Automatic Enumeration of (Related-key) Differential and Linear Characteristics with Predefined Properties and Its Applications

Siwei Sun ${ }^{1,2}$, Lei $\mathrm{Hu}^{1,2}$, Meiqin Wang ${ }^{3}$, Peng Wang ${ }^{1,2}$, Kexin Qiao ${ }^{1,2}$, Xiaoshuang Ma ${ }^{1,2}$, Danping Shi ${ }^{1,2}$, Ling Song ${ }^{1,2}$
${ }^{1}$ State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
${ }^{2}$ Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, Beijing 100093, China
${ }^{3}$ Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan 250100, China
\{sunsiwei, hulei\}@iie.ac.cn, mqwang@sdu.edu.cn,
\{wpeng, qiaokexin, maxiaoshuang, shidanping, songling\}@iie.ac.cn

Abstract

In this paper, we investigate the Mixed-integer Linear Programming (MILP) modelling of the differential and linear behavior of a wide rang of block ciphers. The differential and linear behavior of the transformations involved in a block cipher can be described by a set $P \subseteq\{0,1\}^{n} \subseteq \mathbb{R}^{n}$. We show that P is exactly the set of all $0-1$ solutions of the H -representation of the convex hull of P. In addition, we can find a small number of inequalities in the H-representation of the convex hull of P such that the set of all 0-1 solutions of these inequalities equals P.

Based on these discoveries and MILP technique, we propose an automatic method for finding high probability (related-key) differential or linear characteristics of block ciphers. Compared with Sun et al.'s heuristic method presented in Asiacrypt 2014, the new method is exact for most ciphers in the sense that every feasible $0-1$ solution of the MILP model generated by the new method corresponds to a valid characteristic, and therefore there is no need to repeatedly add valid cutting-off inequalities into the MILP model as is done in Sun et al.'s method; the new method is more powerful which allows us to get the exact lower bounds of the number of differentially or linearly active S-boxes; and the new method is more efficient which is able to obtain characteristic enjoying higher probability or covering more rounds of a cipher with less computational effort.

Moreover, by employing a type of specially constructed linear inequalities which can remove exactly one feasible 0-1 solution from the feasible region of an MILP problem, we propose a method for automatic enumeration of all (related-key) differential or linear characteristics with some predefined properties, e.g., characteristics with given input or/and output difference/mask, or with limited number of active S-boxes. Such a method is very useful in the automatic (related-key) differential analysis, truncated (related-key) differential analysis, linear hull analysis, and the automatic construction of (related-key) boomerang/rectangle distinguishers.

The methods presented in this paper are implemented and extensive experiments are performed. To demonstrate the usefulness of these methods, we apply them to SIMON, PRESENT, Serpent, LBlock, DESL, and we obtain improved cryptanalytic results. For example, we find single-key differentials covering 16 and 22 rounds of SIMON48 and SIMON64 (block ciphers designed by the U.S. National Security Agency) respectively. These are the longest differentials for SIMON48 and SIMON64 published so far.

Keywords: Automatic cryptanalysis, Related-key differential cryptanalysis, Linear cryptanalysis, Mixedinteger Linear Programming, Convex hull, Enumeration

1 Introduction

Differential cryptanalysis [1] and linear cryptanalysis [2] are two of the most powerful attacks on modern symmetric-key ciphers. Based on differential and linear cryptanalysis, lots of techniques have been developed for analyzing the security of block ciphers, such as the related-key differential attack [3-5], truncated differential attack [6], statistical saturation attack [7] (it has been shown in [8] that a statistical saturation attack is the same as a truncated differential attack), (probabilistic) higher order differential attack [6, 9], impossible differential attack [10, 11], boomerang attack [12], multiple differential attack [13-16], differential-linear cryptanalysis [17], multiple linear attack [18-22] and so on so forth. To a large extent, providing a security evaluation with respect to the differential and linear attack has become a basic requirement for a newly designed block cipher to be accepted by the cryptographic community.

Calculating the minimum number of active S-boxes is a practical way to evaluate the resistance of a block cipher against the differential and linear attack [23-28], and searching for differential and linear characteristics is not only performed in basic differential and linear attacks, but also is indispensable in some new cryptanalytic techniques such as the rebound attack [29] and the sieve-in-the-middle technique [30]. Moreover, some new technique for cryptanalysis (e.g., the biclique attack [31]) and some symmetric-key cryptographic schemes which can be designed based on block ciphers (e.g., the authenticated encryption schemes) make the related-key model more important and highly relevant to the design and cryptanalysis of symmetric-key primitives. Therefore, methods which can be used to evaluate the security of a block cipher with respect to the (relate-key) differential and linear attack, and search for (related-key) differential or linear characteristics are of great importance. In fact, this direction of research has got much attention from many cryptanalysts [32-37].

Mouha et al. [38] and Wu et al. [39] translated the problem of counting the minimum number of differentially active S-boxes, into an MILP problem which can be solved automatically with open source or commercially available optimizers. This method has been applied in evaluating the security against (relatedkey) differential attacks of many word-oriented symmetric schemes, as well as in searching for linear or differential characteristics with specific patterns [40,41]. By introducing bit-level representations, Winnen et al. [42] and Sun et al. [43] extended Mouha et al.'s framework, and presented methods for counting the minimum number of differentially active S-boxes of bit-oriented block ciphers both in single-key and relatedkey model. We notice that such MILP based methods are also mentioned or used in the recent analysis and design of several authenticated encryption schemes [24, 41, 44-49].

In Asiacrypt 2014, two systematic methods for generating linear inequalities describing the differential properties of an arbitrary S-box were given in [50]. With these inequalities, the authors of [50] were able to construct an MILP model whose feasible region is a more accurate description of the differential behavior of a given cipher. Based on such MILP models, the authors of [50] proposed a heuristic algorithm for finding (related-key) differential characteristics, which is applicable to a wide range of block ciphers. To demonstrate the powerfulness of these methods, Sun et al. applied these tools to SIMON, LBlock, DES(L), PRESENT, and they obtain tighter security bounds with respect to the related-key differential attack, or find better (relatedkey) differential characteristics than previously published results. However, some important problems have not been solved yet in [50]. For example, is it possible to construct an MILP model whose feasible region of all $0-1$ solutions is exactly the set of all possible (related-key) differential or linear characteristics? If it is possible, can we extract all characteristics with some predefined properties (e.g., characteristics with given input or/and output difference/mask, or with limited number of active S-boxes)? In this work, we make a first step towards solving these problems.

Our contribution. In this work, we investigate the MILP modelling of the differential and linear behavior of a wide rang of block ciphers. We show that the convex hull description presented in Sun et al.'s work [50] is exact for any set $P \subseteq\{0,1\}^{n} \subseteq \mathbb{R}^{n}$ (which can be seen as the set of all differential or linear patterns of an operation) according to a fact which have been known since at least 1972 [62]: for any $x \in\{0,1\}^{n}, x$ is in the convex hull of P if and only if $x \in P$. This fact has some important implications. Firstly, we now know that there is no need to use the inequalities generated by the method based on logical condition modelling presented in [50] since the inequalities generated by the method based on convex hull computation are already enough. Secondly, Sun et al.'s heuristic method for finding (related-key) differential (or linear) characteristics can be transformed into an exact algorithm (for most ciphers) by adding all the linear inequalities in the H-representation of the convex hull, since by doing this, the feasible region of the MILP problem is exactly the set of all possible (related-key) differential (or linear) characteristics. ${ }^{1}$

However, as already pointed out by Sun et al. in [50], there are so many inequalities in the H-representation of the convex hull and adding all of them to the MILP problem will make it insolvable in practical time. To overcome this difficulty, we select only a small number of inequalities from the convex hull such that the feasible region of the resulting MILP problem is still the set of all possible (related-key) differential or linear characteristics, and this is accomplished by a minor modification of Sun et al.'s greedy algorithm [50] for

[^0]selecting inequalities from the convex hull. Eventually, we are able to build an exact and practical algorithm for finding (related-key) differential and linear characteristics.

Moreover, based on a type of specially constructed inequalities which can remove exactly one 0-1 solution from the feasible region of an MILP problem, we present a method for enumerating all the (related-key) differential and linear characteristics with some predefined properties, which is very useful differential- and linear-type cryptanalysis, such as the analysis of differential and linear hull effect.

Based on the methods presented in this paper, we develop a Python [52] based framework for automatic (related-key) differential and linear (hull) analysis, automatic truncated (related-key) differential analysis, and automatic construction of boomerang distinguishers. Using this framework, we obtain the following results:

1. We get the exact lower bounds of the number of differentially active S-boxes for some round-reduced versions of LBlock, which leads to tighter (tightest so far) security bound for the block cipher LBlock, and the computational cost used to derive this bound is significantly reduced than that of [50].
2. We automatically prove that there is no single-key differential characteristic for Serpent [53] (one of the AES finalist) with probability higher than 2^{-128} in no more than 73 minutes on a PC. Note that obtaining this bound is a very difficult task at the time of the AES selection process.
3. For the 8 -round DESL, we find a related-key differential characteristic with probability $2^{-33.45}$ on a PC in no more than 4 minutes. Note that the best previously published related-key characteristic (whose probability is $2^{-34.78}$) for the 8 -round DESL was found on a PC using roughly 10 minutes. In addition, we automatically find a truncated related-key differential with probability $2^{-34.06}$ for the 9 -round DESL on a PC using no more than 28 minutes.
4. We find a 16 -round standard (non truncated) related-key differential with probability $2^{-55.64}$, which is even better than the best previously published truncated related-key differential for the 16-round LBlock whose probability is about 2^{-59} [54]. To the best of our knowledge, this is the best (related-key) differential characteristic for LBlock published so far, and this is the first concrete result demonstrating the related-key differential effect.
5. We present a single-key differential covering 16 rounds of SIMON48 whose probability is at least $2^{-44.65}$, and a single-key differential covering 22 rounds of SIMON64 whose probability is at least $2^{-62.21}$. To the best of our knowledge, there are no published single-key differentials covering more than 15 rounds of SIMON48 and 21 rounds of SIMON64. These differentials can be used to produce the best known attacks on SIMON48 and SIMON64 with the technique presented in [55].
6 . We present a linear characteristic for the 55 -round SIMON128 which covering more rounds and enjoying higher bias than the 52 -round linear characteristic given in [56].
6. We revisit the work of Nakahara et al. [57] on linear hull analysis of PRESENT. We show that our method is more flexible and general, which allows us to get much more linear characteristics in a given linear hull.
7. We improve the currently best known related-key boomerang distinguishers for the 14-round PRESENT128 and the 16 -round LBlock.

Organization. We start with a brief introduction of Sun et al.'s method [43,50] for automatic differential cryptanalysis of bit-oriented block ciphers in Sect. 2. Then, in Sect. 3, we investigate the problem of describing an arbitrary subset of $\{0,1\}^{n} \subseteq \mathbb{R}^{n}$ with linear inequalities, and prove some theorems which are of fundamental importance for the remaining work of this paper. In Sect. 4, a method for constructing an MILP model whose feasible region is exactly the set of all (related-key) differential or linear characteristics is proposed with its application in obtaining exact lower bound of the number of active S-boxes, and searching for (related-key) differential or linear characteristics. Based on the work of Sect. 4 and a type of specially constructed inequality, we present a method for automatic enumeration of (related-key) differential or linear characteristics with some predefined properties in Sect. 5, which is applicable in the automatic (relatedkey) differential and linear (hull) analysis, automatic truncated (related-key) differential analysis, and the automatic construction of boomerang/rectangle distinguishers. Sect. 6 is the conclusion.

2 Automatic (Related-key) Differential and Linear Analysis of Bit-oriented Block Ciphers

In this section, we give a brief introduction of Sun et al.'s method which can be used to search for (related-key) differential characteristics and obtain security bounds of a cipher with respect to the (related-key) differential
attack automatically. We refer the reader to $[43,50]$ for more information. In addition, the same method can be used in automatic linear analysis, and we present it in Appendix A.

Sun et al.'s method [50] is an extension of Mouha et al.'s technique [38] which describes the differential behavior of a cipher by an MILP problem, and it is applicable to block ciphers involving the following three operations.

- bitwise XOR;
- bitwise permutation L which permutes the bit positions of a n dimensional vector in \mathbb{F}_{2}^{n};
- S-box, $\mathcal{S}: \mathbb{F}_{2}^{\omega} \rightarrow \mathbb{F}_{2}^{\nu}$

Theoretically, Sun et al.'s method is also applicable to ciphers containing general linear transformation $T: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, since T can be converted into some XOR summations of different bits. However, such operation will introduce a large number of variables and constraints into the MILP problem and make it very difficult to be solved in practical time.

For every input and output bit-level differences, introduce a new $0-1$ variable x_{i} to denote whether this bit has a nonzero difference or not:

$$
x_{i}=\left\{\begin{array}{l}
1, \text { for nonzero difference at this bit } \\
0, \text { otherwise }
\end{array}\right.
$$

Also, for every S-box in the schematic diagram of the cipher under consideration, including the encryption process and the key schedule algorithm, introduce a new $0-1$ variable A_{j} such that

$$
A_{j}=\left\{\begin{array}{l}
1, \text { if the input word of the Sbox is nonzero }, \\
0, \text { otherwise }
\end{array}\right.
$$

Here we say that A_{j} indicates the activity of an S-box, or an S-box is marked by A_{j}.
Now, we are ready to describe Sun et al.'s method by clarifying the objective function and constraints in the MILP model. Note that we assume that all variables involved are 0-1 variables.

Objective Function. The objective function is to minimize the sum of all variables indicating the activities of the S-boxes appearing in the schematic description of the encryption and key schedule algorithm of a cipher: $\sum_{j} A_{j}$.

Constraints. Firstly, for every XOR operation with bit-level input differences a, b and bit-level output difference c, include the following constraints

$$
\left\{\begin{array}{l}
d_{\oplus} \geq a, d_{\oplus} \geq b, d_{\oplus} \geq c \tag{1}\\
a+b+c \geq d_{\oplus} \\
a+b+c \leq 2
\end{array}\right.
$$

where d_{\oplus} is a dummy variable.
Assuming $\left(x_{i_{0}}, \ldots, x_{i_{\omega-1}}\right)$ and $\left(y_{i_{0}}, \ldots, y_{i_{\nu-1}}\right)$ are the input and output differences of an $\omega \times \nu$ S-box marked by A_{t}, we have

$$
\left\{\begin{array}{l}
A_{t}-x_{i_{k}} \geq 0, k \in\{0, \ldots, \omega-1\} \tag{2}\\
-A_{t}+\sum_{j=0}^{\omega-1} x_{i_{j}} \geq 0
\end{array}\right.
$$

which ensures that nonzero input difference must activate the S-box. Moreover, the Hamming weight of the $(\omega+\nu)$-bit word $x_{i_{0}} \cdots x_{i_{\omega-1}} y_{j_{0}} \cdots y_{j_{\nu-1}}$ must be greater than or equal to the branch number $\mathcal{B}_{\mathcal{S}}$ of the S-box for nonzero input difference $x_{i_{0}} \cdots x_{i_{\omega-1}}$:

$$
\left\{\begin{array}{l}
\sum_{k=0}^{\omega-1} x_{i_{k}}+\sum_{k=0}^{\nu-1} y_{j_{k}} \geq \mathcal{B}_{\mathcal{S}} d_{\mathcal{S}} \tag{3}\\
d_{\mathcal{S}} \geq x_{i_{k}}, \quad 0 \leq k \leq \omega-1 \\
d_{\mathcal{S}} \geq y_{j_{k}}, \quad 0 \leq k \leq \nu-1
\end{array}\right.
$$

where $d_{\mathcal{S}}$ is a dummy variable, and the branch number $\mathcal{B}_{\mathcal{S}}$ of an S -box \mathcal{S}, is defined as $\min _{a \neq b}\{\mathrm{wt}((a \oplus$ $\left.b) \|(\mathcal{S}(a) \oplus \mathcal{S}(b)): a, b \in \mathbb{F}_{2}^{\omega}\right\}$ and $\mathrm{wt}(\cdot)$ is the standard Hamming weight of a $(\omega+\nu)$-bit word.

For an bijective S-box we have

$$
\left\{\begin{array}{l}
\omega \sum_{k=0}^{\nu-1} y_{j_{k}}-\sum_{k=0}^{\omega-1} x_{i_{k}} \geq 0 \tag{4}\\
\nu \sum_{k=0}^{\omega-1} x_{i_{k}}-\sum_{k=0}^{\nu-1} y_{j_{k}} \geq 0
\end{array}\right.
$$

since nonzero input difference must result in nonzero output difference and vice versa. Note that for an S-box with branch number $\mathcal{B}_{\mathcal{S}}=2$, the constraints presented in (3) are redundant [50].

To describe the differential properties of an S-box more accurately, Sun et al. proposed two systematic ways for generating valid cutting-off inequalities [50] which are used to remove some impossible differential patterns of the S-box from the feasible region of the MILP problem:
Logical Condition Modelling. Borrowing the idea from general MILP modelling technique for logical conditions, Sun et al. showed that some conditional differential properties of an S-box can be described by linear inequalities. For example, the least significant bit of the output difference of the PRESENT S-box is always 0 if the input difference is 1001 . This conditional differential property is equivalent to the following constraint

$$
-x_{0}+x_{1}+x_{2}-x_{3}-y_{3}+2 \geq 0
$$

where $x_{i}, y_{i} \in\{0,1\} \subseteq \mathbb{R}$, and $\left(x_{0}, \ldots, x_{3}\right)$ and $\left(y_{0}, \ldots, y_{3}\right)$ are the input and output difference respectively. This fact can be easily verified by enumerating all possible $0-1$ assignments of the variables x_{i} and y_{i}.

Convex Hull Computation. A convex hull of a finite set P of points is the smallest convex set that contains P. Sun et al. treat every possible input-output differential pattern $\left(x_{0}, \ldots, x_{\omega-1}\right) \rightarrow\left(y_{0}, \ldots, y_{\nu-1}\right)$ of an $\omega \times \nu$ S-box as an $(\omega+\nu)$-dimensional vector $\left(x_{0}, \ldots, x_{\omega-1}, y_{0}, \ldots, y_{\nu-1}\right) \in\{0,1\}^{\omega+\nu} \subseteq \mathbb{R}^{\omega+\nu}$. By computing the H-Representation of the convex hull of all possible input-output differential patterns of an S-box, many linear inequalities which can be used to remove some impossible differential patterns of the S-box are obtained. Moreover, a greedy algorithm is developed for selecting a small number of inequalities from the H-representation of the convex hull.

Finally, we note that Sun et al.'s method [50] is also applicable in automatic linear cryptanalysis, and the MILP modelling process is given in Appendix A.

3 Describing Subsets of $\{0,1\}^{n} \subseteq \mathbb{R}^{n}$ with Linear Inequalities

In this section, we start by thoroughly investigating the problem of describing an arbitrary set $P \subseteq\{0,1\}^{n} \subseteq$ \mathbb{R}^{n} with linear inequalities, which eventually leads us to the construction of MILP models whose feasible regions are exactly the sets of all (related-key) differential (or linear) characteristics for a wide range of ciphers.

Firstly, we introduce some notations for the convenience of discussion. Let $\mathcal{L}=\left\{l_{0}, \ldots, l_{m-1}\right\}$ be a system of linear inequalities of the form $l_{i}: \sum_{j=0}^{n-1} \lambda_{i j} x_{i}+\beta_{i} \geq 0,0 \leq i \leq m-1$. Then, we use $\operatorname{Sol}(\mathcal{L})$ to denote the set of all solutions of \mathcal{L} in \mathbb{R}^{n}. In addition, $\operatorname{Sol}(\mathcal{L}) \cap A$ is represented by $\operatorname{Sol}_{A}(\mathcal{L})$, where A is a subset of \mathbb{R}^{n}. Under these notations, $\operatorname{Sol}_{\mathbb{B}^{n}}(\mathcal{L})=\operatorname{Sol}(\mathcal{L}) \cap \mathbb{B}^{n}$ is the set of all 0-1 solutions of \mathcal{L}, where $\mathbb{B}=\{0,1\} \subseteq \mathbb{R}$.

Moreover, we use $C u t_{\mathbb{B}^{n}}\left(l_{i}\right)=\operatorname{Cut}_{\mathbb{B}^{n}}\left(\sum_{j=0}^{n-1} \lambda_{i j} x_{i}+\beta_{i} \geq 0\right)$ to denote the set of all 0-1 vectors in \mathbb{R}^{n} which are not satisfied by l_{i}. That is, $C u t_{\mathbb{B}^{n}}\left(l_{i}\right)=\mathbb{B}^{n}-\operatorname{Sol}_{\mathbb{B}^{n}}\left(\left\{l_{i}\right\}\right)$. Also, we use $C u t_{\mathbb{B}^{n}}(\mathcal{L})$ to represent the set $\cup_{l_{i} \in \mathcal{L}} C u t_{\mathbb{B}^{n}}\left(l_{i}\right)$. According to this notation, we have $C u t_{\mathbb{B}^{n}}(\mathcal{L})=\mathbb{B}^{n}-\operatorname{Sol}_{\mathbb{B}^{n}}(\mathcal{L})$.

Definition 1. A set $C \subseteq \mathbb{R}^{n}$ is said to be convex if, for all $x, y \in C$ and all $t \in[0,1]$, the point $(1-t) x+t y$ also belongs to C.

Definition 2. The smallest convex set that contains $P \subseteq \mathbb{R}^{n}$ is said to be the convex hull of P, and is denoted by $\operatorname{conv}(P)$.

Lemma 1. The set of all solutions of the following system of (in)equalities

$$
\left\{\begin{array}{c}
\lambda_{0,0} x_{0}+\cdots+\lambda_{0, n-1} x_{n-1}+\lambda_{0, n} \geq 0 \tag{5}\\
\cdots \\
\gamma_{0,0} x_{0}+\cdots+\gamma_{0, n-1} x_{n-1}+\gamma_{0, n}=0 \\
\cdots
\end{array}\right.
$$

is convex, where $\lambda_{i, j}$ and $\gamma_{i, j}$ are fixed real numbers. For any subset $X \subseteq \mathbb{R}^{n}$ with finitely many discrete points, there exists a system $\mathcal{H}_{\operatorname{conv}(X)}$ of linear inequalities of the form of (5), such that $\operatorname{Sol}\left(\mathcal{H}_{\operatorname{conv}(X)}\right)=\operatorname{conv}(X)$, and we call $\mathcal{H}_{\operatorname{conv}(X)}$ the H-representation of $\operatorname{conv}(X)$.

The above definitions and lemma are well known in computational geometry, and for a given set $P \subseteq \mathbb{R}^{n}$ of finitely many points, there are algorithms which can compute the H-representation of $\operatorname{conv}(P)[58-61]$.

Lemma 2. For a given 0-1 vector $\delta=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}\right) \in\{0,1\}^{n} \subseteq \mathbb{R}^{n}$, Cut $\mathbb{B}_{\mathbb{B}^{n}}\left(\sum_{i=0}^{n-1}\left[\delta_{i}+(-1)^{\delta_{i}} x_{i}\right] \geq 1\right)=$ $\left\{\left(\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}\right)\right\}$.

Proof. We assume

$$
\delta=\left(\delta_{0}, \ldots, \delta_{n-1}\right)=\left(\delta_{0}, \ldots, \delta_{s_{1}-1} ; \delta_{s_{1}}, \ldots, \delta_{n-1}\right)=(1,1, \ldots, 1 ; 0,0, \ldots, 0)
$$

For other 0-1 pattern, it can be permuted into such a form and this will not affect our proof.
Firstly, substituting x_{i} by δ_{i}, we have

$$
\sum_{i=0}^{n-1}\left[\delta_{i}+(-1)^{\delta_{i}} x_{i}\right]=\sum_{i=0}^{s_{1}-1} \delta_{i}+\sum_{i=0}^{s_{1}-1}(-1)^{\delta_{i}} \delta_{i}=0<1
$$

That is, δ is not satisfied by $\sum_{i=0}^{n-1}\left[\delta_{i}+(-1)^{\delta_{i}} x_{i}\right] \geq 1$.
Secondly, for $\delta^{\prime}=\left(\delta_{0}^{\prime}, \ldots, \delta_{n-1}^{\prime}\right) \neq \delta$, substituting x_{i} by δ_{i}^{\prime}, we have

$$
\sum_{i=0}^{n-1}\left[\delta_{i}+(-1)^{\delta_{i}} x_{i}\right]=\sum_{i=0}^{s_{1}-1} \delta_{i}+\sum_{i=0}^{n-1}(-1)^{\delta_{i}} \delta_{i}^{\prime} \geq s_{1}-s_{1}+1=1
$$

That is, all vectors other than δ are satisfied by $\sum_{i=0}^{n-1}\left[\delta_{i}+(-1)^{\delta_{i}} x_{i}\right] \geq 1$.
The proof is completed.
Below, we use $l^{\left(\delta_{0}, \delta_{1}, \ldots, \delta_{n-1}\right)}$ or $l^{(\delta)}$ to denote the linear inequality $\sum_{i=0}^{n-1}\left[\delta_{i}+(-1)^{\delta_{i}} x_{i}\right] \geq 1$. Therefore, we have

$$
C u t_{\mathbb{B}^{n}}\left(l^{(\delta)}\right)=\operatorname{Cut}_{\mathbb{B}^{n}}\left(l^{\left(\delta_{0}, \ldots, \delta_{n-1}\right)}\right)=\{\delta\}=\left\{\left(\delta_{0}, \ldots, \delta_{n-1}\right)\right\}
$$

That is, $l^{(\delta)}$ can be used to remove one and only one $0-1$ vector. This kind of inequalities plays a significant role in our algorithm for enumerating (related-key) differential (or linear) characteristics, and is useful for proving the following theorem. Recently, we find that the following theorem has already been proved by Egon Balas et al. [62] in 1972 (Although they are different in appearance, they are the same in essential). Hence, this theorem should be attributed to Egon Balas et al.

Theorem 1. Assume $x \in\{0,1\}^{n}$ and let $\operatorname{conv}(X)$ be the convex hull of $X \subseteq\{0,1\}^{n} \subseteq \mathbb{R}^{n}$. Then $x \in \operatorname{conv}(X)$ if and only if $x \in X$.

Proof. Since conv (X) is the convex hull of X which is the smallest convex set containing X, we have $x \in \operatorname{conv}(X)$ for every $x \in X$.

Then, we prove that $y \in X$ for every $0-1$ vector $y \in \operatorname{conv}(X)$ by contradiction. If this is not the case, then there exists a $0-1$ vector $y^{*} \in \operatorname{conv}(X)$, such that $y^{*} \notin X$. Consider the set of linear inequalities $\mathcal{L}=\mathcal{H}_{\operatorname{conv}(X)} \cup\left\{l^{\left(y^{*}\right)}\right\}$, where $\mathcal{H}_{\operatorname{conv}(X)}$ is the H-representation of $\operatorname{conv}(X)$.

On the one hand, We have $C u t_{\mathbb{B}^{n}}(\mathcal{L})=C u t_{\mathbb{B}^{n}}\left(\mathcal{H}_{\operatorname{conv}(X)}\right) \cup\left\{y^{*}\right\}$ according to the definition of $l^{\left(y^{*}\right)}$ and Lemma 2. Hence, $\operatorname{Sol}_{\mathbb{B}^{n}}(\mathcal{L})=\mathbb{B}^{n}-\operatorname{Cut}_{\mathbb{B}^{n}}(\mathcal{L})=\mathbb{B}^{n}-C u t_{\mathbb{B}^{n}}\left(\mathcal{H}_{\operatorname{conv}(X)}\right)-\left\{y^{*}\right\}=\operatorname{Sol}_{\mathbb{B}^{n}}\left(\mathcal{H}_{\operatorname{conv}(X)}\right)-\left\{y^{*}\right\}=$ $\operatorname{conv}(X) \cap \mathbb{B}^{n}-\left\{y^{*}\right\}$, from which we can deduce that $\operatorname{Sol}_{\mathbb{B}^{n}}(\mathcal{L}) \varsubsetneqq \operatorname{conv}(X) \cap \mathbb{B}^{n}$.

On the other hand, $\operatorname{conv}(X) \subseteq \operatorname{Sol}(\mathcal{L})$ since $\operatorname{Sol}(\mathcal{L})$ is a convex set containing X and $\operatorname{conv}(X)$ is the smallest convex set containing X. Consequently, $\operatorname{conv}(X) \cap \mathbb{B}^{n} \subseteq \operatorname{Sol}_{\mathbb{B}^{n}}(\mathcal{L})$, which is a contradiction. The proof is completed.

4 MILP Models with Feasible Regions Equal to the Sets of All (Related-key) Differential (or Linear) Characteristics and Its Applications

4.1 Model Construction

The key idea behind Sun et al.'s work [43] on automatic differential cryptanalysis for bit-oriented block ciphers is to construct an MILP model whose feasible region contains the set of all differential characteristics of the cipher under consideration. Such a model is constructed in [43] by introducing $0-1$ variables for every bit-level input and output differences of every operation involved in the cipher, and modelling the constraints on differential propagation imposed by every operation as a system of linear inequalities. For block ciphers involving XOR, bit permutation, and S-boxes, the modelling technique presented in [43] leads to MILP models whose feasible region are much larger than the sets of all valid (related-key) differential characteristics of the cipher under consideration, since the linear inequalities used in these MILP models are far from being perfect to rule out all invalid (related-key) differential characteristics of a cipher.

Subsequently, Sun et al. [50] introduce the concept of valid cutting-off inequalities which can be used to remove some impossible differential patterns from the feasible region, and they design a heuristic algorithm for finding (related-key) differential characteristics. This algorithm tries to extract a differential characteristic with a small number of active S-boxes from the feasible region of the MILP model which may contain invalid characteristics, and the extracted solution is not guaranteed to be a valid characteristic. Therefore, the algorithm needs to repeatedly add valid cutting-off inequalities to the MILP model to make the feasible region more restrictive until the extracted solution pass the check that it is indeed a valid characteristic.

In the following, we show that we can construct MILP models whose feasible region are exactly the sets of all valid (related-key) differential characteristics for a wide range of block ciphers by using the convex hull computation approach.

For linear analysis, by using the same method, we can construct MILP models whose feasible regions are exactly the set of all linear characteristics, and the method is presented in Appendix A.

Definition 3. Let \mathcal{L} be a set of linear inequalities and $X \subseteq\{0,1\}^{n} \subseteq \mathbb{R}^{n}$. We say \mathcal{L} is a linear-inequality description of X if $X \subseteq \operatorname{Sol}_{\mathbb{B}^{n}}(\mathcal{L})$, and we say the description is exact for X if $\operatorname{Sol}_{\mathbb{B}^{n}}(\mathcal{L})=X$.

In order to construct an MILP model whose feasible region is exactly the set of all (related-key) differential characteristics of a given cipher, we must use constraints that are exact linear-inequality descriptions of the differential behavior for all operations involved in the cipher.

For block ciphers involving bit permutations, XOR operations, and S-boxes, the S-box operations are the most difficult parts since we already have exact descriptions for bit permutations and XOR operations (see Sect. 2). Next, we show how to deal with the S-box parts.

Definition 4. Let S be an arbitrary $\omega \times \nu S$-box such that $\left(b_{0}, \ldots, b_{\nu-1}\right)=S\left(a_{0}, \ldots, a_{\omega-1}\right)$. The differential set \mathcal{D}_{S} of S is defined to be the set of all differential patterns of S. That is, $\mathcal{D}_{S}=\left\{\left(x_{0}, \ldots, x_{\omega-1}, y_{0}, \ldots, y_{\nu-1}\right) \in\right.$ $\left.\mathbb{B}^{\omega+\nu}: \operatorname{Pr}_{S}\left[\left(x_{0}, \ldots, x_{\omega-1}\right) \rightarrow\left(y_{0}, \ldots, y_{\nu-1}\right)\right]>0\right\}$, where $\operatorname{Pr}_{S}\left[\left(x_{0}, \ldots, x_{\omega-1}\right) \rightarrow\left(y_{0}, \ldots, y_{\nu-1}\right)\right]$ is the probability associated with the differential $\left(x_{0}, \ldots, x_{\omega-1}\right) \rightarrow\left(y_{0}, \ldots, y_{\nu-1}\right)$ across the S-box operation.

Note that \mathcal{D}_{S} can be built directly from the differential distribution table of S.
Fact 1. Let S be an arbitrary $\omega \times \nu S$-box, and $\mathcal{D}_{S} \subseteq\{0,1\}^{\omega+\nu}$ be the set of all differential patterns with probability greater than 0. Then $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$ is an exact linear-inequality description of \mathcal{D}_{S}, where $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$ is the H-representation of $\operatorname{conv}\left(\mathcal{D}_{S}\right)$.
Proof. Assuming $x \in\{0,1\}^{n}$, then $x \in \operatorname{conv}\left(\mathcal{D}_{S}\right)$ if and only if $x \in \mathcal{D}_{S}$ according to Theorem 1. Therefore, $\operatorname{conv}\left(\mathcal{D}_{S}\right) \cap \mathbb{B}^{n}=\operatorname{Sol}_{\mathbb{B}^{n}}\left(\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}\right)=\mathcal{D}_{S}$. Hence, $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$ is an exact description of \mathcal{D}_{S}. The proof is completed.

According to Fact 1, we can build an MILP model whose feasible region is exactly the set of all (relatedkey) differential characteristics for a given cipher by following the modelling process introduced in Sect. 2 and adding all the linear inequalities in the H-representations of the convex hulls of all S-boxes involved into the MILP model.

However, as already pointed out in [50], there are too many inequalities in the H-representation, and MILP models with a large number of constraints are very difficult to solve. Therefore, we need to construct MILP models with less constraints while the sets of all $0-1$ solutions of these models are still the sets of all valid (related-key) differential or linear characteristics.

Definition 5. Let \mathcal{L} be a system of linear inequalities of the following form

$$
\left\{\begin{array}{c}
\lambda_{0,0} x_{0}+\cdots+\lambda_{0, n-1} x_{n-1}+\lambda_{0, n} \geq 0 \\
\cdots \\
\gamma_{0,0} x_{0}+\cdots+\gamma_{0, n-1} x_{n-1}+\gamma_{0, n}=0 \\
\cdots
\end{array}\right.
$$

Then, a set $\mathcal{L}^{*} \subseteq \mathcal{L}$ is said to be cutting-off equivalent to \mathcal{L} if $C u t_{\mathbb{B}^{n}}\left(\mathcal{L}^{*}\right)=C u t_{\mathbb{B}^{n}}(\mathcal{L})$.
In order to reduce the number of inequalities in the MILP model, we give the following algorithm which can be used to select a subset of $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$ with less inequalities that is cutting-off equivalent to $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$.

```
Algorithm 1: Select a system of inequalities from \(\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}\)
    Input: \(\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}\) : the set of all inequalities in the H-representation of the convex hull of an S-box \(S\);
    Output: \(\mathcal{O}_{S}\) : A set of inequalities selected from \(\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}\) which is cutting-off equivalent to \(\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}\).
    \(l^{*}:=\) None;
    \(\mathcal{X}:=\) the set of all impossible differential patterns of an S-box;
    \(\mathcal{X}^{*}:=\mathcal{X}\);
    \(\mathcal{H}^{*}:=\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)} ;\)
    \(\mathcal{O}_{S}:=\emptyset ;\)
    while True do
        \(l^{*}:=\) The inequality in \(\mathcal{H}^{*}\) which maximizes the number of removed impossible differential
        patterns from \(\mathcal{X}^{*}\);
        \(\mathcal{X}^{*}:=\mathcal{X}^{*}-C u t_{\mathbb{B}^{n}}\left(\left\{l^{*}\right\}\right) ;\)
        \(\mathcal{H}^{*}:=\mathcal{H}^{*}-\left\{l^{*}\right\} ;\)
        \(\mathcal{O}_{S}:=\mathcal{O}_{S} \cup\left\{l^{*}\right\} ;\)
        if \(\mathcal{X}^{*}=\emptyset\) then
            return \(\mathcal{O}_{S}\) and Terminate
        end
    end
```

Algorithm 1 builds up a set \mathcal{O}_{S} of valid cutting-off inequalities by selecting at each step an inequality from $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$ until there is no inequality in $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}-\mathcal{O}_{S}$ which can remove an impossible differential pattern of S which satisfies all inequalities already in \mathcal{O}_{S}.

Therefore, we have $C u t_{\mathbb{B}^{n}}\left(\mathcal{O}_{S}\right)=C u t_{\mathbb{B}^{n}}\left(\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}\right)$. That is, \mathcal{O}_{S} is cutting-off equivalent to $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$. Consequently, we can include \mathcal{O}_{S}, instead of $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$, as the constraints imposed by the differential properties of S, and the resulting MILP model will be easier to solve if the number of inequalities in \mathcal{O}_{S} is much smaller than that of $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$.

Definition 6. We call the set \mathcal{O}_{S} of inequalities produced by algorithm 1 for an S-box S a critical set of $\mathcal{H}_{\mathrm{conv}\left(\mathcal{D}_{S}\right)}$.

We have computed the critical sets for some typical 4×4 S-boxes, and the results show that the number of inequalities in \mathcal{O}_{S} is indeed much smaller than that of $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$ (see Table 1).

4.2 Applications in Obtaining Security Bound and Searching for High Probability Characteristics

According to the above analysis, we are now able to construct MILP models whose feasible regions are exactly the sets of all (related-key) differential or linear characteristics, which leads to the following applications.

Obtaining Exact Lower Bounds of the Numbers of Active S-boxes. By setting the objective function to be $\sum_{j} A_{j}$, where A_{j} 's are the variables marking the activities of the involved S-boxes, we can obtain an MILP model whose optimized solution corresponds to a (related-key) differential characteristic which has the minimum number of active S-boxes, and the objective value of this solution is the exact lower bound of the number of active S-boxes.

Table 1: Numbers of inequalities in \mathcal{O}_{S} and $\mathcal{H}_{\operatorname{conv}\left(\mathcal{D}_{S}\right)}$ for typical 4×4 S-boxes.

S-box	$\# \mathcal{O}_{S}$	$\# \mathcal{H}_{\text {conv }\left(\mathcal{D}_{S}\right)}$	S-box	$\# \mathcal{O}_{S}$	$\# \mathcal{H}_{\text {conv }\left(\mathcal{D}_{S}\right)}$
Klein [63]	22	311	LBlock S6	27	205
Piccolo [64]	23	202	LBlock S7	27	205
TWINE [65]	23	324	LBlock S8	28	205
PRINCE [26, 27]	26	300	LBlock S9	27	205
MIBS [66]	27	378	Serpent S0 [53]	23	327
PRESENT/LED [23, 67]	22	327	Serpent S1	24	327
LBlock S0 [68]	28	205	Serpent S2	25	325
LBlock S1	27	205	Serpent S3	31	368
LBlock S2	27	205	Serpent S4	26	321
LBlock S3	27	205	Serpent S5	25	321
LBlock S4	28	205	Serpent S6	22	327
LBlock S5	27	205	Serpent S7	30	368

We apply the method to LBlock, and the results are listed in Table 2. From Table 2, we can see that there are at least 10 differentially active S-boxes for consecutive 10 rounds of LBlock in the related-key model. Therefore, the probability of the best related-key characteristic for the 30 -round LBlock is at most $\left(2^{-2}\right)^{10+10+10}=2^{-60}$. While the previously published best result concerning the security bound of LBlock in the related-key model is given in [50] stating that the probability of the best related-key characteristic for the 32 -round LBlock is at most 2^{-60}. Moreover, the bound presented in this paper is obtained on a PC in no more than 2 days, while the bound presented in [50] was obtained on a PC using more than 49 days. The main reason of the reduction of the computational effort is that we can get better bounds without considering characteristics covering more rounds, and we refer the reader to [50] for more information.

Table 2: The exact lower bounds of the number of differentially active S-boxes for round-reduced variants of LBlock in the related-key model

Rounds	The number of active S-boxes		Time (in seconds)	
	This paper	[50]	This paper	$[50]$
5	1	1	3	2
6	2	2	35	12
7	4	3	70	38
8	6	5	271	128
9	8	6	11656	386
10	10	8	105475	19932
11	-	10	>20 days	43793

We also apply the method to Serpent (one of the AES finalists), and we automatically prove that the probability of the best single-key differential characteristic for the 27 -round Serpent is upper bounded by 2^{-132}. The detail of the result is given in Appendix B.

An Exact Method for Finding (Related-key) Differential and Linear Characteristics. For a given cipher, build an MILP problem whose feasible region is exactly the set of all related-key differential or linear characteristics of the cipher. Then solve it using any MILP optimizer, e.g., Gurobi [69] or SCIP [70]. When the value of the objective function decreases to N, terminate the solving process and extract the current solution whose objective value is N. This solution corresponds to a (related-key) differential or linear characteristic with N active S -boxes.

Using this method, we find an 8-round related-key differential characteristic for DESL with probability $2^{-33.45}$ (see Table 3 and Table 4). This result is obtained on a PC in no more than 4 minutes. Compared with the method presented in [50], which outputs an 8 -round related-key characteristic with probability $2^{-34.78}$ on a PC using roughly 10 minutes, the new method presented in this paper produces a better characteristic with less computational effort.

Table 3: An 8-round related-key differential characteristic for DESL (characteristic in the encryption process)

Rounds	Left
0	0001000000000000000000000000001000000000000000000000010000000000
1	00000000000000000000010000000000
2	000000000000000000000000000000010
20000000000000000000000000000000010	
3	000000000000000000001100
4	0000000000000000000000000000101000000000000000000000010000000000
5	0000000000000000000001000000000000000000000000000000000000001010
6	0000000000000000000000000000101000000000000000000000110000000000
7	00000000000000000000110010
8	0000000000000000000000000000001000000000001000100010010000101000

Table 4: An 8-round related-key differential characteristic for DESL (characteristic in the key schedule algorithm)

Rounds	
1	000000000000000000000000000000100000000000000000
2	0010
3	000000000000000000000000000001000000000000000000
4	0001000000
5	000000000000000000000000000000001000000000000000
6	000000000000000000000000000000000000010000000000
7	000000000000000000000000000010000000000000000000
8	000000000000000000000000000000000100000000000000

We also use this method to search for linear characteristics for round-reduced versions of SIMON128, and the results are given in Appendix C. Very recently, Alizadeh et al. [56] presented a 52 -round linear characteristic for SIMON128 with bias 2^{-128}, while the characteristic we find covers 55 rounds and the bias of this characteristic is 2^{-109}.

Moreover, the method of this section is used repeatedly to search for (related-key) differential characteristics in the following sections.

5 Automatic Enumeration of (Related-key) Differential and Linear Characteristics with Predefined Properties

By now, we are able to search for (related-key) differential or linear characteristics for a wide range of ciphers. However, just being able to obtain a characteristic with a small number of active S-boxes is not enough. Several works [71-73] have demonstrated that the differential attack based on one characteristic can be strengthened with multiple characteristics with the same input and output differences (the so called differential), and therefore we want to find all high probability characteristics with the same input and output differences. In the linear hull analysis, we need to find all linear characteristics with the same input and output linear masks. In the (related-key) boomerang/rectangle attack, two short differentials $\alpha \rightarrow \beta$ and $\gamma \rightarrow \delta$ are used to construct a boomerang distinguisher. By allowing β and γ to change, the probability of the constructed distinguisher can be improved. Hence, we want to find all high probability differential characteristics with a fixed input (or output) difference. In the structure attack [71], a form of differential cryptanalysis exploiting differentials with multiple input differences and a single output difference, we also need to search for characteristics sharing a same output difference. To summarize, we need to find all characteristics of some given properties according to the context, and the procedure for enumerating all characteristics covering round 1 to round r of a cipher with some given properties is listed as follows.

Step 1. Construct an MILP model \mathcal{M} describing the differential (or linear) behavior of the cipher (round 1 to round r) according to Sect. 4 (or Appendix A).

Step 2. Add the constraints imposed by the given properties (concrete examples will be given in the following sections).

Step 3. Solve the model using an MILP optimizer. If a feasible solution x is found, save x to a file and update the model by adding the linear inequality $l^{(x)}$ to remove x from the feasible region of \mathcal{M}; if the updated model \mathcal{M} is infeasible, go to Step 4. Otherwise, repeat Step 3.

Step 4. Terminate the procedure and extract all the characteristics with the given properties from the saved solutions.

In the following subsections, we show concrete applications of the above method.

5.1 Automatic (Related-key) Differential and Linear Hull Analysis

The clustering of multiple differential characteristics satisfying the same (fixed) input and output difference is referred to as the differential effect. By considering the differential effect, the computed expected differential probability (EDP) may become significantly higher than that of any differential characteristic in the differential. Therefore, the probability of the differential serves to be a more accurate indication of the security of a block cipher with respect to the differential attack.

Currently available methods for searching for high probability single-key differential characteristics include the branch-and-bound approach [74], variants of Matsui's algorithm [51, 75], and those rather dedicated methods $[71,73]$. In what follows we will propose a generic and automatic method for searching for differential characteristics in a given differential in both the single-key and related-key model. The new method is not only conceptually simpler, but also easier to implement compared to existing methods.

Given an r-round differential characteristic $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{r-1}, \alpha_{r}\right)$, we can find all r-round differential characteristics with the following properties: (1) the input difference is α_{0} and the output difference is α_{r}, (2) the characteristic activates at most N_{A} S-boxes. This can be done by the following procedure.

Step 1. Construct an MILP model \mathcal{M} describing the differential behavior of the cipher (from round 1 to round r) according to Sect. 4.

Step 2. Add the constraints describing that the input difference must be α_{0} and the output difference must be α_{r} (these constraints are simple equations fixing the input and output bit-level differences), and add the constraint $\sum_{j} S_{j} \leq N_{A}$, where the S_{j} 's are variables marking the activities of the S-boxes involved.

Step 3. Solve the model using an MILP optimizer. If a feasible solution x is found, save x to a file and update the model by adding the linear inequality $l^{(x)}$ to remove x from the feasible region of \mathcal{M}; if the updated model \mathcal{M} is infeasible, go to Step 4. Otherwise, repeat Step 3.

Step 4. Terminate the procedure and extract all the differential characteristics in the differential with at most N_{A} active S-boxes from the saved solutions.

Application to SIMON and LBlock. SIMON [76] is a family of lightweight block ciphers designed by the U.S. National Security Agency (NSA). The design of SIMON n_{b} / n_{K} is a Feistel scheme with a block size of n_{b} bits and key size of n_{K} bits. The bitwise AND operation is the only nonlinear operation of SIMON n_{b} / n_{K}. For a detailed description of SIMON and existing attacks on it, we refer the reader to [51, 55, 56, 74, 76-79].

By treating the AND $\left(\mathbb{F}_{2} \times \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}\right)$ operation as a 2×1 S-box, we apply our method to SIMON in the single-key model. In our MILP models we treat the input bits of the AND operation as independent input bits, and the dependencies of the input bits to the AND operation are not considered. Therefore, the characteristic obtained by our method is not guaranteed to be valid for SIMON (other ciphers do not have this problem). Hence, every time after the Gurobi optimizer outputs a good solution (characteristic), we check its validity and compute its probability by the method presented in [51].

We find a 16 -round single-key differential characteristic for SIMON48 with probability 2^{-50} (see Table $5)$. Then we compute the probability of the differential with its input and output differences fixed to the values given in Table 5 with the method presented in this section. To be more specific, we search for all characteristics with probability p such that $2^{-60} \leq p \leq 2^{-50}$ in this differential, and the distribution of these characteristics is given in Table 6 , from which we can deduce that the probability of this differential is greater than $2^{-44.65}$. To the best of our knowledge, this is the first published single-key differential covering more than 15 rounds of SIMON48.

In addition, using the method presented in Sect. 4, we find a 21-round single-key differential characteristic for SIMON64 with probability 2^{-70} which is given in Table 7 . Note that the probability of the best previously published single-key differential characteristic for the 21-round SIMON64 is 2^{-72} [51].

By adding the constraints that the input and output differences are fixed to be the values suggested in Table 7, we search for all characteristics in this differential with probability p such that $2^{-79} \leq p \leq 2^{-70}$. We obtain 159554 characteristics (including 19942 invalid ones) in total with varying probability. The details of the distribution of these characteristics are given in Table 8 , from which we can deduce that the probability of the differential for the 21-round SIMON64 is greater than $2^{-60.21}$. Note that the probability of the best previously published 21-round differential for SIMON64 is $2^{-60.53}$. By extending one more round of this

Table 5: A single-key differential characteristic of 16-round SIMON48 with probability 2^{-50}.

Rounds	The input differences
0 (Input)	100000000000000000000000001000100000000010000010
1	001000100000000000000000100000000000000000000000
2	000010000000000000000000001000100000000000000000
3	000000100000000000000000000010000000000000000000
4	000000000000000000000000000000100000000000000000
5	0000001000
6	000010000000000000000010000000100000000000000000
7	001000100000001000000000000010000000000000000010
8	100000100000100000100000001000100000001000000000
9	001000100000001000000000100000100000100000100000
10	000010000000000000000010001000100000001000000000
11	000000100000000000000000000010000000000000000010
12	000000000000000000000000000000100000000000000000
13	0000001000
14	000010000000000000000000000000100000000000000000
15	001000100000000000000000000010000000000000000000
16 (Output)	100000000000000000000000001000100000000000000000

Table 6: The distribution of the characteristics of SIMON48 in the differential specified by the input and output differences given in Table 5 . The invalid characteristics is due to the special property of the dependent inputs of the AND operations in SIMON, and we refer the reader to [50, 51] for more information.

Probability	2^{-50}	2^{-5}	2^{-}	2	2^{-}	2^{-}	2^{-5}	2^{-57}	2^{-}	2	2^{-60}	Invalid
\#Characteristics	1	6	15	46	100	114	379	685	953	913	724	3568

Table 7: A single-key differential characteristic of the 21-round SIMON64 with probability 2^{-70}.

Rounds	The input differences
0 (Input)	0000000000001000000000000000000000000000001000100010000000000000
1	0000000000000010001000000000000000000000000010000000000000000000
2	0000000000000000100000000000000000000000000000100010000000000000
3	0000000000000000001000000000000000000000000000001000000000000000
4	0010000000000000
5	0000000000000000001000
6	0000000000000000100000000000000000000000000000000010000000000000
7	0000000000000010001000000000000000000000000000001000000000000000
8	0000000000001000000000000000000000000000000000100010000000000000
9	0000000000100010001000000000000000000000000010000000000000000000
10	0000000010000000100000000000000000000000001000100010000000000000
11	0000001000100000001000000000000000000000100000001000000000000000
12	0000100001100000000000000000000000000010001000000010000000000000
13	0000001100100000001000000000000000001000011000000000000000000000
14	0000000010000000100000000000000000000011001000000010000000000000
15	0000000000100010001000000000000000000000100000001000000000000000
16	0000000000001000000000000000000000000000001000100010000000000000
17	0000000000000010001000000000000000000000000010000000000000000000
18	0000000000000000100000000000000000000000000000100010000000000000
19	0000000000000000001000000000000000000000000000001000000000000000
20	0010000000000000
21 (Output) 0000000000000000001000	

Table 8: The distribution of the characteristics of SIMON64 in the differential specified by the input and output differences given in Table 7.

Probability	2^{-70}	2^{-71}	2^{-72}	2^{-73}	2^{-74}	2^{-75}	2^{-76}	2^{-77}	2^{-78}	2^{-79}	Invalid
\#Characteristics	2	14	74	306	1105	3502	10213	25553	48016	50827	19942

differential, we obtain a 22 -round single-key differential characteristic for SIMON64 with probability at least $2^{-62.21}$, which is the first published single-key differential characteristic covering more than 21 rounds of SIMON64. Note that the 21-round characteristic presented in [51] can not be simply extended to obtain a 22 -round characteristic with probability less than 2^{-64}, since the Hamming weight of its output is higher and extending one more round will decrease the probability significantly. The differentials presented in this paper for SIMON can be used to produce the best differential attacks on SIMON48 and SIMON64 with Wang et al.'s technique [55].

We also apply the method to LBlock, and we find a 16-round standard (non truncated) related-key differential with probability $2^{-55.64}$, which is even better than the previously published best truncated relatedkey differential for the 16 -round LBlock whose probability is about 2^{-59} [54]. The results are given in Appendix D.

Automatic Linear Hull Analysis of PRESENT. For the sake of completeness, we also present an example on PRESENT demonstrating that our method is also applicable in linear hull analysis, and this part can be safely skipped by the readers since there is no essential difference between the two methods for differential and linear hull analysis. A linear hull, first announced by Nyberg et al. in [80], is a collection of linear characteristics with a certain (fixed) input and output masks, and it is the counterpart to differentials in differential cryptanalysis.

There are a lot of works (e.g. [57,81-86]) studying the linear hull effect, and the linear hull effect of PRESENT was analyzed in $[57,85]$ showing that the designers of block ciphers should take seriously the threat coming from linear hull attacks and not just limit themselves to proving bounds based solely on linear characteristics.

Nakahara et al. [57] and Bulygin et al. [85] proposed dedicated methods for finding all linear characteristics of round-reduced PRESENT with exactly one linearly active S-box per round. In the following, we show that our method is more powerful and general which allows us to find all linear characteristics in a linear hull with any given number of linearly active S-boxes. Taking the 8-round linear hull of PRESENT for example, we fix the input and output linear masks to be

0001000000000000000000000.

Then we try to find all linear characteristics with a given number of active S-boxes in this liner hull, and the results are summarized in Table 9.

Table 9: The number of linear characteristics in a linear hull with a given number of linearly active S-boxes

\# Active S-boxes	8	9	10	11	12	13	14	15
\#Characteristics	192	0	960	36	3344	2248	14980	29506

From Table 9 we can see that our results confirm Nakahara et al.'s result [57] that there are 192 characteristics in the linear hull with one active S-box per round for the 8 -round PRESENT. Moreover, we obtain more characteristics in the linear hull by considering characteristics with more active S-boxes. In addition, the numbers of characteristics listed in Table 9 are exact. For example, there are 29506 and only 29506 characteristics with 15 active S-boxes in the linear hull.

We also perform the experiments for the r-round ($9 \leq r \leq 23$) PRESENT. In the r-round experiment, we try to find characteristics with N_{r} active S-boxes with the constraint $r+1 \leq N_{r} \leq r+3$, and we terminate the computation until 10000 characteristics have been found. The experiments show that for each of these r-round $(9 \leq r \leq 23)$ experiments, we can find at least 10000 more characteristics than that of [57], since in [57], only characteristics with r active S-boxes for the r-round PRESENT are considered. Note that Abdelraheem et al.'s work [86] is better than ours with respect to the result, however, our method is more automatic and general.

5.2 Automatic Truncated (Related-key) Differential Analysis

In basic truncated differential analysis, the fixed output difference β of a differential $\alpha \rightarrow \beta$ is truncated to be a bit string with some specific bits allowed to be any valued in $\{0,1\}$. With this relaxation, the probability
of the truncated differential can be increased. Truncated differential is a very useful tool in cryptanalysis and several ciphers which are secure against standard differential attack are vulnerable to truncated differential attack.

We now present an automatic method for enumerating all high probability (related-key) differential characteristics in a given truncated (related-key) differential.

Step 1. Construct an MILP model \mathcal{M} describing the differential behavior of the cipher (from round 1 to round r) according to Sect. 4.

Step 2. For a given truncated differential $\alpha_{0} \rightarrow \alpha_{r}$ where $\alpha_{r}=\left(\alpha_{r, 0}, \ldots, \alpha_{r, n-1}\right)$ and

$$
\left\{\begin{array}{l}
\alpha_{j_{0}}=0, \cdots, \alpha_{j_{s_{r}}}=0 \tag{6}\\
\alpha_{s_{s_{r}+1}}=1, \cdots, \alpha_{j_{s_{t}}}=1 \\
\alpha_{j_{s_{t}+1}}=*, \cdots, \alpha_{j_{n-1}}=*,
\end{array}\right.
$$

add the system of equations

$$
\left\{\begin{array}{l}
\alpha_{j_{0}}=0, \cdots, \alpha_{j_{s_{r}}}=0 \tag{7}\\
\alpha_{j_{s_{r}+1}}=1, \cdots, \alpha_{j_{s_{t}}}=1
\end{array}\right.
$$

and the constraint $\sum_{j} S_{j} \leq N_{A}$ into the model \mathcal{M}, where the S_{j} 's are the variables marking the activities of the S-boxes involved.

Step 3. Solve the model using an MILP optimizer. If a feasible solution x is found, save x to a file and update the model by adding the linear inequality $l^{(x)}$ to remove x from the feasible region of \mathcal{M}; if the updated model \mathcal{M} is infeasible, go to Step 4. Otherwise, repeat Step 3.

Step 4. Terminate the procedure and extract all the differential characteristics in the given truncated differential with at most N_{A} active S-boxes from the saved solutions.

We apply the above method to DESL. Firstly, we find a related-key differential characteristic for the 9 -round DESL, and the results are given in Table 10 and Table 11.

Table 10: A 9-round related-key differential characteristic for DESL (characteristic in the encryption process)

Rounds	Left
0	0000000000000001000000000000000000000000010000000000000000000000
1	000000000100
2	00010000000000000000000000
3	0000000001000000000000000000000000000100000000000000000000000000
4	0000010000000000000000000000000000000000010000000100000000000000
5	0000000001000000010000000000000000100000000000000000000110000000
6	0010000000000000000000011000000000000010110000000100000000000000
7	0000001011000000010000000000000000000000000001000000000000000000
8	0000000000000100000000000000000000000010100000000100000000000000
9	0000001010000000010000000000000000100100000010000000000000000000

Table 11: A 9-round related-key differential characteristic for DESL (characteristic in the key schedule algorithm)

Rounds	The differences in the key register
1	000000000000000010000000000000000000000000000000
2	00
3	000000000000100000000000000000000000000000000000
4	000000000010000000000000000000000000000000000000
5	000000000000010000000000000000000000000000000000
6	0100
7	000000001000000000000000000000000000000000000000
8	000000000000000000000010000000000000000000000000
9	000000000000001000000000000000000000000000000000

Then, we truncate the output difference (the input difference of the 10th round) to be

$000000101000000001000000000000000 * * 00 * 0 * 0000 * * 0 * 0 * 00000 * * 00 * 0 * 00$

and we try to find all related-key differential characteristic with at most 21 active S -boxes in this truncated related-key differential. Finally, we find 14700 characteristics in total leading to a 9 -round truncated relatedkey differential for DESL with probability $2^{-34.06}$.

5.3 Automatic Construction of (Related-key) Boomerang/Rectangle Distinguishers

The main idea behind the boomerang/rectangle attack is to exploit two short differentials with high probabilities instead of one long differential with a low probability. Let $E:\{0,1\}^{n} \times\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ be a block cipher which can be described as $E=E_{1} \circ E_{0}$, such that for E_{0} there exists a differential $\alpha \rightarrow \beta$ with probability p, and for E_{1} there exists a differential $\gamma \rightarrow \delta$ with probability q.

In the rectangle distinguisher, the attacker constructs quartets of plaintexts of the form $\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$ such that $P_{1} \oplus P_{2}=P_{3} \oplus P_{4}=\alpha$. A quartet is said to be a right quartet if the following conditions are satisfied:

1. $E_{0}\left(P_{1}\right) \oplus E_{0}\left(P_{2}\right)=E_{0}\left(P_{3}\right) \oplus E_{0}\left(P_{4}\right)=\beta$;
2. $E_{0}\left(P_{1}\right) \oplus E_{0}\left(P_{3}\right)=\gamma\left(\right.$ or $\left.E_{0}\left(P_{2}\right) \oplus E_{0}\left(P_{4}\right)=\gamma\right)$;
3. $C_{1} \oplus C_{3}=C_{2} \oplus C_{4}=\delta$.

It can be shown that the probability of a quartet to be right is approximately $2^{-n}(p q)^{2}$. The above process can be used to distinguish E from a random permutation if $(p q)^{2}>2^{-n}$, since for a random permutation, the probability of $C_{1} \oplus C_{3}=C_{2} \oplus C_{4}=\delta$ is $2^{-2 n}$.

It is suggested in [87] that the attack can be mounted for all possible β 's and γ 's to improve the attack. Therefore the rectangle process can be employed to distinguish E from a random permutation if $(\hat{p} \hat{q})^{2}>2^{-n}$, where

$$
\hat{p}=\sqrt{\sum_{\beta} \operatorname{Pr}^{2}[\alpha \rightarrow \beta]} \text { and } \sqrt{\sum_{\gamma} \operatorname{Pr}^{2}[\gamma \rightarrow \delta]}
$$

In some cases, this improvement reduces the complexity for the rectangle attack significantly. In practice, \hat{p} is computed as follows. Firstly, the attacker finds a differential (or differential characteristic) $\alpha \rightarrow \beta$ for E_{0} with probability p_{0}. Then he or she tries to find all high probability differentials with input difference α. For example, if he or she obtain n_{j} differential (characteristics) with probability p_{j}, then \hat{p} can be approximated by $\sqrt{\sum_{j} n_{j} p_{j}^{2}}$. Similar situation is also encountered in structure attack [71], in which the attacker needs to find high probability differentials sharing the same output difference. We now show that such tasks can be accomplished automatically with MILP technique, and the procedure is listed as follows.

Step 1. Construct an MILP model \mathcal{M} describing the differential behavior of E_{0} according to Sect. 4.
Step 2. Add the constraints describing that the input difference must be α_{0} (these constraints are simple equations fixing the input bit-level differences), and add the constraint $\sum_{j} S_{j} \leq N_{A}$, where the S_{j} 's are variables marking the activities of the S-boxes involved and N_{A} is chosen by the attacker to make sure that the probabilities of the characteristics found are not too small.

Step 3. Solve the model using an MILP optimizer. If a feasible solution x is found, save x to a file and update the model by adding the linear inequality $l^{(x)}$ to remove x from the feasible region of \mathcal{M}; if the updated model \mathcal{M} is infeasible, go to Step 4. Otherwise, repeat Step 3.

Step 4. Terminate the procedure and extract all the differential characteristics in the differential with at most N_{A} active S-boxes from the saved solutions, and compute \hat{p} by the above method.

Application to PRESENT-128 and LBlock. For PRESENT-128, using the method presented in Sect. 4.2, we find a related-key characteristic of $E_{0}\left(E_{0}\right.$ and E_{1} are specified in [88]) with 0 active S-boxes in the key schedule and probability 2^{-11} (5 active S-boxes) and the characteristic is given in Table 12 and Table 13, which is almost the same characteristic presented in [50]. Then we use the method presented in this section to find all characteristics with at most 9 active S-boxes whose input difference to the S-box of the first round is

001000.

Finally, we obtain totally 1028 characteristics. There are 4 characteristics with probability $2^{-11}, 128$ characteristics with probability $2^{-19}, 256$ characteristics with probability $2^{-20}, 512$ characteristics with probability 2^{-21}, and 128 characteristics with probability 2^{-22}. Hence the overall probability \hat{p} for E_{0} is approximately

$$
\sqrt{4 \times\left(2^{-11}\right)^{2}+128 \times\left(2^{-19}\right)^{2}+256 \times\left(2^{-20}\right)^{2}+512 \times\left(2^{-21}\right)^{2}+128 \times\left(2^{-22}\right)^{2}} \approx 2^{-10}
$$

Table 12: A 7-round related-key characteristic for PRESENT-128 (characteristic in the encryption process)

Rounds	In The input and output differences of the S-box layer
1	00100
2	00
000	
3	0000000000000000000000000001000000000000000000000000000000000000
0000000000000000000000001101000000000000000000000000000000000000	
4	0000001000
0000001100	
5	00100000000000000
00010100000000000	
6	00
000	
7	001000000000000000000000000
0000000000000000000000000000000000000001110000000000000000000000000	

Table 13: A 7-round related-key characteristic for PRESENT-128 (characteristic in the key schedule algorithm)

Rounds (Master Key)	00000000000000000000010001000000000000000000000000000000001000000000000000000
1	00000000000000001000000000000000000000000000000010000000000000000000000000000000000000001000000000000000000000000000000000000000
2	000000000000000000000000000100100000000000000000000000000000001000000000000
3	00000000000000000000001000000000000000000000000000000010010000000000000000000000000000000000
4	0000000000000000000000000000000001000100000000000000000000000000000001000000
5	00000000000000000000000000001000000000000000000000000000000010000000000000000000000000000000000000001000000000000000000000000000
6	0000000000000000000000000000000000000001000100000000000000000000000000000001
7	0000000000000000000000000000000000100000000000000000000000000000001000000000000000000000000000000000000000100000000000000000000
8	0000010100000000000000000000000000000000000001000100000000000000000000000000

Using this result and the related-key differential characteristic covering E_{1} (specified in [88]) with probability $\hat{q} \approx 2^{-12}$ presented in [88], we can produce an improved related-key rectangle attack on the 17 -round PRESENT-128 using the same method presented in [88].

Using the same method, we also obtain an improved related-key boomerang distinguisher for LBlock, and the result is given in Appendix E.

6 Conclusion

In this work, we show that there is an exact linear-inequality description for any subset of $\{0,1\}^{n} \subseteq \mathbb{R}^{n}$. Thanks to this, we are now able to construct MILP models whose feasible regions are exactly the sets of all valid (related-key) differential (or linear) characteristics for a wide range of ciphers. Based on these MILP models, we convert Sun et al.'s heuristic algorithm for finding (related-key) differential (or linear) characteristics into an exact one, and present a method which can be employed to find all (related-key) differential (or linear) characteristics with some given properties. Such a method is very useful in differential and linear-type cryptanalysis.

Moreover, the methods presented in this paper are automatic, and can be applied to a wide range of ciphers. We have developed a Python based framework for automatic differential- and linear-type cryptanalysis. With the help of this framework, we obtain new cryptanalytic results for Serpent, SIMON, LBlock, PRESENT and DESL. In addition, we believe that the results presented in this paper can be further improved by taking more computational effort.

References

1. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology, 4(1):3-72, 1991.
2. Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known plaintext attack of FEAL cipher. In Advances in Cryptology-EUROCRYPT 1992, pages 81-91. Springer, 1993.
3. Eli Biham. New types of cryptanalytic attacks using related keys. Journal of Cryptology, 7(4):229-246, 1994.
4. Alex Biryukov, Dmitry Khovratovich and Ivica Nikolić. Distinguisher and related-key attack on the full AES-256. In Advances in Cryptology-CRYPTO 2009, pages 231-249. Springer, 2009.
5. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-192 and AES-256. In Advances in Cryptology-ASIACRYPT 2009, pages 1-18. Springer, 2009.
6. Lars R. Knudsen. Truncated and higher order differentials. In Fast Software Encryption, pages 196-211. Springer, 1995.
7. Baudoin Collard and Francois-Xavier Standaert. A statistical saturation attack against the block cipher PRESENT. In Topics in Cryptology-CT-RSA 2009, pages 195-210. Springer, 2009.
8. Céline Blondeau and Kaisa Nyberg. Links between truncated differential and multidimensional linear properties of block ciphers and underlying attack complexities. In Advances in Cryptology-EUROCRYPT 2014, pages 165-182. Springer, 2014.
9. Tetsu Iwata and Kaoru Kurosawa. Probabilistic higher order differential attack and higher order bent functions. In Advances in Cryptology-ASIACRYPT 1999, pages 62-74. Springer, 1999.
10. Alex Biryukov. Impossible differential attack. In Encyclopedia of Cryptography and Security, pages 597-597. Springer, 2011.
11. Lars Knudsen. DEAL-a 128-bit block cipher. Complexity, 258(2), 1998.
12. David Wagner. The boomerang attack. In Fast Software Encryption, pages 156-170. Springer, 1999.
13. Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia and Jean-René Reinhard. Multiple differential cryptanalysis of round-reduced PRINCE. In Fast Software Encryption. Springer, 2014.
14. Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia and Jean-René Reinhard. Multiple differential cryptanalysis of round-reduced PRINCE (full version). IACR Cryptology ePrint Archive, Report 2014/089, 2014. http://eprint.iacr.org/2014/089.
15. Céline Blondeau and Benoît Gérard. Multiple differential cryptanalysis: Theory and practice. In Fast Software Encryption, pages 35-54. Springer, 2011.
16. Céline Blondeau, Benoît Gérard and Kaisa Nyberg. Multiple differential cryptanalysis using LLR and χ^{2} statistics. In Security and Cryptography for Networks, pages 343-360. Springer, 2012.
17. Susan K. Langford and Martin E. Hellman. Differential-linear cryptanalysis. In Advances in Cryptology-CRYPTO 1994, pages 17-25. Springer, 1994.
18. Alex Biryukov, Christophe De Canniere and Michaël Quisquater. On multiple linear approximations. In Advances in Cryptology-CRYPTO 2004, pages 1-22. Springer, 2004.
19. Burton S. Kaliski Jr. and Matthew J. B. Robshaw. Linear cryptanalysis using multiple approximations. In Advances in Cryptology-CRYPTO 1994, pages 26-39. Springer, 1994.
20. Miia Hermelin and Kaisa Nyberg. Linear cryptanalysis using multiple linear approximations. IACR Cryptology ePrint Archive, Report 2011/93, 2011. https://eprint.iacr.org/2011/093.
21. Miia Hermelin, Joo Yeon Cho and Kaisa Nyberg. Multidimensional linear cryptanalysis of reduced round Serpent. In Information Security and Privacy, pages 203-215. Springer, 2008.
22. Miia Hermelin, Joo Yeon Cho and Kaisa Nyberg. Multidimensional extension of Matsuis algorithm 2. In Fast Software Encryption, pages 209-227. Springer, 2009.
23. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin and Charlotte Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In Cryptographic Hardware and Embedded Systems, pages 450-466. Springer, 2007.
24. Begül Bilgin, Andrey Bogdanov, Miroslav Knežević, Florian Mendel and Qingju Wang. Fides: Lightweight authenticated cipher with side-channel resistance for constrained hardware. In Cryptographic Hardware and Embedded Systems, pages 142-158. Springer, 2013.
25. Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. In Proceedings from the First Advanced Encryption Standard Candidate Conference, 1998.
26. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Lars R. Knudsen, Leander Gregor, Christof Paar, Christian Rechberger, Peter Rombouts and others. PRINCE-a low-latency block cipher for pervasive computing applications Full version. IACR Cryptology ePrint Archive, Report 2012/529, 2012. http://eprint.iacr.org/ 2012/529.
27. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, and others. PRINCE-a low-latency block cipher for pervasive computing applications. In Advances in Cryptology-ASIACRYPT 2012, pages 208-225. Springer, 2012.
28. Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Moriai, Junko Nakajima and Toshio Tokita. Camellia: A 128-bit block cipher suitable for multiple platformsdesign and analysis. In Selected Areas in Cryptography, pages 39-56. Springer, 2001.
29. Florian Mendel, Christian Rechberger, Martin Schläffer and Søren S. Thomsen. The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In Fast Software Encryption, pages 260-276. Springer, 2009.
30. Anne Canteaut, María Naya-Plasencia and Bastien Vayssière. Sieve-in-the-middle: improved MITM attacks. In Advances in Cryptology-CRYPTO 2013, pages 222-240. Springer, 2013.
31. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique cryptanalysis of the full AES. In Advances in Cryptology-ASIACRYPT 2011, pages 344-371. Springer, 2011.
32. Alex Biryukov and Ivica Nikolić . Search for related-key differential characteristics in DES-like ciphers. In Fast Software Encryption, pages 18-34. Springer, 2011.
33. Alex Biryukov and Ivica Nikolić. Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to AES, Camellia, Khazad and others. In Advances in Cryptology-EUROCRYPT 2010, pages 322-344. Springer, 2010.
34. Ivica Nikolic. Tweaking AES. In Selected Areas in Cryptography, pages 198-210. Springer, 2010.
35. Mitsuru Matsui. On correlation between the order of S-boxes and the strength of DES. In Advances in CryptologyEUROCRYPT 1994, pages 366-375. Springer, 1995.
36. Pierre-Alain Fouque, Jérémy Jean and Thomas Peyrin. Structural Evaluation of AES and Chosen-Key Distinguisher of 9-Round AES-128. In Advances in Cryptology-CRYPTO 2013, pages 183-203. Springer, 2013.
37. Sareh Emami, San Ling, Ivica Nikolić, Josef Pieprzyk and Huaxiong Wang. The resistance of PRESENT-80 against related-key differential attacks. Cryptography and Communications, pages 1-17, 2013.
38. Nicky Mouha, Qingju Wang, Dawu Gu and Bart Preneel. Differential and linear cryptanalysis using mixed-integer linear programming. In Information Security and Cryptology, pages 57-76. Springer, 2012.
39. Shengbao Wu and Mingsheng Wang. Security evaluation against differential cryptanalysis for block cipher structures. IACR Cryptology ePrint Archive, Report 2011/551, 2011. https://eprint.iacr.org/2011/551.
40. Mingjie Liu and Jiazhe Chen. Improved linear attacks on the Chinese block cipher standard. IACR Cryptology ePrint Archive, Report 2013/626, 2013. http://eprint.iacr.org/2013/626.
41. Shengbao Wu, Hongjun Wu, Tao Huang, Mingsheng Wang and Wenling Wu. Leaked-state-forgery attack against the authenticated encryption algorithm ALE. In Advances in Cryptology-ASIACRYPT 2013, pages 377-404. Springer, 2013.
42. Laura Winnen. Sage S-box milp toolkit. http://www.ecrypt.eu.org/tools/sage-s-box-milp-toolkit.
43. Siwei Sun, Lei Hu, Ling Song, Yonghong Xie and Peng Wang. Automatic security evaluation of block ciphers with S-bP structures against related-key differential attacks. In Inscrypt 2013, 2014.
44. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart Mennink, Nicky Mouha, Qingju Wang and Kan Yasuda. PRIMATEs v1. CAESAR submission, 2014. http://competitions.cr.yp.to/ round1/primatesv1.pdf.
45. Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger, Peter Schwabe and Tolga Yalcin. Prøst v1. CAESAR submission, 2014. http://competitions.cr.yp.to/round1/proestv1.pdf.
46. Jérémy Jean, Ivica Nikolić and Thomas Peyrin. Deoxys v1. CAESAR submission, 2014. http://competitions. cr.yp.to/round1/deoxysv1.pdf.
47. Jérémy Jean, Ivica Nikolić and Thomas Peyrin. Joltik v1. CAESAR submission, 2014. http://competitions. cr.yp.to/round1/joltikv1.pdf.
48. Jérémy Jean, Ivica Nikolić and Thomas Peyrin. Kiasu v1. CAESAR submission, 2014. http://competitions. cr.yp.to/round1/kiasuv1.pdf.
49. Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yumiko Murakami, Mitsuru Matsui and Shoichi Hirose. Minalpher v1. CAESAR submission, 2014. http://competitions.cr.yp.to/round1/ minalpherv1.pdf.
50. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma and Ling Song. Automatic Security Evaluation and (Related-key) Differential Characteristic Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-oriented Block Ciphers. In Advances in Cryptology-ASIACRYPT 2014, 2014.
51. Alex Biryukov, Arnab Roy and Vesselin Velichkov. Differential analysis of block ciphers SIMON and SPECK. In Fast Software Encryption. Springer, 2014.
52. Guido Van Rossum et al. Python programming language. In USENIX Annual Technical Conference, 2007.
53. Eli Biham, Ross Anderson and Lars Knudsen. Serpent: A new block cipher proposal. In Fast Software Encryption, pages 222-238. Springer, 1998.
54. Shusheng Liu, Zheng Gong and Libin Wang. Improved related-key differential attacks on reduced-round LBlock. In Information and Communications Security, pages 58-69. Springer, 2012.
55. Ning Wang, Xiaoyun Wang, Keting Jia and Jingyuan Zhao. Improved differential attacks on reduced SIMON versions. IACR Cryptology ePrint Archive, Report 2014/448, 2014. http://eprint.iacr.org/2014/448.
56. Javad Alizadeh, Hoda A. Alkhzaimi, Mohammad Reza Aref, Nasour Bagheri, Praveen Gauravaram, and Martin M.Lauridsen. Improved linear cryptanalysis of round reduced SIMON. IACR Cryptology ePrint Archive, Reprot 2014/681, 2014. http://eprint.iacr.org/2014/681.pdf.
57. Jorge Nakahara Jr, Pouyan Sepehrdad, Bingsheng Zhang and Meiqin Wang. Linear (hull) and algebraic cryptanalysis of the block cipher PRESENT. In Cryptology and Network Security, pages 58-75. Springer, 2009.
58. Franco P. Preparata and Michael I. Shamos. Computational geometry: An introduction. 1985.
59. Jacob E. Goodman and Joseph O'Rourke. Handbook of discrete and computational geometry. CRC press, 2010.
60. Joseph O'Rourke. Computational geometry in C. Cambridge university press, 1998.
61. Mark de Berg, Marc van Kreveld, Mark Overmars and Otfried Schwarzkopf. Computational geometry: Algorithms and applications, 2000.
62. Egon Balas and Robert Jeroslow. Canonical cuts on the unit hypercube. SIAM Journal on Applied Mathematics, 23(1):61-69, 1972.
63. Zheng Gong, Svetla Nikova and Yee Wei Law. KLEIN: a new family of lightweight block ciphers. In RFID. Security and Privacy, pages 1-18. Springer, 2012.
64. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita and Taizo Shirai. Piccolo: an ultra-lightweight blockcipher. In Cryptographic Hardware and Embedded Systems, pages 342-357. Springer, 2011.
65. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka and Eita Kobayashi. TWINE: A lightweight, versatile block cipher. In ECRYPT Workshop on Lightweight Cryptography, pages 146-169, 2011.
66. Maryam Izadi, Babak Sadeghiyan, Seyed Saeed Sadeghian and Hossein Arabnezhad Khanooki. MIBS: a new lightweight block cipher. In Cryptology and Network Security, pages 334-348. Springer, 2009.
67. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED block cipher. In Cryptographic Hardware and Embedded Systems, pages 326-341. Springer, 2011.
68. Wenling Wu and Lei Zhang. LBlock: a lightweight block cipher. In Applied Cryptography and Network Security, pages 327-344. Springer, 2011.
69. Gurobi Optimization. Gurobi optimizer reference manual. 2013. http://www.gurobi.com.
70. Tobias Achterberg. SCIP-a framework to integrate constraint and mixed integer programming. Konrad-ZuseZentrum für Informationstechnik Berlin, 2004.
71. Meiqin Wang, Yue Sun, Elmar Tischhauser and Bart Preneel. A model for structure attacks, with applications to PRESENT and Serpent. In Fast Software Encryption, pages 49-68. Springer, 2012.
72. Xuejia Lai, James L. Massey and Sean Murphy. Markov ciphers and differential cryptanalysis. In Advances in Cryptology-EUROCRYPT 1991, pages 17-38. Springer, 1991.
73. Yue Sun, Meiqin Wang, Shujia Jiang and Qiumei Sun. Differential cryptanalysis of reduced-round ICEBERG. In Progress in Cryptology-AFRICACRYPT 2012, pages 155-171. Springer, 2012.
74. Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the SIMON family of block ciphers. IACR Cryptology ePrint Archive, Report 2013/543, 2013. http://eprint.iacr.org/2013/543.
75. Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails in ARX ciphers. In Topics in Cryptology-CT-RSA 2014, pages 227-250. Springer, 2014.
76. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks and Louis Wingers. The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.org/2013/404.
77. Farzaneh Abed, Eik List, Jakob Wenzel and Stefan Lucks. Differential cryptanalysis of round-reduced SIMON and SPECK. In Fast Software Encryption - FSE 2014, 2014.
78. Javad Alizadeh, Nasour Bagheri, Praveen Gauravaram, Abhishek Kumar, and Somitra Kumar Sanadhya. Linear cryptanalysis of round reduced SIMON. IACR Cryptology ePrint Archive, Report 2013/663, 2013. http:// eprint.iacr.org/2013/663.
79. Christina Boura, Mara Naya-Plasencia, Valentin Suder. Scrutinizing and Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon (Full Version). In Advances in Cryptology-ASIACRYPT 2014, 2014.
80. Kaisa Nyberg. Linear approximation of block ciphers. In Advances in Cryptology-EUROCRYPT 1994, pages 439-444. Springer, 1995.
81. Gregor Leander. On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In Advances in Cryptology-EUROCRYPT 2011, pages 303-322. Springer, 2011.
82. Kenji Ohkuma. Weak keys of reduced-round PRESENT for linear cryptanalysis. In Selected Areas in Cryptography, pages 249-265. Springer, 2009.
83. Mohamed Ahmed Abdelraheem, Martin Ågren, Peter Beelen and Gregor Leander. On the distribution of linear biases: Three instructive examples. In Advances in Cryptology-CRYPTO 2012, pages 50-67. Springer, 2012.
84. Sean Murphy. The effectiveness of the linear hull effect. J. Mathematical Cryptology, 6(2):137-147, 2012.
85. Stanislav Bulygin. More on linear hulls of PRESENT-like ciphers and a cryptanalysis of full-round EPCBC-96. IACR Cryptology ePrint Archive, Report 2013/028, 2013. https://eprint.iacr.org/2013/028.
86. Mohamed Ahmed Abdelraheem. Estimating the probabilities of low-weight differential and linear approximations on present-like ciphers. In Information Security and Cryptology-ICISC 2012, pages 368-382. Springer, 2013.
87. John Kelsey, Tadayoshi Kohno and Bruce Schneier. Amplified boomerang attacks against reduced-round MARS and Serpent. In Fast Software Encryption, pages 75-93. Springer, 2001.
88. Onur Özen, Kerem Varıcı, Cihangir Tezcan and Çelebi Kocair. Lightweight block ciphers revisited: Cryptanalysis of reduced round PRESENT and HIGHT. In Information Security and Privacy, pages 90-107. Springer, 2009.
89. Xiaoyun Wang and L. C. K. Hui etc. Differential cryptanalysis of an AES finalist-Serpent. 2000.

A Constructing MILP Models for Automatic Linear Analysis

Based on Sun et al.'s methods $[43,50]$, we can construct an MILP model whose feasible region is exactly the set of all valid linear characteristics for a cipher involving the following operations

- bitwise XOR;
- bitwise permutation L which permutes the bit positions of a n dimensional vector in \mathbb{F}_{2}^{n};
- three-forked branch operation (see [38]);
- S-box, $\mathcal{S}: \mathbb{F}_{2}^{\omega} \rightarrow \mathbb{F}_{2}^{\nu}$.

For every bit of the linear masks introduce a $0-1$ variable x_{i}. Also, for every S-box in the schematic description of the cipher under consideration, introduce a new $0-1$ variable A_{j} such that

$$
A_{j}=\left\{\begin{array}{l}
1, \text { if the output mask of the Sbox is nonzero, } \\
0, \text { otherwise. }
\end{array}\right.
$$

Here we say that A_{j} indicates the linear activity of an S-box, or an S-box is marked by A_{j}.
Objective Function. The objective function is to minimize the sum of all variables indicating the linear activities of the S-boxes appearing in the schematic description of the cipher: $\sum_{j} A_{j}$.

Constraints. For every XOR operation with input masks a, b and output mask c, include the following constraints

$$
\begin{equation*}
a=b=c . \tag{8}
\end{equation*}
$$

For every three-forked branch with input mask a, and output mask b, c, include the following constraints

$$
\left\{\begin{array}{l}
d_{\curlywedge} \geq a, d_{\curlywedge} \geq b, d_{\curlywedge} \geq c \tag{9}\\
a+b+c \geq d_{\curlywedge} \\
a+b+c \leq 2
\end{array}\right.
$$

where d_{\curlywedge} is a dummy variable.
Assuming $\left(x_{i_{0}}, \ldots, x_{i_{\omega-1}}\right)$ and ($y_{i_{0}}, \ldots, y_{i_{\nu-1}}$) are the input and output linear masks of an $\omega \times \nu$ S-box marked by A_{t}, we have

$$
\left\{\begin{array}{l}
A_{t}-y_{i_{k}} \geq 0, k \in\{0, \ldots, \nu-1\} \tag{10}\\
\left(\sum_{j=0}^{\nu-1} y_{i_{j}}\right)-A_{t} \geq 0
\end{array}\right.
$$

which ensures that nonzero output linear mask must activate the S-box.
For an bijective S-box we have

$$
\left\{\begin{array}{l}
\omega \sum_{k=0}^{\nu-1} y_{j_{k}}-\sum_{k=0}^{\omega-1} x_{i_{k}} \geq 0 \tag{11}\\
\nu \sum_{k=0}^{\omega-1} x_{i_{k}}-\sum_{k=0}^{\nu \nu-1} y_{j_{k}} \geq 0
\end{array}\right.
$$

since nonzero input linear mask must result in nonzero output linear mask and vice versa.
For every S-box appearing in the schematic description of the cipher, compute the critical set \mathcal{O}_{S} of $\mathcal{H}_{\operatorname{conv}\left(\mathcal{M}_{s}\right)}$ using Algorithm 1, and add all the linear inequalities in the critical set to the MILP model, where \mathcal{M}_{S} is defined as following.
Definition 7. Let S be an arbitrary $\omega \times \nu S$-box such that $\left(x_{0}, \ldots, x_{\omega-1}\right)$ and $\left(y_{0}, \ldots, y_{\nu-1}\right)$ are its input and output linear masks respectively. The linear approximation set \mathcal{M}_{S} of S is defined to be the set of all linear approximation patterns of S. That is, $\mathcal{M}_{S}=\left\{\left(x_{0}, \ldots, x_{\omega-1}, y_{0}, \ldots, y_{\nu-1}\right) \in \mathbb{B}^{\omega+\nu}\right.$: the bias of the resulting linear approximation is nonzero\}.

B The Security Bound of Serpent with respect to Single-key Differential Attack

We apply the method for obtaining the exact lower bound of the number of active S-boxes to Serpent, one of the AES finalists, and the results are summarized in Table 14, from which we can deduce that the probability of the best single-key differential characteristic for the 27 -round Serpent is upper bounded by $\left(2^{-2}\right)^{8+7+8+7+7+7+7+7+8}=2^{-132}$, and the result is obtained on a PC in no more than 1.3 hours.

At the time of the AES selection process, it is very hard to obtain the security bound of Serpent with respect to the single-key differential attack, and the designers of Serpent conjectured that the probability of the best 28 -round differential for Serpent is not higher than 2^{-120}. In this work, our tool confirms this conjecture automatically. Note that this is not the best published bound for Serpent (see Wang et al.'s work [89]). However, compared with Wang et al.'s method [89] which involves tedious case by case study of the differential propagation, our approach is much more simple and straightforward.

C Linear Characteristic of SIMON128

The 55 -round characteristic we find for SIMON128 with bias 2^{-109} is given in Table 15 and Table 16. Note that the previously published longest linear characteristic for SIMON128 is a 52 -round characteristic with

Table 14: The exact lower bounds of the number of differentially active S-boxes for round-reduced variants of Serpent in the single-key model. Note that there is no need to computed the model covering rounds 24-25-26 since it uses the same S-boxes as rounds 0-1-2.

Rounds covered	S-boxes used	\#Active S-boxes	Time (in seconds)
$0-1-2$	$S_{0}-S_{1}-S_{2}$	8	897
$3-4-5$	$S_{3}-S_{4}-S_{5}$	7	481
$6-7-8$	$S_{6}-S_{7}-S_{0}$	8	985
$9-10-11$	$S_{1}-S_{2}-S_{3}$	7	370
$12-13-14$	$S_{4}-S_{5}-S_{6}$	7	288
$15-16-17$	$S_{7}-S_{0}-S_{1}$	7	331
$18-19-20$	$S_{2}-S_{3}-S_{4}$	7	536
$21-22-23$	$S_{5}-S_{6}-S_{7}$	7	491
$24-25-26$	$S_{0}-S_{1}-S_{2}$	8	No need to compute

bias $2^{-128}[56]$. Before the readers checking this characteristic, we would like to give a remark on the computation of the bias of the linear characteristic for SIMON.
L^{r} : the left half input of the r-th round
R^{r} : the right half input of the r-th round
K^{r} : the subkey of the r-th round
$X[j]$: the $(j \bmod 64)$-th bit of X
$X \lll i$: the left circular shift of X by i bits
\wedge : bitwise AND
$S:$ the 2×1 S-box with 2-bit input and 1-bit output, that is, $S(x, y)=x \wedge y$
Under the above notations, the round function can be described as follows

$$
\begin{aligned}
& L^{r+1}=R^{r} \oplus K^{r} \oplus\left(L^{r} \lll 2\right) \oplus\left(G\left(L^{r}\right)\right) \\
& R^{r+1}=L^{r}
\end{aligned}
$$

where $G\left(L^{r}\right)=\left(L^{r} \lll 1\right) \wedge\left(L^{r} \lll 8\right)$.
Clearly, $G\left(L^{r}\right)[j]=L^{r}[j+1] \wedge\left(L^{r}[j+8]\right)=S\left(L^{r}[j+1], L^{r}[j+8]\right)$. Let α^{r} be the mask of $L^{r} \lll 1, \beta^{r}$ be the mask of $L^{r} \lll 8$, and γ^{r} be the output mask of $G\left(L^{r}\right)$. Let y^{r} be the 64 -bit output of $G\left(L^{r}\right)$. Then

$$
y^{r}[j]=L^{r}[j+1] \wedge L^{r}[j+8]=S\left(L^{r}[j+1], L^{r}[j+8]\right)
$$

The linear approximation expression of the j th AND operation in the r th round is

$$
\begin{equation*}
\alpha^{r}[j] \cdot L^{r}[j+1] \oplus \beta^{r}[j] \cdot L^{r}[j+8]=\gamma^{r}[j] \cdot y^{r}[j] \tag{12}
\end{equation*}
$$

and we assume (12) holds with probability $P^{r}[j]$. Let $\epsilon^{r}[j]=\left|P^{r}[j]-1 / 2\right|$ be the bias of (12). If $\gamma^{r}[j]=0$, then $\left(\alpha^{r}[j], \beta^{r}[j]\right)=(0,0)$ and $\epsilon^{r}[j]=1 / 2$. If $\gamma^{r}[j] \neq 0$, then $\epsilon^{r}[j]=1 / 4$.

Typically, the inputs of the S-boxes in each round of a cipher are independent. However, this is not the case for SIMON. Therefore, we should be careful when compute the bias of the characteristics for SIMON. For example,

$$
\begin{gathered}
y^{r}[1]=S\left(L^{r}[2], L^{r}[9]\right) \\
y^{r}[8]=S\left(L^{r}[9], L^{r}[16]\right)
\end{gathered}
$$

Suppose these two S-boxes are both active, then the two linear approximation expressions are

$$
\begin{align*}
& \alpha^{r}[1] \cdot L^{r}[2] \oplus \beta^{r}[1] \cdot L^{r}[9] \oplus y^{r}[1]=0 \tag{13}\\
& \alpha^{r}[8] \cdot L^{r}[9] \oplus \beta^{r}[8] \cdot L^{r}[16] \oplus y^{r}[8]=0 \tag{14}
\end{align*}
$$

If (13) and (14) are independent, then the bias of (13) $+(14)$ would be $2^{-3}=2 \cdot 2^{-2} \cdot 2^{-2}$ according to the piling-up lemma. However (13) and (14) are not independent here, and the bias of

$$
\begin{aligned}
& \alpha^{r}[1] \cdot L^{r}[2] \oplus \beta^{r}[1] \cdot L^{r}[9] \oplus y^{r}[1] \oplus \alpha^{r}[8] \cdot L^{r}[9] \oplus \beta^{r}[8] \cdot L^{r}[16] \oplus y^{r}[8] \\
= & \alpha^{r}[1] \cdot L^{r}[2] \oplus \beta^{r}[1] \cdot L^{r}[9] \oplus \alpha^{r}[8] \cdot L^{r}[9] \oplus \beta^{r}[8] \cdot L^{r}[16] \oplus L^{r}[2] \cdot L^{r}[9] \oplus L^{r}[9] \cdot L^{r}[16] \\
= & \alpha^{r}[1] \cdot L^{r}[2] \oplus\left(\beta^{r}[1] \oplus \alpha^{r}[8]\right) \cdot L^{r}[9] \oplus \beta^{r}[8] \cdot L^{r}[16] \oplus\left(L^{r}[2] \oplus L^{r}[16]\right) \cdot L^{r}[9] \\
= & 0
\end{aligned}
$$

is 0 or $2^{-2} \neq 2 \cdot 2^{-2} \cdot 2^{-2}$. Hence, when we compute the bias of the characteristic of SIMON, we should take this phenomenon into account.

D A 16-round Related-key Differential of LBlock

We find a 16-round standard (non truncated) related-key differential with probability $2^{-55.64}$, which is even better than the previously published best truncated related-key differential for the 16 -round LBlock whose probability is about 2^{-59} [54].

This related-key differential characteristic is discovered as follows. Firstly, by using the method presented in Sect. 4.2, we find a related-key differential characteristic for the 15 -round LBlock with 23 active S-boxes and probability 2^{-63} (see Table 17 and Table 18).

Then, we use the method presented in Sect. 5.1 to search for all related-key differential characteristics whose input/output differences and master-key difference are fixed to the values suggested in Table 17 and Table 18 respectively. To further reduce the searching space, we require that any one of these characteristics has at most 25 active S-boxes.

Finally, we find all the characteristics enjoying the above properties, and the distribution of these characteristics are given in Table 19. Interestingly, all these characteristics share the same differential patterns in the key schedule algorithm.

From Table 19, it can be computed that the probability of the 15 -round related-key differential for LBlock specified by the input, output and master-key differences given in Table 17 and Table 18 is at least $2^{-53.64}$. Since the Hamming weight of the left part of the output difference of the 15 th round is low and the subkey difference of the 16 th round is 0 , by extending one more round of this related-key differential, we obtain a related-key differential with probability at least $2^{-(53.64+2)}=2^{-55.64}$.

E Improved Related-key Boomerang Distinguisher For LBlock

Using the method presented in Sect. 4.2, we find a related-key differential characteristic for the 8-round LBlock with 6 active S-boxes in total (zero active S-box in its key schedule algorithm), and the results are given in Table 20 and Table 21.

Then we use the method presented in Sect. 5 to find all the related-key differential characteristics with input difference

0000001100000000000000000000000000001000000100000000000000000000
and master-key difference
000110000000000000000000000 ,
each of which has at most 6 active S-boxes. We obtain 300 such characteristics in no more than 10 seconds on a PC. And there are 28 characteristics with probability $2^{-15}, 128$ characteristics with probability 2^{-16}, and 144 characteristics with probability 2^{-17}. Hence, the overall probability \hat{p} for E_{0} is approximately

$$
\sqrt{28 \times\left(2^{-15}\right)^{2}+128 \times\left(2^{-16}\right)^{2}+144 \times\left(2^{-17}\right)^{2}} \approx 2^{-12}
$$

Using this result and the related-key differential characteristic covering E_{1} with probability $\hat{q} \approx 2^{-16}$ presented in [54], a 16-round related-key boomerang distinguisher with probability $\left(2^{-12} \times 2^{-16}\right)^{2}=2^{-56}$ can be constructed. Note that the probability of the best previously published boomerang distinguisher for the 16 -round LBlock is 2^{-60} [54].

Table 15: A 55-round linear characteristic for SIMON128 (the input masks of the left parts)

ds	The input linear mask of the
0	001000000
1	00100010000000000000000000
2	00100000000000000000
3	00100010001000000000000000
4	001000000010000000000000
5	00100000001000100000000000
6	001100001000000000
7	00100000001001100000000000
8	001000000010000000000000
9	00100010001000000000000000
10	00100000000000000000
11	00100010000000000000000000
12	001000000000000000000000
13	00100000000000000000000000
14	00
15	00100000000000000000000000
16	001000000000000000000000
17	00100010000000000000000000
18	00100000000000000000
19	00100010001000000000000000
20	001000000010000000000000
21	00100000001000100000000000
22	001000001000000000
23	00100000001010100000000000
24	001000000010100000000000
25	00100010001000001000000000
26	00100000000000000000
27	00100010000000000000000000
28	001000000000000000000000
29	00100000000000000000000000
30	00
31	00100000000000000000000000
32	001000000000000000000000
33	00100010000000000000000000
34	00100000000000000000
35	00100010001000000000000000
36	001000000010000000000000
37	00100000001000100000000000
38	001000001000000000
39	00100000001010100000000000
40	001000000010100000000000
41	00100010001000001000000000
42	00100000000000000000
43	00100010000000000000000000
44	001000000000000000000000
45	00100000000000000000000000
46	00
47	00100000000000000000000000
48	001000000000000000000000
49	00100010000000000000000000
50	00100000000000000000
51	00100010001000000000000000
52	001000000010000000000000
53	00100000001000100000000000
54	001000000000
55	00100000001000100010000000

Table 16: A 55-round linear characteristic for SIMON128 (the input masks of the right parts)
Rounds \quad The input linear mask of the right half
$0 \quad 00100010000000000000000000$ 00100000000000000000 00100010001000000000000000 001000000010000000000000 00100000001000100000000000 001100001000000000 00100000001001100000000000 001000000010000000000000 00100010001000000000000000 00100000000000000000 00100010000000000000000000 001000000000000000000000 00100000000000000000000000 00 00100000000000000000000000 001000000000000000000000 00100010000000000000000000 00100000000000000000 00100010001000000000000000 001000000010000000000000 00100000001000100000000000 001000001000000000 00100000001010100000000000 001000000010100000000000 00100010001000001000000000 00100000000000000000 00100010000000000000000000 001000000000000000000000 00100000000000000000000000 00 00100000000000000000000000 001000000000000000000000 00100010000000000000000000 00100000000000000000 00100010001000000000000000 001000000010000000000000 00100000001000100000000000 001000001000000000 00100000001010100000000000 001000000010100000000000 00100010001000001000000000 00100000000000000000 00100010000000000000000000 001000000000000000000000 00100000000000000000000000 00 00100000000000000000000000 001000000000000000000000 00100010000000000000000000 00100000000000000000 00100010001000000000000000 001000000010000000000000 00100000001000100000000000 001000000000 00100000001000100010000000 001000000010000000100000

Table 17: A 15 -round related-key differential characteristic for LBlock with probability 2^{-63} (characteristic in the encryption process).

Rounds	The differences
0 (Input)	0000000000000000000011000000000000000000101000000000000000111111
1	1010000000000000000011110000000000000000000000000000110000000000
2	0000000000011100110100000000000010100000000000000000111100000000
3	0000000000001111000000000000000000000000000111001101000000000000
4	0001000011010000000000000000000000000000000011110000000000000000
5	0000111110111010000000000000000000010000110100000000000000000000
6	000000010000100000000000000100000000111101110100000000000000000
7	0000000000000000000000000000000000000001000010000000000000010000
8	00001000000000000001000
9	0011000000000000000000001101000000001000000000000001000000000000
10	0000000000000000000000000000000000110000000000000000000011010000
11	00
12	000
13	00
14	00001000
15 (Output) 0001000000000000000000000000000000001000000000000000000000000000	

Table 18: A 15-round related-key differential characteristic for LBlock with probability 2^{-63} (characteristic in the key schedule algorithm).

Rounds	The differences of the master key and subkeys
Master Key 00011100000000	
Subkey 1	00000000000000000000000000000000
Subkey 2	00000000000000000000000000000000
Subkey 3	00000000000111000000000000000000
Subkey 4	00000000000000000000000000000000
Subkey 5	00000000000000000000000000000000
Subkey 6	00001100000000000000000000000000
Subkey 7	00000000000000000000000000000000
Subkey 8	00000000000000000000000000110000
Subkey 9	00000000000000000000000000000000
Subkey 10	00000000000000000000000000000000
Subkey 11	00000000000000000001100000000000
Subkey 12	00000000000000000000000000000000
Subkey 13	00000000000000000000000000000000
Subkey 14	00000000000011000000000000000000
Subkey 15	00000000000000000000000000000000
Subkey 16	00000000000000000000000000000000

Table 19: The distribution of the related-key differential characteristics of LBlock in the differential specified by the input and output differences given in Table 17.

Probability	2^{-60}	2^{-61}	2^{-62}	2^{-63}	2^{-64}	2^{-65}	2^{-66}	2^{-67}	2^{-68}	2^{-69}	2^{-70}	2^{-71}
\#Characteristics	2	18	25	71	164	375	499	583	797	772	561	142

Table 20: An 8-round related-key differential characteristic with 6 active S-boxes for LBlock (characteristic in the key schedule algorithm).

Rounds	The differences of the master key and subkeys
Master Key 00110000000000000000000000	
Subkey 1	00000000000000000000000000000000
Subkey 2	00000000000000000000000000011000
Subkey 3	00000000000000000000000000000000
Subkey 4	00000000000000000000000000000000
Subkey 5	00000000000000000000110000000000
Subkey 6	00000000000000000000000000000000
Subkey 7	00000000000000000000000000000000
Subkey 8	00000000000001100000000000000000

Table 21: An 8-round related-key differential characteristic with 6 active S-boxes for LBlock (characteristic in the encryption process).

Rounds	The differences
0 (Input)	0000001100000000000000000000000000001000000100000000000000000000
1	0000000000000000000000000000100000000011000000000000000000000000
2	0000000000000000000000000000110000000000000000000000000000001000
3	001100
4	000000000000000000001100
5	00110000000000
6	0000000000001100
7	0000100100000000000000000000000000000000000011000000000000000000
8 (Output)	1100111000000000000000000000000000001001000000000000000000000000

[^0]: ${ }^{1}$ Here by heuristic we mean that the solution extracted from the feasible region (all 0-1 solutions) of the underlying MILP model may be an invalid (related-key) differential or linear characteristic, and by exact we mean that every $0-1$ solution of the underlying MILP model is a valid characteristic. While for most ciphers our method is exact, SIMON is an exceptional case in the sense that the models generated for SIMON by our method contain invalid characteristics due to the special differential properties of SIMON. However, we can easily filter out these invalid characteristics by the method presented in [51].

