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Abstract. Reducing the computational cost of cryptographic compu-
tations for resource-constrained devices is an active research area. Out-
sourcing the computation to an external server securely provides a prac-
tical solution. In particular, modular exponentiations are the most ex-
pensive computation of many cryptographic protocols. Outsourcing the
modular exponentiations to a single, external and potentially untrusted
cloud server securely while ensuring the privacy is the most realistic sce-
nario. In this paper, we propose new efficient outsourcing algorithms for
modular exponentiations using only one untrusted cloud server. These
algorithms cover public-base & private-exponent, private-base & public-
exponent, private-base & private-exponent and more generally private-
base & private-exponents simultaneous modular exponentiations. Our al-
gorithms are the most efficient outsourced computation algorithms using
a single untrusted server. Furthermore, our algorithms provide the best
checkability property with predetermined parameters. Finally, we give
two different applications for outsourcing within the realms of Oblivious
Transfer Protocols and Blind Signatures.

Keywords: Secure outsourcing algorithms, Modular exponentiation, Mo-
bile computing, Secure cloud computing, Privacy.

1 Introduction

Security and privacy of Cloud Computing is getting more and more at-
tention in the scientific community due to their multiple benefits for the
real-world applications (e.g., on-demand self-service, ubiquitous network
access, location independent resource pooling, pay per use, rapid elastic-
ity, and outsourcing). Depending on the need of configurable computing
resources, it is possible to efficiently outsource costly calculations to more
powerful servers using cloud computing techniques.



2

Today’s resource-constrained devices can be incapable of computing
expensive cryptographic operations. This is the main reason that out-
sourcing computation plays a predominant role in real-life cryptographic
applications. For example, modular exponentiation of the form ua modulo
a prime number p where u, a, and p have minimum length of 2048 bits
(in order to have a cryptographically secure algorithm) has a big compu-
tational obstacle for the computationally limited devices. To compute a
single modular exponentiation for 2048-bits exponent a, more than 3000
modular multiplications must be performed in average (using square and
multiply method). Therefore, it is more usable to outsource the expensive
computations to the cloud providers. Nevertheless, the outsourced com-
putations often contain additional sensitive information that should not
be revealed to the outsiders (e.g., personal, health or financial data). In
order to prevent information leakage, the sensitive data has to be masked
before outsourcing. On the one hand, the masking technique should be
designed in such a way that the overall computational cost to the client
is significantly reduced. Namely, reducing the cost of masking before out-
sourcing, and the cost of removing the mask after obtaining the result
from the cloud provider are of utmost important. On the other hand, it
is also essential to assure the client that it computes the desired output
correctly. Namely, a malicious server or environmental attacks should not
be successful without being detected with a non-negligible probability.
Therefore, it is an inevitable requirement not only to have an efficient
outsourcing algorithm but also to prevent private information leakage
from an untrusted cloud provider during the outsourcing procedure by
means of checking/verifying the correctness of the result.

A trivial solution of the problem is to assume the existence of a fully-
trusted or a semi-trusted cloud server. However, it is not realistic to as-
sume trusted parties and it is not that likely the case in real-life scenarios.
For example, due to financial reasons, the cloud providers might contain
a software bug that will fail after some particular steps of the algorithms
and then return a wrong result which is computationally indistinguishable
from the correct output. By the checkability property, the client can easily
detect any malicious behavior from the cloud servers side. How then the
security and the privacy are ensured without revealing the inputs/outputs
while ensuring that the outsourced computation is performed correctly
using only a single untrusted server?
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(a) Our Contributions

In this paper, we propose new, efficient and secure outsourcing algorithms
of modular exponentiations modulo prime or composite numbers utiliz-
ing only one untrusted server. Our algorithms consider each case public-
base & private-exponent, private-base & public-exponent, private-base
& private-exponent and simultaneous modular exponentiations. We note
that our algorithms borrow computing power from only a single untrusted
cloud server. This is a more realistic scenario compared to the state-of-
the-art algorithms in [1–3]. This approach realizes privacy preserving ef-
ficient outsourced cryptographic schemes which are highly desirable and
mostly inevitable for real-life applications in resource-constrained secure
mobile environments. To the best of our knowledge, our outsourcing algo-
rithms make for the first time no distinction between prime and composite
modulus by a unified modular exponentiation approach. Therefore, expo-
nentiations in both DLP based and RSA problem based cryptographic
protocols can be outsourced securely to an untrusted server.

Instead of having an adversary model where distrustful servers are
assumed not to collude, our algorithms use only one single untrusted
server (which is a more realistic adversary setting). We emphasize that
although the existing solutions which use two servers (where one of them
is assumed to be honest), they propose only 1/2, 2/3 or 3/4 probability for
the checkability. In [4], the authors propose the first generic algorithm for
single untrusted server considering private-base private-exponent. How-
ever, their scheme is quite inefficient since it requires ≈ 2000 modular
multiplications. Furthermore, it has fixed checkability property of 1/2.
In contrast to these solutions, we would like to highlight that our algo-
rithms are the most efficient and verifiable solutions with respect to the
existing ones (e.g., we have ≈ 10, 17 times less MMs than the only exist-
ing algorithm [4]). Furthermore, our algorithms have the best, adjustable
checkability where any adversarial behavior can be detected by the client
with the probability 1− 1

c(c−1) , where c is an arbitrarily small integer used

as a security parameter for checkability (e.g., for c = 4 and c = 8 we have
11/12 and 55/56, resp.).

Moreover, our algorithm for simultaneous modular exponentiations is
more efficient compared to the existing algorithms [2] and [4] (except the
generalized result in [5], for which an analogous attack explained above
makes the checkability step impossible). The algorithm proposed in [2]
only considers two simultaneous modular exponentiations. We generalize
this by means of introducing the notion of t-simultaneous modular expo-
nentiation, i.e., t modular exponentiations can be computed simultane-
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ously in a single round. We show that we gain linear complexity advantage
in t for both the number of modular multiplications and inversions.

We also apply proposed algorithms to outsource Oblivious Transfer
(OT) and Blind Signatures securely. Note that OT is a powerful cryp-
tographic primitive which is “complete” for secure multiparty computa-
tion [6] for any computable function [7]. It is also one of the major com-
putational overhead for Yao’s garbled circuit protocols [8,9]. OTs are also
used in many applications like biometric authentication, e-auctions, pri-
vate information retrieval, private search [10–13]. Hence, by outsourcing
OT securely can be enhance the overall complexity for mobile environ-
ment and resource-constrained devices. Furthermore, blind signatures [14]
are unforgeable and can be verified against a public key like conventional
digital signatures which can be used in many applications like e-cash,
e-voting and anonymous credentials [15]. Hence, outsourcing blind signa-
tures can be also solely beneficial for many real-life applications.

(b) Related Work

Outsourced secure computation allows parties to compute a functionality
which is in the charge of the cloud, without leaking any information about
the inputs except possibly the outputs. It is expected to be no interactions
between the parties, and the computational cost and the bandwidth of
each user are expected to be independent of the functionality. However,
general program obfuscation is impossible utilizing only a single cloud
server [16]. This is the reason that we solely focus on expensive modular
computations for certain cryptographic primitives.

Many algorithms [1–4,17–27] have been proposed aiming either within
a better security model for outsourcing or at considering the efficiency.
However, these algorithms only consider either outsourcing of a public-
base & private-exponent or private-base & public-exponent or satisfy a
weaker security notions. For example, in [28], Clarke et al. propose pro-
tocols for speeding up exponentiation in a cyclic group using untrusted
servers for public-base & private-exponent and private-base & public-
exponent. They also extend them to compute an exponentiation modulo
a composite integer where the modulus is the product of two primes.

Hohenberger and Lysyanskaya [1] presented the first outsource-secure
algorithm for modular exponentiations with a security model for out-
sourcing cryptographic computations. This algorithm considers the case
private-base & private-exponent exponentiation modulo a prime number.
With this algorithm, modular exponentiations can be computed by the
client with O(log2(l)) multiplications with error probability 1

2 , where l
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denotes the number of bits of the exponent element. The main drawback
of this solution is outsourcing to two non-colluding untrusted servers to
assist the client in the computations.

At ESORICS 2012, Chen et al. [2] propose a more efficient solution
than Hohenberger-Lysyanskaya’s algorithm with the probability of de-
tection of a malicious behavior is improved to 2/3. However, modular
exponentiations can be computed by the client with O(log2(l)) multipli-
cations. Chen et al. also presented the first secure outsourcing algorithm
for simultaneous modular exponentiations. Simultaneous modular expo-
nentiations ua11 ua22 are also used in many cryptographic primitives such
as commitments [29], zero-knowledge proofs [30] and additive variant of
ElGamal encryption [31]. Chen et al. use the outsourcing algorithms to
compute Cramer-Shoup encryptions and Schnorr signatures securely.

We notice that in [32], the authors proposed an algorithm utilizing a
single untrusted server (for public-base & private-exponent and private-
base & public-exponent cases). The algorithm is quite interesting since
the privacy is achieved based on the difficulty of the subset sum problem.
Namely, the client first randomizes the exponents and then puts a private
pattern to the exponent values before they are sent to the server. Note
that the pattern can only be retrieved by solving the underlying subset
sum problem. After the server send the values back to the client, the client
can efficiently verify the correctness using the pattern. However, there
is a checkability issue in their algorithm where an untrusted server can
easily manipulate the result. More concretely, the client invokes the server
Exp(a, g) to outsource the computation of ga. However, the malicious
server can compute Exp(a, gh) instead of Exp(a, g) for some bogus value
h. The checks will pass successfully and subsequently the result would
become incorrect without being detected.

We also point out that there is also no checkability property of the
only existing algorithm [5] for modular exponentiations modulo composite
numbers. By using the local notation of [5], the attack can be explained
briefly as follows: A malicious server S uses the proposed values ℓ = ℓ1 =
ℓ2 = 5 in [5] (or any other case for which ℓ = ℓ1 = ℓ2 holds), adds 1 to

the values yj , and outputs x
yj+1
i instead of x

yj
i . This enables the server

to always manipulate the result ua with ua+ℓ without being detected by
the client.

As another area of outsourcing techniques, homomorphic encryption
allows parties for processing computations on encrypted data without
using any additional information like Yao’s garbled circuits [8]. Conven-
tional homomorphic encryption schemes are either additive or multiplica-
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tive (e.g., RSA is multiplicative, Paillier and modified version of ElGamal
encryption are additive [31,33], or [34] scheme which allows multiple ad-
ditions up to only one exponentiation). These schemes allow to outsource
secure function evaluation to a cloud server. Recent somewhat homo-
morphic and fully homomorphic schemes give a complete solution to the
outsourcing problem [35]. However, these systems are not yet efficient
enough to be applied in real-life scenarios.

(c) Roadmap

In Section 2, we give our formal security and privacy model based on
the model of [1] by simplifying their two untrusted server model to a
more realistic and secure one single untrusted server model. Section 3
starts with basic mathematical background of outsourcing algorithms of
modular exponentiation and describes the main proposed algorithm for
private-base & private-exponent modular exponentiations. We also prove
formally the correctness, security and checkability of the proposed algo-
rithm using security/privacy model presented in Section 2. In Section 4,
we propose algorithms for all other relevant situations, i.e. public-base
& private-exponent, private-base & public-exponent and private-base &
private-exponent simultaneous modular exponentiations for both modulo
prime and composite number. Section 5 compares the efficiency of our
algorithms with each other and the prior works. In Appendix A, we uti-
lize our algorithms for Oblivious Transfer and Blind Signatures protocols.
Finally, Section 6 concludes the paper.

2 Security and Privacy Model

In this work, we follow the security model proposed by Hohenberger and
Lysyanskaya [1] like the recent results in [2, 4]. Assume that a client C
would like to securely outsource an expensive cryptographic computation
Alg to a cloud server S. Our aim is to split the computation into two main
procedures (1) C knows the input value to Alg, (2) C invokes S which is
an untrusted server that can carry out expensive computation operations.
Briefly, C securely outsource some computation if the following conditions
hold:

1. C and S implement Alg, i.e., Alg = CS

2. Assume that C has oracle access to an adversary S ′ (instead of an
honest S) which stores its computational results during each run and
behaves maliciously in order to learn extra information. S ′ is not able
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to retrieve any valuable information about the input-output pair of
CS

′

.

We are now ready to give the formal model for secure outsourced
cryptographic algorithms, which is based on principally the model of [1].

Definition 1. [1] (Algorithm with outsource-I/O) An algorithm
Alg obeys the outsource input/output specification if it takes five inputs,
and produces three outputs. The first three inputs are generated by an
honest party, and are classified by how much the adversary A = (E, S ′)
knows about them, where E is the adversarial environment that submits
maliciously chosen inputs to Alg, and S ′ is the adversarial software oper-
ating in place of oracle S.

1. 1st is the honest secret input, which is unknown to both E and S ′,
2. 2nd is the honest protected input, which may be known by E, but is

protected from S ′,
3. 3rd is the honest unprotected input, which may be known by both E

and S,
4. 4th is the the adversarial protected input which is known to E, but

protected from S ′,
5. 5th is the the adversarial unprotected input, which may be known by
E and S,

6. 1st is the secret input which is unknown to both E and S ′,
7. 2nd is the protected input which may be known to E, but not S ′,
8. 3rd is the unprotected input which may be known by both parties of A.

Outsource-security means that if a malicious S ′ can obtain some infor-
mation about the secret of CS by playing the role of C instead of S, then
S ′ can also obtain it without following this procedure. More concretely,
when CS(x) is queried, a simulator SimS′ is constructed in such a way that
without the knowledge of the secret or protected inputs of x, the view of
S ′ can be simulated. In the following outsource-security definition, it is
guaranteed that the malicious environment E cannot learn any valuable
information about the secret inputs and outputs of CS (even in the case
that C runs the malicious software S ′ developed by E).

Definition 2. [1] (Outsource security) Let Alg(·, ·, ·, ·, ·) be an algo-
rithm with outsource-I/O. A pair of algorithms (C,S) is said to be an
outsource-secure implementation of Alg if:
Correctness: CS is a correct implementation of Alg.
Security: For all probabilistic polynomial-time adversaries A = (E ,S ′),
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there exist probabilistic expected polynomial-time simulators (SimE , SimS′)
such that the following pairs of random variables are computationally in-
distinguishable.

– Pair One. EVIEWreal ∼ EVIEWideal

• The real process:

EVIEWi
real = {(istate

i, xihs, x
i
hp, x

i
hu)← I(1k, istatei−1);

(estate, ji, xiap, x
i
au, stop

i)← E(1k,EVIEWi−1
real , x

i
hp, x

i
hu); (tstate

i, ustatei,

yis, y
i
p, y

i
u) ← C

S′(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yip, y
i
u)}

EVIEWreal = EVIEWi
real if stop

i = TRUE.

The real process proceeds in rounds. In round i, the honest (secret,
protected, and unprotected) inputs (xihs, x

i
hp, x

i
hu) are picked using

an honest, stateful process I to which the environment E does not
have access. Then E, based on its view from the last round,

1. chooses the value of its estatei variable as a way of remember-
ing what it did next time it is invoked;

2. which previously generated honest inputs (xihs, x
i
hp, x

i
hu) to give

to CS
′

(note that E can specify the index ji of these inputs, but
not their values);

3. the adversarial protected input xiap;
4. the adversarial unprotected input xiau;
5. the Boolean variable stopi that determines whether round i is

the last round in this process.

Next, the algorithm CS
′

is run on the inputs (tstatei−1, xj
i

hs, x
ji

hp,

xj
i

hu, x
i
ap, x

i
au), where tstatei−1 is C’s previously saved state, and

produces a new state tstatei for C, as well as the secret yis, protected
yip and unprotected yiu outputs. The oracle S ′ is given its previously
saved state, ustatei−1, as input, and the current state of S ′ is saved
in the variable ustatei. The view of the real process in round i
consists of estatei, and the values yip and yiu. The overall view of
E in the real process is just its view in the last round (i.e., i for
which stopi = TRUE.).

• The ideal process:

EVIEWi
ideal = {(istate

i, xihs, x
i
hp, x

i
hu)← I(1k, istatei−1);

(estate, ji, xiap, x
i
au, stop

i)← E(1k,EVIEWi−1
ideal, x

i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y i
p , Y

i
u, rep

i)←
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Sim
S′(ustatei−1)
E (sstatei−1, xj

i

hp, x
ji

hu, x
i
ap,x

i
au, y

i
p

,yiu); (z
i
p, z

i
u)=repi(Y i

p , Y
i
u) + (1− repi)(yip, y

i
u) : (estate, z

i
p, z

i
u)}

EVIEWideal = EVIEWi
ideal if stop

i = TRUE.
The ideal process also proceeds in rounds. In the ideal process, we
have a stateful simulator SimE who, shielded from the secret input
xihs, but given the non-secret outputs that Alg produces when run all
the inputs for round i, decides to either output the values (yip, y

i
u)

generated by Alg, or replace them with some other values (Y i
p , Y

i
u).

Note that this is captured by having the indicator variable repi be
a bit that determines whether yip will be replaced with Y i

p . In doing
so, it is allowed to query oracle S ′; moreover, S ′ saves its state as
in the real experiment.

– Pair Two. EVIEWreal ∼ EVIEWideal

• The view that the untrusted software S ′ obtains by participating
in the real process described in Pair One. UVIEWreal = ustatei if
stopi = TRUE.

• The ideal process:
UVIEWi

ideal = { (istate
i, xihs, x

i
hp, x

i
hu) ← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i) ← E(1k, estatei−1, xihp, x
i
hu,y

i−1
p , yi−1

u ;

(astatei, yis, y
i
p, y

i
u) ← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei) ← Sim
S′(ustatei−1)
S′ (sstatei−1, xj

i

hu, x
i
au) : (ustate

i) }

EVIEWideal = EVIEWi
ideal if stop

i = TRUE.

In the ideal process, we have a stateful simulator SimS′ who, equipped
with only the unprotected inputs (xihu, x

i
au), queries S

′. As before, S ′

may maintain state.

Definition 3. [1] (α-efficient, secure outsourcing) A pair of algo-
rithms (C,S) is said to be an α-efficient implementation of Alg if

1. CS is a correct implementation of Alg and
2. ∀ inputs x, the running time of C is no more than an α-multiplicative

factor of the running time of Alg.

Definition 4. [1] (β-checkable, secure outsourcing) A pair of algo-
rithms (C,S) is said to be an β-checkable implementation of Alg if

1. CS is a correct implementation of Alg and
2. ∀ inputs x, if S deviates from its advertised functionality during the

execution of CS
′

(x), C will detect the error with probability no less
than β.
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Definition 5. [1] ((α, β)-outsource-security) A pair of algorithms
(C,S) is said to be an (α, β)-outsource-secure implementation of Alg if
it is both α-efficient and β-checkable.

3 Main Algorithm for Modular Exponentiation
(Private-Base & Private-Exponent)

(a) Preliminaries

There are basically two different settings for which modular exponentia-
tions are the most expensive parts of the cryptographic computation: Dis-
crete logarithm problem (DLP) and RSA problem based. In both cases,
we summarize the following conditions to obtain mathematical problem
instances which are intractable enough to obtain the desired level of se-
curity for the corresponding cryptographic schemes.

DLP case Let p and q be prime numbers and G ⊆ F
∗
p be a subgroup

generated by a primitive element g of order q. In order to have DLP on G,
we impose the usual conditions on the number of distinct cosets in F

∗
p/G

being comparably small, i.e. we have a small cofactor c = p−1
q (since

otherwise by Chinese Remainder Theorem (Pohling-Hellman reduction)
the complexity of DLP reduces to much smaller groups leading to less
secure group based cryptographic systems [36]). This means that we need
to hide the exponent of the exponentiation but not necessarily the base for
the security of the encryption algorithms. On the other hand, hiding the
base element in the modular exponentiation realizes the privacy preserved
applications.

We restrict ourselves to the multiplicative subgroup of prime field
case G ≤ F

∗
p, although it is also possible to use prime order multiplicative

subgroups of the extension fields of Fp. The main reason of our restric-
tion is that the recent quasi-polynomial attacks on DLP of certain ex-
tension fields suggests not to use non-prime finite fields in cryptographic
setting [37]. We note that all secure outsourcing algorithms for modular
exponentiation (including the algorithms proposed in this paper) can eas-
ily be adapted to secure outsourcing algorithms for scalar multiplication
of elliptic curve based cryptographic (ECC) schemes by using a prime
order subgroup of E(Fp) instead of the group G. Using these algorithms
for scalar multiplications of elliptic curves, one can also obtain hybrid pri-
vacy preserving outsourcing algorithms for pairing-based cryptosystems
by means of outsourcing private inputs of pairing functions, bilinearity
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property, and private exponentiations in finite fields for the realization of
ID-based cryptography [36].

RSA case In this case, we have the modulus n = p · q, where p and q are
distinct large prime numbers. Since RSA based systems rely on the arith-
metic of G := (Z/nZ)∗, we have an exponent ranging 0 to (p−1)(q−1)−1.
For public key encryptions, the message must be private but the pub-
lic key can be disclosed to the server but for the signatures only the
private key are kept private. However, similar to the DLP case, hiding
the exponent or the base element in the modular exponentiation enables
the cryptographic protocols to obtain a privacy preserving outsourced
schemes. Constructing such a system makes impossible for the server
to distinguish between encryption/decryption/signature/verification pro-
cesses which can be an important design criteria for privacy preserving
infrastructures (e.g., attribute-based encryption schemes). To the best of
our knowledge, there is only one algorithm proposed for RSA based modu-
lar exponentiation [5], which is non-checkable as explained in Section (b).
Hence, our algorithm is the first which unifies modular exponentiation
modulo a prime or a composite number.

For real-life applications, m is typically chosen as a 2048-bit number
for RSA or DLP based systems and as a 384-bit number for ECC based
systems.

(b) The Main Algorithm

In this section, we propose our new main algorithm for modular exponen-
tiation modulo n with the underlying group G which is either the sub-
group of F∗

n or (Z/nZ)∗ with order m. Note that n can be either a prime
number or an RSA modulus covering the both cases as described above.
More precisely, the algorithm has the inputs u ∈ G and a ∈ {0, · · · ,m−1}
and n, and it computes ua mod n without explicitly giving the values of
u and a to the server. We note that, as usual, m must be a prime number
for DLP based systems.

Let now the blinding factors (x, gx, g−x), (t1, g
t1 , g−t1), (t2, g

t2 , g−t2) ∈
Z/mZ × G2 and (y, gy), (s, gs) ∈ Z/mZ × G be given using a Rand Al-
gorithm as defined in [1]. Note that these blinding factors are computed
in order to speed up computations [1, 2]. The values x, y, t1 and t2 can
be used several times for different exponents in order to hide the expo-
nent whereas the value s should be used only once in order to hide the
exponent.
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Furthermore, we abbreviate by C the Client and by S the Server. We
have also the assumption that C can run an algorithm to query ua to S.
We denote the output of such a query by Exp(a, u). Before we explain
our main algorithm we propose the following subalgorithm SubAlg for
outsourcing gz where g is a generator of the group where the base g and
the exponent z are not necessarily private.

SubAlgorithm (SubAlg): Outsourcing an auxiliary modular ex-
ponentiation

Input: (z, g, c) (where z ∈ Z/mZ with < g >= G ≤ F
∗
n for DLP or

g ∈R G = (Z/nZ)∗ for RSA with |G| = m, where n,m ∈ N, and an
arbitrary small c ∈ N).
Output: The value gz in G.
Precomputation: A Rand algorithm computes and stores the following
values for C:

– (s, gs) ∈ Z/mZ×G,
– (t1, t

−1
1 , gt1), (t2, t

−1
2 , gt2) ∈R (Z/mZ)2 ×G,

– I={1, . . . , c} ⊆ Z/mZ with I−1 = {1−1, . . . , c−1} ⊆ Z/mZ.

1. C picks random elements c−1
1 , c−1

2 ∈R I−1 with c1, c2 ∈ I, c1 6= c2,
and computes z1 ← (z − s) · c−1

1 and z2 ← (−z + 2s) · c−1
2 .

2. C runs
(a) Z1 ← Exp(z1 · t1

−1, gt1).
(b) Z2 ← Exp(z2 · t2

−1, gt2).

3. C verifies Zc1
1 · Z

c2
2

?
= gs and returns Z2c1

1 · Zc2
2 .

Theorem 1. SubAlg terminates and outputs correctly with probability
1

c(c−1) .

Proof. C first computes z1 = (z− s) · c−1
1 and z2 = (−z+2s) · c−1

2 , where
c−1
1 , c−1

2 ∈R I−1 with c1, c2 ∈ I, c1 6= c2.

S returns Z1 = gz1 = g(z−s)·c−1

1 and Z2 = gz2 = g(−z+2s)·c−1

2 . Finally,
C computes and verifies the following result. If the equality does not hold
then algorithm outputs checkability failure.

Zc1
1 · Z

c2
2 = (g(z−s)·c−1

1 )c1 · (g(−z+2s)·c−1

2 )c2

= g(z−s)+(−z+2s) = gs
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Finally, C outputs

Z2c1
1 · Zc2

2 = (g(z−s)·c−1

1 )2c1 · (g(−z+2s)·c−1

2 )c2

= g2(z−s)+(−z+2s) = gz

We are now ready to prove that a malicious S cannot maliciously
behave without being detected with probability 1

c(c−1) . This is actually

trivial because S does not know z, s, c1 and z1 (and c2 and z2) and it
will only be successful if it can guess c1 and c2 correctly to have equality
Zc1
1 · Z

c2
2 = gs. ⊓⊔

We now propose our main algorithm Algorithm 1 (Algprpr) for private-
base and private-exponent. For completeness, we introduce the following
notation: Let a finite set M = {m1, · · · ,mn} be given. We denote by
Sn(M) the group of permutations on M . Note that we can identify any
permutation on Sn(M) with a permutation on Sn({1, · · · , n}). By abuse
of notation, we will write σ(mi) = σ(i) for any σ ∈ Sn({1, · · · , n}).

Before we go into details we give a brief summary of Algprpr as follows.
The client C first masks the base u and the exponent a respectively, and
sends them to the server in a special form (based on the precomputed
values). The server applies the algorithm specifications and returns the
masked results. The client then removes the masks and verifies the cor-
rectness. More precisely, the value ua is converted into (vw)a = gxa wa =
µgzwa = µZwa where x, y, v, w are random values such that w = uv−1, z
= ax− y and the precomputed values are v = gx and µ = gy. Therefore,
the algorithm has basically three computations in order to compute ua,
i.e., µ, Z and wa.

– The first value µ = gy is already precomputed and stored.
– The second value Z = gz is computed via the subalgorithm SubAlg

for computing a modular exponentiation for a generator g and an
exponent z = ax−y. We highlight that this subalgorithm only assures
the correctness of the result rather than hiding the base g and the
exponent z. Note that z is already masked with x and y therefore
does not leak any information to S.

– Finally, wa is outsourced securely which is the longest and the most
complicated part. This value is outsourced by first dividing the private
exponent a and a random value r into k and ℓ subcomponents such
that a =

∑k
i=1 ai and r =

∑ℓ
i=1 ri, respectively. More precisely,

• C chooses random sets R := U1 ∪U2 ∪U3 ∪U4 := {r1, · · · , rℓ} and
A := U5∪U6∪U7∪U8 := {a1, · · · , ak} as in Figure 1 such that r =
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U2

U1

U3 U4 U5

U6

U7

U8

R T

S

Fig. 1. The Partition of the Set U = ∪
8

i=1Ui

∑ℓ
i=1 ri, a =

∑k
i=1 ai. C first prepares the random subsets Ui (with

arbitrary length) such that U := A∪R = ∪8i=1Ui where Ui 6= ∅, ∀
i and Ui ∩ Uj = ∅, ∀ i 6= j. For the sign of the values, C chooses
further a random element α = (α1, · · · , αℓ+k) ∈R {0, 1}

ℓ+k. Note
that the elements of R is used to randomize the private exponent
a.

• Next, C forms random subsets S := U1 ∪ U2 ∪ U6 ∪ U7 and T :=
U1 ∪ U4 ∪ U5 ∪ U6 of U such that s =

∑

si∈S si and t =
∑

ti∈T
(−1)αi · ti satisfying the condition that s + c1t = c2 where c1, c2
∈R {1, . . . , c}, c ∈ N. The aim of this condition is to assure the
checkability property of Algprpr.

• Let U := {u1, . . . , uk+ℓ}. C chooses a random permutation σ ∈R
Sℓ+k(U) and sets the permuted elements U = σ(U) := (σ1, . . .,
σk+ℓ). The permutation σ basically mixes the subcomponents of a
and r to ensure the privacy of the exponent a. Moreover, the invo-
cations take place with signed values of the subcomponents using
α = (α1, · · · , αℓ+k) ∈R {0, 1}

ℓ+k (i.e., S computes w(−1)αi ·σ(ui)).

• After S returns the computed values C basically computes wa+r,
wr, ws and wt and verifies the correctness of the result wa by
checking s+ c1t = c2 in the exponents.

• If the verification is successful, C outputs wa by removing wr from
wa+r.

– C finally returns the expected outcome ua by computing µZwa.
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The algorithm is now given as follows:

Algorithm 1 (Algprpr): Private-Base & Private-Exponent Modular
Exponentiations

Input: (a, u, k, ℓ, c) (where a ∈ Z/mZ with u ∈< g >= G ≤ F
∗
n for DLP

or u ∈R G = (Z/nZ)∗ for RSA with |G| = m, where n,m ∈ N, and an
arbitrary small c ∈ N).
Output: The value ua in G.
Precomputation: A Rand algorithm computes (y, gy) ∈R Z/mZ × G
and (x, gx, g−x) ∈ Z/mZ×G2 for C with v = gx and µ = gy.

1. C computes w ← uv−1, z ← ax− y, runs Z = SubAlg(z, g, c).
2. Using Figure 1, C chooses random sets R := U1 ∪ U2 ∪ U3 ∪ U4 :=
{r1, · · · , rℓ} and A := U5 ∪ U6 ∪ U7 ∪ U8 := {a1, · · · , ak} such that
r =

∑ℓ
i=1 ri, a =

∑k
i=1 ai.

3. C first forms random subsets Ui with arbitrary length such that U :=
A ∪R = ∪8i=1Ui where Ui 6= ∅ ∀ i and Ui ∩ Uj = ∅ ∀ i 6= j.

4. For the sign of the values C chooses further a random α = (α1, · · · ,
αℓ+k) ∈R {0, 1}

ℓ+k.
5. Next, C forms random subsets S := U1 ∪ U2 ∪ U6 ∪ U7 and T :=

U1∪U4∪U5∪U6 of U such that s =
∑

si∈S si and t =
∑

ti∈T (−1)αi ·ti
satisfying the condition that s+ c1t = c2 where c1, c2 ∈R {1, . . . , c}.

6. Let U := {u1, . . . , uk+ℓ}. C chooses a random permutation σ ∈R
Sℓ+k(U) and sets the permuted elements U = σ(U) := (σ1, . . ., σk+ℓ).

7. C sets U−, U+ ← 1 and uses the partitions in Figure 1. Furthermore,
C runs and computes in random order for j ∈ {1, · · · , k + ℓ}
(U−, U+ are negative/positive parts of the exponents of U)

(a) If σj ∈ U1: (Computation of wu1 where |U1| = u1)
i. If αj = 1: wj ← Exp(−σj , w)

A. U− ← U− · wj

ii. If αj = 0: wj ← Exp(σj , w)
A. U+ ← U+ · wj

iii. C sets T− ← U− and T+ ← U+
(b) If σj ∈ U2: (Computation of wu2)

i. If αj = 1: wj ← Exp(−σj , w)
A. U− ← U− · wj

ii. If αj = 0: wj ← Exp(σj , w)
A. U+ ← U+ · wj

iii. C sets S− ← U− and S+ ← U+
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(c) If σj ∈ U3: (Computation of wu3)

i. If αj = 1: wj ← Exp(−σj , w)
A. U− ← U− · wj

ii. If αj = 0: wj ← Exp(σj , w)
A. U+ ← U+ · wj

iii. C sets R− ← U− and R+ ← U+
(d) If σj ∈ U4, C sets temp−, temp+ ← 1: (Computation of wu4)

i. If αj = 1: wj ← Exp(−σj , w)
A. temp− ← temp− · wj (temp is used to minimize MMs)

ii. If αj = 0: wj ← Exp(σj , w)
A. temp+ ← temp+ · wj

iii. C sets U− ← U− · temp−, R− ← R− · temp−, U+ ← U+ · temp+
and R+ ← R+ · temp+

(e) If σj ∈ U5, C sets temp−, temp+ ← 1: (Computation of wu5)

i. If αj = 1: wj ← Exp(−σj , w)
A. temp− ← temp− · wj

ii. If αj = 0: wj ← Exp(σj , w)
A. temp+ ← temp+ · wj

iii. C sets U− ← U− · temp−, T− ← T− · temp−, U+ ← U+ · temp+
and T+ ← T+ · temp+

(f) If σj ∈ U6, C sets temp−, temp+ ← 1: (Computation of wu6)

i. If αj = 1: wj ← Exp(−σj , w)
A. temp− ← temp− · wj

ii. If αj = 0: wj ← Exp(σj , w)
A. temp+ ← temp+ · wj

iii. C sets U− ← U− · temp−, T− ← T− · temp−, S− ← S− · temp−,
U+ ← U+ · temp+, T+ ← T+ · temp+ and S+ ← S+ · temp+.

(g) If σj ∈ U7, C sets temp−, temp+ ← 1: (Computation of wu7)

i. If αj = 1: wj ← Exp(−σj , w)
A. temp− ← temp− · wj

ii. If αj = 0: wj ← Exp(σj , w)
A. temp+ ← temp+ · wj

iii. C sets U− ← U− · temp−, S− ← S− · temp−, U+ ← U+ · temp+
and S+ ← S+ · temp+

(h) If σj ∈ U8: (Computation of wu8)

i. If αj = 1: wj ← Exp(−σj , w)
A. U− ← U− · wj

ii. If αj = 0: wj ← Exp(σj , w)
A. U+ ← U+ · wj

8. C verifies S+ · (T− · T+)c1
?
= wc2 · S−

(Verification step by checking s+c1t = c2 in the exponents)



17

9. C returns µ · Z · (U− · R+)
−1 · (R− · U+)

(This is the expected outcome ua)

Correctness and Termination.

Theorem 2. Algprpr terminates and outputs correctly.

Proof. Precomputation and Step 1 of Algprpr says that ua = (vw)a =
gxawa = µgzwa = µZwa where w = uv−1 and z = ax− y.

We set Θ = {αj : αj = 1, j = 1, . . . , k + ℓ} and ui := |Ui| for all
i ∈ {1, . . . , 8}. In step 7 part (a) with using the query results of S, C
computes the negative part wu1

− and the positive part wu1

+ as follows:

wu1

− =
∏

αi∈Θ,
σi∈U1

w−σi and wu1

+ =
∏

αi 6∈Θ,
σi∈U1

wσi .

The output will be assigned to the negative part T− and the positive
part T+ in the exponent the elements of T . Analogously, C computes in
part (b) and (c) the corresponding negative parts and the positive parts,
and assigns the output to the exponent elements of the contributed sets.

Different from the first 3 parts, using part (d), C computes the negative
part wu4

− and the positive part wu4

+ :

wu4

− =
∏

αi∈Θ,
σi∈U4

w−σi and wu4

+ =
∏

αi 6∈Θ,
σi∈U4

wσi .

The output will be multiplied in this case with the negative parts U−,
R− and the positive parts U+, R+ in the exponent elements of U and R.
Analogously, C computes w

uj

− and w
uj

+ for j = 5, 6, 7, 8 and multiply with
the corresponding positive and negative parts in the exponent elements
of the contributed sets. As a result, one obtains:

wr = wu1+u2+u3+u4 =









∏

αi∈Θ,
σi∈R

w−σi









−1

·
∏

αi 6∈Θ,
σi∈R

wσi = R−1
− · R+,
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ws = wu1+u2+u6+u7 =









∏

αi∈Θ,
σi∈S

w−σi









−1

·
∏

αi 6∈Θ,
σi∈S

wσi = S−1
− · S+.

Using the definition of t, we obtain also

wt =
∏

σi∈T
w(−1)αiσi =

∏

αi∈Θ,
σi∈T

w−σi ·
∏

αi 6∈Θ,
σi∈S

wσi = T− · T+,

Together with steps (a) to (g) with step (h), we obtain

wa+r ==









∏

αi∈Θ,
σi∈A∪R

w−σi









−1

·
∏

αi 6∈Θ,
σi∈A∪R

wσi = U−1
− · U+,

wc2 = ws+c1t = ws · (wt)c1 = S−1
− · S+ · (T− · T+)

c1 , hence,

S+ · (T− · T+)
c1 = wc2 · S−.

If the equality does not hold then the checkability fails. If S runs the
query algorithm properly then the algorithm ends with Step 7 as follows:

µ · Z · (U− · R+)
−1 · (R− · U+) = µ · Z · U−1

− · U+ · R− · R
−1
+

= µ · Z · U−1
− · U+ · (R

−1
− · R+)

−1

= gy · gax−y · wr+a · (wr)−1

= gy · gax−y · wr+a · w−r

= gax · wa

= (gx · w)a = (v · w)a

= ua.

⊓⊔
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Security and Checkability. Assume that a client C would like to out-
source ua mod n where u and a are private and n is public. In this part,
we give the security analysis of Algprpr and show that a malicious server
cannot be able to get any valuable information about u and a.

The next lemma gives the probability that a malicious server obtains
the exponent.

Lemma 1. A malicious server S ′ learns the exponent a with probability

at most
√
πk

23k
where k = ℓ.

Proof. The output will only be disclosed if S ′ obtains exactly the same
position of ai’s with their signs. Hence, the probability of this event is

1/
(

(

2k
k

)

· 2k
)

.

Hence, S ′ cannot distinguish the two test queries from all of the 2k
queries that C makes, and during any execution of Algprpr S

′ can successfully

cheat without being detected with probability at most
√
πk

23k
by using the

Stirling’s approximation
(

2k
k

)

≈ 4k√
πk

[38]. Note that letting k = ℓ = 29

the probability becomes negligible (≈ 2−80). ⊓⊔

We are now ready to prove the security of Algprpr. As explained above,
outsource-security informally means that there exists a simulator which
simulates the view of the adversary in a real algorithm run. This means
that the adversary obtains no relevant information from the real run since
it could output any result from what it knows by itself.

Theorem 3. The algorithms (C,S) are an outsource-secure implemen-
tation of Algprpr, where the input (a, u) may be honest secret; or honest
protected; or adversarial protected.

Proof. We note that this proof is inspired from the proof of the security
analysis of [1]. Let A = (E ,S ′) be a probabilistic polynomial-time (PPT)
adversary interacting with a PPT-based algorithm C in the outsource-
security model.

Firstly, we prove EVIEWreal ∼ EVIEWideal. (Pair One– The external
adversary E learns nothing.)

Let (a, u) be a private input of an honest party. Assume that SimE is
a PPT simulator which acts as follows. SimE ignores the the ith round
when getting input, like using Figure 1 it chooses random sets R :=
U1∪U2∪U3∪U4 := {r1, · · · , rℓ} and A := U5∪U6∪U7∪U8 := {a1, · · · , ak}
such that r =

∑ℓ
i=1 ri, a =

∑k
i=1 ai. SimE first forms random subsets Ui
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with arbitrary length such that U := A ∪ R = ∪8i=1Ui where Ui 6= ∅,
∀ i and Ui ∩ Uj = ∅, ∀ i 6= j. For the sign of the values SimE chooses
further a random α = (α1, · · · , αℓ+k) ∈R {0, 1}

ℓ+k. Next, SimE forms
random subsets S := U1 ∪ U2 ∪ U6 ∪ U7 and T := U1 ∪ U4 ∪ U5 ∪ U6 of U
such that s =

∑

si∈S si and t =
∑

ti∈T (−1)αi · ti satisfying the condition
that s + c1t = c2 where c1, c2 ∈R {1, . . . , c}. Let U := {u1, . . . , uk+ℓ}.
C chooses a random permutation σ ∈R Sℓ+k(U) and sets the permuted
elements U = σ(U) := (σ1, . . ., σk+ℓ). SimE sets U−, U+ ← 1 and uses
the partitions in Figure 1.

If an error occurs, SimE stores its own and S ′’s states and outputs
Y i
p = “error′′, Y i

u = ∅, repi = 1. If all checkability steps are valid, SimE
outputs Y i

p = ∅, Y i
u = ∅, repi = 0; otherwise, SimE chooses a random group

value h ∈R G and outputs Y i
p = h, Y i

u = ∅, repi = 1. Next, SimE stores the
corresponding states. The distributions in the real and ideal executions
of the input to S ′ are computationally indistinguishable. In the ideal
setting, the inputs are uniformly chosen random from Z/mZ×G. In the
real setting, we follow step 7 of Algprpr to assure that all parts of Exp C
invokes is randomized independently using σ and α. Now, we consider
all possible cases. If S ′ behaves in an honest manner in the ith round,
then EVIEWi

real ∼ EVIEWi
ideal, because in the real execution CS

′

perfectly
runs Algprpr and in the ideal execution SimE does not change the output of
Algprpr. If S

′ gives a wrong output in the ith round, then the output will be

detected by C and SimE with probability at most
√
πk

23k
due to Lemma 1,

resulting in an output of “error′′; otherwise, the software will indeed be
successful in manipulating the output of Algprpr (e.g., because each request
is independent of each other, sending approximately 29 wrong results with
their signs to the client C makes the probability of not being detected to
negligibly small (≈ 1/280).).

In the real execution, the k + ℓ real outputs of S ′ are firstly grouped
into two different parts corresponding to their signs (positive or negative).
The negative and positive parts will be independently computed due to
the checkability condition s+ c1t = c2. The result will be multiplied cor-
responding to their signs (7 and 8 of Algprpr). At the last step, we multiply
the overall result with the masking values of the base element generated
at the first step according to their signs. Hence, a manipulated output of
Algprpr will seem to be wrong, but random to E .

We simulate this situation in the ideal execution by replacing the
output of Algprpr with a random element in G when there is an attempt
to behave maliciously by S ′ which would not be detected by C in the
real execution. Hence, even if S ′ behaves maliciously in the ith round,
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EVIEWi
real ∼ EVIEWi

ideal. By the hybrid argument, we can easily conclude
that EVIEWreal ∼ EVIEWideal.

Next, we prove EVIEWreal ∼ EVIEWideal. (Pair Two– The untrusted
server S ′ obtains no useful information).

We now consider the cases where (a, u) is honest secret/protected or
adversarial protected. Let SimS′ be a PPT simulator that acts in the
following manner. SimS′ ignores the ith round when getting input, and
instead chooses a permutation σ ∈ Sℓ+k and prepares a signed permuted
random query of the form ((−1)αjσj) ∈ Z/mZ × G to S ′ using σj , αj

where j ∈ {1, . . . , k+ ℓ}. SimE randomly checks (k+ ℓ) outputs from each
procedure using σ. Then, SimS′ stores its own and states of S ′. Note that
these real and ideal executions are distinguishable by E but E cannot use
this information to S ′ (e.g., the output of the ideal execution is never
manipulated). During the ith round of the real execution, the inputs of
C) are always randomized to 2(k + ℓ) utilizing σ, α (see steps 6 and 7
of Algprpr). In the ideal execution, SimS′ always generates independently
random queries for S ′. The view is consistent and indistinguishable from
the server’s view when there is an interaction with honest C. Thus, for each
round we have EVIEWreal ∼ EVIEWideal, which by the hybrid argument
yields EVIEWreal ∼ EVIEWideal.

Consequently, we simulate every step of Algprpr for the simulator which
completes the simulation for both malicious environment and server. ⊓⊔

Lemma 2. The algorithm (C,S) is an O(log2(l)/l)-efficient implemen-
tation of Algprpr, where l denotes the number of bits of the exponent a.

Proof. We use the same approach of the proof of the algorithm in [1]. The
algorithm SubAlg makes 3 calls to Rand and 4 log c+8 modular multipli-
cations. The proposed algorithm Algprpr makes 2 further calls to Rand and
together with SubAlg, k+ ℓ+4 log c+30 modular multiplications (MMs)
and only 1 modular inversion (MInv) in order to compute ua mod n
(other operations like modular additions, doubling or multiplication with
very small numbers like c are omitted). Also, a server aided exponentia-
tion takes O(log2(l)) MMs using the number theoretic complexity analy-
sis of Nguyen, Shparlinski, and Stern [25], or O(1) MMs if a table-lookup
method is used. On the other hand, it takes in average 1.5l MMs to com-
pute ua mod n by the classical square-and-multiply method. Thus, the
algorithm (C,S) is an O(log2 l/l)-efficient implementation of Algprpr. ⊓⊔

Lemma 3. The algorithm (C,S) is an (1− 1
c(c−1))-checkable implemen-

tation of Algprpr.
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Proof. By Algprpr, a malicious server S gives a wrong result without being
detected if it can find either

1. the correct values c1 and c2 in SubAlg, or
2. the correct value a or r, or
3. the correct value s or t, or
4. the position of a value si where S={s1, . . . , sk′} with s =

∑k′

j=1 si, or

5. the position of a value ti where T={t1, . . . , tk′′} with t =
∑k′′

j=1 ti

For the first case, S finds the correct values c1 and c2 in SubAlg with
probability 1

c(c−1) (see Theorem 1 for details).
For the second case, finding either the exact value of a or r has neg-

ligibly probability (see Lemma 1).
For the third case, to be able to find the correct values of s, the server

S first needs to find out the subset S from the power set P(U) such that

s=
∑k′

i=1 si. The value t can subsequently be obtained by solving the
subset sum problem for s+ c1t = c2, where c1 and c2 are small integers.
Similarly, one can start with t to find s. The complexity of finding such
(s, t) pairs from the power set P(U) is 2k+ℓ ·2(k+ℓ)/2 = 23/2(k+ℓ) (note that
|P(U)| = 2k+ℓ). The reason is that the best generic algorithms to solve
the subset sum problem are lattice-based methods which require 2n/2 for
any set of cardinality n [22, 39–42].

For the last two cases, S can attack the checkability of the system if
she can find a value si (or ti) with its sign. Namely, the checkability follows

from
∑k′

i=1 si + c1
∑k′′

i=1 ti = c2 and with the knowledge of si (or ti) and
its sign and the knowledge of c1 and c2. Finding a value si has probability
at least 1/2 and with probability at least 1/2 to decide whether it has
negative or positive sign. Therefore, the overall probability of this event
is 1

4c2
.

Hence, the overall probability for a malicious server S to declare a
wrong value without being detected is

1−
1

c(c− 1)
= min{1−

1

4c2
, 1−

1

c(c− 1)
}.

⊓⊔

Now security and checkability of Algprpr follow obviously from the fol-
lowing corollary:

Corollary 1. The algorithm (C,S) is an (O(log2(l)/l), (1− 1
c(c−1))-outsource-

secure implementation of Algprpr.
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Remark 1. Letting c = 4 gives us the probability 11/12 by Lemma 3
which is the best checkability result compared to previous works [1–4].

Note that in outsourced computation model the malicious server S
can be seen as a covert adversary [43], which may arbitrarily behave to
cheat depending on whether being detected with reasonable probability
(not necessarily with very high probability) by an honest party. In [43],
covert adversaries are described for many real-life scenarios where they
are always eager to cheat but only if they are not detected. Therefore,
cloud servers can be seen as covert adversaries in outsourced computation
setting because their financial interests and their reputation deter them
from cheating.

4 Other Relevant Algorithms

In this section, we simplify Algprpr for Public-Base & Private-Exponent and
Private-Base & Public-Exponent cases, and modify it to obtain a more
efficient simultaneous modular exponentiations algorithm.

(a) Public-Base & Private-Exponent

In this part, we modify Algprpr for the case of public-base & private-exponent.
The modified method is especially designed to outsource the crypto-
graphic outsourced computation for the cases in which there is no need
to hide the base element if there exists waived privacy needs in the cryp-
tographic setting (e.g., signatures). The first precomputation of Algprpr is
unnecessary in this case since we are not forced to hide our base element
u. The new algorithm Alg

pr
pb for public-base & private-exponent is a spe-

cial case of Algprpr by setting the values x = y = 0 in the precomputation
step.

Theorem 4. Alg
pr
pb terminates and outputs correctly. Furthermore, there

exists an algorithm which is an
(

O(log2(l)/l), 1
4c2

)

-outsource-secure im-
plementation of Algprpb.

Proof. Correctness, termination and security of the algorithm follow eas-
ily as a corollary of the results for Algprpr by excluding the subalgorithm
SubAlg. Because SubAlg is not used for Alg

pr
pb, the checkability property

becomes 1− 1
4c2

. ⊓⊔
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(b) Private-Base & Public-Exponent

In this part, we give another algorithm for private-base & public-exponent
cryptographic computation by modifying Algprpr. Note that especially for
public-key encryption or signature verification based systems it could be
desirable to have private-base & public-exponent. This algorithm is de-
noted by Algpbpr which works in detail as follows:

Algorithm 3 (Algpbpr ): Private-Base & Public-Exponent Modular
Exponentiations

Input: (u, a, c) (where a ∈ Z/mZ, u ∈ G with < g >= G ≤ F
∗
n for DLP

or g ∈R G = (Z/nZ)∗ for RSA with |G| = m, where n,m ∈ N, and an
arbitrary i ∈ N).
Output: The value ua in G.
Precomputation: A Rand algorithm computes and stores the following
values for C:

– (si, g
si , g−si), (ti, g

ti , g−ti) ∈R Z/mZ×G2 for i = 1, 2.
– I={1, . . . , c} ⊆ Z/mZ with I−1 = {1−1, . . . , c−1} ⊆ Z/mZ

1. C picks random elements c1, c2 ∈R I where gcd(c1, c2) = 1, and com-
putes u1 ← uc1 · gb1s1 and u2 ← uc2 · gb2s2 where b1, b2 ∈R {1,−1}.

2. C runs

(a) U1 ← Exp(a, u1).
(b) U2 ← Exp(a, u2).
(c) T1 ← Exp((b′1a · s1 + b3t1) · c

−1
3 , g) where b′1, b3 ∈R I and c3 ∈ I−1.

(d) T2 ← Exp((b′2a ·s2+ b4t2) · c
−1
4 , g) where b′2, b4 ∈R I and c−1

4 ∈ I−1.

3. For verification, C does the following computations:

(a) T ′
1 = T c3

1 · g
−b3t1 and T ′

2 = T c4
2 · g

−b4t2 (masking removal)

(b) if b1 6= b′1 computes U ′
1 ← U1 · T

′
1 else computes U ′

1 ← U1 · (T
′
1)

−1

(c) if b2 6= b′2 computes U ′
2 ← U2 · T

′
2 else computes U ′

2 ← U2 · (T
′
2)

−1

(d) verifies (U ′
1)

c2 ?
= (U ′

2)
c1 where k = c1 · c2 and returns ua

(easily computable since gcd(c1, c2) = 1)

Theorem 5. Algpbpr terminates and outputs correctly. Furthermore, there

exists an algorithm which is an (O(log2(l)/l), 1− 1
c(c−1))-outsource-secure

implementation of Algpbpr .
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Proof. Precomputation and Step 1 of Algpbpr says that

u1 = uc1 · gb1s1

u2 = uc2 · gb2s2

where b1, b2 ∈R {1,−1}, c1, c2 ∈R I and gcd(c1, c2) = 1.

At Step 2 S returns the query results

U1 = ua1 = uac1 · gb1as1

U2 = ua2 = uac2 · gb2as2

and

T1 = g(b
′

1
as1+b3t1)·c−1

3 and T2 = g(b
′

2
as2+b4t2)·c−1

4

and then C computes the following to verify the result.

C first removes the masking values t1 and t2 using c3 and c4 as

T ′
1 = T c3

1 · g
−b3t1 = gb

′

1
as1

T ′
2 = T c4

2 · g
−b4t2 = gb

′

2
as2

Next, the masking values from U1 and U2 will be removed, i.e. U ′
1 =

uac1 and U ′
2 = uac2 . In order to avoid inversion we basically compare b1

with b′1 and b2 with b′2 (U ′
1 = U1 · T

′
1 or U ′

2 = U2 · (T
′
2)

−1, respectively).

C verifies (U ′
1)

c2 ?
= (U ′

2)
c1 where c1, c2 ∈ I and k = c1·c2. If the equality

does not hold then algorithm outputs checkability failure. Finally, because
gcd(c1, c2) = 1 and c1, c2 are very small C efficiently computes ua.

A malicious server cannot learn the private base u because it is ran-
domized with gs1 and gs2 . Furthemore, a malicious server cannot also
change the outcome unless she finds either c1, c2 or c3, c4 and the proba-
bility of this event is 1− 1

c(c−1) . ⊓⊔

(c) t-Simultaneous Modular Exponentiations

We now generalize the notion of simultaneous modular exponentiation
method of [2] to the notion of t-simultaneous modular exponentiations
ua11 · · ·u

at
t in the group G for t ∈ N. t-simultaneous modular exponentia-

tions are extensively used in many real-life cryptographic schemes includ-
ing [15,30,44–47]. As described in [2], computing 2-simultaneous modular
exponentiations is trivial by simply invoking Algprpr twice. Here, we show
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that it is possible to reduce the computation cost significantly for a gener-
alized t-simultaneous setting by improving the method of [2] and utilizing
only one untrusted server (instead of two servers one of which is assumed
to be honest). We denote by t-Sim-Algprpr for t-simultaneous modular ex-
ponentiation algorithm.

The scheme of Chen et al. [2] has probability of 2/3 for checkability in
modular exponentiation utilizing and has probability 1/2 for 2-Sim-Algprpr
using two non-colluding servers. They simply add a one more variable on
the exponentiation at the expense of reducing the probability from 2/3
to 1/2. Our solution has a scalable probability 1− 1

c(c−1) for checkability
and utilizes only one single untrusted server.

We further emphasize that the natural generalization for 2-simultaneous
modular exponentiation method in [2] reduces the checkability probabil-
ity from 1

2 of single exponentiation case to 2
t+2 for t-simultaneous modular

exponentiations. However, the use of t-simultaneous modular exponenti-
ation in real-life protocols, like anonymous credentials [15], causes signif-
icant complexity overhead. Hence, this reduction hinders the use of this
generalization from 2-simultaneous to t-simultaneous modular exponenti-
ation. Unlike the scheme in [2], our scheme has an adjustable probability
of 1 − 1

c(c−1) which is independent of t. More concretely, the algorithm
works as follows:

Algprpr first runs Rand to compute the blinding pairs (x, gx), (y, gy) and

(k, gk). Denote v = gx and µ = gy. Now, we have

ua11 · · ·u
at
t = (vw1)

a1 · · · (vwt)
at = µZgzwa1

1 · · ·w
at
t .

where wi = uiv
−1 and Z = gz with z = x

∑t
i=1 ai− y for 1 ≤ i ≤ t. First,

Z is computed by invoking Z = SubAlg(z, g, c) to S.
Note that wi’s are completely random and therefore, can be revealed

to S. Hence, instead of invoking Algprpr t times, it is now possible to invoke
more efficient algorithm Alg

pr
pb t times. In particular, we gain a linear fac-

tor for the number of total multiplication in the number t. More precisely,
a t-simultaneous modular exponentiation requires t(ℓ+k+4 log c+28)+
10 + 4 log c modular multiplications and t modular inversions instead of
invoking Algprpr t-times which requires t(ℓ+k+8 log c+38) modular multi-
plications and t modular inversions. Hence, we save 10t+4 log ct modular
multiplications by using our t-simultaneous modular exponentiation tech-
nique.

For instance, the complexity of 2-simultaneous modular exponenti-
ations running 2-Sim-Algprpr for c = 4 requires 184 MMs and 2 MInvs
(instead of 200 MMs and 2 MInvs by running Algprpr twice).
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By utilizing t calls of Algprpb and Theorem 4 the following holds.

Theorem 6. There exists an algorithm (C,S) which is an (O(t log2(l)/l), 1−
( 1
c(c−1)))-outsource-secure implementation of t-Sim-Algprpr.

Table 1. Computation Complexity of the Proposed Algorithms Using Single Server

Exp (S) MMs MInvs Rand Checkability

SubAlg 2 8 + 4 log c 0 3 1− 1
c(c−1)

Algprpr ℓ+ k + 2 ℓ+ k + 8 log c+ 38 1 5 1− 1
c(c−1)

Alg
pr
pb ℓ+ k ℓ+ k + 4 log c+ 28 1 0 1− 1

4c2

Algpbpr 4 16 log c+ 16 2 8 1− 1
c(c−1)

t-Sim-Algprpr t(ℓ+ k) + 1 t(ℓ+ k + 4 log c+ 28) t 5 1− 1
c(c−1)

+ 10 + 4 log c

5 Complexity Analysis of the Proposed Algorithms

In this section, we first illustrate the complexity of our proposed algo-
rithms using Table 1. In this table, we give the complexity results by
counting the number of modular exponentiations for the server side; and
for the client side the number of modular multiplications (MMs), the
number of modular inversions (MInvs), the number of Rands and check-
ability probabilities. Note that we count the number of multiplication in
the worst case by using classical double and and algorithm, i.e. for an
l−bit exponent we require 2l + 1.

In Table 2, we give the complexity of the proposed algorithms by
setting ℓ = k = 29 and c = 4. We note that by Lemma 3 letting ℓ =
k = 29 reduces the probability of privacy leakage to negligible levels for
a malicious server.

In order to compare Algprpr with the previous results properly, we need
to equate the checkability probabilities of all algorithms and count the
number of all operations in terms of modular multiplications. For this
purpose, we use the fact that in a real-life hardware setting a modular
inversion is about 100 times slower than a modular multiplication [48]. In
order to have the same checkability probability 11/12, we have to run the
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Table 2. Computation Complexity for Proposed Algorithms for k = ℓ = 29, c = 4

Exp (S) MMs MInvs Rand Checkability

SubAlg 2 10 0 3 11/12

Algprpr 60 100 1 5 11/12

Alg
pr
pb 58 86 1 0 63/64

Algpbpr 4 48 2 8 11/12

2-Sim-Algprpr 117 184 2 5 11/12

algorithm [1] log2 12 ≈ 3, 58 times, and the algorithm [2] log3 12 ≈ 2, 26
times. The comparison will now be as follows:

In [1], we have 9 MMs and 5 MInvs in one round. Hence, in log2 12
rounds we obtain 9 · log2 12 MMs and 5 · log2 12 MInvs. Hence, we have a
total number of 9 · log2 12 + 100 · 5 · log2 12 ≈ 1825 MMs for [1].

In [2], we have 7 MMs and 3 MInvs in one round. Hence, in log3 12
rounds we obtain 7 · log3 12 MMs and3 · log3 12 MInvs. Hence, we have a
total number of 7 · log3 12 + 100 · 3 · log3 12 ≈ 694 MMs for [2].

In [4], the goal is to outsource ua where c = a − bξ with b and c
are known by the server with probability 1/6. Therefore, ξ must be large
enough to prevent the brute-force attack. Hence, to have a negligible
level, one has to choose ξ ≈ 277. There are 167 MMs and 4 MInvs for the
checkability of 1/2. Hence, in log2 12 rounds we obtain 167 · log2 12 MMs
and 4 · log2 12 MInvs. Hence, we have a total number of 167 · log2 12 +
100 · 4 · log2 12 MMs for [4].

The algorithm Algprpr has 100 MMs and only 1 MInv. Hence, we have
a total number of approximately 100 + 1 · 100 = 200 MMs.

In Table 3, we compare our algorithm Alg
pr
pb with the results of [1], [2]

and [4]. In the last column of Table 3, we give the total number of MMs
which shows that our algorithm Alg

pr
pb is the most efficient algorithm using

only one single untrusted server S with the best checkability.

Remark 2. Although the number of MMs of Algprpr is slightly better than
the number of MMs in the algorithm of [2] for only one outsourced mod-
ular exponentiation, using t-Sim-Algprpr we gain a linear factor in t which
gives significantly better complexity results for the number of MMs.

Furthermore, Algprpr has better checkability probability (11/12 versus
2/3). We highlight that our checkability probability increases with the
value of c at the expense of increasing the number of modular multiplica-
tion logarithmically. In particular, our approach enables the designer to
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Table 3. Comparison with the Previous Results

MMs MInvs
Single
Server

Checkability

Total MMs
after equating the
checkability to 11/12

[1] (TC ’05) 9 5 ✗ 1/2 log2 12 · 509 ≈ 1825

[2] (ESORICS ’12) 7 3 ✗ 2/3 log3 12 · 307 ≈ 694

[4] (ESORICS ’14) 167 4 X 1/2 log2 12 · 567 ≈ 2033

Ours 100 1 X 11/12 100 + 100 ≈ 200

obtain privacy preserving outsourcing algorithms with scalable checkabil-
ity.

6 Conclusion

In this paper, we propose new, scalable, secure and efficient algorithms for
outsourcing modular exponentiations (i.e., public-base & private-exponent,
private-base & public-exponent, private-base & private-exponent and si-
multaneous modular exponentiations). Our algorithms are significantly
more efficient compared to the previous algorithms. Moreover, the pro-
posed algorithms are modeled where only one single untrusted cloud
server exists. Our algorithms also enjoy the predetermined checkability
property which is a significant improvement compared to prior works.
The security of our algorithms are proven formally based on the model
of [1]. We finally utilize our algorithms for outsourcing oblivious trans-
fer protocols and blind signatures, which may be beneficial for resource-
constrained mobile secure environments running on a client.

The algorithm for single server in [4] requires extremely large number
of MMs whereas our algorithm needs comparably very small number of
MMs (≈ 10, 17 times less MMs). On the other hand, although the commu-
nication round of our algorithm is constant, the overhead of information
exchange is still large. Therefore, it is an interesting open problem to
find better constructions achieving smaller (possibly constant) communi-
cation overhead together with smaller number of modular multiplications
without any modular inversions.
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quasi-polynomial algorithm for discrete logarithm in finite fields of small charac-
teristic. volume abs/1306.4244, 2013.

38. Keith Conrad. Stirlings formula, http://www.math.uconn.edu/ kcon-
rad/blurbs/analysis/stirling.pdf.

39. Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the
knapsack problem. volume 21, pages 277–292. ACM, 1974.

40. A.K. Lenstra, Jr. Lenstra, H.W., and L. Lovsz. Factoring polynomials with rational
coefficients. volume 261, pages 515–534. Springer-Verlag, 1982.

41. MatthijsJ. Coster, Antoine Joux, BrianA. LaMacchia, AndrewM. Odlyzko, Claus-
Peter Schnorr, and Jacques Stern. Improved low-density subset sum algorithms.
volume 2, pages 111–128. Birkhuser-Verlag, 1992.

42. C.P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. volume 66, pages 181–199. Springer-
Verlag, 1994.

43. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. volume 23, pages 281–343. Springer-Verlag New
York, Inc., 2010.

44. Giovanni Di Crescenzo and Rafail Ostrovsky. On concurrent zero-knowledge with
pre-processing. In Advances in Cryptology CRYPTO 99, volume 1666 of Lecture
Notes in Computer Science, pages 485–502. Springer Berlin Heidelberg, 1999.

45. TorbenPryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Advances in Cryptology CRYPTO 91, volume 576 of Lecture
Notes in Computer Science, pages 129–140. Springer Berlin Heidelberg, 1992.

46. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and opti-
mally efficient multi-authority election scheme. In Proceedings of the 16th Annual
International Conference on Theory and Application of Cryptographic Techniques,
EUROCRYPT’97, pages 103–118, Berlin, Heidelberg, 1997. Springer-Verlag.

47. Rosario Gennaro. Multi-trapdoor commitments and their applications to proofs
of knowledge secure under concurrent man-in-the-middle attacks. In Advances in
Cryptology CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 220–236. Springer Berlin Heidelberg, 2004.

48. Martin Seysen. Using an rsa accelerator for modular inversion. In Cryptographic
Hardware and Embedded Systems - CHES 2005, 7th International Workshop, Ed-



33

inburgh, UK, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture
Notes in Computer Science, pages 226–236. Springer, 2005.

A Applications: Outsourced Oblivious Transfer and
Blind Signatures

Sender Server Chooser

r ∈R G
gr mod n=Algprpr(r, g, n)

hb = gr mod n
h1−b = h/gr mod n

h0, h1

r0, r1 ∈R G
gri mod n= Algprpr(ri, g, n), i = 0, 1

Private Input: s0, s1 Private Input: bPrivate Input: ⊥

(A0, B0) = (gr0 mod n, gs0hr00 mod n)

(A1, B1) = (gr1 mod n, gs1hr11 mod n)

(A0, B0), (A1, B1)

Private Output: ⊥ Private Output: sb

gsihi
si mod n= 2-Sim-Algprpr((si, g), (ri, hi), n), i = 0, 1

(Ab)
r mod n = Algprpr(r, Ab, n)

Fig. 2. Outsourcing Oblivious Transfer

(a) Oblivious Transfer

Oblivious transfer is a powerful cryptographic primitive which is “com-
plete” for secure multiparty computation [6] for any computable func-
tion [7]. In an OT protocol, the sender has two private input bits (s0, s1)
and the receiver has one private input bit b. At the end of the protocol,
the receiver learns only the bit sb, whereas the sender does not know any
information which bit was selected by the receiver.

With the help of cloud providers it is possible to independently com-
pute any outsourced functionality even if the private input has not been
revealed. Namely, clients only need to randomize/encrypt their data and
de-randomize/decrypt the returned messages to get the desired results. It
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is one of the major computational overhead for Yao’s garbled circuit pro-
tocol [8,9], and used in several applications like biometric authentication,
e-auctions, private information retrieval, private search [10–13]. Hence,
running OT protocols for resource-constrained mobile environment may
have substantial benefits.

In this section, we provide an example of outsourcing an OT proto-
col in a discrete log setting (see Figure 2). Assume that G is a group
generated by g (i.e. G =< g >) and h ∈ G where logg h is unknown to
any party. At the first step, the receiver chooses random r ∈R G and in-
vokes the cloud server S to compute Algprpr(r, g, n) and computes hb = gr

mod n. Note that at this stage, cloud server and the environment do not
learn any valuable information about the inputs or the outputs. The re-
ceiver then computes h1−b = h/gr. Next, the receiver sends (h0, h1) to
the sender. The sender now invokes S to run Algprpr(r0, g, n) and 2− Sim-
Algprpr((si, g), (ri, hi), n), i = 0, 1 to compute and receive gri and hrii g

si

for i = 0, 1, respectively. The sender then returns homomorphic ElGamal
encryptions of s0 and s1 denoted as (A0, B0) = (gr0 , gs0hr00 ) and (A1, B1)
= (gr1 , gs1hr11 ), respectively. Depending on his bit b, the receiver is able
to decrypt one of these encryptions to learn either s0 or s1. Hence, if
both parties follow the protocol specification, the receiver learns exactly
one of the bits s0 and s1, and the sender does not know any information
about what the receiver learns. The OT protocol used for outsourcing is
secure in the semi-honest model but malicious versions of OT can be used
analogously.

Cloud Server Verifier
Private Input: d, p, q

Signer
Private Input: ⊥

Public Input: e, n Public Input: e, n

r ∈R (Z/nZ)∗
re mod n=Algprpr(e, r, n)

c = mre mod n

c′ = cd mod n=Algprpr(d, c, n)

c

c′

md = c′/r mod n

Private Input: ⊥
Public Input: ⊥

Fig. 3. Outsourcing Blind Signatures
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(b) Blind Signatures

Blind signatures have been suggested by Chaum [14]. Roughly speaking,
it allows a signer interactively issue signatures and allows users to obtain
them such that the signer does not see the resulting message and the
signature pair during the signing session. Like any conventional electronic
signatures they are unforgeable and can be verified using a public key.

Blind signatures can be applied to privacy preserving protocols like
e-cash, e-voting and anonymous credentials. For a e-cash scenario, a bank
blindly signs coins withdrawn by the users. For an e-voting scenario, an
authority blindly signs a vote for later to cast the signed votes. As for
anonymous credentials, the issuing authority blindly signs a key [15] for
later to authenticate services anonymously. Hence, for mobile environ-
ment and constrained-devices, outsourcing blind signatures can be bene-
ficial for real-life applications (see Figure 3).
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