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Abstract. By replacing the brute-force list search in sieving algorithms with Charikar’s angular locality-
sensitive hashing (LSH) method, we get both theoretical and practical speedups for solving the shortest vec-
tor problem (SVP) on lattices. Combining angular LSH with a variant of Nguyen and Vidick’s heuristic sieve
algorithm, we obtain heuristic time and space complexities for solving SVP of 20.3366n+o(n) and 20.2075n+o(n)

respectively, while combining the same hash family with Micciancio and Voulgaris’ GaussSieve algorithm
leads to a practical algorithm with (conjectured) time and space complexities bounded by 20.3366n+o(n),
leading to the best complexities for solving SVP in high dimensions to date.
Experiments show that in moderate dimensions the GaussSieve-based HashSieve algorithm already out-
performs the GaussSieve, and the practical increase in the space complexity is smaller than the asymptotic
bounds suggest, and can be further reduced with probing. Extrapolating to higher dimensions, we estimate
that a fully optimized and parallelized implementation of the GaussSieve-based HashSieve algorithm might
need a few core years to solve SVP in dimension 130 or even 140.

Keywords: lattices, shortest vector problem (SVP), sieving algorithms, approximate nearest neighbor
problem, locality-sensitive hashing (LSH)

1 Introduction

Lattice cryptography. Over the past few decades, lattice-based cryptography has attracted wide at-
tention from the cryptographic community, due to e.g. its presumed resistance against quantum at-
tacks [14], average-case hardness guarantees [3], the existence of lattice-based fully homomorphic
encryption schemes [21], and efficient cryptographic primitives like NTRU [23]. An important problem
related to lattice cryptography is to estimate the hardness of the underlying hard lattice problems,
such as finding short vectors; a good understanding is critical for accurately choosing parameters in
lattice cryptography [33,47].

Finding short vectors. Given a basis {b1, . . . , bn} ⊂ Rn of an n-dimensional lattice L =
∑n

i=1 Zbi,
finding a shortest non-zero lattice vector (with respect to the Euclidean norm) or approximating it
up to a constant factor is well-known to be NP-hard under randomized reductions [4, 27]. For large
approximation factors, various fast algorithms for finding short vectors are known, such as the lattice
basis reduction algorithms LLL [31] and BKZ [52, 53]. The latter has a block-size parameter β which
can be tuned to obtain a trade-off between the time complexity and the quality of the output; the
higher β, the longer the algorithm takes and the shorter the vectors in the output basis. BKZ uses
an algorithm for solving the exact shortest vector problem (SVP) in lattices of dimension β as a
subroutine, and the runtime of BKZ largely depends on the runtime of this subroutine. Estimating
the complexity of solving exact SVP therefore has direct consequences for the estimated hardness of
solving approximate SVP with BKZ.

Finding shortest vectors. In the original description of BKZ, enumeration was used as the SVP sub-
routine [18,26,46,53]. This method has a low (polynomial) space complexity, but its runtime is super-
exponential (2Ω(n logn)), which is known to be suboptimal: sieving [5], the Voronoi cell algorithm [39],
and the recent discrete Gaussian sampling approach [2] all run in single exponential time (2O(n)). The
main drawbacks of the latter methods are that their space complexities are exponential in n as well,
and due to larger hidden constants in the exponents enumeration is commonly still considered more
practical than other methods in moderate dimensions n [20, 41].

(c) IACR 2015. This article is the full version of the article to appear in the proceedings of CRYPTO 2015.
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Fig. 1. The heuristic space-time trade-off of various heuristic sieves from the literature (red), and the heuristic trade-off
between the space and time complexities obtained with the HashSieve (blue curve). For the NV-sieve, we can further
process the hash tables sequentially to obtain a speedup rather than a trade-off (blue point). The dashed, gray line shows
the estimate for the space-time trade-off of the HashSieve obtained by assuming that all reduced vectors are orthogonal
(cf. Proposition 1). The referenced works are: NV’08 [43]; MV’10 [40]; WLTB’11 [55]; ZPH’13 [56]; BGJ’14 [10].

Sieving in arbitrary lattices. On the other hand, these other SVP algorithms are relatively new, and
recent improvements have shown that at least sieving may be able to compete with enumeration in
the future. While the original work of Ajtai et al. [5] showed only that sieving solves SVP in time and
space 2O(n), later work showed that one can provably solve SVP in arbitrary lattices in time 22.47n+o(n)

and space 21.24n+o(n) [22,43,48]. Heuristic analyses of sieving algorithms further suggest that one may
be able to solve SVP in time 20.42n+o(n) and space 20.21n+o(n) [10, 40, 43], or optimizing for time, in
time 20.38n+o(n) and space 20.29n+o(n) [10, 55, 56]. Other works have shown how to speed up sieving
in practice [15, 19, 25, 35, 36, 42, 49, 50], and sieving recently made its way to the top 25 of the SVP
challenge hall of fame [51], using the GaussSieve algorithm [29,40].

Sieving in ideal lattices. The potential of sieving is further illustrated by recent results in ideal lat-
tices [15, 25]; while it is not known how to use the additional structure in ideal lattices (commonly
used in lattice cryptography) for enumeration or other SVP algorithms, sieving does admit significant
polynomial speedups for ideal lattices, and the GaussSieve was recently used to solve SVP on an ideal
lattice in dimension 128 [15,25, 45]. This is higher than the highest dimension for which enumeration
was used to find a record in either lattice challenge [45, 51], which further illustrates the potential of
sieving and the possible impact of further improvements to sieving and, in particular, the GaussSieve
algorithm.

Contributions. In this work we show how to obtain exponential trade-offs and speedups for sieving
using angular locality-sensitive hashing [16,24], a technique from the field of nearest neighbor searching.
In short, for each list vector w we store low-dimensional, lossy sketches, such that vectors that are
nearby have a higher probability of having the same sketch (hash) than vectors which are far apart.
To search the list for nearby vectors we then do not go through the entire list of lattice vectors, but
only consider those vectors that have at least one matching hash value in one of the hash tables.
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Trading space for time. Storing all list vectors in exponentially many hash tables requires exponen-
tially more space, but searching for nearby vectors can then be done exponentially faster as well,
as many distant vectors are not considered for reductions. Optimizing for time, the resulting Hash-
Sieve algorithm has heuristic time and space complexities bounded by 20.3366n+o(n), while tuning the
parameters differently we get a trade-off as illustrated by the solid blue curve in Figure 1.

From a tradeoff to a speedup. Applying angular LSH to a variant of the Nguyen-Vidick sieve [43], we
further obtain an algorithm with heuristic time and space complexities of 20.3366n+o(n) and 20.2075n+o(n)

respectively, as illustrated by the blue point in Figure 1. The key observation is that the hash tables of
the HashSieve can be processed sequentially, and we only need to store and use one hash table at a time.
The resulting algorithm achieves the same heuristic speed-up, but the asymptotic space complexity
remains the same as in the original NV-sieve algorithm. This improvement is explained in detail in the
full version. Note that this speedup does not appear to be compatible with the GaussSieve and only
works with the NV-sieve, which may make the resulting algorithm slower in moderate dimensions,
even though the memory used is much smaller.

Experimental results. Practical experiments with the (GaussSieve-based) HashSieve algorithm validate
our heuristic analysis, and show that (i) already in low dimensions, the HashSieve outperforms the
GaussSieve; and (ii) the increase in the space complexity is smaller than one might guess from only
looking at the leading exponent of the space complexity. We also show how to further reduce the space
complexity at almost no cost by a technique called probing, which reduces the required number of
hash tables by a factor poly(n). In the end, these results will be an important guide for estimating
the hardness of exact SVP in moderate dimensions, and for the hardness of approximate SVP in high
dimensions using BKZ with sieving as the SVP subroutine.

Main ideas. While the use of LSH was briefly considered in the context of sieving by Nguyen and
Vidick [43, Section 4.2.2], there are two main differences between their approach and ours:

– Nguyen and Vidick considered LSH families based on the Euclidean distance [6], while we argue it
seems more natural to consider LSH families based on the angular distance or cosine similarity [16]
between pairs of vectors1.

– Nguyen and Vidick focused on the worst-case difference between nearby and faraway vectors, while
we will focus on the average-case difference.

To illustrate the second point: the smallest angle between pairwise reduced vectors may be only slightly
bigger than 60◦ (i.e. hardly any bigger than angles of non-reduced vectors), while in high dimensions
the average angle between two pairwise reduced vectors is actually close to 90◦. This precise average-
case analysis is crucial in obtaining the complexity 20.3366n+o(n) rather than 20.4150n+o(n).

Outlook. Although this work focuses on applying angular LSH to sieving, more generally this work
could be considered the first to succeed in applying LSH to lattice algorithms. Various recent follow-
up works have already further investigated the use of different LSH methods [7, 8] and other nearest
neighbor search methods [9,11,38] in the context of lattice sieving [11–13,30,37], and an open problem
is whether other lattice algorithms (e.g. provable sieving algorithms, the Voronoi cell algorithm [39])
can benefit from related techniques as well.

Roadmap. In Section 2 we describe the technique of (angular) LSH for finding near(est) neighbors.
Section 3 describes how to apply these techniques to the Nguyen-Vidick sieve, and Section 4 states
the main result regarding the optimal time and space complexities of sieving using angular LSH. In
Section 5 we finally describe how similar ideas can trivially be applied to the GaussSieve, and Section 6
describes experiments performed using the GaussSieve-based HashSieve, and possible consequences for
the estimated complexity of SVP in high dimensions by extrapolating to higher dimensions.

1 In the analysis for the Nguyen-Vidick sieve on thin spherical shells, as described later in this paper, Euclidean distances
directly translate to angular distances and vice versa. In that sense we could have obtained an identical exponent if
we had described everything in terms of Euclidean distances, although in that case we may not have considered using
Charikar’s hash family as it is described in terms of the cosine similarity measure.
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2 Locality-sensitive hashing

2.1 Introduction

The near(est) neighbor problem is the following [24]: Given a list of n-dimensional vectors L =
{w1,w2, . . . ,wN} ⊂ Rn, preprocess L in such a way that, when later given a target vector v /∈ L, one
can efficiently find an element w ∈ L which is close(st) to v. While in low (fixed) dimensions n there
may be ways to answer these queries in time sub-linear or even logarithmic in the list size N , in high
dimensions it seems hard to do better than with a naive brute-force list search of time O(N). This
inability to efficiently store and query lists of high-dimensional objects is sometimes referred to as the
“curse of dimensionality” [24].

Fortunately, if we know that the list of objects L has a certain structure, or if we know that there is
a significant gap between what is meant by “nearby” and “far away,” then there are ways to preprocess
L such that queries can be answered in time sub-linear in N . For instance, for the Euclidean norm, if
it is known that the closest point w∗ ∈ L lies at distance ‖v −w∗‖ = r1, and all other points w ∈ L
are at distance at least ‖v−w‖ ≥ r2 = (1 + ε)r1 from v, then it is possible to preprocess L using time
and space O(N1+ρ), and answer queries in time O(Nρ), where ρ = (1 + ε)−2 < 1 [6]. For ε > 0, this
corresponds to a sub-linear time and sub-quadratic (super-linear) space complexity in N .

2.2 Hash families

The method of [6] described above, as well as the method we will use later, relies on using locality-
sensitive hash functions [24]. These are functions h which map an n-dimensional vector v to a low-
dimensional sketch of v, such that vectors which are nearby in Rn have a high probability of having
the same sketch, while vectors which are far away have a low probability of having the same image
under h. Formalizing this property leads to the following definition of a locality-sensitive hash family
H. Here, we assume D is a certain similarity measure2, and the set U below may be thought of as (a
subset of) the natural numbers N.

Definition 1. [24] A family H = {h : Rn → U} is called (r1, r2, p1, p2)-sensitive for a similarity
measure D if for any v,w ∈ Rn we have

– If D(v,w) ≤ r1 then Ph∈H[h(v) = h(w)] ≥ p1.

– If D(v,w) ≥ r2 then Ph∈H[h(v) = h(w)] ≤ p2.

Note that if we are given a hash family H which is (r1, r2, p1, p2)-sensitive with p1 � p2, then we
can use H to distinguish between vectors which are at most r1 away from v, and vectors which are at
least r2 away from v with non-negligible probability, by only looking at their hash values.

2.3 Amplification

Before turning to how such hash families may actually be constructed or used to find nearest neighbors,
note that in general it is unknown whether efficiently computable (r1, r2, p1, p2)-sensitive hash families
even exist for the ideal setting of r1 ≈ r2 and p1 ≈ 1 and p2 ≈ 0. Instead, one commonly first
constructs an (r1, r2, p1, p2)-sensitive hash family H with p1 ≈ p2, and then uses several AND- and
OR-compositions to turn it into an (r1, r2, p

′
1, p
′
2)-sensitive hash family H′ with p′1 > p1 and p′2 < p2,

thereby amplifying the gap between p1 and p2.

AND-composition. Given an (r1, r2, p1, p2)-sensitive hash familyH, we can construct an (r1, r2, p
k
1, p

k
2)-

sensitive hash family H′ by taking k different, pairwise independent functions h1, . . . , hk ∈ H
and a one-to-one mapping f : Uk → U , and defining h ∈ H′ as h(v) = f(h1(v), . . . , hk(v)).
Clearly h(v) = h(w) iff hi(v) = hi(w) for all i ∈ [k], so if P[hi(v) = hi(w)] = pj for all i, then
P[h(v) = h(w)] = pkj for j = 1, 2.

2 A similarity measure D may informally be thought of as a “slightly relaxed” (distance) metric, which may not satisfy
all properties associated to metrics.
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OR-composition. Given an (r1, r2, p1, p2)-sensitive hash family H, we can construct an (r1, r2, 1 −
(1−p1)t, 1−(1−p2)t)-sensitive hash family H′ by taking t different, pairwise independent functions
h1, . . . , ht ∈ H, and defining h ∈ H′ by the relation h(v) = h(w) iff hi(v) = hi(w) for at least one
i ∈ [t]. Clearly h(v) 6= h(w) iff hi(v) 6= hi(w) for all i ∈ [t], so if P[hi(v) 6= hi(w)] = 1− pj for all
i, then P[h(v) 6= h(w)] = (1− pj)t for j = 1, 2.3

Combining a k-wise AND-composition with a t-wise OR-composition, we can turn an (r1, r2, p1, p2)-
sensitive hash family H into an (r1, r2, 1− (1− pk1)t, 1− (1− pk2)t)-sensitive hash family H′ as follows:

(r1, r2, p1, p2)
k−AND
−−−−→ (r1, r2, p

k
1, p

k
2)

t−OR
−−−−→ (r1, r2, (1− pk1)t, (1− pk2)t).

As long as p1 > p2, we can always find values k and t such that p∗1 = 1 − (1 − pk1)t ≈ 1 is close to 1
and p∗2 = 1− (1− pk2)t ≈ 0 is very small.

2.4 Finding nearest neighbors

To use these hash families to find nearest neighbors, we may use the following method first described
in [24]. First, we choose t · k random hash functions hi,j ∈ H, and we use the AND-composition to
combine k of them at a time to build t different hash functions h1, . . . , ht. Then, given the list L, we
build t different hash tables T1, . . . , Tt, where for each hash table Ti we insert w into the bucket labeled
hi(w). Finally, given the vector v, we compute its t images hi(v), gather all the candidate vectors
that collide with v in at least one of these hash tables (an OR-composition) in a list of candidates,
and search this set of candidates for a nearest neighbor.

Clearly, the quality of this algorithm for finding nearest neighbors depends on the quality of the
underlying hash family H and on the parameters k and t. Larger values of k and t amplify the gap
between the probabilities of finding ‘good’ (nearby) and ‘bad’ (faraway) vectors, which makes the list
of candidates shorter, but larger parameters come at the cost of having to compute many hashes (both
during the preprocessing and querying phases) and having to store many hash tables in memory. The
following lemma shows how to balance k and t so that the overall time complexity is minimized.

Lemma 1. [24] Suppose there exists an (r1, r2, p1, p2)-sensitive family H. For a list L of size N , let

ρ =
log(1/p1)

log(1/p2)
, k =

log(N)

log(1/p2)
, t = O(Nρ). (1)

Then with high probability we can either (a) find an element w∗ ∈ L that satisfies D(v,w∗) ≤ r2, or
(b) conclude that with high probability, no elements w ∈ L with D(v,w) > r1 exist, with the following
costs:

1. Time for preprocessing the list: Õ(kN1+ρ).
2. Space complexity of the preprocessed data: Õ(N1+ρ).
3. Time for answering a query v: Õ(Nρ).

(a) Hash evaluations of the query vector v: O(Nρ).
(b) List vectors to compare to the query vector v: O(Nρ).

Proof. Let us start with ‘good’ or nearby vectors, i.e., vectors w ∈ L at distance at most r1 from v.

Taking k-way ANDs, we obtain a collision probability of pk1 = (p
k/ρ
1 )ρ = N−ρ. Then, taking a t-way

OR-composition, the overall collision probability is p∗1 = 1− (1− pk1)t = 1− (1−N−ρ)O(Nρ) = O(1).
So the probability that good vectors are found is constant, where the constant depends only on the
constant hidden inside t = O(Nρ).

For ‘bad’ vectors w at distance at least r2 from v, the k-way AND-composition gives us a collision
probability of pk2 = N−1. Taking a t-way OR, we get an overall probability of a collision of p∗2 =
1− (1− pk2)t = 1− (1−N−1)O(Nρ) = O(Nρ−1). Since the total length of the list is N , we expect that
roughly N · O(Nρ−1) = O(Nρ) bad vectors w ∈ L collide with v in at least one of the hash tables.

3 Note that a mapping h resulting from an OR-composition is strictly not a function and only defines a relation.
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Using e.g. the Chernoff bound, with overwhelming probability the exact number of ‘bad’ colliding
vectors will be relatively close to this average.

Summarizing, the costs of preprocessing the data are computingN ·t·k = O(N1+ρ log1/p2 N) hashes;

the space complexity of the preprocessed data (t hash tables with N vectors) is O(N · t) = O(N1+ρ);
the costs of obtaining a list of candidate nearest vectors for v are computing t = O(Nρ) hashes of v
and performing as many table look-ups; and the cost of searching the resulting list of candidates for
the right vector is equal to the length of this list, which is at most O(Nρ). This algorithm succeeds
with constant probability, and by changing the constant for t the probability of failure can be made
arbitrarily small. ut

Although Lemma 1 only shows how to choose k and t to minimize the time complexity, we can
also tune k and t so that we use more time and less space. In a way this algorithm can be seen as
a generalization of the naive brute-force search solution for finding nearest neighbors, as k = 0 and
t = 1 corresponds to checking the whole list for nearby vectors in linear time and linear space, and
increasing both k and t leads to fewer comparisons but a higher cost of computing hashes and checking
buckets.

2.5 Angular hashing

Let us now consider actual hash families for the similarity measure D that we are interested in. As
argued in the next section, what seems a more natural choice for D than the Euclidean distance is the
angular distance or cosine similarity, defined on Rn as

D(v,w) = θ(v,w) = arccos

(
vTw

‖v‖ · ‖w‖

)
. (2)

With this similarity measure, two vectors are ‘nearby’ if their common angle is small, and ‘far apart’
if their angle is large. In a sense, this is similar to the Euclidean norm: if two vectors have similar
Euclidean norms, their distance is large iff their angular distance is large. For this similarity measure
D, the following hash family H was first described in [16]:

H = {ha : a ∈ Rn, ‖a‖ = 1}, ha(v)
def
=

{
1 if aTv ≥ 0;

0 if aTv < 0.
(3)

Intuitively, the vector a defines a hyperplane (for which a is a normal vector), and ha maps the two
regions separated by this hyperplane to different bits.

To see why this is a non-trivial locality-sensitive hash family for the angular distance, consider
two vectors v,w ∈ Rn. These two vectors lie on a two-dimensional plane passing through the origin,
and with probability 1 a hash vector a does not lie on this plane (for n > 2). This means that the
hyperplane defined by a intersects this plane in some line `. Since a is taken uniformly at random
from the unit sphere, the line ` has a uniformly random ‘direction’ in the plane, and maps v and w to
different hash values iff ` separates v and w in the plane. Therefore the probability that h(v) 6= h(w)
is directly proportional to their common angle θ(v,w) as follows [16]:

Pha∈H
[
ha(v) = ha(w)

]
= 1− θ(v,w)

π
. (4)

So for any two angles θ1 < θ2, the family H is (θ1, θ2, 1− θ1
π , 1−

θ2
π )-sensitive. In particular, Charikar’s

hyperplane hash family is (π3 ,
π
2 ,

2
3 ,

1
2)-sensitive.

To illustrate LSH and in particular the angular LSH method described above, Figure 2 shows how
hyperplane hashing might work in a 2-dimensional setting where we have a list L = {w1, . . . ,w10} and
a query vector v, and we used k = 2 hyperplanes in each of t hash tables to find nearby vectors. Pre-
processing would consist of computing and storing each of the list vectors in their corresponding hash
buckets, which involves k inner product computations for each vector for each hash table. Answering
a query can be done by computing a target vector’s hash buckets in each hash table and searching the
vectors in these hash buckets for a nearest neighbor.
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Fig. 2. An example of angular LSH, using k = 2 hyperplanes and 2k = 4 buckets in each hash table. Given 10 list vectors
L = {w1, . . . ,w10} and a target vector v, for each of the t hash tables we first compute v’s hash value (i.e. compute the
region in which it lies), look up vectors which have the same hash value, and compare v to those vectors. Based on these
three hash tables, we will find C = {w6,w7,w8,w9,w10} as the set of candidate near neighbors for v.

3 From the Nguyen-Vidick sieve to the (NV-)HashSieve

Let us now describe how locality-sensitive hashing can be used to speed up sieving algorithms, and
in particular how we can speed up the NV-sieve of Nguyen and Vidick [43] using angular LSH. The
same ideas can also be applied to the GaussSieve [40], as illustrated in Section 5.

3.1 The Nguyen-Vidick sieve algorithm

First, recall that the sieving algorithm of Nguyen and Vidick [43] starts with a long list L0 of reasonably
long, randomly sampled lattice vectors v sampled from a discrete Gaussian over the lattice, using e.g.
Klein’s algorithm [28], and then repeatedly applies a sieve to it to split each list Lm into a list Cm+1 of
centers and a new list Lm+1 of vectors whose norms are at least a geometric factor γ < 1 smaller than
the maximum norm of the vectors in Lm. After repeatedly applying this sieve, we eventually hope to
be left with a short list of very short vectors, which contains the shortest vector.

At the core of Nguyen and Vidick’s algorithm lies the sieve that maps Lm onto two sets Lm+1 and
Cm+1. A slightly modified and simplified version of this algorithm is described in Algorithm 2. Here
we have replaced the on-the-fly generation of the set of centers of the original algorithm description by
a predetermined random selection of list points to be used as centers. Note that Nguyen and Vidick’s
analysis is essentially based on this modified algorithm rather than the on-the-fly generation described
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Algorithm 1 Nguyen and Vidick’s lattice sieve (without angular LSH)

Require: An input list Lm of (4/3)n/2+o(n) lattice vectors of norm at most R = maxv∈Lm ‖v‖
Ensure: The output list Lm+1 has size (4/3)n/2+o(n) and only contains lattice vectors of norm at most γ ·R
1: Initialize an empty list Lm+1

2: Sample Cm+1 ⊂ Lm ∩ {x ∈ Rn : ‖x‖ ≥ γ ·R} of size poly(n) · (4/3)n/2

3: for each v ∈ Lm \ Cm+1 do
4: if ‖v‖ ≤ γR then
5: Add v to the list Lm+1

6: else
7: for each w ∈ Cm+1 do
8: if ‖v ±w‖ ≤ γ ·R then
9: Add v ±w to the list Lm+1

10: Continue the loop over “v ∈ Lm \ Cm+1”

in [43, Algorithm 5], and for reducing the space complexity later on in this paper it is essential that
we can select the set of centers in advance. An intuitively simpler variant of this algorithm, which
achieves the same exponent and achieves similar speedups with LSH is described in Appendix B.

In Lines 7–10 of Algorithm 1, the Nguyen-Vidick sieve essentially solves the following search
problem through a brute-force linear search:

Find an element w ∈ Cm+1 such that ‖v ±w‖ ≤ γR. (5)

To obtain the estimate 20.415n+o(n) for the time complexity and 20.208n+o(n) for the space complexity,
Nguyen and Vidick further let γ approach 1 in their analysis. This means that all vectors with a length
significantly shorter than γ · R ≈ R are automatically added to Lm+1 in Line 5, and the bottleneck
of the time complexity comes from those vectors v with γR < ‖v‖ ≤ R, i.e., the vectors v lying in a
thin spherical shell of thickness (1− γ)R. For those vectors v we have γR ≈ ‖v‖ ≈ R, and for vectors
w ∈ Cm+1 we also know that γR ≈ ‖v‖ ≈ R. This implies that the reduction method described in (5)
for γ → 1 is essentially equivalent to the following angular reduction step:

Find an element w ∈ Cm+1 such that θ(v,±w) < 60◦. (6)

In the limiting case of γ → 1, the problems (5) and (10) are essentially equivalent.

3.2 The (NV-)HashSieve algorithm

Considering the angular notion of reduction of (10), we can clearly see the connection with nearest
neighbor searching for the angular distance or cosine similarity, and how we can fit in angular or
hyperplane LSH. Replacing the brute-force list search in the original algorithm with the technique of
angular locality-sensitive hashing, we obtain Algorithm 2. Blue lines in Algorithm 2 indicate modifi-
cations to the original algorithm. Note that the setup costs of locality-sensitive hashing (building the
hash tables) are only paid once, rather than once for each search.

3.3 Relation with leveled sieving

Overall, the crucial modification we introduce is that by using hash tables and looking up vectors
to reduce the target vector with in these hash tables, we make the search space smaller; instead of
comparing a new vector to all vectors in Cm+1, we only compare a vector to a much smaller subset
of candidates C ⊂ Cm+1, which mostly contains good, nearby candidates for reduction, and does not
contain many of the ‘bad’ vectors in Cm+1 which are not nearby in space.

In a way, this idea is very similar to the technique previously used in two- and three-level sieving [55,
56]. There, the search space of candidate nearby vectors was reduced by partitioning the space into
regions, and for each vector storing in which region it lies. In those algorithms, two nearby vectors in
adjacent regions are not considered for reductions, which means one needs more vectors to saturate
the space (a higher space complexity) but less time to search the list of candidates for nearby vectors
(a lower time complexity).
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Algorithm 2 Nguyen and Vidick’s lattice sieve (with angular LSH)

Require: An input list Lm of (4/3)n/2+o(n) lattice vectors of norm at most R = maxv∈Lm ‖v‖
Ensure: The output list Lm+1 has size (4/3)n/2+o(n) and only contains lattice vectors of norm at most γ ·R
1: Initialize an empty list Lm+1

2: Sample Cm+1 ⊂ Lm ∩ {x ∈ Rn : ‖x‖ ≥ γ ·R} of size poly(n) · (4/3)n/2

3: Initialize k empty hash tables Ti and sample k · t random hash functions hi,j ∈ H
4: for each w ∈ Cm+1 do
5: Add w to all k hash tables Ti, to the buckets Ti[hi(w)]

6: for each v ∈ Lm \ Cm+1 do
7: if ‖v‖ ≤ γR then
8: Add v to the list Lm+1

9: else

10: Obtain the set of candidates C =
t⋃
i=1

Ti[hi(±v)]

11: for each w ∈ C do
12: if ‖v ±w‖ ≤ γ ·R then
13: Add v ±w to the list Lm+1

14: Continue the loop over “v ∈ Lm \ Cm+1”

Two key differences between leveled sieving and our method are (i) the way the partitions of Rn
are chosen (using giant balls in leveled sieving, similar to the Euclidean LSH method of [6], versus
using random hyperplanes here); and (ii) the idea of LSH is to guarantee that nearby vectors are still
found with high (constant) probability by using many hash tables. The increased space complexity
of sieving with LSH comes purely from using many “‘rerandomized” hash tables, and not from an
increased list size as a result of missing many nearby vectors.

4 Theoretical results

4.1 High-dimensional intuition

To estimate the complexity of the angular LSH-based lattice sieve, we will make use of the following
heuristic assumption previously described in [43]:

Heuristic 1 The angle Θ(v,w) between list vectors v and w follows the same distribution as the
distribution of angles Θ(v,w) obtained by drawing v,w ∈ Rn at random from the unit sphere.

Note that under this assumption, in high dimensions angles close to 90◦ are much more likely to
occur between pairs of vectors than smaller angles. So one might guess that for two vectors v,w ∈ Lm,
with high probability their angle is very close to 90◦. On the other hand, nearby vectors w ∈ L that
can reduce our target vector v always have an angle less than 60◦ with w, and by similar arguments we
expect this angle to always be close to 60◦ and not much less than this. Under the extreme assumption
that all ‘random angles’ between vectors v,w that do not satisfy the condition ‖v ±w‖ ≤ γ · R are
exactly 90◦ (and angles of nearby pairs of vectors are at most 60◦), we obtain the following preliminary
estimate for the costs of the algorithm.

Proposition 1. Assuming that non-reducing vectors are always pairwise orthogonal, the NV-sieve
with angular LSH with parameters k = 0.2075n + o(n) and t = 20.1214n+o(n) heuristically solves SVP
in time and space 20.3289n+o(n). By varying the values k and t, we further obtain the trade-off between
the space and time complexities indicated by the dashed line in Figure 1.

Proof. If all ‘random angles’ are 90◦, then we can simply let θ1 = π
3 and θ2 = π

2 and use the hash family
described in Section 2.5 with p1 = 2

3 and p2 = 1
2 . Applying Lemma 1, we can perform a single search

in time Nρ = 20.1214n+o(n) using t = 20.1214n+o(n) hash tables, where ρ = log(1/p1)
log(1/p2)

= log2(
3
2) ≈ 0.585.

Since we need to perform these searches Õ(N) times, and we need to repeat the whole sieving procedure
poly(n) times, the time complexity is of the order Õ(N1+ρ) = 20.3289n+o(n). The space complexity is
dominated by having to store all N vectors in t = O(Nρ) hash tables, leading to a space complexity
of Õ(N1+ρ) = 20.3289n+o(n) as well. ut
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Algorithm 3 Nguyen and Vidick’s lattice sieve (with angular LSH, space-efficient)

Require: An input list Lm of (4/3)n/2+o(n) lattice vectors of norm at most R = maxv∈Lm ‖v‖
Ensure: The output list Lm+1 has size (4/3)n/2+o(n) and only contains lattice vectors of norm at most γ ·R
1: Initialize an empty list Lm+1

2: Sample Cm+1 ⊂ Lm ∩ {x ∈ Rn : ‖x‖ ≥ γ ·R} of size poly(n) · (4/3)n/2

3: for each i ∈ {1, . . . , t} do
4: Initialize an empty hash table T and sample k random hash functions hi,j ∈ H
5: for each w ∈ Cm+1 do
6: Add w to the hash table T , to bucket T [hi(w)]

7: for each v ∈ Lm \ Cm+1 do
8: if ‖v‖ ≤ γR then
9: Add v to the list Lm+1

10: else
11: Obtain the (partial) set of candidates C = T [hi(±v)]
12: for each w ∈ C do
13: Reduce v with w
14: if v has changed then
15: Add v to the list Lm+1

16: Continue the loop over “v ∈ Lm \ Cm+1”

4.2 Heuristically solving SVP in time and space 20.3366n+o(n)

Of course, in practice not all random angles are actually 90◦, and one should carefully analyze what is
the real probability that a vector w whose angle with v is more than 60◦, is found as a candidate due
to a collision in one of the hash tables. The following theorem follows from this analysis and shows
how to choose the parameters to optimize the asymptotic time complexity. A proof of Theorem 1 as
well as details on the resulting time/memory trade-off can be found in Appendix A.

Theorem 1. The Nguyen-Vidick sieve with angular LSH with parameters

k = 0.2206n+ o(n), t = 20.1290n+o(n), (7)

and γ → 1 heuristically solves SVP in time and space 20.3366n+o(n). Tuning k and t differently, we
further obtain the trade-off indicated by the solid blue line in Figure 1.

Note that the optimized values in Theorem 1 and Proposition 1, and the associated curves in Fig-
ure 1 are very similar. The simple estimate based on the intuition that in high dimensions “everything
is orthogonal” is not far off. Also note that as there are 2k � N hash buckets in each table, the
space complexity would be slightly higher (20.3496n+o(n)) if hash tables are simply stored as arrays.
To achieve the minimum asymptotic time and space complexities, one should only store non-empty
buckets in memory as asymptotically most buckets are empty.

4.3 Heuristically solving SVP in time 20.3366n+o(n) and space 20.2075n+o(n)

For the Nguyen-Vidick sieve [43], we can in fact process the hash tables sequentially and eliminate the
need of storing exponentially many hash tables in memory at the same time. The simple but crucial
modification that we can make to this algorithm, in similar fashion to the filtering idea described in [12],
is that we process the hash tables one by one; we first construct the first hash table, add all vectors in
Cm+1 to this hash table, and look for short difference vectors to add to Lm+1. By then deleting this
hash table from memory and building a new hash table (repeating this t = 20.13n+o(n) times) we keep
adding more and more vectors to Lm+1 until finally we will again have found the exact same set of
short vectors for the next iteration. In this case however we never stored all hash tables in memory
at the same time, and the memory increase compared to the NV-sieve is asymptotically negligible.
This modification leads to the algorithm described in Algorithm 3, and the previous discussion also
immediately leads to the following result.
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Algorithm 4 The GaussSieve algorithm (without angular LSH)
1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do
5: Reduce v with w
6: Reduce w with v
7: if w has changed then
8: Remove w from the list L
9: Add w to the stack S (unless w = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L
14: until v is a shortest vector

Theorem 2. The space-efficient Nguyen-Vidick sieve with angular LSH with parameters

k = 0.2206n+ o(n), t = 20.1290n+o(n), (8)

and γ → 1 heuristically solves SVP in time 20.3366n+o(n) and space 20.2075n+o(n). These complexities
are indicated by the left-most blue point in Figure 1.

Note that this choice of parameters k, t still balances the costs of computing hashes and comparing
vectors; the fact that the blue point in Figure 1 now does not lie on the “Time = Space”-diagonal
does not mean we can further reduce the time complexity by increasing t.

5 From the GaussSieve to the HashSieve

Let us next describe how locality-sensitive hashing can also be used to speed up the GaussSieve of
Micciancio and Voulgaris [40]. This algorithm is our main focus for practical applications, since it
seems to be the fastest and most space-efficient sieving algorithm to date, which is further motivated
by the extensive attention it has received in recent years [15, 19, 25, 29, 35, 36, 42, 49, 50] and by the
fact that the current highest sieving records in the SVP challenge database were obtained using (a
modification of) the GaussSieve [29,51].

5.1 The GaussSieve algorithm

A simplified version of the GaussSieve algorithm of Micciancio and Voulgaris is described in Algo-
rithm 4. The algorithm iteratively builds a longer and longer list L of lattice vectors, occasionally
reducing the lengths of list vectors in the process, until at some point this list L contains a shortest
vector. Vectors are again sampled from a discrete Gaussian over the lattice, using e.g. the sampling
algorithm of Klein [28, 40], or popped from the stack if the stack is non-empty. If list vectors are
modified or newly sampled vectors are reduced, they are pushed to the stack.

In the GaussSieve, the reductions in Lines 5 and 6 follow the rule:

Reduce u1 with u2 : if ‖u1 ± u2‖ < ‖u1‖ then u1 ← u1 ± u2. (9)

Throughout the execution of the algorithm, the list L is always pairwise reduced w.r.t. (9), i.e.,
‖w1 ± w2‖ ≥ max{‖w1‖, ‖w2‖} for all w1,w2 ∈ L. This implies that two list vectors w1,w2 ∈ L
always have an angle of at least 60◦; otherwise one of them would have been used to reduce the other
before being added to the list. Since all angles between list vectors are always at least 60◦, the size of L
is bounded by the kissing constant in dimension n: the maximum number of vectors in Rn one can find
such that any two vectors have an angle of at least 60◦. Bounds and conjectures on the kissing constant
in high dimensions lead us to believe that the size of the list L will not exceed 20.2075n+o(n) [17].

While the space complexity of the GaussSieve is reasonably well understood, there are no proven
bounds on the time complexity of this algorithm. One might estimate that the time complexity is
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Algorithm 5 The GaussSieve algorithm (with angular LSH) – The HashSieve algorithm
1: Initialize an empty list L and an empty stack S
2: Initialize t empty hash tables Ti and sample k · t random hash functions hi,j ∈ H
3: repeat
4: Get a vector v from the stack (or sample a new one if S = ∅)
5: Obtain the set of candidates C =

⋃t
i=1 Ti[hi(v)]

6: for each w ∈ C do
7: Reduce v with w
8: Reduce w with v
9: if w has changed then

10: Remove w from the list L
11: Remove w from all t hash tables Ti
12: Add w to the stack S (unless w = 0)

13: if v has changed then
14: Add v to the stack S (unless v = 0)
15: else
16: Add v to the list L
17: Add v to all t hash tables Ti
18: until v is a shortest vector

determined by the double loop over L: at any time each pair of vectors w1,w2 ∈ L was compared at
least once to see if one could reduce the other, so the time complexity is at least quadratic in |L|. The
algorithm further seems to display a similar asymptotic behavior as the NV-sieve in experiments [40,
43], for which the asymptotic time complexity is heuristically known to be quadratic in |L|, i.e., of the
order 20.415n+o(n). One might therefore conjecture that the GaussSieve also has a time complexity of
20.415n+o(n), which closely matches previous experiments with the GaussSieve in high dimensions [29].

Since these heuristic bounds on the space and time complexities are only based on the fact that
each pair of vectors w1,w2 ∈ L has an angle of at least 60◦, the same heuristics apply to any reduction
method that guarantees that angles between vectors in L are at least 60◦. In particular, if we reduce
vectors only if their angle is at most 60◦ using the following rule:

Reduce u1 with u2 : if θ(u1,±u2) < 60◦ and ‖u1‖ ≥ ‖u2‖ then u1 ← u1 ± u2, (10)

then we expect the same heuristic bounds on the time and space complexities to apply. More precisely,
the list size would again be bounded by 20.208n+o(n), and the time complexity may again be estimated
to be of the order 20.415n+o(n). Basic experiments show that, although with this notion of reduction
the list size increases, this factor indeed appears to be sub-exponential in n.

5.2 The HashSieve algorithm

Replacing the stronger notion of reduction of (9) by the weaker one of (10), we can clearly see
the connection with angular hashing. Considering the GaussSieve with angular reductions, we are
repeatedly sampling new target vectors v (with each time almost the same list L), and each time
we are looking for vectors w ∈ L whose angle with v is at most 60◦. Replacing the brute-force list
search in the original algorithm with the technique of angular locality-sensitive hashing, we obtain
Algorithm 5. Blue lines in Algorithm 5 indicate modifications to the GaussSieve. Note that the setup
costs of locality-sensitive hashing are again spread out over the various iterations; at each iteration we
only update the parts of the hash tables that were affected by updating L. This means that we only
pay the setup costs of locality-sensitive hashing once, rather than once for each search.

Finally, there is no point in skipping potential reductions in Lines 7 and 8. So while for our intuition
and for the theoretical motivation we may consider the case where the reductions are based on (10),
in practice we will again reduce vectors based on (9). This algorithm is illustrated in Figure 2.

5.3 Reducing the space complexity with probing

For the Nguyen-Vidick sieve, recall that we could process hash tables sequentially rather than in
parallel, to prevent getting an increased space complexity. For the GaussSieve the same trick does not
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seem to apply, and we only obtain a space/time trade-off similar to Theorem 1. As the practicability
of sieving seems bounded both by the required amounts of time and memory, this trade-off may only
move the problem from one point to another. Being able to handle the increased memory complexity
is crucial to making this method practical in higher dimensions.

To decrease the memory requirement of the hash tables, Panigraphy [44] suggested that instead of
using many hash tables and checking only one hash bucket in each table for candidate nearby vectors,
one could also check several hash buckets in each hash table for nearby vectors, and use fewer hash
tables overall to get a similar quality for the list of candidates, using significantly less memory.

Construction. To illustrate how this method might work, consider the following modification to the
HashSieve algorithm. In each hash table Ti, instead of only checking the bucket labeled hi(v) ∈ {0, 1}k
for candidates, we also check buckets labeled hi(v)⊕ ej for all j ∈ [k], where ej is the jth unit vector
in k dimensions and ⊕ represents component-wise addition in Z2 (bitwise XOR). In other words, we
now consider a vector w ∈ L a candidate iff it is separated from v by at most one of the random
hyperplanes defined by the hash vectors ai,j . This means that in each table we now check k + 1 hash
buckets, instead of only one bucket.

Example. To make this construction even more explicit, consider the following example. Suppose
we have a vector v and hi(v) = (h1(v), h2(v), h3(v), h4(v), h5(v)) = (0, 0, 1, 0, 1). Now the bucket
most likely to contain nearby vectors is the bucket labeled (0, 0, 1, 0, 1), but also those buckets la-
beled (1, 0, 1, 0, 1), (0, 1, 1, 0, 1), (0, 0, 0, 0, 1), (0, 0, 1, 1, 1), (0, 0, 1, 0, 0) are quite likely to contain nearby
vectors; these buckets contain vectors in adjacent hash regions with four equal hash values and only
one different hash value, and one hyperplane separating these vectors from our target vector v. Also
checking these buckets may lead to finding more nearby vectors, while we will still only check a small
fraction of all vectors spread out over the table.

Analysis. To analyze the effect of this modification on the algorithm, let us again make the simplifying
assumption that non-reduced vectors have an angle of at most 60◦ with v, and reduced vectors have
an angle of exactly 90◦ with v. For non-reduced vectors, the probability that none of the hyperplanes
separate v and w is (23)k, and the probability that at most one of the hyperplanes separates these

vectors is (23)k + k(23)k−1(13)1 = (23)k
[
1 + k

2

]
. Similarly, for reduced vectors the probability of two

vectors landing in the same bucket is (12)k, and the probability of landing in buckets differing in at
most one bit is (12)k [1 + k]. Comparing the probabilities of finding given vectors with and without this
technique of probing multiple buckets, we see that with probing:

– The probability of finding a nearby vector increases by a factor 1 + k
2 .

– The probability of finding a distant vector increases by a factor 1 + k.

Note that an increase in the probability of finding nearby vectors in a hash table by a factor α roughly
translates to a decrease of t by a factor α, which is motivated by the approximations 1−(1−αpk)t/α ≈
t
α ·αp

k = t ·pk ≈ 1− (1−pk)t. Therefore, using this technique of probing, we can use the same value k
as before, but a smaller value t1 = t

1+k/2 now suffices to still find nearby vectors with high probability.
With these values of k and t1, the probability of finding faraway vectors increases by roughly a factor
1+k

1+k/2 < 2, thus leading to up to 2 times more comparisons overall, and an increase in the time
complexity by a factor less than 2. But more importantly, the memory requirement of the hash tables
decreases by a factor 1 + k

2 = O(n). To illustrate the possible impact of probing: in dimension 80 we
have k ≈ 18, and so probing might lead to a loss of a factor 2 in the time complexity, and a gain a
factor 10 in the memory requirement.

Multiprobe. The procedure of probing adjacent buckets (buckets at Hamming distance 1) can trivially
be generalized to considering all buckets with labels that differ from the hash value hi(v) ∈ {0, 1}k in
at most 0 ≤ ` ≤ k bits. For ` = O(1) and large n, this implies a reduction in the number of hash tables
(and the space complexity) by a factor 1 + 1

2k + 1
4

(
k
2

)
+ · · · + 1

2`

(
k
`

)
= O(n`) and an increase in the

time complexity by less than a factor 2` = O(1). For instance, in dimension 120, without probing we
have (k, t) ≈ (26, 45700); with one level of probing we have (k, t1) ≈ (26, 3200); and with two levels of
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probing we have (k, t2) ≈ (26, 450). Using two levels of probing, in dimension 120 the space complexity
of the hash tables is reduced by a factor more than 100, at the cost of a factor less than 4 increase of
the overall time complexity.

Besides using multiple levels of probing and brute-forcing all buckets at each level, one could also
consider more sophisticated ways of choosing which buckets to check for candidates. If aTi,jw ≈ 0 then

it makes more sense to consider the bucket labeled hi(v)⊕ ej than if aTi,jv � 0 or aTi,jv � 0. In other
words, if a vector v lies close to the hyperplane defined by ai,j , it makes more sense to consider vectors
on the other side of the hyperplane as well, than if v lies far away from the hyperplane. Algorithmically
speaking, given v and any bucket b ∈ {0, 1}k, one could for instance compute the probability that a
reducing vector is in this bucket labeled b, and only check those buckets with the highest probabilities
of containing nearby vectors. For more details, see e.g. [34].

6 Practical results

6.1 Experimental results in moderate dimensions

To verify the claimed speedups, we implemented both the GaussSieve and the GaussSieve-based Hash-
Sieve to try to compare the asymptotic trends of these algorithms. For implementing the HashSieve,
we note that we can use various simple tweaks to further improve the algorithm’s performance. These
include:

(a) With the HashSieve, maintaining a list L is no longer needed.
(b) Instead of making a list of candidates, we go through the hash tables one by one, checking if

collisions in this table lead to reductions. If a nearby vector is found early on, this may save up to
t · k hash computations.

(c) As hi(−v) = −hi(v) the hash of −v can be computed for free from hi(v).
(d) Instead of comparing ±v to all candidate vectors w, we only compare +v to the vectors in the

bucket hi(v) and −v to the vectors in the bucket labeled −hi(v). This further reduces the number
of comparisons by a factor 2 compared to the GaussSieve, where both comparisons are done for
each potential reduction.

(e) For choosing vectors ai,j to use for the hash functions hi, there is no reason to assume that
drawing these vectors from a specific, sufficiently large random subset of the unit sphere would
lead to substantially different results. In particular, using sparse vectors ai,j makes computing
hash values significantly cheaper, while retaining the same performance [1, 32]. Our experiments
indicated that even if all vectors ai,j have only two equal non-zero entries, the algorithm still finds
the shortest vector in (roughly) the same number of iterations as with random vectors ai,j .

(f) We should not store the actual vectors, but only pointers to vectors in each hash table Ti. This
means that compared to the GaussSieve, the space complexity roughly increases from O(N · n) to
O(N · n+N · t) instead of O(N · n · t), i.e., an asymptotic increase of a factor t/n rather than t.

With these tweaks, we performed several experiments of finding shortest vectors using the lattices of
the SVP challenge [51]. We generated lattice bases for different seeds and different dimensions using
the SVP challenge generator, used NTL [54] to preprocess the bases (LLL reduction with δ = 0.99),
and we then used our implementations of the GaussSieve and HashSieve to obtain these results. For
the HashSieve we chose k and t by rounding the theoretical estimates of Theorem 1 to the nearest
integers, i.e., k = b0.2206ne and t = b20.1290ne (see Figure 3a). Note that clearly there are ways to
further speed up both the GaussSieve and the HashSieve, using e.g. better preprocessing, vectorized
code, parallel implementations, optimized samplers, etc. The purpose of our experiments is only to
obtain a fair comparison of the two algorithms and to estimate and compare the asymptotic behaviors
of these algorithms. Details on a more optimized implementation of the HashSieve are given in [37].

Computations. Figure 3b shows the number of inner products computed by the HashSieve for
comparing vectors and for computing hashes. We have chosen k and t so that the total time for each
of these operations is roughly balanced, and indeed this seems to be the case. The total number of inner
products for hashing seems to be a constant factor higher than the total number of inner products
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Dimension (n) 40 45 50 55 60 65 70 75 80 85 90 95 100

Hash length (k) 9 10 11 12 13 14 15 17 18 19 20 21 22

Hash tables. . .

. . . without probing (t) 36 56 87 137 214 334 523 817 1278 1999 3126 4888 7643

. . . with 1-level probing (t1) 7 9 13 20 29 42 62 86 128 190 284 425 637

. . . with 2-level probing (t2) 2 3 4 6 8 11 15 19 26 38 53 76 110

(a) Parameters in the HashSieve (the theoretical leading terms, rounded to the nearest integer), without probing (k, t),
with one level of probing (k, t1), and with two levels of probing (k, t2), for various dimensions n.
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Fig. 3. Experimental data for the GaussSieve and the HashSieve (with/without probing). Markers indicate experimental
data, while lines and labels represent least-squares fits based on this data. The experimental data considers the GaussSieve
(red), the HashSieve (blue), and the HashSieve with one level of probing (purple).
Figure 3a details the parameters k and t used in the experiments, and what they might be in higher dimensions. Figure 3b
shows the time spent on hashing and comparing vectors in the HashSieve. Figure 3c confirms our intuition that if we
miss a small fraction of the reducing vectors, the list size increases by a small factor as well. Figure 3d compares the time
complexities of the algorithms, confirming our theoretical analysis of a speedup of roughly 20.07n over the GaussSieve.
Figure 3e illustrates the space requirements of each algorithm. Note that probing decreases the required memory at the
cost of a small increase in the time. Also note that the step-wise behavior of some curves is explained by the fact that k
is small but integral, and increases by 1 only once every four/five dimensions.
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computed for comparing vectors, which may also be desirable, as hashing is significantly cheaper than
comparing vectors using sparse hash vectors. Tuning the parameters differently may slightly change
this ratio.

List sizes. In the analysis, we assumed that if reductions are missed with a constant probability, then
the list size also increases by a constant factor. Figure 3c seems to support this intuition, as indeed
the list sizes in the HashSieve seem to be a (small) constant factor larger than in the GaussSieve.

Time complexities. Figure 3d compares the timings of the GaussSieve and HashSieve on a single
core of a Dell Optiplex 780, which has a processor speed of 2.66 GHz. Theoretically, we expect to
achieve a speedup of roughly 20.078n for each list search, and in practice we see that the asymptotic
speedup of the HashSieve over the GaussSieve is close to 20.07n using a least-squares fit.

Note that the coefficients in the least-squares fits for the time complexities of the GaussSieve and
HashSieve are higher than theory suggests, which is in fact consistent with previous experiments in low
dimensions [19, 25, 35, 36, 40]. This phenomenon seems to be caused purely by the low dimensionality
of our experiments. Figure 3d shows that in higher dimensions, the points start to deviate from the
straight line, with a better scaling of the time complexity in higher dimensions. High-dimensional
experiments of the GaussSieve (80 ≤ n ≤ 100) and the HashSieve (86 ≤ n ≤ 96) demonstrated
that these algorithms start following the expected trends of 20.42n+o(n) (GaussSieve) and 20.34n+o(n)

(HashSieve) as n gets larger [29, 37]. In high dimensions we therefore expect the coefficient 0.3366 to
be accurate. For more details, see [37].

Space complexities. Figure 3e illustrates the experimental space complexities of the tested algo-
rithms for various dimensions. For the GaussSieve, the total space complexity is dominated by the
memory required to store the list L. In our experiments we stored each vector coordinate in a register
of 4 bytes, and since each vector has n entries, this leads to a total space complexity for the GaussSieve
of roughly 4nN bytes. For the HashSieve the asymptotic space complexity is significantly higher, but
recall that in our hash tables we only store pointers to vectors, which may also be only 4 bytes each.
For the HashSieve, we estimate the total space complexity as 4nN + 4tN ∼ 4tN bytes, i.e., roughly a
factor t

n ≈ 20.1290n/n higher than the space complexity of the GaussSieve. Using probing, the memory
requirement is further reduced by a significant amount, at the cost of a small increase in the time
complexity (Figure 3d).

6.2 High-dimensional extrapolations

As explained at the start of this section, the experiments in Section 6.1 are aimed at verifying the
heuristic analysis and at establishing trends which hold regardless of the amount of optimization of the
code, the quality of preprocessing of the input basis, the amount of parallelization etc. However, the
linear estimates in Figure 3 may not be accurate. For instance, the time complexities of the GaussSieve
and HashSieve seem to scale better in higher dimensions; the time complexities may well be 20.415n+o(n)

and 20.337n+o(n) respectively, but the contribution of the o(n) only starts to fade away for large n. To
get a better feeling of the actual time complexities in high dimensions, one would have to run these
algorithms in higher dimensions. In recent work, Mariano et al. [37] showed that the HashSieve can
be parallelized in a similar fashion as the GaussSieve [35]. With better preprocessing and optimized
code (but without probing), Mariano et al. were able to solve SVP in dimensions up to 96 in less
than one day on one machine using the HashSieve4. Based on experiments in dimensions 86 up to
96, they further estimated the time complexity to lie between 20.32n−15 and 20.33n−16, which is close
to the theoretical estimate 20.3366n+o(n). So although the points in Figure 3d almost seem to lie on
a line with a different leading constant, these leading constants should not be taken for granted for
high-dimensional extrapolations; the theoretical estimate 20.3366n+o(n) seems more accurate.

4 At the time of writing, Mariano et al.’s highest SVP challenge records obtained using the HashSieve are in dimension
107, using five days on one multi-core machine.
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Finally, let us try to estimate the highest practical dimension n in which the HashSieve may be
able to solve SVP right now. The current highest dimension that was attacked using the GaussSieve
is n = 116, for which 32GB RAM and about 2 core years were needed [29]. Assuming the theoretical
estimates for the GaussSieve (20.4150n+o(n)) and HashSieve (20.3366n+o(n)) are accurate, and assuming
there is a constant overhead of approximately 22 of the HashSieve compared to the GaussSieve (based
on the exponents in Figure 3d), we might estimate the time complexities of the GaussSieve and
HashSieve to be G(n) = 20.4150n+C and H(n) = 20.3366n+C+2 respectively. To solve SVP in the same
dimension n = 116, we therefore expect to use a factor G(116)/H(116) ≈ 137 less time using the
HashSieve, or five core days on the same machine. With approximately two core years, we may further
be able to solve SVP in dimension 138 using the HashSieve, which would place sieving near the very
top of the SVP hall of fame [51]. This does not take into account the space complexity though, which
at this point may have increased to several TBs. Several levels of probing may significantly reduce
the required amount of RAM, but further experiments have to be conducted to see how practical the
HashSieve is in high dimensions. As in high dimensions the space requirement also becomes an issue,
studying the memory-efficient NV-sieve-based HashSieve (with space complexity 20.2075n+o(n)) may be
an interesting topic for future work.
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A Proof of Theorem 1

To prove the claim in Theorem 1, we will show how to choose a sequence of parameters {(kn, tn)}n∈N
such that for large n, the following holds:

1. The average probability that a nearby (reducing) vector w collides with v in at least one of the t
hash tables is at least constant in n:

p∗1 = Phi,j∈H[v,w collide | θ(v,w) ≤ π
3 ] ≥ 1− ε. (0 < ε 6= ε(n)) (11)

2. The average probability that a distant (non-reducing) vector w collides with v in at least one of
the t hash tables is exponentially small, under Heuristic 1:

p∗2 = Phi,j∈H[v,w collide | θ(v,w) > π
3 ] ≤ O(N−0.3782). (12)

3. The number of hash tables grows as t = N0.6218.

This would imply that for each search, the number of candidate vectors is of the order N ·N−0.3782 =
N0.6218. Overall, we heuristically expect to iterate searching the list poly(n) ·N times, so after substi-
tuting N = 20.2075n+o(n) this leads to the following asymptotic time and space complexities:

– Time (hashing): O(N · t) = 20.3366n+o(n).

– Time (searching): O(N2 · p∗2) = 20.3366n+o(n).

– Space: O(N · t) = 20.3366n+o(n).

The remaining part of this subsection is dedicated to proving (11) and (12). We first prove that nearby
vectors often collide in at least one of the hash tables, given that k is a suitable function of t. We then
show how p∗2 scales as a function of k and t and how to choose k and t to minimize the asymptotic time
complexity. Finally we describe how to obtain the trade-off between the space and time complexities
as indicated in Figure 1 by choosing k and t slightly differently.

A.1 Reducing vectors collide with constant probability

To guarantee that the list size does not increase by more than a constant factor, we need to make sure
that nearby vectors are actually found with constant probability 1 − ε with ε 6= ε(n) not depending
on the dimension. The condition that the probability of finding nearby vectors is constant will impose
a first condition on (the relation between) k and t.

Lemma 2. Let k = log3/2(t)− log3/2(ln 1/ε). Then the probability that reducing vectors collide in at
least one of the hash tables is at least 1− ε.

Proof. The probability that a reducing vector w is a candidate vector, given the angle Θ = Θ(v,w) ∈
(0, π3 ), is

p∗1 = EΘ∈(0,π
3
) [p∗(Θ)] = EΘ∈(0,π

3
)

[
1−

(
1−

(
1− Θ

π

)k)t]
, (13)

where the angle Θ is a random variable with a certain distribution on (0, π3 ). Since the argument on
the right hand side is strictly decreasing in Θ, we can obtain a lower bound by substituting Θ = π

3 .
Using the bound 1− x < e−x which holds for all x, we obtain:

p∗1 ≥ 1−
(

1− ln(1/ε)

t

)t
≥ 1− exp(− ln(1/ε)) = 1− ε. (14)

This completes the proof. ut
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A.2 Non-reducing vectors collide with low probability

The proof that non-reducing vectors do not often lead to hash collisions is somewhat more involved.
We need to average the probability of a collision over all possible angles between v and w, given that
v and w cannot reduce one another, where we thus have to take the density of angles Θ into account.
Since it is not so easy to compute the exact distribution of angles that may occur between list vectors
throughout the algorithm, we will use Heuristic 1 defined in the main text. To obtain a tight bound
on the average probability of a “useless hash collision” we will further use the following lemma about
the surface area of hyperspheres. This formula can be found in e.g. [17, p. 10, Eq. (19)].

Lemma 3. The hypersurface area of the n-dimensional hypersphere of radius R, defined as Sn(R) =
{v ∈ Rn : ‖v‖ = R}, is equal to

An(R) =
2πn/2

Γ (n/2)
Rn−1. (15)

The previous heuristic and lemma allow us to derive the density of angles f(θ) between non-
reducing vectors explicitly as follows.

Lemma 4. Assuming Heuristic 1 holds, the probability density function f(θ) of angles between pairs
of vectors from Lm satisfies

f(θ) =

√
2n

π
(sin θ)n−2 [1 + o(1)] = 2log2(sin θ)n+o(n). (16)

Proof. Suppose without loss of generality that v = (1, 0, . . . , 0) is fixed. To derive the density at a
given angle θ, we basically need to know the fraction of points in Ω that have this angle with v. Note
that if the angle is fixed at θ, then the first coordinate of w is cos θ and so the remaining coordinates
of w must satisfy

w2
2 + · · ·+ w2

n = 1− cos2 θ = sin2 θ. (17)

This equation defines an (n−1)-dimensional hypersphere with radius sin θ, whose volume follows from
Lemma 3. Dividing by the total volume of Ω, the density function f thus satisfies

f(θ) =
1

M
An−1(sin θ), M =

∫ 2π

0
An−1(sinφ) dφ. (18)

Writing out the expressions for An−1(sin θ) and M ∼ An(1), we therefore obtain

f(θ) =
An−1(sin θ)

(1− o(1))12An(1)
=

2√
π
·
Γ (n2 )

Γ (n−12 )
· (sin θ)n−2 [1 + o(1)] . (19)

Noting that Γ (n+ 1
2) ∼

√
n · Γ (n) for large n, the result follows. ut

We are now ready to prove the main result, showing that collisions between faraway vectors occur
with exponentially small probability. We first prove a general result relating the probability of a bad
collision to the parameter t, and then show how to choose t to balance the time and space complexities.

Lemma 5. Let γ1 = 1
2 log2(

4
3) ≈ 0.2075, let γ2 = log2(

3
2) ≈ 0.5850, and suppose N = 2cn·n and

t = 2ct·n with cn ≥ γ1. For θ ∈ [0, π], let U(θ) < 0 be defined as

U(θ) = log2(sin θ) +
ct
γ2

log2

(
1− θ

π

)
. (20)

Then, for large n the probability of bad collisions is bounded by

p∗2 = P(bad vectors collide) ≤ O(N−α), where α =
1

cn

[
−ct − max

θ∈(π
3
,π
2
)
U(θ)

]
+ o(1). (21)
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Proof. First, if we know the angle θ ∈ (π3 ,
π
2 ) between two non-reducing vectors, then the probability

of a collision is p∗(θ) = 1− (1− (1− θ
π )k)t. Letting f(θ) denote the density of angles θ on Ω, we have

p∗2 = EΘ∈(π
3
,π
2
) [p∗(Θ)] =

∫ π/2

π/3
f(θ)p∗(θ)dθ. (22)

Substituting p∗(θ) = 1− (1− (1− θ
π )k)t and the expression of Lemma 4 for f(θ), we get

p∗2 =

√
2n

π

∫ π/2

π/3
(sin θ)n−2 [1 + o(1)]

[
1−

(
1−

(
1− θ

π

)k)t]
dθ. (23)

Next, note that for θ � π
3 we have t � (1 − θ

π )−k and so (1 −
(
1− θ

π

)k
)t ≈ 1 − t

(
1− θ

π

)k
. In that

case, we can simplify the expression between square brackets to t ·
(
1− θ

π

)k
. However, the integration

range includes π
3 as well, so to be careful we will split the integral in two disjoint parts, where we let

δ = O(n−1/2):

p∗2 =

∫ π/3+δ

π/3
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I1

+

∫ π/2

π/3+δ
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I2

. (24)

Bounding I1. Using f(θ) ≤ f(π3 + δ) and p∗(θ) ≤ p∗(π3 ), we obtain

I1 ≤ poly(n) · δ(1− ε) sinn−2
(π

3
+ u
)
. (25)

From a Taylor expansion around θ = π
3 of sin θ we derive that sin(π3 + u) ∼ 1

2

√
3 [1 +O(δ)], which

leads to

I1 ≤ 2−γ1n+o(n) (1 +O(δ))n = 2−γ1n+o(n). (26)

Bounding I2. For I2, this choice of δ is sufficient to make the approximation (1 −
(
1− θ

π

)k
)t ≈

1− t
(
1− θ

π

)k
work. Thus, for I2 we obtain the simplified expression

I2 ≤ poly(n) · t
∫ π/2

π/3+u
(sin θ)n−2

(
1− θ

π

)k
dθ ≤

∫ π/2

π/3
2n log2(sin θ)+k log2(1− θπ )+ctn+o(n)dθ. (27)

Note that the integrand is exponential in n (assuming k is at most linear n) and the exponent is a
continuous, differentiable function of θ. So the asymptotic behavior of the integral is the same as the
asymptotic behavior of its maximum value:

log2 I2 ≤ ctn+ max
θ∈(π

3
,π
2
)

{
n log2(sin θ) + k log2

(
1− θ

π

)}
+ o(n). (28)

Bounding p∗2 = I1 + I2. Combining the results from (26) and (28), we have

log2 p
∗
2

n
≤ max

{
−γ1, ct + max

θ∈(π
3
,π
2
)
U(θ)

}
+ o(1). (29)

In the end, we would like to prove that p∗2 ≤ N−α, or equivalently 1
n log2 p

∗
2 ≤ −αcn. To complete the

proof, it therefore suffices to prove the following two inequalities:

max{−γ1, ct + max
θ∈(π

3
,π
2
)
U(θ)} ≤ −αcn + o(1). (30)

Note that the inequality corresponding to the first term in the maximum is automatically satisfied if
α ≤ 1 and N = 2γ1n+o(n). For the second inequality, we isolate α to obtain

α ≤ 1

cn

[
−ct − max

θ∈(π
3
,π
2
)
U(θ)

]
+ o(1). (31)

Since we want α to be as large as possible, we set α equal to its lower bound, leading to the result. ut
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A.3 Balancing the parameters

To return to actual consequences for the complexity of the scheme, recall that the overall time and
space complexities are heuristically given by:

– Time (hashing): O(N · t) = 2(cn+ct)n+o(n).
– Time (searching): O(N2 · p∗2) = 2(cn+(1−α)cn)n+o(n).
– Time (overall): 2(cn+max{ct,(1−α)cn})n+o(n).
– Space: O(N · t) = 2(cn+ct)n+o(n).

Writing the overall time complexity as 2ctimen+o(n) and the space complexity as 2ctimen+o(n), this means

ctime = cn + max{ct, (1− α)cn}, cspace = cn + ct. (32)

Also recall that from bounds on the kissing constant in high dimensions, we expect that N = 20.2075n

or cn = γ1. To balance the asymptotic time complexities for hashing and searching, so that the time
and space complexities are the same and the time complexity is minimized, we solve (1 − α)γ1 = ct
numerically for ct

5 to obtain the following corollary.

Corollary 1. Taking ct ≈ 0.129043 leads to:

θ∗ ≈ 0.458921π, α ≈ 0.378163, ctime ≈ 0.336562, cspace ≈ 0.336562.

In other words, using t ≈ 20.129043n hash tables and a hash length of k ≈ 0.220600n, the heuristic time
and space complexities of the algorithm are balanced at 20.336562n+o(n).

A.4 Trade-offs between space and time

Finally, note that ct = 0 leads to the original GaussSieve algorithm, while ct ≈ 0.129043 minimizes the
heuristic time complexity at the cost of more space. One can also obtain a continuous time-memory
trade-off between the GaussSieve and the HashSieve algorithm by considering values ct ∈ (0, 0.129043).
Numerically evaluating the resulting time and space complexities for this range of values of ct leads
to the graph shown in Figure 1.

B The quadratic sieve and angular LSH trade-offs and speed-ups

Let us finally describe a variant of the Nguyen-Vidick sieve which achieves the same performance, but
may be slightly easier to think about. Whereas in the Nguyen-Vidick sieve a random subset of centers
Cm+1 is chosen and only some of the pairs of vectors (v,w) ∈ Lm×Cm+1 are considered for reduction,
this algorithm simply considers all combinations (v,w) ∈ Lm×Lm and sees if their sum or difference
is short enough to be added to Lm+1. This means that significantly more comparisons are done than in
the NV-sieve, but clearly the runtime is (at most) quadratic in the size of the input list, hence bounded
by 20.415n+o(n). Moreover, as strictly more pairs of vectors are considered for reduction, the output list
Lm+1 contains all vectors that would have passes through an iteration of the Nguyen-Vidick sieve. So
this algorithm achieves the same asymptotic time and space complexities as the Nguyen-Vidick sieve,
with the same heuristic guarantee of correctness as the Nguyen-Vidick sieve.

The resulting algorithm, without using angular LSH, is outlined in Algorithm 6. For this algorithm,
LSH methods can be applied in a similar fashion as for the NV-sieve, resulting in a space-time trade-off
or a clean speed-up as illustrated in Algorithms 7 and 8 respectively.

5 Note that α is implicitly a function of ct as well.
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Algorithm 6 The QuadraticSieve algorithm (without angular LSH)

Require: An input list Lm of (4/3)n/2+o(n) lattice vectors of norm at most R = maxv∈Lm ‖v‖
Ensure: The output list Lm+1 has size (4/3)n/2+o(n) and only contains lattice vectors of norm at most γ ·R
1: Initialize an empty list Lm+1

2: for each v ∈ Lm do
3: for each w ∈ Lm ∪ {0} do
4: if ‖v ±w‖ ≤ γ ·R then
5: Add v ± w to the list Lm+1

Algorithm 7 The QuadraticSieve algorithm (with angular LSH)

Require: An input list Lm of (4/3)n/2+o(n) lattice vectors of norm at most R = maxv∈Lm ‖v‖
Ensure: The output list Lm+1 has size (4/3)n/2+o(n) and only contains lattice vectors of norm at most γ ·R
1: Initialize an empty list Lm+1

2: Initialize k empty hash tables Ti and sample k · t random hash functions hi,j ∈ H
3: for each w ∈ Lm do
4: Add w to all k hash tables Ti, to the buckets Ti[hi(w)]

5: for each v ∈ Lm do

6: for each w ∈
t⋃
i=1

Ti[hi(±v)] ∪ {0} do

7: if ‖v ±w‖ ≤ γ ·R then
8: Add v ± w to the list Lm+1

Algorithm 8 The QuadraticSieve algorithm (with angular LSH, space-efficient)

Require: An input list Lm of (4/3)n/2+o(n) lattice vectors of norm at most R = maxv∈Lm ‖v‖
Ensure: The output list Lm+1 has size (4/3)n/2+o(n) and only contains lattice vectors of norm at most γ ·R
1: Initialize an empty list Lm+1

2: for each i ∈ {1, . . . , t} do
3: Initialize an empty hash table T and sample k random hash functions hi,j ∈ H
4: for each w ∈ Lm do
5: Add w to the hash table T , to bucket T [hi(w)]

6: for each v ∈ Lm do
7: for each w ∈ T [hi(±v)] ∪ {0} do
8: if ‖v ±w‖ ≤ γ ·R then
9: Add v ± w to the list Lm+1
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