H.2. ut

In order to extend the result to the multi-user setting, the main changes are that we need to rely
on: (i) The random self-reducibility of DLIN, which is used as in [32]; (ii) The almost tight security
of the signature scheme of Section 3 in the multi-user setting [28], which can also be proved using
the random self-reducibility of DLIN. The latter proof notably relies on the tight security of the
homomorphic signature of Section 2.2 in the multi-key setting, which is proved in Appendix G.

5 Conclusion

In this paper, we described a new efficient signature scheme with an almost tight security reduc-
tion under a standard assumption. This signature scheme allows constructing an efficient public-key
encryption scheme with (almost) tight chosen-ciphertext security in the multi-challenge setting via
an efficient simulation-extractable proof of knowledge of the plaintext. While our ciphertexts are
relatively short, the underlying NIZK proofs still have linear size in the number of group elements
contained in the inner IND-CPA encryption layer. Towards realizing truly practical tightly secure sys-
tems, it remains an interesting open problem to construct efficient simulation-sound quasi-adaptive
NIZK arguments of linear subspace membership – such as those of [43] – which simultaneously provide
tight security under a standard assumption and constant-size proofs.
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A Quasi-Adaptive NIZK Proofs

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is allowed to depend on
the specific language for which proofs have to be generated. The CRS is divided into a fixed part Γ ,
produced by an algorithm K0, and a language-dependent part ψ. However, there should be a single
simulator for the entire class of languages.

Let λ be a security parameter. For public parameters Γ produced by K0, let DΓ be a probability
distribution over a collection of relations R = {Rρ} parametrized by a string ρ with an associated
language Lρ = {x | ∃w : Rρ(x,w) = 1}.

We consider proof systems where the prover and the verifier both take a label lbl as additional in-
put. For example, this label can be the message-carrying part of an Elgamal-like encryption. Formally,
a tuple of algorithms (K0,K1,P,V) is a QA-NIZK proof system for R if there exists a PPT simulator
(S1,S2) such that, for any PPT adversaries A1,A2 and A3, we have the following properties:

Quasi-Adaptive Completeness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ);

(x,w, lbl)← A1(Γ, ψ, ρ); π ← P(ψ, x,w, lbl) : V(ψ, x, π, lbl) = 1 if Rρ(x,w) = 1] = 1 .

Quasi-Adaptive Soundness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x, π, lbl)← A2(Γ, ψ, ρ) :

V(ψ, x, π, lbl) = 1 ∧ ¬(∃w : Rρ(x,w) = 1)] ∈ negl(λ) .
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Quasi-Adaptive Zero-Knowledge:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ) : AP(ψ,.,.)
3 (Γ, ψ, ρ) = 1]

≈ Pr[Γ ← K0(λ); ρ← DΓ ; (ψ, τsim)← S1(Γ, ρ) : AS(ψ,τsim,.,.,.)
3 (Γ, ψ, ρ) = 1] ,

where

– P(ψ, ., ., .) emulates the actual prover. It takes as input (x,w) and lbl and outputs a proof π if
(x,w) ∈ Rρ. Otherwise, it outputs ⊥.

– S(ψ, τsim, ., ., .) is an oracle that takes as input (x,w) and lbl. It outputs a simulated proof
S2(ψ, τsim, x, lbl) if (x,w) ∈ Rρ and ⊥ if (x,w) 6∈ Rρ.

We assume that the CRS ψ contains an encoding of ρ, which is thus available to V. The definition of
Quasi-Adaptive Zero-Knowledge requires a single simulator for the entire family of relations R.

B Definitions for Linearly Homomorphic Structure-Preserving Signatures

Let (G,GT ) be groups of prime order p such that a bilinear map e : G × G → GT can be efficiently
computed.

A signature scheme is structure-preserving [3,2] if messages, signatures and public keys all live in
the group G. In linearly homomorphic structure-preserving signatures, the message spaceM consists
of pairs M := T × Gn, for some n ∈ N, where T is a tag space. Depending on the application, one
may want the tags to be group elements or not. In this paper, they can be arbitrary strings.

Definition 3. A linearly homomorphic structure-preserving signature scheme over (G,GT ) is a tuple
of efficient algorithms Σ = (Keygen,Sign,SignDerive,Verify) for which the message space consists of
M := T ×Gn, for some integer n ∈ poly(λ) and some set T , and with the following specifications.

Keygen(λ, n) is a randomized algorithm that takes in a security parameter λ ∈ N and an integer
n ∈ poly(λ) denoting the dimension of vectors to be signed. It outputs a key pair (pk, sk), where
pk includes the description of a tag space T , where each tag serves as a file identifier.

Sign(sk, τ,M) is a possibly randomized algorithm that takes as input a private key sk, a file identifier
τ ∈ T and a vector M = (M1, . . . ,Mn) ∈ Gn. It outputs a signature σ ∈ Gns, for some ns ∈
poly(λ).

SignDerive(pk, τ, {(ωi, σ
(i))}`i=1) is a (possibly randomized) derivation algorithm. It inputs a public

key pk, a file identifier τ as well as ` pairs (ωi, σ
(i)), each of which consists of a coefficient ωi ∈ Zp

and a signature σ(i) ∈ Gns. It outputs a signature σ ∈ Gns on the vector M =
∏`
i=1M

ωi
i , where

σ(i) is a signature on M i.

Verify(pk, τ,M, σ) is a deterministic verification algorithm that takes as input a public key pk, a
file identifier τ ∈ T , a signature σ and a vector M = (M1, . . . ,Mn). It outputs 0 or 1 depending
on whether σ is deemed valid or not.

In a one-time linearly homomorphic SPS, the tag τ can be omitted in the specification as a given
key pair (pk, sk) only allows signing one linear subspace.

As in all linearly homomorphic signatures, the desired security notion mandates the adversary’s
inability to come up with a valid triple (τ?,M?, σ?) for a new file identifier τ? or, if τ? appeared in
signatures generated by the signing oracle, for a vector M? outside the linear span of the vectors
that have been legitimately signed for the tag τ?.
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C Groth-Sahai Proof Systems

In their instantiation based on the DLIN assumption in symmetric pairing configurations, the Groth-
Sahai (GS) proof systems [31] use a common reference string (CRS) consisting of three vectors
g1, g2, g3 ∈ G3, where g1 = (g1, 1, g), g2 = (1, g2, g) for some g1, g2 ∈ G. To commit to a group

element X ∈ G, the prover computes C = (1, 1, X) · g1r · g2s · g3t with r, s, t
R← Zp. When the proof

system is configured to provide perfectly sound proofs, g3 is set as g3 = g1
ξ1 �g2ξ2 with ξ1, ξ2

R← Zp.
In this case, commitments C = (gr+ξ1t1 , gs+ξ2t2 , X · gr+s+t(ξ1+ξ2)) can be interpreted as Boneh-Boyen-
Shacham (BBS) ciphertexts as X can be recovered by running the BBS decryption algorithm using
the private key (α1, α2) = (logg(g1), logg(g2)). When the CRS is set up to give perfectly witness
indistinguishable (WI) proofs, g1, g2 and g3 are linearly independent vectors, so that C is a perfectly
hiding commitment to X ∈ G: a typical choice is g3 = g1

ξ1 � g2ξ2 � (1, 1, g)−1. Under the DLIN
assumption, the two distributions of CRS are computationally indistinguishable.

In order to prove that a set of algebraic equations is satisfiable, the prover generates one com-
mitment per variable and one proof element (made of a constant number of elements) per relation.
Efficient proofs are available for pairing-product relations, which are of the type

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT , (11)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp, for i, j ∈ {1, . . . , n}.
Non-interactive proofs for quadratic equations require 9 group elements. Linear pairing-product

equations (with aij = 0 for all i, j) only cost 3 group elements each.

D Deferred Proofs for Theorem 1

The following lemma shows that, unless there exists a DLIN distinguisher, the adversary A necessarily
outputs the same kind of signatures as the signing oracle during the entire subsequence of games
between Game 2.1 and Game 2.L.

Lemma 3. If the DLIN assumption holds in G, A’s probability to output a Type B signature is about
the same in Game 2.k and Game 2.(k − 1) for any k ∈ {2, . . . , L}.

Proof. Towards a contradiction, we assume that there exist an adversary A and an index k ∈
{2, . . . , L} such that events S2.k ∧E2.k and S2.(k−1) ∧E2.(k−1) occur with significantly different prob-
abilities in Game 2.k and Game 2.(k− 1), respectively. We turn A into a DLIN distinguisher B in G.
Algorithm B takes as input (f, g, h, fa, hb, T ) and decides if T = ga+b or T ∈R G. As in [25, Lemma 6],
B uses the random self-reducibility of DLIN to build q tuples

(Fj = faj , Hj = hbj , Tj)

such that, for each j ∈ {1, . . . , q}, we have

Tj =

{
gaj+bj if T = ga+b

gaj+bj+τj if T ∈R G

for τ1, . . . , τq ∈R Zp. This is done by picking ρj , ρaj , ρbj
R← Zp and setting

(Fj , Hj , Tj) =
(
(fa)ρj · fρaj , (hb)ρj · hρbj , T ρj · gρaj+ρbj

)
, ∀j ∈ {1, . . . , q} .
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Before generating the public key, B flips a fair binary coin b†
R← {0, 1} as a guess that the k-th bit of

the forgery message M? = M [1]? . . .M [L]? ∈ {0, 1}L will happen to be b†. To construct PK, B picks

u1, u2
R← G, ω1, ω2

R← Zp, α = (α1,0, α1,1, . . . , αL,0, αL,1)
R← Z2L

p , β = (β1,0, β1,1, . . . , βL,0, βL,1)
R← Z2L

p

and ζ
R← Zp. It sets Ω1 = uω1

1 , Ω2 = uω2
2 and defines the vectors V = (V1,0, V1,1, . . . , VL,0, VL,1),

W = (W1,0,W1,1, . . . ,WL,0,WL,1) as

(V`,0, V`,1) = (fα`,0 , fα`,1) , (W`,0,W`,1) = (hβ`,0 , hβ`,1) , if ` 6= k ,

(Vk,1−b† , Vk,b†) = (f
α
k,1−b† · gζ , fαk,b† ) , (Wk,1−b† ,Wk,b†) = (h

β
k,1−b† · gζ , hβk,b† ) .

The rest of PK, including (skhsps, pkhsps) and {(Zi, Ri, Ui)}4L+2
i=1 , is generated as in the real setup

algorithm.
The adversary A is run on input of

PK =
(
f, g, h, u1, u2, Ω1 = u1

ω1 , Ω2 = u2
ω2 , V , W ,

pkhsps =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
, {(Ẑj , R̂j , Ûj)}4L+2

j=1

)
and the challenger B keeps (ω1, ω2, {χi, γi, δi}4L+3

i=1 ) to itself.
At the beginning of the game, B also chooses a random function Rk−1 : {0, 1}k−1 → G which will

be implicitly used to construct another random function Rk : {0, 1}k → G with larger domain such
that, for any string M ∈ {0, 1}k−1, we have Rk(M ||b†) = Rk−1(M) while Rk(M ||1 − b†) takes an
independent random value.

Then, B starts answering signing queries as follows. In order to handle the j-th signing query
M j = M [1]j . . .M [L]j ∈ {0, 1}L, the response of B depends on the k-th bit M [k]j of M j . Specifically,
B considers three cases.

– If M [k]j = b†, B uses the property that Rk(M
j
|k) = Rk−1(M

j
|k−1

). It chooses r, s
R← Zp and sets

σ1 = gω1+ω2 ·Rk−1(M j
|k−1

) ·H(V ,M)r ·H(W ,M)s , σ2 = f r , σ3 = hs ,

where H(V ,M) =
∏L
`=1 V`,M [`] and H(W ,M) =

∏L
`=1W`,M [`]. The (Z,R,U) components of the

private key are computed by generating a homomorphic structure-preserving signature on the
vector

(σ1, σ
1−M [1]
2 , σ

M [1]
2 , . . . , σ

1−M [L]
2 , σ

M [L]
2 , σ

1−M [1]
3 , σ

M [1]
3 , . . . , σ

1−M [L]
3 , σ

M [L]
3 , Ω1, Ω2) ,

by computing
Z = σ−χ1

1 · σ−
∑L
i=1 χ2i+M [i]

2 · σ3−
∑L
i=1 χ2L+2i+M [i] ·Ω−χ4L+2

1 ·Ω−χ4L+3

2

R = σ−γ11 · σ−
∑L
i=1 γ2i+M [i]

2 · σ−
∑L
i=1 γ2L+2i+M [i]

3 ·Ω−γ4L+2

1 ·Ω−γ4L+3

2

U = σ−δ11 · σ−
∑L
i=1 δ2i+M [i]

2 · σ−
∑L
i=1 δ2L+2i+M [i]

3 ·Ω−δ4L+2

1 ·Ω−δ4L+3

2

. (12)

Note that the obtained (Z,R,U) can be written
Z = Rk−1(M

j
|k−1

)−χ1 · Zω1
4L+1 · Z

ω2
4L+2 ·

∏L
i=1

(
Zr
2i−M [i]

· Zs
2L+2i−M [i]

)
R = Rk−1(M

j
|k−1

)−γ1 ·Rω1
4L+1 ·R

ω2
4L+2 ·

∏L
i=1

(
Rr

2i−M [i]
·Rs

2L+2i−M [i]

)
U = Rk−1(M

j
|k−1

)−δ1 · Uω1
4L+1 · U

ω2
4L+2 ·

∏L
i=1

(
U r
2i−M [i]

· U s
2L+2i−M [i]

)
We remark that (σ1, σ2, σ3, Z,R, U) matches the distribution of signatures in both Game 2.(k−1)
and Game 2.k.
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– If M [k]j = 1− b† and Rk(M
j
|k) has not been defined yet, B implicitly defines

Rk(M
j
|k) = Rk(M

j
|k−1
||1− b†) =

{
Rk−1(M

j
|k−1

) · gζ·τj if T ∈R G
Rk−1(M

j
|k−1

) if T = ga+b

Namely, B uses the j-th tuple (Fj , Hj , Tj) to set

σ1 = gω1+ω2 ·Rk−1(M j
|k−1

) · F
∑L
`=1 α`,M [`]

j ·H
∑L
`=1 β`,M [`]

j · T ζj ,

σ2 = Fj = faj , σ3 = Hj = hbj .

If Tj = gaj+bj , the above implicitly defines

σ1 = gω1+ω2 ·Rk−1(M j
|k−1

) ·H(V ,M j)aj ·H(W ,M j)bj ,

so that (σ1, σ2, σ3) has the same distribution as in Game 2.(k−1). If Tj = gaj+bj+τj , we can write

σ1 = gω1+ω2 ·Rk(M j
|k) ·H(V ,M j)aj ·H(W ,M j)bj ,

since Rk(M
j
|k) = Rk−1(M

j
|k−1

) · gζ·τj , which is distributed as in Game 2.k. In either case, (Z,R,U)

are computed using skhsps = {(χi, γi, δi)}4L+3
i=1 as in the previous case (i.e., as per (12)).

– If M [k]j = 1 − b† and Rk(M
j
|k) was previously defined, B recalls the index j′ < j of the query

where this value was defined. It picks r, s
R← Zp and re-uses the j′-th tuple (Fj′ , Hj′ , Tj′) to set

σ1 = gω1+ω2 ·Rk−1(M j′

|k−1
) · F

∑L
`=1 α`,M [`]

j′ ·H
∑L
`=1 β`,M [`]

j′ · T ζj′ ·H(V ,M j′)r ·H(W ,M j′)s ,

σ2 = Fj′ = faj′ · f r , σ3 = Hj′ = hbj′ · hs ,

and generates (Z,R,U) as in the previous cases.

In the forgery stage, A outputs a new message M? with a forgery σ? = (σ?1, σ
?
2, σ

?
3, Z

?, R?, U?) and
our DLIN distinguisher B must figure out if this forgery is of the same type as the outputs of the signing
oracle. At this point, B halts and outputs a random bit in the event that M [k]? 6= b†. Otherwise, i.e.,
if M [k]? = b†, B is able to compute F (v,M?) =

∑L
`=1 α`,M [`]? and F (w,M?) =

∑L
`=1 β`,M [`]? , which

yields
η? = σ?1 · σ?2

−F (v,M?) · σ?3
−F (w,M?) .

If η? = gω1+ω2 · Rk−1(M?
|k−1

), B concludes that (σ?,M?) is a forgery of the same type as signatures

generated by the signing oracle and outputs 1. Recall that Rk−1(M
?
|k−1

) = Rk(M
?
|k), so that σ? has the

same distribution as outputs of the signing oracle in both Game 2.k and Game 2.(k− 1). Otherwise,
it concludes that the distribution of σ? departs from the output distribution of the signing oracle and
outputs 0. If the difference between the forgery’s probability to mimic the behavior of the signing
oracle in games 2.k and 2.(k − 1) is ε, we find that B’s advantage as a DLIN distinguisher is at least
ε/2 since B’s choice for b† ∈ {0, 1} is independent of A’s view. ut

E Shorter Signatures Under the K-Linear Assumption

Let us first recall the following generalization of the DDH and Decision Linear assumptions.

Definition 4. The K-Linear assumption states that, given (g, g1, . . . , gK , g
a1
1 , . . . , g

aK
K , T ) ∈ G2K+2

for K > 0, no PPT algorithm can decide if T = ga1+···+aK or T ∈R G.
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For K = 1 (resp. K = 2), the K-linear assumption coincides with the DDH (resp. DLIN) assumption.
To instantiate our signature schemes under the K-linear assumption with K > 2, we first need

to extend the one-time linearly homomorphic structure-preserving signature of [42]. To this end, we
need to define the following assumption which is implied by the K-linear assumption in the same way
as SDP is implied by DLIN.

Definition 5. The Simultaneous K-wise Pairing (K-SDP) problem is, given a random tuple (ĝ1,z,

. . . , ĝK,z, ĝ1,r, . . . , ĝK,r) ∈R Ĝ2K , to find a non-trivial vector (z, r1, . . . , rK) ∈ GK+1 such that e(z, ĝj,z)·
e(rj , ĝj,r) = 1GT for each j ∈ {1, . . . ,K} and z 6= 1G.

For a K-linear instance (ĝ1,r, . . . , ĝK,r, ĝ
a1
1,r, . . . , ĝ

aK
K,r, T ) ∈ Ĝ2K+1, given any algorithm that is able

to find a non-trivial tuple (z, r1, . . . , rK) ∈ GK+1 satisfying e(z, ĝ
aj
j,r) · e(rj , ĝj,r) = 1GT for each

j ∈ {1, . . . ,K}, we can use the equality

T = ĝ
∑K
j=1 aj ⇐⇒ e(

K∏
j=1

rj , ĝ) · e(z, T ) = 1GT .

to solve the given K-linear instance. For this reason, any algorithm solving K-SDP with non-negligible
probability implies a K-linear distinguisher.

Under the K-SDP assumption, the one-time linearly homomorphic structure-preserving signature
of [42] can be extended as follows.

Keygen(λ, n): Given a security parameter λ and the dimension n ∈ N of vectors to be signed, choose

bilinear group (G, Ĝ,GT ) of prime order p. For j = 1 to K, choose generators ĝj,z, ĝj,r
R← Ĝ. Then,

for each i = 1 to n, j = 1 to K, pick χi
R← Zp , γj,i

R← Zp and compute ĝj,i = ĝχij,z ĝ
γj,i
j,r . The private

key is sk =
(
{χi, {γj,i}Kj=1}ni=1

)
while the public key is

pk =
(
{ĝj,z, ĝj,r, {ĝj,i}ni=1}Kj=1

)
.

Sign(sk, (M1, . . . ,Mn)): To sign (M1, . . . ,Mn) ∈ Gn using sk =
(
{χi, {γj,i}Kj=1}ni=1

)
, compute and

output σ = (z, r1, . . . , rK) ∈ GK+1, where{
z =

∏n
i=1M

−χi
i ,

rj =
∏n
i=1M

−γj,i
i j ∈ {1, . . . ,K} .

SignDerive(pk, {(ωi, σ
(i))}`i=1): Given a public key pk and ` tuples (ωi, σ

(i)), where ωi ∈ Zp for
each i, parse σ(i) as σ(i) =

(
zi, ri,1, . . . , ri,K

)
∈ Gk+1 for i = 1 to `. Then, compute and return

σ = (z, r1, . . . , rk), where z =
∏`
i=1 z

ωi
i , rj =

∏`
i=1 r

ωi
i,j for j = 1 to K.

Verify(pk, σ, (M1, . . . ,Mn)): Given σ = (z, r1, . . . , rK) ∈ GK+1 and (M1, . . . ,Mn), return 1 if and
only if (M1, . . . ,Mn) 6= (1G, . . . , 1G) and, for each j ∈ {1, . . . ,K}, the following equality holds:

1GT = e(z, ĝj,z) · e(rj , ĝj,r) ·
n∏
i=1

e(Mi, ĝj,i) .

Using the above LHSPS scheme, our signature scheme of Section 3 can be modified so as to rely
on the K-linear assumption with K > 2. The construction goes as follows.

Keygen(λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p together with generators f1, . . . , fK , u1,

. . . , uK
R← G.
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1. For j = 1 to K and ` = 1 to L, choose Vj,`,0, Vj,`,1
R← G to assemble row vectors

V j = (Vj,1,0, Vj,1,1, . . . , Vj,L,0, Vj,L,1) ∈ G2L ∀j ∈ {1, . . . ,K} .

2. Define M ∈ GK(2L+1)×(K(2L+1)+1) as the matrix

(
Mi,j

)
i,j

=



V >1 Idf1,2L . . . 12L×2L 12L×1 . . . . . . 12L×1

...
. . .

. . .
...

. . .
...

V >K 12L×2L . . . IdfK ,2L 12L×1 ... 12L×1

g 11×2L 11×2L u1 1 . . . 1

g 11×2L 11×2L 1 u2
...

g 11×2L 11×2L ... . . .
. . .

...

g 11×2L . . . 11×2L 1 . . . uK


with Idfj ,2L = f I2Lj ∈ G2L×2L for each j ∈ {1, . . . ,K}, where I2L ∈ Z2L×2L

p is the identity
matrix.

3. Generate a key pair (skhsps, pkhsps) for the one-time homomorphic signature of Section 2.2 in

order to sign vectors of dimension n = K(2L+ 1) + 1. Let skhsps =
(
{χi, {γj,i}Kj=1}

K(2L+1)+1
i=1

)
be the private key, of which the corresponding public key is

pkhsps =
(
{ĝj,z, ĝj,r, {ĝj,i}ni=1}

K(2L+1)+1
j=1

)
.

4. Using skhsps, generate one-time homomorphic signatures {(Zi, Ri,1, . . . , Ri,K)}K(2L+1)
i=1 on the

rows M i = (Mi,1, . . . ,Mi,K(2L+1)+1) ∈ GK(2L+1)+1 of M and erase skhsps.

5. Choose ω1, . . . , ωK
R← Zp and compute Ωi = uωii ∈ G for i = 1 to K.

The private key consists of SK = (ω1, . . . , ωK) and the public key is

PK =
(
{(fi, ui, Ωi), V i}Ki=1, pkhsps, {(Zi, Ri,1, . . . , Ri,K)}K(2L+1)

i=1

)
.

Sign(SK,M): Given a message M = M [1] . . .M [L] ∈ {0, 1}L and SK = {(ω1, . . . , ωK), skhsps}:
1. Choose r1, . . . , rK

R← Zp and compute

σ0 = g
∑K
j=1 ωj ·

K∏
j=1

H(V j ,M)rj

σj = f
rj
j ∀j ∈ {1, . . . ,K}

where H(V j ,M) =
∏L
`=1 Vj,`,M [`] for each j ∈ {1, . . . ,K}.

2. Using {(Zi, Ri,1, . . . , Ri,K)}K(2L+1)
i=1 , derive a one-time homomorphic signature (Z,R1, . . . , RK)

which will argue that the vector

(σ0, σ
1−M [1]
1 , σ

M [1]
1 , . . . , σ

1−M [L]
1 , σ

M [L]
1 , . . . , σ

1−M [1]
K , σ

M [1]
K , . . . , σ

1−M [L]
K , σ

M [L]
K , Ω1, . . . , ΩK)

is in the row space of M and guarantee that (σ0, σ1, . . . , σK) was generated as per Step 1.

Return the signature σ =
(
σ0, σ1, . . . , σK , Z,R1, . . . , RK

)
∈ G2K+2.
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Verify(PK,M,σ): Parse σ as
(
σ0, σ1, . . . , σK , Z,R1, . . . , RK

)
∈ G2K+2 and return 1 if and only if

the following equations hold for each j ∈ {1, . . . ,K}.

e(Z, ĝj,z) ·
K∏
j=1

e(Rj , ĝj,r) = e(σ0, ĝj,1)
−1 · e(σ1,

L∏
i=1

ĝj,2i+M [i])
−1

· · · e(σK ,
L∏
i=1

ĝj,2(K−1)L+2i+M [i])
−1 ·

K∏
i=1

e(Ωi, ĝj,2KL+1+i)
−1 .

The security proof is completely similar to the proof of Theorem 1.

Under the SXDH assumption (with K = 1), we have the same signature size as [25]. However, the
above scheme saves 2K − 2 elements when K > 1 and even 2K − 1 if the QA-NIZK proof of [36] is
used. We further note that, under the SXDH assumption, it is possible to obtain signatures consisting
of only 3 group elements if we replace the LHSPS-based QA-NIZK proof (Z,R1) of [43] by the one
of Jutla and Roy [37].

Under the K-linear assumption, the proof sizes of [43] and [37] are K + 1 and K, respectively. In
the SXDH-based variant with shorter signatures, each signature consists of a pair

(σ1, σ2) = (uω ·H(V ,M)r, f r) ∈ G2

and a QA-NIZK proof Z ∈ G, obtained from [37], that (σ1, σ2) has the correct form.

F Strongly Unforgeable Signatures

This section shows a simple modification of our DLIN-based signature scheme which provides strong
unforgeability.

A useful property of the one-time linearly homomorphic signature of Section 2.2 is that, while
the signing algorithm is deterministic, signatures are not unique. However, even if the private key is
available, it is computationally infeasible to find two distinct signatures on a given vector (unless the
SDP assumption is false). This property comes in handy to build strongly unforgeable signatures.

Keygen(λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p together with f, g, h, u1, u2
R← G.

1. For ` = 1 to L, choose V`,0, V`,1,W`,0,W`,1
R← G to assemble row vectors

V = (V1,0, V1,1, . . . , VL,0, VL,1) ∈ G2L , W = (W1,0,W1,1, . . . ,WL,0,WL,1) ∈ G2L .

2. Define the matrix

M =
(
Mi,j

)
i,j

=


V > Idf,2L 12L×2L 12L×1 12L×1

W> 12L×2L Idh,2L 12L×1 12L×1

g 11×2L 11×2L u1 1

g 11×2L 11×2L 1 u2

 ∈ G(4L+2)×(4L+3)

with Idf,2L = f I2L ∈ G2L×2L, Idh,2L = hI2L ∈ G2L×2L, where I2L ∈ Z2L×2L
p is the identity

matrix.

3. Generate a key pair (skhsps, pkhsps) for the one-time linearly homomorphic signature of Sec-

tion 2.2 in order to sign vectors of n = 4L + 3 group elements. Let skhsps = {(χi, γi, δi)}4L+3
i=1

be the private key. The matching public key is pkhsps =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
.
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4. Using skhsps = {χi, γi, δi}4L+3
i=1 , generate one-time homomorphic signatures {(Zj , Rj , Uj)}4L+2

j=1

on the rows M j = (Mj,1, . . . ,Mj,4L+3) ∈ G4L+3 of the matrix M. These are obtained as

(Zj , Rj , Uj) =
( 4L+2∏
i=1

M−χij,i ,
4L+2∏
i=1

M−γij,i ,
4L+2∏
i=1

M−δij,i

)
∀j ∈ {1, . . . , 4L+ 2} .

5. Choose ω1, ω2
R← Zp and compute Ω1 = uω1

1 ∈ G, Ω2 = uω2
2 ∈ G.

6. Choose a collision-resistant hash function H : {0, 1}∗ → {0, 1}L.

The private key consists of SK = (ω1, ω2) and the public key is

PK =
(
f, g, h, u1, u2, Ω1, Ω2, V , W ,

pkhsps =
(
ĝz, ĝr, ĥz, ĥu, {(ĝi, ĥi)}4L+3

i=1

)
, {(Zj , Rj , Uj)}4L+2

j=1 , H
)
.

Sign(SK,Msg): Given a message Msg ∈ {0, 1}∗ and the private key SK = (ω1, ω2), do the following.

1. Choose r, s
R← Zp and compute

σ2 = f r σ3 = hs , (13)

as well as M = H(Msg, σ2, σ3) = M [1] . . .M [L] ∈ {0, 1}L. Then, compute

σ1 = gω1+ω2 ·H(V ,M)r ·H(W ,M)s

where H(V ,M) =
∏L
`=1 V`,M [`] and H(W ,M) =

∏L
`=1W`,M [`].

2. Using {(Zj , Rj , Uj)}4L+2
j=1 , derive a homomorphic signature (Z,R,U) which will serve as a non-

interactive argument showing that

(σ1, σ
1−M [1]
2 , σ

M [1]
2 , . . . , σ

1−M [L]
2 , σ

M [L]
2 , σ

1−M [1]
3 , σ

M [1]
3 , . . . , σ

1−M [L]
3 , σ

M [L]
3 , Ω1, Ω2) (14)

is in the row space of M, which ensures that (σ1, σ2, σ3) is of the form (13).

Return the signature σ =
(
σ1, σ2, σ3, Z,R, U

)
∈ G6.

Verify(PK,Msg, σ): Parse the purported signature σ as
(
σ1, σ2, σ3, Z,R, U

)
∈ G6 and compute the

L-bit string M = H(Msg, σ2, σ3) = M [1] . . .M [L] ∈ {0, 1}L. Then, return 1 if and only if

e(Z, ĝz) · e(R, ĝr) = e(σ1, ĝ1)
−1 · e(σ2,

L∏
i=1

ĝ2i+M [i])
−1 · e(σ3,

L∏
i=1

ĝ2L+2i+M [i])
−1

· e(Ω1, ĝ4L+2)
−1 · e(Ω2, ĝ4L+3)

−1

e(Z, ĥz) · e(U, ĥu) = e(σ1, ĥ1)
−1 · e(σ2,

L∏
i=1

ĥ2i+M [i])
−1 · e(σ3,

L∏
i=1

ĥ2L+2i+M [i])
−1

· e(Ω1, ĥ4L+2)
−1 · e(Ω2, ĥ4L+3)

−1 .

We observe that the signature length is the same as in the scheme of Section 3. The security proof
is a simple adaptation of the proof of Theorem 1.
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Theorem 3. The scheme provides strong existential unforgeability under chosen-message attacks
assuming that (i) H is a collision-resistant hash function; (ii) The DLIN assumption holds in G and
Ĝ. For L-bit messages, for any adversary A, there exist a collision-finding algorithm B0 for H and
DLIN distinguishers B and B′ in Ĝ and G, respectively, such that

AdvA(λ) ≤ AdvCR
B0 (λ) + AdvDLIN

B (λ) + 2 · L ·AdvDLIN
B′ (λ) +

2

p

and with running times tB0 , tB, tB′ ≤ tA + q · poly(λ, L).

Proof. The proof is widely similar to that of Theorem 1 and we only outline the changes in the
sequence of games. For each i, we denote by Si the event that the challenger outputs 1 in Game i.

Game 0: This game is the real game. In particular, the adversary always obtains Type A signatures
at each signing query. We denote by S0 the event that the adversary wins, in which case the
challenger B outputs 1.

Game 1: This game is identical to Game 0 but we raise a failure event F1 which causes B to output
0 if it occurs. This event F1 is the event that A’s forgery (Msg?, σ? = (σ?1, σ

?
2, σ

?
3, Z

?, R?, U?)) is
such that the signing oracle produced an output (Msgj , σj = (σj,1, σj,2, σj,3, Zj , Rj , Uj)) for which
(Msgj , σj,2, σj,3) 6= (Msg?, σ?2, σ

?
3) but H(Msgj , σj,2, σj,3) = H(Msg?, σ?2, σ

?
3). Clearly, if event F1

occurs with non-negligible probability, B can be turned into an algorithm B0 that breaks the
collision-resistance of H. We have |Pr[S1]− Pr[S0]| ≤ AdvCR

B0 (λ).
Game 2: This game is like Game 1 but we introduce another failure event F2 that also leads the chal-

lenger B to output 0. We define F2 as the event thatA’s forgery (Msg?, σ? = (σ?1, σ
?
2, σ

?
3, Z

?, R?, U?))
contains a triple (σ?1, σ

?
2, σ

?
3) for which there exists an output (Msgj , σj = (σj,1, σj,2, σj,3, Zj , Rj , Uj))

of the signing oracle such that (σj,1, σj,2, σj,3) = (σ?1, σ
?
2, σ

?
3) but (Z?, R?, U?) 6= (Zj , Rj , Uj).

Lemma 4 shows that, if F2 happens with non-negligible probability, the DLIN assumption can be
broken with nearly the same advantage. We thus have |Pr[S2]−Pr[S1]| ≤ Pr[F2] ≤ AdvDLIN

B (λ).
Game 3: This game is like Game 2 with the following difference. At the end of the game, the

challenger B checks if A’s forgery is a Type A signature and we define E3 to be the event that the
forgery σ? is a Type A signature. We obviously have Pr[S3] = Pr[S3∧E3]+Pr[S3∧¬E3]. The proof
of Lemma 1 readily extends to show that, if the DLIN assumption holds in Ĝ, the adversary cannot
output a Type B signature with non-negligible chance. We find that Pr[S3∧¬E3] ≤ AdvDLIN

Ĝ (λ).
In the following, we only need to determine an upper bound on Pr[S3 ∧ E3]. To this end, we
proceed using a sequence of L games.

Game 4: This game is identical to Game 2 with a difference in the generation of (Z,R,U) in each
signing query. Instead of computing them as per (4), the challenger uses {χi, γi, δi}4L+3

i=1 to compute
(Z,R,U) as a one-time linearly homomorphic signature on the vector (3). Clearly (Z,R,U) retains
the same distribution as in Game 3, so that the adversary’s view remains unchanged. We have
Pr[S4 ∧ E4] = Pr[S3 ∧ E3].

Game 5.k (1 ≤ k ≤ L): In Game 2.k, all signing queries are answered by returning Type B-k
signatures. The proof of Lemma 2 is immediately adapted to demonstrate that Game 5.1 is
indistinguishable from Game 4 under the DLIN assumption in G: concretely, we have |Pr[S5.1 ∧
E5.1]− Pr[S4 ∧E4]| ≤ 2 ·AdvDLIN

G (λ). The proof of Lemma 3 is also straightforward to adapt in
order to prove the inequality |Pr[S5.k ∧ E5.k]− Pr[S5.(k−1) ∧ E5.(k−1)]| ≤ 2 ·AdvDLIN

G (λ). ut

Lemma 4. Game 2 is computationally indistinguishable from Game 1 under the DLIN assumption
in Ĝ. In Game 2, the probability of event F2 is at most Pr[F2] ≤ AdvDLIN

B (λ).

Proof. The proof is straightforward. We show an algorithm B that inputs an instance (ĝz, ĝr, ĥz, ĥu)
of the SDP problem (see Definition 2) which it solves with advantage Pr[F2].
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To generate the public key PK, B chooses {(χi, γi, δi)}4L+3
i=1 and computes pkhsps as in step 3 of

the key generation algorithm. It also runs steps 1, 2, 4, 5, 6 of the real key generation algorithm.
Knowing SK, B can thus faithfully answer all signing queries made by the adversary A.

By hypothesis, we know that F2 occurs with non-negligible probability. In this case, B necessarily
obtains two distinct one-time linearly homomorphic signatures (Zj , Rj , Uj) and (Z?, R?, U?) on the
vector (14). At this point, B immediately obtains a non-trivial solution (Zj/Z

?, Rj/R
?, Uj/U

?) of its
SDP instance, which also implies a DLIN distinguisher with advantage Pr[F2]. ut

Under the SXDH assumption, we can also obtain a strongly unforgeable signature made of 3 group
elements using the QA-NIZK proof system of Jutla and Roy [37]. The signature thus consists of a triple
(σ1, σ2, Z) = (uω ·H(V ,M)r, f r, Z), where Z is a QA-NIZK proof that (σ1, σ2) = (uω ·H(V ,M)r, f r),
for some r ∈ Zp, where M = H(Msg, σ2) ∈ {0, 1}L.

In the security proof, the only modification is that the transition from Game 1 to Game 2 does
no longer rely on a computational argument. Instead, it appeals to the uniqueness of proofs in [37]
(i.e., for a given CRS, each statement has a unique proof).

We thus obtain a strongly unforgeable signature comprised of 3 elements of G, which is as short
as those of Boneh, Shen and Waters [16] with a much better concrete security. Indeed, it eliminates
the Ω(q) degradation factor that [16] inherits from [53].

G Proof of Tight Multi-User Security for the LHSPS Scheme of Section 2.2

In the multi-user setting, the security definition of linearly homomorphic structure-preserving signa-
tures [42] can be generalized as follows.

Definition 6. A LHSPS scheme is one-time secure in the multi-user setting if no PPT adversary
has non-negligible advantage in the game below.

1. The adversary A chooses integers µ, n1, . . . , nµ ∈ poly(λ). For each i ∈ {1, . . . , µ}, the challenger
runs (ski, pki)← Keygen(λ, ni) and initializes a set Qi = ∅. It gives {pki}

µ
i=1 to A.

2. On polynomially occasions, the adversary A chooses an index i ∈ {1, . . . , µ} and a ni-vector
M = (M1, . . . ,Mni) ∈ Gni. The challenger returns σi ← Sign(ski,M) and sets Qi = Qi ∪ {M}.

3. The adversary A outputs a triple (i?, σ?,M?), where i? ∈ {1, . . . , µ}, and wins if the following
conditions are satisfied: (i) Verify(pki? ,M

?, σ?) = 1; (ii) Qi? contains at most ni?−1 linearly inde-
pendent vectors; (iii) M? is linearly independent of the vectors in Qi?. The adversary’s advantage
is its probability of success taken over all random coins.

In the above definition, we assume that the challenger can efficiently recognize when the adversary
wins, by using the private key skj? .

The next theorem shows that the one-time LHSPS scheme of Section 2.2 provides tight security
under the DLIN assumption in the sense of Definition 6. The proof considers the case of symmetric
bilinear groups (i.e., where G = Ĝ) in order to be consistent with Section 4.

Theorem 4. The scheme is unforgeable in the multi-user setting if the DLIN assumption holds in
G,. Concretely, the multi-user advantage of any adversary A is at most

Advm-ots(A) ≤ AdvDLIN
B (λ) +

1

p
,

where B is a DLIN distinguisher running in time tB ≤ tA + poly(λ, µ,max{n1, . . . , nµ}).
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Proof. We describe an algorithm B that takes as input a DLIN instance (g, f, h, fa, hb, T ) ∈ G6 and
uses a multi-user forger A to decide if T = ga+b with nearly the same advantage as the forger’s

success probability. First, B constructs µ tuples (g, fj , hj , f
aj
j , h

bj
j , Tj) ∈ G6 such that Tj = gaj+bj

(resp. Tj ∈R G) for each j ∈ {1, . . . , µ} if T = ga+b (resp. T ∈R G). To this end, B picks αj , βj
R← Zp

and computes

(f̃j , h̃j , f̃
a
j , h̃

b
j) =

(
fαj , hβj , (fa)αj , (hb)βj

)
, ∀j ∈ {1, . . . , µ} .

Next, B picks ωj , ρj , ζj
R← Zp and computes

(g, fj , hj , f
aj
j , h

bj
j , Tj) =

(
g, f̃j , h̃j , (f̃

a
j )ωj · f̃ρjj , (h̃

b
j)
ωj · h̃ζjj , T

ωj · gρj+ζj
)
, ∀j ∈ {1, . . . , µ} .

If T = ga+b, we clearly have Tj = gaj+bj for each j ∈ {1, . . . , µ}. In contrast, if T ∈R G, the values
{Tj}µj=1 are uniformly random and independent.

To generate µ independent LHSPS key pairs {(skj , pkj)}
µ
j=1, B defines

gj,r = fj , gj,z = f
aj
j , hj,u = hj , hj,z = h

bj
j , ∀j ∈ {1, . . . , µ} .

Next, B picks χj,i, γj,i, δj,i
R← Zp for j ∈ {1, . . . , µ} and i ∈ {1, . . . , nj} and sets

gj,i = g
χj,i
j,z · g

γj,i
j,r , hj,i = h

χj,i
j,z · h

δj,i
j,u , ∀j ∈ {1, . . . , µ}, i ∈ {1, . . . , nj}

which defines the j-th public key to be pkj =
(
gj,z, gj,r, hj,z, hj, u, {(gj,i, hj,i)}

nj
i=1

)
, for which the

private key is skj = {(χj,i, γj,i, δj,i)}
nj
i=1.

The adversary is given {pkj}
µ
j=1. For each public key pkj , the adversary is allowed to obtain up to

nj−1 signatures on linearly independent vectors. Since B knows all private keys skj , it can answer by
faithfully running the signing algorithm. The game ends with the adversary A outputting and index
j? ∈ {1, . . . , µ} and a vector M? = (M?

1 , . . . ,M
?
nj?

) ∈ Gnj? with a valid signature (z?, r?, u?) such
that M? is linearly independent of the vectors for which A obtains signatures on behalf of pkj? . At
this point, B uses skj? to compute its own signature

(z†, r†, u†) = (
∏nj?
i=1M

?
i
−χj?,i ,

∏nj?
i=1M

?
i
−γj?,i ,

∏nj?
i=1M

?
i
−δj?,i) (15)

on (M?
1 , . . . ,M

?
n?j

). We claim that (z‡, r‡, u‡) = (z
?
/z†, r

?
/r†, u

?
/u†) is such that z‡ 6= 1G with all but

negligible probability.

To see this, we first note that pkj? perfectly hides the vector (χj?,1, . . . , χj?,nj? ). Moreover, for a
given pkj? , each vector (M1, . . . ,Mnj? ) ∈ Gnj? has exponentially many valid signatures but the one
produced by the signing algorithm is completely determined by (χj?,1, . . . , χj?,nj? ). It is easy to see

that, in A’s view, guessing the z† of (15) amounts to inferring which vector (χj?,1, . . . , χj?,nj? ).

Throughout the game, A obtains signatures {(zi, ri, ui)}
nj?−1
i=1 on at most nj? − 1 linearly in-

dependent vectors of Gnj? on behalf of skj? . These signatures only provide A with nj? − 1 linearly
independent equations because, for each triple (zi, ri, ui), zi uniquely determines (ri, ui). In the public
key pkj? , the group elements {(gj?,i, hj?,i)}

nj?
i=1 yield 2nj? linear equations. An unbounded adversary

is thus faced with 3nj? − 1 linear equations in 3nj? unknowns. Since M? = (M?
1 , . . . ,M

?
nj?

) must

be independent of the vectors that have been signed using skj? , predicting z† is only possible with
probability 1/p. With probability 1 − 1/p, we thus have z† 6= z?, so that (z‡, r‡, u‡) is a non-trivial
tuple satisfying

e(gj?,z, z
‡) · e(gj?,r, r‡) = e(hj?,z, z

‡) · e(hj?,u, u‡) = 1GT .
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At this point, since gj?,z = g
aj?
j?,r and hj?,z = h

bj?
j?,u , we know that

Tj? = gaj?+bj? ⇐⇒ e(r‡ · u‡, g) · e(Tj? , z‡) = 1GT .

Hence, B returns 1 (meaning that T = ga+b) if the equality e(r‡ · u‡, g) · e(Tj? , z‡) = 1GT is satisfied
and 0 otherwise. ut

H Proof of Theorem 2

H.1 Definitions for Public-Key Encryption in the Multi-User Setting

Before giving the proof, we first recall the definition of chosen-ciphertext security in the multi-user
setting [6].

In the multi-user setting [6], a public-key encryption scheme consists of algorithms (Par-Gen,
Keygen,Encrypt,Decrypt), where Par-Gen takes as input a security parameter λ and generates common
public parameters Γ shared by all users, Keygen takes as input Γ and outputs a key pair (SK,PK),
and algorithms Encrypt and Decrypt that proceed in the usual way.

Definition 7 ([6,32]). A public-key encryption scheme is (µ, qe)-IND-CCA secure, for integers
µ, qe ∈ poly(λ), if no PPT adversary has noticeable advantage in this game:

1. The challenger generates Γ ← Par-Gen(λ) and runs (SK(i), PK(i)) ← Keygen(Γ ) for i = 1 to
µ. It gives {PK(i)}µi=1 to the adversary A and retains {SK(i)}µi=1. In addition, the challenger

initializes a set D ← ∅ and a counter jq ← 0. Finally, it chooses a random bit d
R← {0, 1}.

2. The adversary A adaptively makes queries to the following oracles on multiple occasions:
– Encryption query: A chooses an index i ∈ {1, . . . , µ} and a pair (M0,M1) of equal-length

messages. If jq = qe, the oracle returns ⊥. Otherwise, it computes C ← Encrypt(PK(i),Md)
and returns C. In addition, it sets D ← D ∪ {(i, C)} and jq ← jq + 1.

– Decryption query: A can also invoke the decryption oracle on arbitrary ciphertexts C and
indexes i ∈ {1, . . . , µ}. If (i, C) ∈ D, the oracle returns ⊥. Otherwise, the oracle returns
M ← Decrypt(SK(i), C), which may be ⊥ if C is an invalid ciphertext.

3. The adversary A outputs a bit d′ and is deemed successful if d′ = d. As usual, A’s advantage is
measured as the distance Adv(A) = |2 · Pr[d′ = d]− 1|.

H.2 Security Proof

The proof that the scheme of Section 4 provides (1, qe)-IND-CCA security uses standard tech-
niques [46,48] and proceeds as follows.

Proof. The proof uses of a sequence of games starting with a game where the challenger’s hidden bit
is d = 0 and ending with a game where d = 1. For each i, Si is the event that the challenger outputs 1
in Game i.

Game 1: This is the real attack game where the challenger’s bit is d = 0. In details, the adversary
is given the public key PK while the challenger keeps the private key SK to itself. At each
decryption query, the challenger B faithfully runs the real decryption algorithm using the private
key SK = (x1, y1). At the j-th encryption query, for j ∈ {1, . . . , qe}, the adversary A chooses two

distinct messages M
(j)
0 ,M

(j)
1 ∈ G and obtains a ciphertext C?j = (VK?j , C

?
j,0, C

?
j,1, C

?
j,2, π

?
j , sig

?
j )

which is an encryption of M
(j)
0 under PK. Of course, A is disallowed to invoke the decryption

oracle on any ciphertext produced by the encryption oracle. Eventually, A halts and outputs a
bit d′ ∈ {0, 1}. We denote by S1 the event that d′ = 0, which causes the challenger to output 1.
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Game 2: In this game, we add a failure event E1 which causes the challenger to halt and output 0
if it occurs. When A invokes the decryption oracle on a ciphertext C = (VK, C0, C1, C2, π, sig),
we define E1 to be the event that VK is a recycled one-time verification key that appeared in an
output of the encryption oracle. Clearly, E1 can only occur with negligible probability if the one-
time signature is strongly unforgeable in the multi-key setting8 (as defined in [32, Definition 4]).
We have |Pr[S2]− Pr[S1]| ≤ Pr[E1] ≤ Advn-suf-ots(λ).

Game 3: This game is like Game 2 except that, at each encryption query (M
(j)
0 ,M

(j)
1 ), the returned

ciphertext C?j = (VK?j , C
?
j,0, C

?
j,1, C

?
j,2, π

?
j , sig

?
j ) is obtained by computing π?j as a simulated proof

using the trapdoor ω1, ω2. This is achieved by computing (σ1, σ2, σ3, Z,R, U) as a real signature
(i.e., where σ1 = gω1+ω2 ·H(V ,VK)r ·H(W ,VK)s, σ2 = f r and σ3 = hs) via the signing algorithm
of Section 3, setting b = 0 at Step 4 of the encryption algorithm and choosing the vector (7)
(whose last 2 coordinates now contain (Ω1, Ω2) instead of (1G, 1G)) in the entire span of the rows
of M. Note that, in this case, the commitments {CWi}2i=1 and the proofs π2,π2 can be generated
without using the encryption exponents (θ1, θ2) in steps 3 and 7 of the encryption algorithm.
Indeed, since b = 0, we have Γg = 1G and the witnesses W1 = W2 = 1G can be used to prove
relations (9). Thanks to the perfect witness indistinguishability of Groth-Sahai proofs for the CRS
(G1,G2,G3), the proofs {π?j }

qe
j=1 have exactly the same distribution as in Game 2 and A’s view

will not be affected by this change. We have Pr[S3] = Pr[S2].

Game 4: In this game, we modify the distribution of the public key. In step 7 of the key generation
algorithm, we choose G3 = Gξ1

1 ·G
ξ2
2 , with ξ1, ξ2

R← Zp, instead of choosing G3
R← G3 uniformly.

Under the DLIN assumption, this change should not significantly affect A’s behavior and we have
|Pr[S4]− Pr[S3]| ≤ AdvDLIN(λ). Note that (G1,G2,G3) now forms a perfectly sound CRS.

Game 5: We modify the decryption oracle. When the adversary A queries the decryption of a
ciphertext C = (VK, C0, C1, C2, π, sig), instead of using the private key SK = (x1, y1) to compute

M = C0 · C−1/x11 · C−1/x22 , B uses the extraction trapdoor (β1, β2) = (logG(G1), logG(G2)) of
the Groth-Sahai CRS (G1,G2,G3) to extract the witnesses (W1,W2) from the commitments
{CWi}2i=1 contained in π and return M = C0 · W−11 · W−12 . Since (G1,G2,G3) is a perfectly
sound Groth-Sahai CRS, the proof π (10) guarantees that either: (i) (W1,W2) = (gθ1 , gθ2), where
(θ1, θ2) = (logf1(C1), logh1(C2)), in which case the decryption oracle gives the same answer as
in Game 4; (ii) π contains a commitment Cb to b = 0, which means that Cσ1 and CZ ,CR,CU

are extractable commitments to (σ1, Z,R, U) such that (σ1, σ2, σ3, Z,R, U) is a valid signature on
the one-time verification key VK. Since VK 6∈ {VK?j}

qe
j=1 unless the event E1 introduced in Game

2 occurs, it follows that situation (ii) would contradict the security of the signature scheme in
Section 3. We thus have |Pr[S5]− Pr[S4]| ≤ (2 · L+ 1) ·AdvDLIN

B (λ) + 2
p .

Game 6: We modify the treatment of encryption queries {(M (j)
0 ,M

(j)
1 )}qej=1. In this game, when B

computes C?j = (VK?j , C
?
j,0, C

?
j,1, C

?
j,2, π

?
j , sig

?
j ), it computes (C?j,0, C

?
j,1, C

?
j,2) as a BBS encryption of

M
(j)
1 rather than M

(j)
0 . It is easy to prove that any PPT adversary A having noticeably different

behaviors in Game 6 and Game 5 would imply an adversary against the semantic security of the
BBS cryptosystem in the multi-challenge setting, which would contradict the DLIN assumption.
Indeed, Hofheinz and Jager proved [32, Theorem 6] that the multi-challenge semantic security
of BBS is tightly related to the DLIN assumption. The result of [32, Theorem 6] implies the
inequality |Pr[S6]− Pr[S5]| ≤ AdvDLIN(λ) + 1/p.

Game 7: In this game, we modify again the decryption oracle. This time, instead of using the extrac-
tion trapdoor (β1, β2) = (logG(G1), logG(G2)) of the Groth-Sahai CRS (G1,G2,G3) to recover

8 This notion (see Definition 4 in [32]) refers to a game where the adversary is given µ verification keys {VKi}µi=1 and
an oracle that returns exactly one signature for each key. The adversary’s tasks is to output a triple (i?,M?, σ?),
where i? ∈ {1, . . . , µ} and (M?, σ?) was not produced by the signing oracle for VKi? . Hofheinz and Jager [32, Section
4.2] described a discrete-log-based one-time signature with tight security in the multi-key setting.
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the plaintext M = C0 ·W−11 ·W
−1
2 at each valid decryption query C = (VK, C0, C1, C2, π, sig), the

challenger B uses the private key SK = (x1, y1) to compute M = C0 ·C−1/x11 ·C−1/y12 . It is easy to
see that A’s view will be the same as in Game 6 until A manages to query the decryption oracle on
a valid-looking ciphertext C = (VK, C0, C1, C2, π, sig) for which π contains a commitment Cb to
b = 0. The same arguments as in Game 5 show that the latter event would contradict the security
of the signature scheme in Section 3. We have |Pr[S7]− Pr[S6]| ≤ (2 · L+ 1) ·AdvDLIN

B (λ) + 2
p .

Game 8: In this game, we modify again the generation of the public key. We restore the Groth-Sahai
CRS (G1,G2,G3) back to its original distribution and choose G3

R← G3 as a uniformly random
vector, so that (G1,G2,G3) is configured for the perfect NIWI setting. As in the transition from
Game 3 to Game 4, a straightforward argument shows that |Pr[S8]− Pr[S7]| ≤ AdvDLIN(λ).

Game 9: We bring one last change to the generation of the challenge ciphertexts {C?j }
qe
j=1. For each

ciphertext C?j generated by the encryption oracle, instead of computing π?j using the simulation

trapdoor (ω1, ω2), we compute it using the real witnesses (θj,1, θj,2) ∈ Z2
p and thus set b = 1 in step

4 of the encryption algorithm. This change is only conceptual since, due to the perfect witness
indistinguishability of Groth-Sahai proofs on a perfectly hiding CRS, the obtained proofs π?j have
the same distribution as in Game 8. We have Pr[S9] = Pr[S8].

Game 10: This game is like Game 9 with the difference that the challenger does no longer output
0 in the event that A queries the decryption of a ciphertext C = (VK, C0, C1, C2, π, sig) such
that VK appeared in an output of the encryption oracle. The multi-key unforgeability of the one-
time signature ensures that this change should not make a difference and we have the inequality
|Pr[S10]− Pr[S9]| ≤ Advn-suf-ots(λ).

We observe that Game 10 corresponds to the actual game where the challenger’s bit is d = 1. If we
combine the above, we thus find the announced upper bound for the distance |Pr[S1]− Pr[S10]|. ut
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