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Abstract. Being required in many applications, modular exponentia-
tions form the most expensive part of modern cryptographic primitives.
It is a significant challenge for resource-constrained mobile devices to
perform these heavy computations (e.g., mobile devices that require
secure cryptographic computations or RFID tags). Cloud services can
significantly enhance the computational capability of these devices. In
this way, expensive computations at client side can significantly be re-
duced by means of secure outsourcing modular exponentiations to a
potentially untrusted server S. In this paper, we study this problem
which is an active research area of mobile and cloud computing, and
mostly known as secure outsourced computation. We propose new effi-
cient outsourcing algorithms for modular exponentiations using only one
untrusted cloud service provider solving an open problem highlighted
in [11]. These algorithms cover each possible case ranging from public-
base & private-exponent, private-base & public-exponent, private-base &
private-exponent to the most general private-basis & private-exponents
simultaneous modular exponentiations. Our algorithms are the most ef-
ficient outsourced computation algorithms to date which use single un-
trusted server and have the best checkability (verifiability) property. Fi-
nally, we give two different real-life applications for outsourcing within
the realm of Oblivious Transfer protocols and Blind Signatures.

Keywords: Secure outsourcing algorithms, Modular exponentiation, Mo-
bile computing, Secure cloud computing, Privacy.

1 Introduction

Security and privacy of Cloud Computing is getting more and more at-
tention in the scientific community due to their multiple benefits for the
real-world applications (e.g., on-demand self-service, ubiquitous network
access (internet standards based), location independent resource pool-
ing, pay per use, rapid elasticity, and measure/metered service, and out-
sourcing). Depending on the need of configurable computing resources,
it is possible to efficiently outsource costly calculations to more powerful
servers using cloud computing techniques.
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Today’s resource-constrained devices can be incapable of computing
expensive cryptographic operations like modular exponentiations. This
is the main reason that outsourcing computation plays more and more
a predominant role in real-life cryptographic applications. For example,
modular exponentiation of the form ua modulo a prime number p where
u, a, and p have minimum length 2048 (in order to have a cryptographi-
cally secure algorithm) has computational obstacle for the computation-
ally limited devices. To compute a single modular exponentiation for an
2048-bit exponent a, more than 3000 modular multiplications must be
performed in average (using square and multiply method). Therefore, it
is vital to outsource the expensive computations to the cloud providers.
Nevertheless, the outsourced computations often contain additional sen-
sitive information that should not be revealed to the outsiders (e.g., per-
sonal, health or financial data). In order to prevent information leakage,
the sensitive data has to be masked before outsourcing. On the one hand,
the masking technique should be designed in such a way that the overall
computational cost to the client is significantly reduced, i.e., reducing the
cost of masking before outsourcing and the cost of removing the mask af-
ter obtaining the result from cloud provider are of utmost important. On
the other hand, it is also essential to assure the client that it computes the
desired output correctly, i.e., malicious server or environmental attacks
should not be successful without being detected with a non-negligible
probability. Therefore, it is an inevitable requirement not only to have
an efficient outsourcing algorithm but also to prevent private information
leakage from an untrusted cloud provider during the outsourcing proce-
dure by means of checking/verifying the result correctly.

It is one of the most basic assumption that there exist fully-trusted
or semi-trusted cloud providers. Nevertheless, it is not realistic to assume
trusted parties and it is not that likely the case in real-life scenarios. For
example, due to financial reasons, the cloud providers might contain a
software bug that will fail after some particular steps of the algorithms
and then return a wrong result which is computationally indistinguishable
from the correct output. By the checkability property, the client can easily
detect any malicious behavior from the cloud servers side. How then the
security and the privacy of the clients’ data are ensured without revealing
the private inputs and the desired outputs while ensuring that outsourced
computation is performed correctly using only a single untrusted server?
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(a) Our Contributions

In this paper, we propose new, efficient and secure outsourcing algorithms
of modular exponentiations modulo prime or composite numbers utiliz-
ing only one untrusted server. Our algorithms consider each case public-
base & private-exponent, private-base & public-exponent, private-base &
private-exponent and simultaneous modular exponentiations. We high-
light that the proposed algorithms borrow computing power from only
a single untrusted cloud server which is more realistic compared to the
state-of-the-art algorithms in [11, 23, 26]. This approach realizes privacy
preserving efficient outsourced cryptographic schemes which are highly
desirable and mostly inevitable for real-life applications in resource-constrained
secure mobile environments. To the best of our knowledge, our outsourc-
ing algorithms make for the first time no distinction between prime and
composite modulus by a unified modular exponentiation approach. There-
fore, exponentiations in both DLP based and RSA problem based cryp-
tographic protocols can be outsourced securely to an untrusted server.

We notice that in [31], the authors proposed an algorithm utilizing a
single untrusted server (for public-base & private-exponent and private-
base & public-exponent cases). However, there is a security issue in their
algorithm where an untrusted server can easily learn the private exponent
(e.g., using the local notation: For t = 1 the client invokes the server
Exp(ai, g) for 1 ≤ i ≤ n in order to delegate the computation of gx1 =
g
∑n

i=1 ai . The server then simply adds permuted values of ai’s and divides
easily the result by 2 for learning the private exponent x1). We also point
out that there is indeed no checkability property of the only existing
algorithm [30] for modular exponentiations modulo composite numbers.
By using the local notation of [30], the attack can be explained briefly as
follows: A malicious server S uses the proposed values ℓ = ℓ1 = ℓ2 = 5
in [30] (or any other case for which ℓ = ℓ1 = ℓ2 holds), adds 1 to the

values yj , and outputs x
yj+1
i instead of x

yj
i . This enables the server to

always manipulate the result ua with ua+ℓ without being detected by the
client.

Furthermore, our algorithms are the only efficient and verifiable result
for the case of one single untrusted server except the non-checkable result
in [30]. We emphasize that although the existing solutions use two servers
where one of them is assumed to be honest, they propose only 1/2, 2/3
or 3/4 probability for the checkability. In contrast to these solutions, our
algorithms have the best checkability advantage where any adversarial
behavior can be detected by the client with the probability 15/16.
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We would like to highlight that our algorithm for simultaneous mod-
ular exponentiations is more efficient compared to the only existing al-
gorithm in [11] (except the generalized result in [30], for which an anal-
ogous attack explained above makes the checkability step impossible).
The algorithm proposed in [11] only considers two simultaneous modular
exponentiations. We generalize this by means of introducing the notion
of t-simultaneous modular exponentiation, i.e., t modular exponentiations
can be computed simultaneously in a single round. We show that we
gain linear complexity advantage in t for both the number of modular
multiplications and inversions.

We also apply proposed algorithms to outsource Oblivious Transfer
(OT) and Blind Signatures securely. Note that OT is a powerful cryp-
tographic primitive which is “complete” for secure multiparty computa-
tion [22] for any computable function [25]. It is also one of the major com-
putational overhead for Yao’s garbled circuit protocols [28, 42]. OTs are
also used in many applications like biometric authentication, e-auctions,
private information retrieval, private search [9, 16, 24, 29]. Hence, by out-
sourcing OT securely can be enhance the overall complexity for mobile
environment and resource-constrained devices. Furthermore, blind signa-
tures [10] are unforgeable and can be verified against a public key like
conventional digital signatures which can be used in many applications
like e-cash, e-voting and anonymous credentials [8]. Hence, outsourcing
blind signatures can be also solely beneficial for many real-life applica-
tions.

(b) Related Work

Outsourced secure computation allows parties to compute a functionality
which is in the charge of the cloud, without leaking any information about
the inputs except possibly the outputs. It is expected to be no interactions
between the parties, and the computational cost and the bandwidth of
each user are expected to be independent of the functionality. However,
general program obfuscation is impossible utilizing only a single cloud
server [41]. This is the reason that we solely focus on expensive modular
computations for certain cryptographic primitives.

Many algorithms [1, 4, 5, 7, 11, 15, 23, 26, 27, 32–34, 37, 38] have been
proposed aiming either within a better security model for outsourcing
or at considering the efficiency. However, these algorithms only consider
either outsourcing of a public-base & private-exponent or private-base &
public-exponent or satisfy a weaker security notions. For example, in [40],
Clarke et al. propose protocols for speeding up exponentiation in a cyclic
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group using untrusted servers for public-base & private-exponent and
private-base & public-exponent. They also extend them to compute an
exponentiation modulo a composite integer where the modulus is the
product of two primes.

Hohenberger and Lysyanskaya [23] presented the first outsource-secure
algorithm for modular exponentiations with a security model for out-
sourcing cryptographic computations. This algorithm considers the case
private-base & private-exponent exponentiation modulo a prime number.
With this algorithm, modular exponentiations can be computed by the
client with O(log2(l)) multiplications with error probability 1

2 , where l
denotes the number of bits of the exponent element. The main drawback
of this solution is outsourcing to two non-colluding untrusted servers to
assist the client in the computations.

At ESORICS 2012, Chen et al. [11] propose a more efficient solu-
tion than Hohenberger-Lysyanskaya’s algorithm and the probability of
detection of a malicious behavior is improved to 2/3. However, modular
exponentiations can be computed by the client with O(log2(l)) multipli-
cations. Chen et al. also presented the first secure outsourcing algorithm
for simultaneous modular exponentiations. Simultaneous modular expo-
nentiations ua11 ua22 are also used in many cryptographic primitives such
as commitments [19], zero-knowledge proofs [13] and additive variant of
ElGamal encryption [18]. Chen et al. use the outsourcing algorithms to
compute Cramer-Shoup encryptions and Schnorr signatures securely.

As another area of outsourcing techniques, homomorphic encryption
allows parties for processing computations on encrypted data without
using any additional information like Yao’s garbled circuits [42]. Con-
ventional homomorphic encryption schemes are either additive or mul-
tiplicative (e.g., RSA is multiplicative, Paillier and modified version of
ElGamal encryption are additive [18,35], or [6] scheme which allows mul-
tiple additions up to only one exponentiation). These schemes allow to
outsource secure function evaluation to a cloud server. Recent somewhat
homomorphic and fully homomorphic schemes give a complete solution to
the outsourcing problem [21]. However, these systems are not yet efficient
enough to be applied in real-life scenarios.

(c) Roadmap

In Section 2, we give our formal security and privacy model based on
the model of [23] by simplifying their two untrusted server model to a
more realistic and secure one single untrusted server model. Section 3
starts with basic mathematical background of outsourcing algorithms of
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modular exponentiation as well as describes the main proposed algorithm
for private-base & private-exponent modular exponentiations. We also
prove formally the correctness, security and checkability of the proposed
algorithm using security/privacy model presented in Section 2. In Section
4, we propose algorithms for all other relevant situations, i.e. public-base
& private-exponent, private-base & public-exponent and private-base &
private-exponent simultaneous modular exponentiations for both modulo
prime and composite number. Section 5 compares the efficiency of our
algorithms with each other and the prior works. In Section 6, we utilize
our algorithms for Oblivious Transfer and Blind Signatures protocols.
Finally, Section 7 concludes the paper.

2 Security and Privacy Model

Assume that a client C would like to securely outsource an expensive
cryptographic computation Alg to a cloud server S. Informally speaking,
the goal is to split the computation into two procedures (1) C knows the
input value to Alg, (2) C invokes S which is an untrusted server that can
carry out expensive computation operations. Briefly, C securely outsource
some computation if the following conditions hold:

1. C and S implement Alg, i.e., Alg = CS

2. Assume that C has oracle access to an adversary S ′ (instead of an
honest S) which stores its computational results during each run and
behaves maliciously in order to learn extra information. S ′ is not able
to retrieve any valuable information about the input-output pair of
CS

′
.

We are now ready to give the formal model for secure outsourced
cryptographic algorithms based principally on the model of [23].

Definition 1. [23] (Algorithm with outsource-I/O) An algorithm
Alg obeys the outsource input/output specification if it takes five inputs,
and produces three outputs. The first three inputs are generated by an
honest party, and are classified by how much the adversary A = (E, S ′)
knows about them, where E is the adversarial environment that submits
maliciously chosen inputs to Alg, and S ′ is the adversarial software oper-
ating in place of oracle S.

1. 1st is the honest secret input, which is unknown to both E and S ′,
2. 2nd is the honest protected input, which may be known by E, but is

protected from S ′,
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3. 3rd is the honest unprotected input, which may be known by both E
and S,

4. 4th is the the adversarial protected input which is known to E, but
protected from S ′,

5. 5th is the the adversarial unprotected input, which may be known by
E and S,

6. 1st is the secret input which is unknown to both E and S ′,
7. 2nd is the protected input which may be known to E, but not S ′,
8. 3rd is the unprotected input which may be known by both parties of A.

Outsource-security roughly means that if a malicious S ′ can obtain
some information about the secret or protected inputs to CS from playing
the role of C instead of S, it is also in a position to obtain useful infor-
mation without this procedure. More concretely, when CS(x) is queried,
construct a simulator SimS′ such that without the knowledge of the secret
or protected inputs of x the view of S ′ can be simulated. In the following
outsource-security definition, it is guaranteed that the malicious environ-
ment E cannot learn any valuable information about the secret inputs
and outputs of CS (even in the case that C runs the malicious software S ′

developed by E).

Definition 2. [23] (Outsource security) Let Alg(·, ·, ·, ·, ·) be an al-
gorithm with outsource-I/O. A pair of algorithms (C,S) is said to be an
outsource-secure implementation of Alg if:
Correctness: CS is a correct implementation of Alg.
Security: For all probabilistic polynomial-time adversaries A = (E ,S ′),
there exist probabilistic expected polynomial-time simulators (SimE , SimS′)
such that the following pairs of random variables are computationally in-
distinguishable.

– Pair One. EVIEWreal ∼ EVIEWideal

• The real process:
EVIEWi

real = {(istate
i, xihs, x

i
hp, x

i
hu)← I(1k, istatei−1);

(estate, ji, xiap, x
i
au, stop

i)← E(1k,EVIEWi−1
real , x

i
hp, x

i
hu); (tstate

i, ustatei, yis, y
i
p, y

i
u)

← CS
′(ustatei−1)(tstatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yip, y
i
u)}

EVIEWreal = EVIEWi
real if stop

i = TRUE.
The real process proceeds in rounds. In round i, the honest (secret,
protected, and unprotected) inputs (xihs, x

i
hp, x

i
hu) are picked using

an honest, stateful process I to which the environment E does not
have access. Then E, based on its view from the last round,
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1. chooses the value of its estatei variable as a way of remember-
ing what it did next time it is invoked;

2. which previously generated honest inputs (xihs, x
i
hp, x

i
hu) to give

to CS
′
(note that E can specify the index ji of these inputs, but

not their values);
3. the adversarial protected input xiap;
4. the adversarial unprotected input xiau;
5. the Boolean variable stopi that determines whether round i is

the last round in this process.

Next, the algorithm CS
′
is run on the inputs (tstatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au),

where tstatei−1 is C’s previously saved state, and produces a new
state tstatei for C, as well as the secret yis, protected yip and un-
protected yiu outputs. The oracle S ′ is given its previously saved
state, ustatei−1, as input, and the current state of S ′ is saved in
the variable ustatei. The view of the real process in round i consists
of estatei, and the values yip and yiu. The overall view of E in the
real process is just its view in the last round (i.e., i for which stopi

= TRUE.).
• The ideal process:

EVIEWi
ideal = {(istate

i, xihs, x
i
hp, x

i
hu)← I(1k, istatei−1);

(estate, ji, xiap, x
i
au, stop

i)← E(1k,EVIEWi−1
ideal, x

i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y i
p , Y

i
u, rep

i)←

Sim
S′(ustatei−1)
E (sstatei−1, xj

i

hp, x
ji

hu, x
i
ap,x

i
au, y

i
p

,yiu); (z
i
p, z

i
u)=repi(Y i

p , Y
i
u) + (1− repi)(yip, y

i
u) : (estate, z

i
p, z

i
u)}

EVIEWideal = EVIEWi
ideal if stop

i = TRUE.
The ideal process also proceeds in rounds. In the ideal process, we
have a stateful simulator SimE who, shielded from the secret input
xihs, but given the non-secret outputs that Alg produces when run all
the inputs for round i, decides to either output the values (yip, y

i
u)

generated by Alg, or replace them with some other values (Y i
p , Y

i
u).

Note that this is captured by having the indicator variable repi be
a bit that determines whether yip will be replaced with Y i

p . In doing
so, it is allowed to query oracle S ′; moreover, S ′ saves its state as
in the real experiment.

– Pair Two. EVIEWreal ∼ EVIEWideal

• The view that the untrusted software S ′ obtains by participating
in the real process described in Pair One. UVIEWreal = ustatei if
stopi = TRUE.
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• The ideal process:
UVIEWi

ideal = { (istate
i, xihs, x

i
hp, x

i
hu) ← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i) ← E(1k, estatei−1, xihp, x
i
hu,y

i−1
p , yi−1

u ;

(astatei, yis, y
i
p, y

i
u) ← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei) ← Sim
S′(ustatei−1)
S′ (sstatei−1, xj

i

hu, x
i
au) : (ustate

i) }

EVIEWideal = EVIEWi
ideal if stop

i = TRUE.

In the ideal process, we have a stateful simulator SimS′ who, equipped
with only the unprotected inputs (xihu, x

i
au), queries S

′. As before, S ′

may maintain state.

Definition 3. [23] (α-efficient, secure outsourcing) A pair of algo-
rithms (C,S) is said to be an α-efficient implementation of Alg if

1. CS is a correct implementation of Alg and
2. ∀ inputs x, the running time of C is no more than an α-multiplicative

factor of the running time of Alg.

Definition 4. [23] (β-checkable, secure outsourcing) A pair of al-
gorithms (C,S) is said to be an β-checkable implementation of Alg if

1. CS is a correct implementation of Alg and
2. ∀ inputs x, if S deviates from its advertised functionality during the

execution of CS
′
(x), C will detect the error with probability no less

than β.

Definition 5. [23] ((α, β)-outsource-security) A pair of algorithms
(C,S) is said to be an (α, β)-outsource-secure implementation of Alg if it
is both α-efficient and β-checkable.

3 Main Algorithm for Modular Exponentiation
(Private-Base & Private-Exponent)

(a) Preliminaries

For almost all cryptographic applications, there are basically two differ-
ent settings for which modular exponentiations are the most expensive
parts of the cryptographic computation. The first one is the discrete log-
arithm problem (DLP) based and the second is the RSA problem based
systems. In both cases, we summarize the following conditions to obtain
mathematical problem instances which are intractable enough to obtain
the desired level of security for the corresponding cryptographic schemes.
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DLP case Let p and q be prime numbers and G ⊆ F
∗
p be a subgroup

generated by a primitive element g of order q. In order to have an in-
tractable discrete logarithm problem on G, we impose the usual condi-
tions on the number of distinct cosets in F

∗
p/G being comparably small,

i.e. we have a small cofactor c = p−1
q

(since otherwise by Chinese Re-
mainder Theorem (Pohling-Hellman reduction) the complexity of DLP
reduces to much smaller groups leading to less secure group based cryp-
tographic systems [12]). This means that we need to hide the exponent
of the exponentiation but not necessarily the base for the security of the
encryption algorithms. On the other hand, hiding the base element in the
modular exponentiation realizes the privacy preserved applications.

We restrict ourself to the multiplicative subgroup of prime field case
G ≤ F

∗
p, although it is also possible to use prime order multiplicative

subgroups of the extension fields of Fp. The main reason of our restriction
is that the recent quasi-polynomial attacks on DLP of certain extension
fields suggests not to use non-prime finite fields in cryptographic setting
[3].

Remark 1. We note that all secure outsourcing algorithms for modular
exponentiation (including the algorithms proposed in this paper) can eas-
ily be adapted to secure outsourcing algorithms for scalar multiplication
of elliptic curve based cryptographic (ECC) schemes by using a prime
order subgroup of E(Fp) instead of the group G. Using these secure out-
sourcing algorithms for scalar multiplication, one can also obtain hybrid
privacy preserving outsourcing algorithms for paring-based encryption al-
gorithms (e.g. by realization of ID-based cryptography [12]) by means of
outsourcing possibly hided inputs of pairing functions, bilinearity prop-
erty, and hided finite field exponentiations.

RSA case In this case, we have the modulus n = p · q, where p and q are
distinct large prime numbers. Since RSA based systems rely on the arith-
metic of G := (Z/nZ)∗, we have an exponent ranging 0 to (p−1)(q−1)−1.
For public key encryptions the message must be hidden but the public key
can be disclosed to the server, but for the signatures the inverse is true.
However, similar to the DLP case, hiding the exponent or base element
in the modular exponentiation enables the designers to obtain a privacy
preserving outsourced cryptographic schemes. In particular, constructing
a system which makes impossible for the server to distinguish between
encryption and decryption processes might be an important design crite-
ria for privacy preserving infrastructure (e.g., attribute based encryption
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schemes). To the best of our knowledge, there is only one algorithm pro-
posed for RSA based modular exponentiation [30], which is non-checkable
as explained in Section 1.1. Hence, our algorithm is the first which unifies
modular exponentiation modulo a prime or a composite modulus.

(b) The Algorithm

We now propose our new main algorithm for modular exponentiation
modulo n with the underlying group G which is either the subgroup of
F
∗
n or (Z/nZ)∗ as above with order m. Note that n can be either a prime

number or an RSA modulus covering the both cases described above.
More precisely, the algorithm has the inputs u ∈ G and a ∈ {0, · · · ,m−1}
and n, and it computes ua mod n without explicitly giving the values of
u and a to the server. We note that in the case of DLP based system we
have the extra condition that m is a prime number.

Let now three blinding factors (x, gx), (y, gy), (t, gt) ∈ Z/mZ × G be
given using a Rand Algorithm as defined in [23]. Note that these blinding
factors are computed in order to speed up computations [11, 23]. The
values (x, gx), (y, gy) can be used several times for different exponents in
order to hide the exponent whereas the value (t, gt) should be used only
once in order to hide the base element u.

For a given finite set M = {m1, · · · ,mn}, we denote further with
Sn(M) the group of permutations on M . We identify any permutation
on Sn({1, · · · , n}) with a permutation on Sn(M) if it is necessary, where
M is any finite set with n elements. By abuse of notation we also write
σ(mi) = σ(i) for any σ ∈ Sn({1, · · · , n})

Furthermore, we abbreviate by C the Client and by S the Server. We
have also the assumption that C can run an algorithm to query ua to S.
We denote the output of such a query with Exp(a, u). The algorithm is
now given as follows:

Algorithm 1 (Algprpr): Private-Base & Private-Exponent Modular
Exponentiations

Input: n,m, ℓ, k ∈ N and (a, u) ∈ Z/mZ × G, where G ≤ F
∗
n or G =

(Z/nZ)∗.
Output: The value ua in G, i.e. ua mod n.
Precomputation: A Rand algorithm computes for C a primitive element
g for DLP case or a random element g in RSA case and computes (x, gx),
(y, gy), (t, gt) ∈ Z/mZ×G with v = gx and µ = gy.
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1. C computes uv−1 ← w, ax− y ← z and runs Exp(zt−1, gt)← Z.
2. C chooses random elements r, ri, r

′
i, aj , a

′
j ∈ Z/mZ , 1 ≤ i ≤ ℓ, 1 ≤ j ≤

k, sets L1 := {r1, · · · , rℓ, a1, · · · , ak} and L2 := {r
′
1, · · · , r

′
ℓ, a

′
1, · · · , a

′
k}

such that r =
∑ℓ

i=1 ri =
∑ℓ

i=1 r
′
i and a =

∑k
j=1 aj =

∑k
j=1 a

′
j .

3. C chooses two random permutations σ1 ∈ Sℓ+k(L1), σ2 ∈ Sℓ+k(L2) and
two random elements α = (α1, · · · , αℓ+k) ∈ F

ℓ+k
2 , β = (β1, · · · , βℓ+k) ∈

F
ℓ+k
2 and stores positions Π1 = {πr1 , · · · , πrℓ}, Π2 = {πr′1 , · · · , πr′ℓ} of

the values ri, r
′
i and Θ1 = {αj : σ1(αj) = 1}, Θ2 = {βj : σ2(βj) = 1}

corresponding to σ1(ri), σ2(r
′
j), and the components of α, β having

value 1, respectively.
4. C sets 1←W1, 1←W2 and 1← R1, 1← R2. For i ∈ L1

(a) If σ1(i) ∈ Π1:

i. If σ1(i) ∈ Θ1: C runs Exp(−σ1(i), w)← w
(1)
i

A. W1 ←W1 · w
(1)
i

B. R1 ← R1 · w
(1)
i

ii. If σ1(i) 6∈ Θ1: C runs Exp(σ1(i), w)← w
(1)
i

A. W2 ←W2 · w
(1)
i

B. R2 ← R2 · w
(1)
i

(b) Else

i. If σ1(i) ∈ Θ1: C runs Exp(−σ1(i), w)← w
(1)
i

A. W1 ←W1 · w
(1)
i

ii. If σ1(i) 6∈ Θ1: C runs Exp(σ1(i), w)← w
(1)
i

A. W2 ←W2 · w
(1)
i

5. C sets 1←W ′
1, 1←W ′

2 and 1← R′
1, 1← R

′
2. For j ∈ L2

(a) If σ2(j) ∈ Π2:

i. If σ2(j) ∈ Θ2: C runs Exp(−σ2(j), w)← w
(2)
j

A. W ′
1 ←W ′

1 · w
(2)
j

B. R′
1 ← R

′
1 · w

(2)
j

ii. If σ2(j) 6∈ Θ2: C runs Exp(σ2(j), w)← w
(2)
j

A. W ′
2 ←W ′

2 · w
(2)
j

B. R′
2 ← R

′
2 · w

(2)
j

(b) Else

i. If σ2(j) ∈ Θ2: C runs Exp(−σ2(j), w)← w
(2)
j

A. W ′
1 ←W ′

1 · w
(2)
j

ii. If σ2(j) 6∈ Θ2: C runs Exp(σ2(j), w)← w
(2)
j

A. W ′
2 ←W ′

2 · w
(1)
i
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6. If

W−1
1 ·W2 6= W ′−1

1 ·W ′
2 or

R1 · R
−1
2 6= R

′
1 · R

′−1
2

Return Checkability fails

7. Else Return µ · Z · (W−1
1 ·W2) · (R1 · R

−1
2 )

Correctness and Termination.

Theorem 1. Algprpr terminates and outputs correctly.

Proof. Precomputation and Step 1 of Algprpr says that

ua = (vw)a

= gxawa

= µgzwa

= µZwa,

where w = uv−1 and z = ax− y.
Let A1, A

′
1 be the sum of ai, a

′
i’s whose corresponding values in the compo-

nents of α, β are 1, respectively. Let further A2 = a−A1 and A′
2 = a−A′

1.
Similarly, we set U1, U

′
1 be the sum of ri, r

′
i’s whose corresponding values

in the components of α, β are 1, respectively. Let further U2 = r−U1 and
U ′
2 = r − U ′

1 .

After the preparation of Step 2 and 3 and using the query results of
S, the client C computes the following for i ∈ L1 in Step 4:

W1 =
∏

σ1(i)∈Θ1

w
(1)
i

=
∏

σ1(i)∈Θ1

w−σ1(i)

= w
−

∑
σ1(i)∈Θ1σ1(i)

= w−U1−A1 ,
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W2 =
∏

σ1(i) 6∈Θ1

w
(1)
i

=
∏

σ1(i) 6∈Θ1

wσ1(i)

= w
∑

σ1(i) 6∈Θ1
σ1(i)

= wU2+A2 .

Moreover, C computes similarly

R1 = w−U1 , R2 = wU2 .

Analogously, C computes for j ∈ L2 in Step 5:

W ′
1 =

∏

σ2(j)∈Θ2

w
(2)
j

=
∏

σ2(j)∈Θ2

w−σ2(j)

= w−
∑

σ2(j)∈Θ2
σ1(i)

= w−U ′
1−A′

1 ,

W ′
2 =

∏

σ2(j) 6∈Θ2

w
(2)
j

=
∏

σ2(j) 6∈Θ2

wσ2(j)

= w
∑

σ2(j) 6∈Θ2
σ2(j)

= wU ′
2+A′

2 .

R′
1 = w−U ′

1 , R′
2 = wU ′

2 .

Step 6 simply verifies that if S runs the algorithm correctly by check-
ing the following equalities:
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W−1
1 ·W2 = wU1+A1wU2+A2

= wU1+A1+U2+A2

= wr+a

= wU ′
1+A′

1+U ′
2+A′

2

= wU ′
1+A′

1wU ′
2+A′

2

= W ′−1
1 ·W ′

2,

and

R1 ·R
−1
2 = w−U1w−U2

= w−U1−U2

= w−r

= w−U ′
1−U ′

2

= w−U ′
1w−U ′

2

= R′
1 ·R

′−1
2 .

If the equalities do not hold then algorithm outputs checkability fail-
ure. If S runs the query algorithm properly then the algorithm ends with
Step 7 as follows:

µ · Z · (W−1
1 ·W2) · (R1 · R

−1
2 ) = gy · gax−y · wr+a · w−r

= gax · wa

= (gx · w)a = (v · w)a

= ua.

Security and Checkability. Assume that a client C would like to out-
source ua mod n where u and a are private and n is public. In this part,
we give the security analysis of Algprpr and show that a malicious server
cannot be able to get any valuable information about u and a.

The next lemma gives the probability that a malicious server obtains
the exponent.

Lemma 1. A malicious server S ′ learns the exponent a with probability

at most
(

k
2(ℓ+k)

)2k
.
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Proof. The output will only be disclosed if S ′ obtains exactly the same
permutation σ1, σ2 ∈ Sℓ+k, and finds α, β ∈ F

k+ℓ
2 . And, the probability

of this event is
(

1/
(

(

ℓ+k
k

)

· 2k
))2

. To conclude, we only need show that
(

ℓ+k
k

)

≥ ( ℓ+k
k
)k.

We have1

(

ℓ+ k

k

)

=
ℓ+ k

k
·
k−1
∏

i=1

ℓ+ k − i

k − i
≥

(

ℓ+ k

k

)k

.

Hence, S ′ cannot distinguish the two test queries from all of the k+ ℓ
queries that C makes, and during any execution of Algprpr S

′ can successfully

cheat without being detected with probability at most
(

k
2(ℓ+k)

)2k
. For

ℓ = k, the probability becomes at most (12)
4k (e.g., letting ℓ = k = 20 the

probability becomes negligible).

Now, we prove the security of Algprpr. Note that outsource-secure infor-
mally means that there exists a simulator which simulates the view of the
adversary in a real algorithm run. This means that the adversary obtains
no relevant information from the real run since it could output any result
from what it knows by itself.

Theorem 2. The algorithms (C,S) are an outsource-secure implemen-
tation of Algprpr, where the input (a, u) may be honest secret; or honest
protected; or adversarial protected.

Proof. We note that this proof is inspired from the proof of the security
analysis of [23]. Let A = (E ,S ′) be a probabilistic polynomial-time (PPT)
adversary interacting with a PPT-based algorithm C in the outsource-
security model.

Firstly, we prove EVIEWreal ∼ EVIEWideal. (Pair One– The external
adversary E learns nothing.)

Let (a, u) be a private input of an honest party. Assume that SimE is
a PPT simulator which acts as follows. SimE ignores the the ith round
when getting input, and instead first chooses two permutations σ1, σ2 ∈
Sℓ+k and two bit-strings α = (α1, · · · , αk+ℓ), β = (β1, · · · , βk+ℓ) ∈ F

k+ℓ
2 ,

and then prepares two signed permuted random queries of the form

((−1)αjσ1(λ
(1)
j ), γj), ((−1)

βjσ2(λ
(2)
j ), γj) ∈ Z/mZ × G to S ′ where j ∈

1 Note that for any m,n m ≤ n ⇐⇒ (n− i) ·m ≥ (m− i) · n ∀ 1 ≤ i ≤ m− 1.
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{1, . . . , k + ℓ}. SimE randomly checks (k + ℓ) outputs from each proce-

dure using σ1, σ2, αj , βj where 1 ≤ j ≤ k + ℓ (i.e., γ
λ
(1)
j

j and γ
λ
(2)
j

j ). If

an error occurs, SimE stores its own and S ′’s states and outputs Y i
p =

“error′′, Y i
u = ∅, repi = 1. If all checkability steps are valid, SimE outputs

Y i
p = ∅, Y i

u = ∅, repi = 0; otherwise, SimE chooses a random group value

r ∈R G and outputs Y i
p = r, Y i

u = ∅, repi = 1. Next, SimE stores the corre-
sponding states. The distributions in the real and ideal executions of the
input to S ′ are computationally indistinguishable. In the ideal setting, the
inputs are uniformly chosen random from Z/mZ×G. In the real setting,
we follow steps 4 and 5 of Algprpr to assure that all parts of Exp C invokes
is randomized independently using σ1, σ2 and α, β. Now, we consider all
possible cases. If S ′ behaves in an honest manner in the ith round, then
EVIEWi

real ∼ EVIEWi
ideal, because in the real execution CS

′
perfectly runs

Algprpr and in the ideal execution SimE does not change the output of Algprpr.
If S ′ gives a wrong output in the ith round, then the output will be de-

tected by C and SimE with probability at most
(

k
2(ℓ+k)

)2k
due to Lemma

1, resulting in an output of “error”; otherwise, the software will indeed
be successful in manipulating the output of Algprpr.

In the real execution, the k + ℓ real outputs of S ′ are firstly grouped
into two parts corresponding to their signs (positive or negative). The
negative part will be multiplied together and inverted at the end. The
result will be multiplied together with each element of the positive part.
The same procedure is repeated again due to checkability (see step 4,5
and 6 of Algprpr). At the last step, we multiply the overall result with the
masking values of the base element generated at the first step. Hence, a
manipulated output of Algprpr will seem to be wrong, but random to E .

We simulate this situation in the ideal execution by replacing the
output of Algprpr with a random element in G when there is an attempt
to behave maliciously by S ′ which would not be detected by C in the
real execution. Hence, even if S ′ behaves maliciously in the ith round,
EVIEWi

real ∼ EVIEWi
ideal . By the hybrid argument, we conclude that

EVIEWreal ∼ EVIEWideal.

Next, we prove EVIEWreal ∼ EVIEWideal. (Pair Two– The untrusted
server S ′ obtains no useful information).

We now consider the cases where (a, u) is honest secret/protected or
adversarial protected. Let SimS′ be a PPT simulator that acts in the fol-
lowing manner. SimS′ ignores the the ith round when getting input, and
instead chooses two permutations σ1, σ2 ∈ Sℓ+k and prepares two signed
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permuted random queries of the form ((−1)αjσ1(λ
(1)
j ), γj) ∈ Z/mZ × G

to S ′ using σ1, σ2, αj , βj where j ∈ {1, . . . , k + ℓ}. SimE randomly checks

(k + ℓ) outputs from each procedure using σ1, σ2 (i.e., γ
λ
(1)
j

j and γ
λ
(2)
j

j ).
Then, SimS′ stores its own and S ′’s states. Note that these real and ideal
executions are distinguishable by E but E cannot use this information to
S ′ (e.g., the output of the ideal execution is never manipulated). During
the ith round of the real execution, the inputs of C) are always random-
ized to 2(k + ℓ) utilizing σ1, σ2, α, β (see steps 4 and 5 of Algprpr). In the
ideal execution, SimS′ always generates independently random queries
for S ′. The view is consistent and indistinguishable from the server’s
view when there is an interaction with honest C. Thus, for each round
we have EVIEWreal ∼ EVIEWideal, which by the hybrid argument yields
EVIEWreal ∼ EVIEWideal.

Consequently, we simulate every step of Algprpr for the simulator which
completes the simulation for both malicious environment and server.

Lemma 2. The algorithm (C,S) is an O(log2(l)/l)-efficient implemen-
tation of Algprpr, where l denotes the number of bits of the exponent a.

Proof. We use the same approach of the proof of the algorithm in [23].
The proposed algorithm Algprpr makes 3 calls to Rand, 4ℓ+2k+10 modular
multiplications (MMs) and 6 modular inverses (MInvs) in order to com-
pute ua mod n (other operations like modular additions are omitted).
Also, a server aided exponentiation takes O(log2(l)) MMs using the num-
ber theoretic complexity analysis of Nguyen, Shparlinski, and Stern [33],
or O(1) MMs if a table-lookup method is used. On the other hand, it
takes in avarage 1.5l MMs to compute ua mod n by the classical square-
and-multiply method. Thus, the algorithm (C,S) is an O(log2 l/l)-efficient
implementation of Algprpr.

Lemma 3. The algorithm (C,S) is an
(

1− (k/2(k + ℓ))2
)

-checkable im-
plementation of Algprpr.

Proof. By Algprpr, a malicious server S gives a wrong result without being
detected if it can find any position of ai’s and a′i’s and their corresponding
signs according to the components of α and β, respectively. Hence, S finds
with probability k/(k+ℓ) an ai and with probability 1/2 to decide whether
it has negative or positive sign. The same holds for an a′i and its sign.
Therefore, the overall probability for a malicious server S to declare a
wrong value without being detected is k2/4(k + ℓ)2.
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Now security and checkability of Algprpr follow obviously from the fol-
lowing corollary:

Corollary 1. The algorithm (C,S) is an (O
(

log2(l)/l), (1− (k/2(k + ℓ))2
)

-
outsource-secure implementation of Algprpr.

Table 1. Computation Complexity of the Proposed Algorithms Using Single Server

Exp. (S) Modular Mult. Modular Inv. Rand Checkability

Algprpr 2(ℓ+ k) + 1 4ℓ+ 2k + 10 6 3 1− ( k
2(k+ℓ))

2

Alg
pr
pb 2(ℓ+ k) 4ℓ+ 2k + 5 4 0 15

16

Algpbpr 4 12 3 5 1− 1
m

t-Sim-Algprpr 2t(ℓ+ k) + 1 4ℓt+ 2kt+ 7t+ 2 4t+ 1 3 1− ( k
2(k+ℓ))

2t

Remark 2. Letting k = ℓ gives us the probability 15/16 by Lemma 3
which is the best checkability result compared to previous works [11, 23,
26]. We highlight that this is more than a reasonable result for possi-
ble real-world applications. Because each request is independent of each
other. Sending approximately 20 wrong results to the client C makes the
probability of not being detected to negligibly small (≈ 1/280).

Table 2. Computation Complexity for Proposed Algorithms for k = ℓ = 20

Exp. (S) Modular Mult. Modular Inv. Rand Checkability

Algprpr 81 130 6 3 15/16

Alg
pr
pb 80 125 4 0 15/16

Algpbpr 4 12 4 5 1− 1/m

2-Sim-Algprpr 161 256 9 3 255/256

Note that in outsourced computation model the malicious server S
can be seen as a covert adversary [2], which may arbitrarily behave to
cheat depending on whether being detected with reasonable probability
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(not necessarily with very high probability) by an honest party. In [2],
covert adversaries are described for many real-life scenarios where they
are always eager to cheat but only if they are not detected. Therefore,
cloud servers can be seen as covert adversaries in outsourced computation
setting because their financial and reputational interests deter them from
cheating.

4 Other Relevant Algorithms

In this section, we simplify Algprpr for Public-Base & Private-Exponent and
Private-Base & Public-Exponent cases, and modify it to obtain a more
efficient simultaneous modular exponentiations algorithm.

(a) Public-Base & Private-Exponent

In this part, we modify Algprpr for the case of public-base & private-exponent.
The modified method is especially designed to outsource the crypto-
graphic outsourced computation for the cases in which there is no need
to hide the base element if there exists waived privacy needs in the cryp-
tographic setting (e.g., signatures). The first precomputation of Algprpr is
unnecessary in this case since we are not forced to hide our base element
u. We denote this algorithm by Alg

pr
pb, and it is given as follows:

Algorithm 2 (Algprpb): Public-Base & Private-Exponent Modular
Exponentiations

Input: n,m, ℓ, k ∈ N and (a, u) ∈ Z/mZ × G, where G ≤ F
∗
n or G =

(Z/nZ)∗.
Output: The value ua in G, i.e. ua mod n.

1. C chooses random elements r, ri, r
′
i, aj , a

′
j ∈ Z/mZ , 1 ≤ i ≤ ℓ, 1 ≤ j ≤

k, sets L1 := {r1, · · · , rℓ, a1, · · · , ak} and L2 := {r
′
1, · · · , r

′
ℓ, a

′
1, · · · , a

′
k}

such that r =
∑ℓ

i=1 ri =
∑ℓ

i=1 r
′
i and a =

∑k
j=1 aj =

∑k
j=1 a

′
j .

2. C chooses two random permutations σ1 ∈ Sℓ+k(L1), σ2 ∈ Sℓ+k(L2) and
two random elements α = (α1, · · · , αℓ+k) ∈ F

ℓ+k
2 , β = (β1, · · · , βℓ+k) ∈

F
ℓ+k
2 and stores positions Π1 = {πr1 , · · · , πrℓ}, Π2 = {πr′1 , · · · , πr′ℓ} of

the values ri, r
′
i and Θ1 = {αj : σ1(αj) = 1}, Θ2 = {βj : σ2(βj) = 1}

corresponding to σ1(ri), σ2(r
′
j), and the components of α, β, respec-

tively.
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3. C sets 1← U1, 1← U2 and 1← R1, 1← R2. For i ∈ L1

(a) If σ1(i) ∈ Π1:

i. If σ1(i) ∈ Θ1: C runs Exp(−σ1(i), u)← u
(1)
i

A. U1 ← U1 · u
(1)
i

B. R1 ← R1 · u
(1)
i

ii. If σ1(i) 6∈ Θ1: C runs Exp(σ1(i), u)← u
(1)
i

A. U2 ← U2 · u
(1)
i

B. R2 ← R2 · u
(1)
i

(b) Else

i. If σ1(i) ∈ Θ1: C runs Exp(−σ1(i), u)← u
(1)
i

A. U1 ← U1 · u
(1)
i

ii. If σ1(i) 6∈ Θ1: C runs Exp(σ1(i), u)← u
(1)
i

A. U2 ← U2 · u
(1)
i

4. C sets 1← U ′
1, 1← U ′

2 and 1← R′
1, 1← R

′
2. For j ∈ L2

(a) If σ2(j) ∈ Π2:

i. If σ2(j) ∈ Θ2: C runs Exp(−σ2(j), u)← u
(2)
j

A. U ′
1 ← U ′

1 · u
(2)
j

B. R′
1 ← R

′
1 · u

(2)
j

ii. If σ2(j) 6∈ Θ2: C runs Exp(σ2(j), u)← u
(2)
j

A. U ′
2 ← U ′

2 · u
(2)
j

B. R′
2 ← R

′
2 · u

(2)
j

(b) Else

i. If σ2(j) ∈ Θ2: C runs Exp(−σ2(j), u)← u
(2)
j

A. U ′
1 ← U ′

1 · u
(2)
j

ii. If σ2(j) 6∈ Θ2: C runs Exp(σ2(j), u)← u
(2)
j

A. U ′
2 ← U ′

2 · w
(1)
i

5. If

U−1
1 · U2 6= U ′−1

1 · U ′
2 or

R1 · R
−1
2 6= R

′
1 · R

′−1
2

Return Checkability fails

6. Else Return (U−1
1 · U2) · (R1 · R

−1
2 )
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Theorem 3. Alg
pr
pb terminates and outputs correctly. Furthermore, there

exists an algorithm which is an
(

O(log2(l)/l), (1− ( k
2(k+ℓ))

2)
)

-outsource-

secure implementation of Algprpb.

Proof. Correctness, termination, security and checkability of the algo-
rithm follow easily as a corollary of the results for Algprpr.

(b) Private-Base & Public-Exponent

In this part, we give another algorithm for private-base & public-exponent
cryptographic computation by modifying Algprpr. Note that especially for
public-key encryption or signature verification based systems it could be
desirable to have private-base & public-exponent. This algorithm is de-
noted by Algpbpr which works in detail as follows:

Algorithm 3 (Algpbpr ): Private-Base & Public-Exponent Modular
Exponentiations

Input: n,m ∈ N and (a, u) ∈ Z/mZ×G, where G ≤ F
∗
p or G = (Z/nZ)∗.

Output: The value ua in G, i.e. ua mod n.
Precomputation: A Rand algorithm computes for C a primitive ele-
ment g for DLP case or a random element g for RSA case and computes
(x1, g

x1), (x1, g
x1), (y1, g

y1), (y2, g
y2), (t, gt) ∈ Z/mZ×G with vi = gxi and

µi = gyi for 1 ≤ i ≤ 2.

1. C computes uv−1
1 ← w1, ax1− y1 ← z1 and runs Exp(z1t

−1, gt)← Z1.
2. C computes uv−1

2 ← w2, ax2− y2 ← z2 and runs Exp(z2t
−1, gt)← Z2.

3. C runs Exp(a, w1)←W1

4. C runs Exp(a, w2)←W2

5. If µ1 · g
z1 ·W1 6= µ2 · g

z2 ·W2 Return Checkability fails
6. Else Return µ1 · g

z1 ·W1

Theorem 4. Algpbpr terminates and outputs correctly. Furthermore, there

exists an algorithm which is an (O(log2(l)/l), 1− 1
m
)-outsource-secure im-

plementation of Algpbpr .

Proof. Correctness, termination, security and checkability of the algo-
rithm follow analogously as in the proofs for Algprpr.
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Remark 3. For real-life applications, m is typically chosen as a 2048-bit
number for RSA or DLP based systems and as a 384-bit number for ECC
based systems.

Table 3. Comparison with Previous Results

Modular Mult. Modular Inv. Single Server Checkability
Total cost (MMs) after equating
the checkability to 15/16

[23] 9 5 ✗ 1/2 4 · (9 + 5 · 100) ≈ 2036

[11] 7 3 ✗ 2/3 2, 52 · (7 + 3 · 100) ≈ 767

Ours 130 6 X 15/16 130 + 6 · 100 ≈ 730

(c) t-Simultaneous Modular Exponentiations

In this part, we generalize the notion of simultaneous modular expo-
nentiation method of [11] to the notion of t-simultaneous modular expo-
nentiations ua11 · · ·u

at
t in the group G for t ∈ N. t-simultaneous modu-

lar exponentiations are extensively used in many real-life cryptographic
schemes including [8,13,14,17,20,36]. As described in [11], computing 2-
simultaneous modular exponentiations is trivial by simply invoking Algprpr
twice. Here, we show that it is possible to reduce the computation cost
significantly for a generalized t-simultaneous setting by improving the
method of [11] and utilizing only one untrusted server (instead of two
servers one of which is assumed to be honest). We denote by t-Sim-Algprpr
for t-simultaneous modular exponentiation algorithm.

The scheme of Chen et al. [11] has probability of 2/3 for checkability in
modular exponentiation utilizing and has probability 1/2 for 2-Sim-Algprpr
using two non-colluding servers. They simply add a one more variable on
the exponentiation at the expense of reducing the probability from 2/3 to
1/2. Our solution has the probability 1− 1

256 for checkability and utilizes
only one single untrusted server.

We further emphasize that the natural generalization for 2-simultaneous
modular exponentiation method in [11] reduces the checkability probabil-
ity from 1

2 of single exponentiation case to 2
t+2 for t-simultaneous modular

exponentiations. However, the use of t-simultaneous modular exponenti-
ation in real-life protocols, like anonymous credentials [8], causes signif-
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icant complexity overhead. Hence, this reduction hinders the use of this
generalization from 2-simultaneous to t-simultaneous modular exponen-
tiation. Unlike the scheme in [11], our scheme enhances the probability
from 1− ( k

2(k+ℓ))
2 to 1− ( k

2(k+ℓ))
2t. More concretely, the algorithm works

as follows:

Sender Server Chooser

r ∈R G
gr mod n=Algprpr(r, g, n)

hb = gr mod n
h1−b = h/gr mod n

h0, h1

r0, r1 ∈R G
gri mod n= Algprpr(ri, g, n), i = 0, 1

Private Input: s0, s1 Private Input: bPrivate Input: ⊥

(A0, B0) = (gr0 mod n, gs0hr00 mod n)

(A1, B1) = (gr1 mod n, gs1hr11 mod n)

(A0, B0), (A1, B1)

Private Output: ⊥ Private Output: sb

gsihi
si mod n= 2-Sim-Algprpr((si, g), (ri, hi), n), i = 0, 1

(Ab)
r mod n = Algprpr(r, Ab, n)

Fig. 1. Outsourcing Oblivious Transfer

Algprpr first runs Rand to compute the blinding pairs (x, gx), (y, gy) and

(k, gk). Denote v = gx and µ = gy. Now, we have

ua11 · · ·u
at
t = (vw1)

a1 · · · (vwt)
at = gygzwa1

1 · · ·w
at
t .

where wi = uiv
−1 and z = x

∑t
i=1 ai − y for 1 ≤ i ≤ t. First, gz is

computed by invoking Exp(zk−1, gk) to S.
Note that wi’s are completely random and therefore, can be revealed

to S. Hence, instead of invoking Algprpr t times it is now possible to invoke
more efficient algorithm Alg

pr
pb t times. In particular, we gain a linear fac-

tor for the number of total multiplication in the number t. More precisely,
a t-simultaneous modular exponentiation requires t(4ℓ+2k+5)+2(t+1)
modular multiplications and 4t+1 modular inversions instead of invoking
Algprpr t-times which requires t(4ℓ+2k+10)+(t−1) modular multiplications
and 6t modular inversions. Hence, we save 4t−3 modular multiplications
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and 2t − 1 modular inversions by using our t-simultaneous modular ex-
ponentiation technique.

For instance, the complexity of 2-simultaneous modular exponentia-
tions running 2-Sim-Algprpr is in total 8ℓ+4k+16 modular multiplications
and 9 modular inversions instead of 8ℓ+4k+21 modular multiplications
12 modular inversions by running Algprpr two times only a single untrusted
server.

By utilizing t calls of Algprpb and Theorem 3 the following holds.

Theorem 5. There exists an algorithm (C,S) which is an (O(t log2(l)/l), 1−
( k
2(k+ℓ))

2t)-outsource-secure implementation of t-Sim-Algprpr.

We also note that even the less secure version ℓ = k = 1 of our pro-
posed algorithm t-Sim-Algprpr has checkability

15
16 using only one untrusted

server instead of the probability 1
2 using two servers of the algorithm

in [11].

5 Complexity Analysis of the Proposed Algorithms

In this section, we first illustrate the complexity of our proposed algo-
rithms using Table 1. In this table, we give the complexity results by
counting the number of modular exponentiations for the server side, the
number of modular multiplications (MMs), the number of modular inver-
sions (MInvs), the number of Rands and checkability probabilities.

In Table 2, we give the complexity of the proposed algorithms by
setting ℓ = k = 20, as we showed in the proof of Lemma 3. We note that
letting ℓ = k = 20 reduces the probability of privacy leakage to negligible
levels for a malicious server.

In order to compare our algorithm Algprpr with the previous results
properly, we need to equate the checkability probabilities of all algorithms
and count the number of all operations in terms of modular multiplica-
tions. For this purpose, we use the fact that in a real-life hardware setting
a modular inversion is about 100 times slower than a modular multiplica-
tion [39]. In order to have the same checkability probability 15/16, we have
to run the algorithm [23] 4 times, and the algorithm [11] log3 2

4 ≈ 2, 52
times. The comparison will now be as follows:

In [23], we have 9 MMs and 5 MInvs in one round. Hence, in 4 rounds
we obtain 36 MMs and 20 MInvs. Since 20 inversions correspond to ap-
proximately 2000 MMs, we have approximately a total number of 2036
MMs for [23].
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In [11], we have 7 MMs and 5 MInvs in one round. Hence, in ≈ 2.52
rounds we obtain ≈ 17 MMs and ≈ 7.5 MInvs. Since 7.5 inversions corre-
spond to approximately 750 MMs, we have approximately a total number
of 767 MMs for [11].

Our proposed algorithm Algprpr has 130 MMs and 6 MInvs. Since 6
inversions correspond to approximately 600 MMs, we have approximately
a total number of 730 MMs.

In Table 3, we compare our algorithm Alg
pr
pb with the results of [23]

and [11]. In the last column of Table 3, we give the total number of
MMs which shows that our algorithm Alg

pr
pb is not only the most efficient

algorithm but also is the first efficient algorithm using only one single
untrusted server S.

Remark 4. Although the number of MMs of Algprpr is slightly better than
the number of MMs in the algorithm of [11] for only one outsourced
modular exponentiation, using t-Sim-Algprpr we gain a linear factor in t
which gives significantly better complexity results for the number of MMs.

Furthermore, Algprpr has better checkability probability (15/16 versus
2/3). We highlight that our checkability probability increases with t-
simultaneous modular exponentiations whereas a possible generalization
of the algorithm [11] decreases dramatically when t increases.

Cloud Server Verifier
Private Input: d, p, q

Signer
Private Input: ⊥

Public Input: e, n Public Input: e, n

r ∈R (Z/nZ)∗
re mod n=Algprpr(e, r, n)

c = mre mod n

c′ = cd mod n=Algprpr(d, c, n)

c

c′

md = c′/r mod n

Private Input: ⊥
Public Input: ⊥

Fig. 2. Outsourcing Blind Signatures
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6 Outsourced Oblivious Transfer and Blind Signatures

(a) Oblivious Transfer

Oblivious transfer is a powerful cryptographic primitive which is “com-
plete” for secure multiparty computation [22] for any computable func-
tion [25]. In an OT protocol, the sender has two private input bits (s0, s1)
and the receiver has one private input bit b. At the end of the protocol,
the receiver learns only the bit sb, whereas the sender does not know any
information which bit was selected by the receiver.

With the help of cloud providers it is possible to independently com-
pute any outsourced functionality even if the private input has not been
revealed. Namely, clients only need to randomize/encrypt their data and
de-randomize/decrypt the returned messages to get the desired results. It
is one of the major computational overhead for Yao’s garbled circuit pro-
tocol [28, 42], and used in several applications like biometric authentica-
tion, e-auctions, private information retrieval, private search [9,16,24,29].
Hence, running OT protocols for resource-constrained mobile environ-
ment may have substantial benefits.

In this section, we provide an example of outsourcing an OT proto-
col in a discrete log setting (see Figure 1). Assume that G is a group
generated by g (i.e. G =< g >) and h ∈ G where logg h is unknown to
any party. At the first step, the receiver chooses random r ∈R G and in-
vokes the cloud server S to compute Algprpr(r, g, n) and computes hb = gr

mod n. Note that at this stage, cloud server and the environment do not
learn any valuable information about the inputs or the outputs. The re-
ceiver then computes h1−b = h/gr. Next, the receiver sends (h0, h1) to
the sender. The sender now invokes S to run Algprpr(r0, g, n) and 2− Sim-
Algprpr((si, g), (ri, hi), n), i = 0, 1

to compute and receive gri and hrii g
si for i = 0, 1, respectively. The

sender then returns homomorphic ElGamal encryptions of s0 and s1 de-
noted as (A0, B0) = (gr0 , gs0hr00 ) and (A1, B1) = (gr1 , gs1hr11 ), respectively.
Depending on his bit b, the receiver is able to decrypt one of these encryp-
tions to learn either s0 or s1. Hence, if both parties follow the protocol
specification, the receiver learns exactly one of the bits s0 and s1, and the
sender does not know any information about what the receiver learns.
The OT protocol used for outsourcing is secure in the semi-honest model
but malicious versions of OT can be used analogously.
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(b) Blind Signatures

Blind signatures have been suggested by Chaum [10]. Roughly speaking,
it allows a signer interactively issue signatures and allows users to obtain
them such that the signer does not see the resulting message and the
signature pair during the signing session. Like any conventional electronic
signatures they are unforgeable and can be verified using a public key.

Blind signatures can be applied to privacy preserving protocols like
e-cash, e-voting and anonymous credentials. For a e-cash scenario, a bank
blindly signs coins withdrawn by the users. For an e-voting scenario, an
authority blindly signs a vote for later to cast the signed votes. As for
anonymous credentials, the issuing authority blindly signs a key [8] for
later to authenticate services anonymously. Hence, for mobile environ-
ment and constrained-devices, outsourcing blind signatures can be bene-
ficial for real-life applications (see Figure 2).

7 Conclusion

In this paper, we propose new secure and efficient algorithms for out-
sourcing modular exponentiations (i.e., public-base & private-exponent,
private-base & public-exponent, private-base & private-exponent and si-
multaneous modular exponentiations). Our algorithms are more efficient
compared to the previous algorithms and they are modeled with only sin-
gle untrusted cloud server solving the open problem formulated in [11].
Our algorithms also enjoy checkability property which is a significant im-
provement compared to prior works. The security of our algorithms are
proven formally based on the model of [23]. We finally utilize our algo-
rithms for outsourcing oblivious transfer protocols and blind signatures,
which may be beneficial for resource-constrained mobile secure environ-
ments running on a client.
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