
Noname manuscript No.
(will be inserted by the editor)

Efficient and Verifiable Algorithms for Secure

Outsourcing of Cryptographic Computations

Mehmet Sabır Kiraz · Osmanbey
Uzunkol

Received: date / Accepted: date

Abstract Reducing computational cost of cryptographic computations for
resource-constrained devices is an active research area. One of the practical
solutions is to securely outsource the computations to an external and more
powerful cloud server. Modular exponentiations are the most expensive com-
putation from the cryptographic point of view. Therefore, outsourcing modu-
lar exponentiations to a single, external and potentially untrusted cloud server
while ensuring the security and privacy provide an efficient solution. In this pa-
per, we propose new efficient outsourcing algorithms for modular exponentia-
tions using only one untrusted cloud server. These algorithms cover public-base
& private-exponent, private-base & public-exponent, private-base & private-
exponent, and more generally private-base & private-exponents simultaneous
modular exponentiations. Our algorithms are the most efficient solutions uti-
lizing only one single untrusted server with best checkability probabilities.
Furthermore, unlike existing schemes, which have fixed checkability probabil-
ity, our algorithms provide adjustable predetermined checkability parameters.
Finally, we apply our algorithms to outsource Oblivious Transfer Protocols
and Blind Signatures which are expensive primitives in modern cryptography.

Keywords Secure outsourcing algorithms · Modular exponentiation · Mobile
computing · Secure cloud computing · Privacy

Mehmet Sabır Kiraz (Corresponding Author)
Mathematical and Computational Sciences Labs, TÜBİTAK BİLGEM UEKAE, National
Research Institute of Electronics and Cryptology P. K. 74 41470 Gebze/Kocaeli, TURKEY
Tel.: +90 262 648 1945
Fax: +90 262 648 1100
E-mail: mehmet.kiraz@tubitak.gov.tr

Osmanbey Uzunkol
Mathematical and Computational Sciences Labs, TÜBİTAK BİLGEM UEKAE, National
Research Institute of Electronics and Cryptology P. K. 74 41470 Gebze/Kocaeli, TURKEY
Tel.: +90 262 648 1782
Fax: +90 262 648 1100
E-mail: osmanbey.uzunkol@tubitak.gov.tr

2 Mehmet Sabır Kiraz, Osmanbey Uzunkol

1 Introduction

Cloud Computing is getting more and more attention in the scientific commu-
nity due to its multiple benefits for real-world applications (e.g., on-demand
self-service, ubiquitous network access, location independent resource pooling,
pay per use, rapid elasticity, and outsourcing). Depending on demands, capa-
bilities and resources, it is possible to efficiently outsource costly calculations
to more powerful servers using cloud computing infrastructures.

Cryptographic key sizes have been steadily increasing due to mathemati-
cal and technological developments. This may lead to that existing resource-
constrained devices may become incapable of assuring the desired level of
security. In general, these devices are required to be replaced with more pow-
erful new ones. However, this leads to highly impractical and costly solutions.
The main motivation of outsourcing computation is to give a usable, secure
and more practical solution. For example, modular exponentiation of the form
ua modulo a prime number p, where u, a, and p have minimum length of
2048 bits (in order to have a cryptographically secure algorithm) has a big
computational obstacle for the computationally limited devices. To compute a
single modular exponentiation for 2048-bits exponent a, more than 3000 mod-
ular multiplications must be performed in average (using square and multiply
method). Therefore, it is usable to outsource the expensive computations to
the cloud providers. Nevertheless, the outsourced computations may contain
additional sensitive information that should not be leaked to the outsiders
(e.g., personal, health or financial data). In order to prevent information leak-
age, the sensitive data have to be appropriately masked before outsourcing.
On the one hand, the masking technique should be designed in such a way that
the overall computational cost to the client is significantly reduced. Namely,
reducing the cost of masking before outsourcing, and the cost of removing the
mask after obtaining the result from the cloud provider are of utmost impor-
tant, and the total cost should be less than performing the computation on
the device itself. On the other hand, it is also essential to assure the client that
the returned results are indeed correct. Namely, malicious servers or environ-
mental attacks should not compromise the correctness without being detected
with a non-negligible probability. Therefore, it is crucial to have an efficient
outsourcing algorithm satisfying certain privacy preserving properties. This
can be achieved by checking and verifying the correctness of the outcome.

One straightforward solution is to assume the existence of a fully-trusted or
a semi-trusted cloud server. However, because of security and privacy concerns
it is not that likely the case in real-life scenarios. For example, due to financial
reasons, malicious cloud providers can insert a software bug that will fail after
some particular steps of the algorithms and then return an incorrect result
which is computationally indistinguishable from the correct output. By the
checkability property, the client can easily detect these malicious behavior
from the cloud side. The main question can be stated as follows:

Algorithms for Secure Outsourcing of Cryptographic Computations 3

How can security and privacy be guaranteed by using only a single untrusted
server without revealing any information about the inputs and/or the outputs
while assuring the correctness?

1.1 Related Work

Outsourcing secure computation allows parties to compute a functionality
without leaking any information about their inputs and/or outputs. In general,
it is expected to have no interactions between the parties, and computational
cost and bandwidth of each user are expected to be independent of the func-
tionality. However, general program obfuscation is impossible by utilizing only
one cloud server [1]. This is one of the reasons that we mainly focus on expen-
sive modular computations.

Many algorithms have been proposed for outsourcing computation [2–16].
They aim either to have a better outsourcing security model or to have more
efficient constructions. However, these algorithms consider outsourcing of a
public-base & private-exponent, or private-base & public-exponent, or they
satisfy weaker security notions. For example, in [17], Clarke et al. propose pro-
tocols for speeding up exponentiation in a cyclic group using untrusted servers
for public-base & private-exponent and private-base & public-exponent. They
also extend these algorithms to compute an exponentiation modulo a compos-
ite integer.

Hohenberger and Lysyanskaya [3] presented the first outsource-secure al-
gorithm for modular exponentiations for outsourcing cryptographic computa-
tions. This algorithm considers only the case private-base & private-exponent
exponentiation modulo a prime number. With this algorithm, modular expo-
nentiations can be computed by the client with O(log2(l)) multiplications with
error probability 1

2 , where l denotes the number of bits of the exponent. The
main drawback of this solution is to use two non-colluding untrusted servers.

At ESORICS 2012, Chen et al. [2] propose a more efficient construction
than Hohenberger-Lysyanskaya’s algorithm, where the probability of detecting
malicious behavior is improved to 2/3. However, modular exponentiations can
be computed by the client with O(log2(l)) multiplications. They also propose
the first secure outsourcing algorithm for simultaneous modular exponentia-
tions ua1

1 · u
a2
2 . Simultaneous modular exponentiations are also used in many

cryptographic primitives such as commitments [18], zero-knowledge proofs [19]
and additive variant of ElGamal encryptions [20]. Chen et al. apply their al-
gorithms to outsource Cramer-Shoup encryptions and Schnorr signatures se-
curely.

The authors in [21] proposed an algorithm using a single untrusted server
for public-base & private-exponent and private-base & public-exponent cases.
The algorithm is quite interesting since the privacy is guaranteed by the dif-
ficulty of solving the subset sum problem. Briefly, the client first randomizes
the exponents and then puts a private pattern to the exponent values before
they are sent to the server. After the server sends the computed values back

4 Mehmet Sabır Kiraz, Osmanbey Uzunkol

to the client, it can verify the correctness efficiently using the pattern. How-
ever, there is a checkability issue in their algorithm, where an untrusted server
can easily manipulate the result. In particular, the client invokes the server
Exp(a, g) to outsource the computation of ga, and instead of Exp(a, g) the ma-
licious server can compute Exp(a, gh) for some bogus value h without being
detected. The checks will pass successfully and subsequently the result would
become incorrect without being unnoticed.

The authors in [22] proposed the only existing algorithm for modular ex-
ponentiations modulo composite numbers. However, we also address an issue
here that the checkability property of their scheme fails. By using their no-
tation, the attack can be explained briefly as follows: A malicious server S
uses the proposed values ℓ = ℓ1 = ℓ2 = 5 in [22] (or any other case for which

ℓ = ℓ1 = ℓ2 holds), adds 1 to the values yj , and outputs x
yj+1
i instead of x

yj

i .
This enables the server to manipulate the result ua with ua+ℓ without being
detected by the client.

Another area of outsourcing computation is the use of homomorphic en-
cryption techniques. Homomorphic encryption allows parties for processing
computations on encrypted data without using any additional information
like Yao’s garbled circuits [23]. Conventional homomorphic encryption schemes
are either additive or multiplicative (e.g., RSA is multiplicative, Paillier and
modified version of ElGamal encryption are additive [20, 24], or the 2DNF
protocol [25] which allows multiple additions up to only one exponentiation).
These schemes allow to outsource secure function evaluation to a cloud server.
Recent somewhat homomorphic and fully homomorphic schemes give a com-
plete solution to the outsourcing problem [26]. However, these systems are not
yet efficient enough to be applied in real-life scenarios.

1.2 Our Contributions

Our contributions are as follows:

1. We propose new, efficient and secure outsourcing algorithms of modular
exponentiations using only one untrusted server. We consider the cases
public-base & private-exponent, private-base & public-exponent, private-
base & private-exponent and simultaneous modular exponentiations sepa-
rately. This approach realizes privacy preserving and efficient outsourcing
mechanisms, which are highly desirable and often inevitable for resource-
constrained devices. Instead of having an adversary model, where distrust-
ful servers are assumed not to collude, our algorithms borrow computing
power from only a single untrusted cloud server. This constitutes a more
realistic scenario when compared to the state-of-the-art algorithms in [2–4].

2. Our algorithms cover both modulo prime and modulo composite number
cases. To the best of our knowledge, these algorithms make for the first
time no distinction between prime and composite modulus by a unified
modular exponentiation approach. Therefore, modular exponentiations in

Algorithms for Secure Outsourcing of Cryptographic Computations 5

cryptographic protocols based on both the Discrete Logarithm problem
(DLP) and the RSA problem can be outsourced securely to an untrusted
server.

3. In [5], the authors propose the first generic algorithm for a single untrusted
server considering private-base & private-exponent. Furthermore, it has
fixed 1/2 checkability probability. However, their scheme is quite inefficient
since it requires approximately 2000 modular multiplications. In contrast
to this scheme, we would like to highlight that our private-base & private-
exponent algorithm Algprpr is the most efficient and verifiable solution with
respect to the existing ones (e.g., we have ≈ 10, 17 times less MMs than
the only existing algorithm [5]).

4. We emphasize further that although the existing solutions use two non-
colluding malicious servers, they propose only 1/2, 2/3 or 3/4 probabili-
ties for the checkability [2–4], respectively. Unlike all existing schemes, our
algorithms have not only the best but also more importantly adjustable
checkability. Also, any adversarial behavior can be detected by the client
with the probability 1− 1

c(c−1) , where c is a small integer used as a security

parameter for checkability (e.g., for c = 4 and c = 8 we have 11/12 and
55/56, resp.).

5. Our algorithm for the case of simultaneous modular exponentiation is more
efficient than the existing algorithms [2] and [5] (there is only a general-
ized result in [22], for which the checkability fails as explained above). The
algorithm proposed in [2] only considers two simultaneous modular expo-
nentiations. We generalize this by introducing the notion of t-simultaneous
modular exponentiation, i.e., t modular exponentiations can be computed
simultaneously in a single round. We also show that we gain linear com-
plexity advantage in t for both the number of modular multiplications and
modular inversions.

6. Lastly, we apply the proposed algorithms to outsource Oblivious Transfer
(OT) and Blind Signature schemes securely. Note that OT is a powerful
cryptographic primitive which is “complete” for secure multiparty compu-
tation [27,28]. It is also one of the major computational overhead for Yao’s
garbled circuit protocols [23, 29]. OTs are also used in many applications
like biometric authentication, e-auctions, private information retrieval, and
private search [30–33]. Hence, the overall complexity for mobile environ-
ment and resource-constrained devices can be enhanced by outsourcing
OT securely. Furthermore, blind signatures [34] are unforgeable, and can
be verified by a public key like in conventional digital signatures. These sig-
natures can be used in many applications like e-cash, e-voting and anony-
mous credentials [35]. Hence, outsourcing blind signatures can also be very
beneficial for real-life applications.

6 Mehmet Sabır Kiraz, Osmanbey Uzunkol

1.3 Roadmap

In Section 2, we give our formal security and privacy model based on the
model of [3] by simplifying their two untrusted server model to a more realis-
tic and secure one single untrusted server model. Section 3 starts with basic
mathematical background of outsourcing algorithms of modular exponentia-
tion, and describes the main algorithm for private-base & private-exponent
modular exponentiations. We also provide the proofs of correctness, security
and checkability of our algorithms using security/privacy model in Section
2. In Section 4, we propose algorithms for all other relevant situations, i.e.
public-base & private-exponent, private-base & public-exponent, and private-
base & private-exponent, and simultaneous modular exponentiations. Section
5 gives the complexity of our algorithms, and compares the efficiency of the
algorithms with the prior works. In Section 6, we apply our algorithms to
Oblivious Transfer protocols and to Blind Signatures. Section 7 concludes
the paper with highlighting future research directions on outsourcing crypto-
graphic computations.

2 Security and Privacy Model

In this work, we follow the security model proposed by Hohenberger and
Lysyanskaya [3] like the recent results in [2,5]. Assume that a client C would like
to securely outsource an expensive cryptographic computation Alg to a cloud
server S. Our aim is to split the computation into two main procedures (1) C
knows the input value to Alg, (2) C invokes S which is an untrusted server that
can carry out expensive computation operations. Briefly, C securely outsources
some computation if the following conditions hold:

1. C and S implement Alg, i.e., Alg = CS

2. Assume that C has oracle access to an adversary S ′ (instead of an honest
S) which stores its computational results during each run and behaves
maliciously in order to learn extra information. S ′ is not able to retrieve
any valuable information about the input-output pair of CS

′

.

We are now ready to give the formal model for secure outsourced crypto-
graphic algorithms, which is based on principally the model of [3].

Definition 1 [3] (Algorithm with outsource-I/O) An algorithm Alg

obeys the outsource input/output specification if it takes five inputs, and pro-
duces three outputs. The first three inputs are generated by an honest party,
and are classified by how much the adversary A = (E , S ′) knows about them,
where E is the adversarial environment that submits maliciously chosen inputs
to Alg, and S ′ is the adversarial software operating in place of oracle S.

1. 1st is the honest secret input, which is unknown to both E and S ′,
2. 2nd is the honest protected input, which may be known by E , but is pro-

tected from S ′,

Algorithms for Secure Outsourcing of Cryptographic Computations 7

3. 3rd is the honest unprotected input, which may be known by both E and
S,

4. 4th is the the adversarial protected input which is known to E , but pro-
tected from S ′,

5. 5th is the the adversarial unprotected input, which may be known by E
and S,

6. 1st is the secret input which is unknown to both E and S ′,
7. 2nd is the protected input which may be known to E , but not S ′,
8. 3rd is the unprotected input which may be known by both parties of A.

Outsource-security means that if a malicious S ′ can obtain some informa-
tion about the secret of CS by playing the role of C instead of S, then S ′

can also obtain it without following this procedure. More concretely, when
CS(x) is queried, a simulator SimS′ is constructed in such a way that without
the knowledge of the secret or protected inputs of x, the view of S ′ can be
simulated. In the following outsource-security definition, it is guaranteed that
the malicious environment E cannot learn any valuable information about the
secret inputs and outputs of CS (even in the case that C runs the malicious
software S ′ developed by E).

Definition 2 [3] (Outsource security) Let Alg(·, ·, ·, ·, ·) be an algorithm
with outsource-I/O. A pair of algorithms (C,S) is said to be an outsource-
secure implementation of Alg if:
Correctness: CS is a correct implementation of Alg.
Security: For all probabilistic polynomial-time adversaries A = (E ,S ′), there
exist probabilistic expected polynomial-time simulators (SimE , SimS′) such
that the following pairs of random variables are computationally indistinguish-
able.

– Pair One. EVIEWreal ∼ EVIEWideal

– The real process:
EVIEWi

real = {(istate
i, xi

hs, x
i
hp, x

i
hu)← I(1k, istatei−1);

(estate, ji, xi
ap, x

i
au, stop

i)← E(1k,EVIEWi−1
real , x

i
hp, x

i
hu); (tstate

i, ustatei,

yis, y
i
p, y

i
u) ← C

S′(ustatei−1)(tstatei−1, xji

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yip, y
i
u)}

EVIEWreal = EVIEWi
real if stop

i = TRUE.
The real process proceeds in rounds. In round i, the honest (secret,
protected, and unprotected) inputs (xi

hs, x
i
hp, x

i
hu) are picked using an

honest, stateful process I to which the environment E does not have
access. Then E , based on its view from the last round,

1. chooses the value of its estatei variable as a way of remembering
what it did next time it is invoked;

2. which previously generated honest inputs (xi
hs, x

i
hp, x

i
hu) to give to

CS
′

(note that E can specify the index ji of these inputs, but not
their values);

3. the adversarial protected input xi
ap;

8 Mehmet Sabır Kiraz, Osmanbey Uzunkol

4. the adversarial unprotected input xi
au;

5. the Boolean variable stopi that determines whether round i is the
last round in this process.

Next, the algorithm CS
′

is run on the inputs (tstatei−1, xji

hs, x
ji

hp, x
ji

hu,

xi
ap, x

i
au), where tstatei−1 is C’s previously saved state, and produces

a new state tstatei for C, as well as the secret yis, protected yip and

unprotected yiu outputs. The oracle S ′ is given its previously saved state,
ustatei−1, as input, and the current state of S ′ is saved in the variable
ustatei. The view of the real process in round i consists of estatei, and
the values yip and yiu. The overall view of E in the real process is just

its view in the last round (i.e., i for which stopi = TRUE.).
– The ideal process:

EVIEWi
ideal = {(istate

i, xi
hs, x

i
hp, x

i
hu)← I(1k, istatei−1);

(estate, ji, xi
ap, x

i
au, stop

i)← E(1k,EVIEWi−1
ideal, x

i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u)← Alg(astatei−1, xji

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y i
p , Y

i
u, rep

i)←

Sim
S′(ustatei−1)
E (sstatei−1, xji

hp, x
ji

hu, x
i
ap,x

i
au, y

i
p

,yiu); (z
i
p, z

i
u)=repi(Y i

p , Y
i
u) + (1− repi)(yip, y

i
u) : (estate, z

i
p, z

i
u)}

EVIEWideal = EVIEWi
ideal if stop

i = TRUE.
The ideal process also proceeds in rounds. In the ideal process, we have
a stateful simulator SimE who, shielded from the secret input xi

hs, but
given the non-secret outputs that Alg produces when run all the inputs
for round i, decides to either output the values (yip, y

i
u) generated by

Alg, or replace them with some other values (Y i
p , Y

i
u). Note that this is

captured by having the indicator variable repi be a bit that determines
whether yip will be replaced with Y i

p . In doing so, it is allowed to query
oracle S ′; moreover, S ′ saves its state as in the real experiment.

– Pair Two. EVIEWreal ∼ EVIEWideal

– The view that the untrusted software S ′ obtains by participating in
the real process described in Pair One. UVIEWreal = ustatei if stopi =
TRUE.

– The ideal process:
UVIEWi

ideal = { (istate
i, xi

hs, x
i
hp, x

i
hu) ← I(1k, istatei−1);

(estatei, ji, xi
ap, x

i
au, stop

i) ← E(1k, estatei−1, xi
hp, x

i
hu,y

i−1
p , yi−1

u ;

(astatei, yis, y
i
p, y

i
u) ← Alg(astatei−1, xji

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei) ← Sim
S′(ustatei−1)
S′ (sstatei−1, xji

hu, x
i
au) : (ustate

i) }

EVIEWideal = EVIEWi
ideal if stop

i = TRUE.

In the ideal process, we have a stateful simulator SimS′ who, equipped
with only the unprotected inputs (xi

hu, x
i
au), queries S

′. As before, S ′ may
maintain state.

Algorithms for Secure Outsourcing of Cryptographic Computations 9

Definition 3 [3] (α-efficient, secure outsourcing) A pair of algorithms
(C,S) is said to be an α-efficient implementation of Alg if

1. CS is a correct implementation of Alg and
2. ∀ inputs x, the running time of C is no more than an α-multiplicative factor

of the running time of Alg.

Definition 4 [3] (β-checkable, secure outsourcing) A pair of algorithms
(C,S) is said to be an β-checkable implementation of Alg if

1. CS is a correct implementation of Alg and
2. ∀ inputs x, if S deviates from its advertised functionality during the ex-

ecution of CS
′

(x), C will detect the error with probability no less than
β.

Definition 5 [3] ((α, β)-outsource-security) A pair of algorithms (C,S)
is said to be an (α, β)-outsource-secure implementation of Alg if it is both
α-efficient and β-checkable.

3 Main Algorithm for Modular Exponentiation (Private-Base &
Private-Exponent)

3.1 Preliminaries

There are basically two different settings for which modular exponentiations
are the most expensive parts of the cryptographic computation: the discrete
logarithm problem (DLP) and the RSA problem. In both cases, we summarize
the following conditions to obtain mathematical problem instances which are
intractable enough to obtain the desired level of security for the corresponding
cryptographic schemes.

3.1.1 DLP case

Let p and q be prime numbers and G ⊆ F
∗
p be a subgroup generated by a

primitive element g of order q. In order to have an intractable DLP on G,
we impose the usual conditions on the number of distinct cosets in F

∗
p/G be-

ing comparably small, i.e. we have a small cofactor c = p−1
q (since otherwise

by Chinese Remainder Theorem (Pohling-Hellman reduction) the complexity
of DLP reduces to much smaller groups leading to less secure group based
cryptographic systems [36]). This means that we need to hide the exponent of
the exponentiation but not necessarily the base for the security of the encryp-
tion algorithms. On the other hand, hiding the base element in the modular
exponentiation realizes the privacy preserved applications.

We restrict ourselves to the multiplicative subgroup of prime field case
G ≤ F

∗
p, although it is also possible to use prime order multiplicative sub-

groups of the extension fields of Fp. The main reason of our restriction is

10 Mehmet Sabır Kiraz, Osmanbey Uzunkol

that the recent quasi-polynomial attacks on DLP of certain extension fields of
small characteristics suggests not to use non-prime finite fields in cryptographic
setting [37]. We note that all secure outsourcing algorithms for modular ex-
ponentiation (including the algorithms proposed in this paper) can easily be
adapted to secure outsourcing algorithms for scalar multiplication of elliptic
curve cryptography (ECC) by using a prime order subgroup of E(Fp) instead
of the group G. Using these algorithms for scalar multiplications of elliptic
curves, one can also obtain hybrid privacy preserving outsourcing algorithms
for pairing-based cryptosystems by means of outsourcing private inputs of
pairing functions, bilinearity property, and private exponentiations in finite
fields for the realization of ID-based cryptography [36].

3.1.2 RSA case

In this case, we have the modulus n = p · q, where p and q are distinct
large prime numbers. Since RSA based systems rely on the arithmetic of
G := (Z/nZ)∗, we have an exponent ranging 0 to (p− 1)(q− 1)− 1. For public
key encryptions, the message must be private but the public key can be dis-
closed to the server (similarly, for the signatures only the private key is kept pri-
vate). However, similar to the DLP case, hiding exponents or base elements in
the modular exponentiations enables to obtain privacy preserving outsourced
schemes. Constructing such a system makes impossible for the server to distin-
guish between encryption/decryption/signature/verification processes which
can be an important design criteria for privacy preserving infrastructures (e.g.,
attribute-based encryption schemes). To the best of our knowledge, there is
only one algorithm proposed for RSA based modular exponentiation [22], for
which the checkability fails as explained in Section 1.1. Hence, our algorithm
unifies modular exponentiation modulo a prime or a composite number for the
first time.

For real-life applications, the group order m is typically chosen as a 2048-
bit number for RSA or DLP based systems and as a 384-bit number for ECC
based systems.

3.2 The Main Algorithm

In this section, we propose our main algorithm for modular exponentiation
modulo n with the underlying group G, which is either the subgroup of F∗

n or
(Z/nZ)∗ of order m. Note that n can be either a prime number or an RSA
modulus covering the both cases as described above.

Client is willing to compute ua mod n privately, where u ∈ G and a ∈
{0, · · · ,m − 1} private inputs and n is public. More precisely, the algorithm
has inputs u, a and n and outputs ua mod n without explicitly giving the
values of u, a, and ua to the server.

Let now the blinding factors (x, gx, g−x), (t1, g
t1 , g−t1), (t2, g

t2 , g−t2) ∈
Z/mZ × G

2 and (y, gy), (s, gs) ∈ Z/mZ×G be given. Note that except g−t1

Algorithms for Secure Outsourcing of Cryptographic Computations 11

and g−t2 these values can be computed using a Rand Algorithm as defined
in [3]. For taking the inverse of gt1 and gt2 , one can either extend the Rand

algorithm or they can be computed offline. Similarly, in the case of RSA set-
ting, all these values can be computed by extending the Rand algorithm or
by computing them offline. Furthermore, these values are stored on the client
side, and one can argue that this is dangerous for the RSA setting if the client
is a lower power device because of low-power devices are not generally temper-
resistant. However, these values are stored in the same protected area as all
other private keys and any attack to the values can also apply to the private
keys.

Note that these blinding factors are precomputed in order to speed up
computations [2, 3]. The values x, y, t1 and t2 can be used several times for
different exponents whereas the value s should be used only once.

Furthermore, we abbreviate by C the Client and by S the Server. We have
also the assumption that C can run an algorithm to query ua to S. We denote
the output of such a query by Exp(a, u). Before we explain our main algorithm
we propose the following subalgorithm SubAlg for outsourcing gz, where g is
a generator of the group G and z is a random group element. Note that g and
z are not necessarily private for SubAlg, and it is only crucial to check the
correctness of the result gz. The client C has inputs g, z and c, where c is a
checkability parameter.

During the precomputation phase, the Rand algorithm prepares (s, gs) ∈
Z/mZ×G, (t1, t

−1
1 , gt1), (t2, t

−1
2 , gt2) ∈R (Z/mZ)2 ×G, and

I−1 = {1−1, · · · , c−1} ⊆ Z/mZ, where I={1, · · · , c} ⊆ Z/mZ, and sends these
values to C. At the first phase, C picks random elements c−1

1 , c−1
2 ∈R I−1 with

c1, c2 ∈ I, c1 6= c2, and computes z1 = (z − s) · c−1
1 and z2 = (−z + 2s) · c−1

2 .
Next, C runs Z1 = Exp(z1 · t1

−1, gt1) and Z2 = Exp(z2 · t2
−1, gt2). Finally,

C verifies Zc1
1 · Z

c2
2

?
= gs, and returns Z2c1

1 · Zc2
2 . We would like to highlight

that computing t1, t
−1
1 and t2, t

−1
2 does not cause a security issue in the RSA

setting 1 because these values are masked before they are sent to S and they
are never revealed to S.

We would like to emphasize that c is chosen to be a very small positive in-
teger. For example, if c=4 then the checkability becomes 11/12 that is already
sufficient to be able to compare with the existing schemes. In particular, since
c1 and c2 are very small integers, the values Zc1

1 or Zc2
2 can be computed by

only few multiplications (for c = 4 we have at most 2 multiplications instead
of approximately 3000 multiplications for 2048 bit security level.). Therefore,
it does not add any considerable complexity (computational, storage and com-
munication) as demonstrated in Section 5.

SubAlgorithm (SubAlg): Outsourcing an auxiliary modular exponen-

1 Note that disclosing both x and x−1 mod φ(n) for x ∈ Z/nZ allows an attacker to
recover the factorization of the RSA modulus n.

12 Mehmet Sabır Kiraz, Osmanbey Uzunkol

tiation

Input: (z, g, c) (where z ∈ Z/mZ with < g >= G ≤ F
∗
n for DLP or g ∈R

G = (Z/nZ)∗ for RSA with |G| = m, where n,m ∈ N, and an arbitrary small
c ∈ N). (Note that c = 4 is sufficient for our experiments to compare with the
existing schemes.)
Output: The value gz in G.
Precomputation: A Rand algorithm computes and stores the following values
for C:

– (s, gs) ∈ Z/mZ×G,
– (t1, t

−1
1 , gt1), (t2, t

−1
2 , gt2) ∈R (Z/mZ)2 ×G,

– I={1, · · · , c} ⊆ Z/mZ with I−1 = {1−1, · · · , c−1} ⊆ Z/mZ.

1. C picks random elements c−1
1 , c−1

2 ∈R I−1 with c1, c2 ∈ I, c1 6= c2, and
computes z1 ← (z − s) · c−1

1 and z2 ← (−z + 2s) · c−1
2 .

2. C runs
(a) Z1 ← Exp(z1 · t1

−1, gt1).
(b) Z2 ← Exp(z2 · t2

−1, gt2).

3. C verifies Zc1
1 · Z

c2
2

?
= gs and returns Z2c1

1 · Zc2
2 .

Theorem 1 SubAlg terminates and outputs correctly with probability 1
c(c−1) .

Proof The termination simply follows from the algorithm specification. Namely,
C outsources the computations Exp(z1 · t1

−1, gt1) and Exp(z2 · t2
−1, gt2), and

obtains Z1 and Z2, respectively. If S does not respond within specific time in-
terval C aborts and outputs fail. Otherwise, C verifies and outputs the result.
More precisely, C first computes z1 = (z − s) · c−1

1 and z2 = (−z + 2s) · c−1
2 ,

where c−1
1 , c−1

2 ∈R I−1 with c1, c2 ∈ I, c1 6= c2.

S returns Z1 = gz1 = g(z−s)·c−1
1 and Z2 = gz2 = g(−z+2s)·c−1

2 . Finally, C
computes and verifies the following result.

Zc1
1 · Z

c2
2 = (g(z−s)·c−1

1)c1 · (g(−z+2s)·c−1
2)c2

= g(z−s)+(−z+2s) = gs

If the equality does not hold then algorithm outputs checkability failure. Fi-
nally, C outputs

Z2c1
1 · Zc2

2 = (g(z−s)·c−1
1)2c1 · (g(−z+2s)·c−1

2)c2

= g2(z−s)+(−z+2s) = gz

To prove that a malicious S cannot maliciously behave without being de-
tected with probability 1

c(c−1) because S does not have any knowledge about

z, s, c1 and z1 (and c2 and z2). More concretely, in order to validate the cor-

rectness C verifies the equality Zc1
1 ·Z

c2
2

?
= gs. Since c1, c2 and gs are unknown

Algorithms for Secure Outsourcing of Cryptographic Computations 13

U2

U1

U3 U4 U5

U6

U7

U8

R T

S

Fig. 1 The Partition of the Set U = ∪
8

i=1
Ui

to S, the only way for S to be successful is to guess c1 and c2 correctly. Note
that the probability of guessing the correct value of c1 is 1/c, and once c1 is
chosen we have the probability 1/(c − 1) for guessing the correct value of c2.
Hence, the overall probability becomes 1

c(c−1) . ⊓⊔

We now propose our main algorithm Algorithm 1 (Algprpr) for private-base
and private-exponent. For completeness, we introduce the following notation:
Let a finite set M = {m1, · · · ,mn} be given. We denote by Sn(M) the group
of permutations on M . Note that we can identify any permutation on Sn(M)
with a permutation on Sn({1, · · · , n}). By abuse of notation, we will write
σ(mi) = σ(i) for any σ ∈ Sn({1, · · · , n}).

Before we go into the details we give a brief summary of Algprpr as follows.
The client C first masks the base u and the exponent a, respectively, and sends
them to the server in a special form (based on the precomputed values). The
server applies the algorithm specifications and returns the masked results. The
client then removes the masks and verifies the correctness of the result. More
precisely, for the goal of computing ua we first precompute v = gx, w = ug−x,
µ = gy, Z = gax−y, where x and y are randomly chosen. Then ua is converted
into (vw)a = gxa wa = µgzwa = µZwa such that w = uv−1, z = ax − y,
where v, w, Z looks random and is independent of u and a in the view of the
attacker. Therefore, the algorithm has basically three computations in order
to compute ua, i.e., µ, Z and wa.

– The first value µ = gy is already precomputed and stored.
– The second value Z = gz is computed via the subalgorithm SubAlg for

computing a modular exponentiation for a generator g and an exponent
z = ax−y. We highlight that this subalgorithm only assures the correctness
of the result rather than hiding the base g and the exponent z. Note that

14 Mehmet Sabır Kiraz, Osmanbey Uzunkol

z is already masked with x and y therefore does not leak any information
to S.

– Finally, wa is outsourced securely which is the longest and the most compli-
cated part. This value is outsourced by first dividing the private exponent
a and a random value r into k and ℓ subcomponents such that a =

∑k
i=1 ai

and r =
∑ℓ

i=1 ri, respectively. More precisely,

– C computes w ← uv−1, z ← ax− y, runs Z = SubAlg(z, g, c).
– For the sign of the values C chooses further a random α = (α1, · · · ,

αℓ+k) ∈R {0, 1}
ℓ+k.

– Using Figure 1, C first chooses random subsets Ui, i = 1, · · · , 8 (with
arbitrary length) such that

• S := U1 ∪ U2 ∪ U6 ∪ U7, T := U1 ∪ U4 ∪ U5 ∪ U6, Ui 6= ∅ ∀ i,
Ui ∩ Uj = ∅ ∀ i 6= j, U := A ∪R := ∪8i=1Ui := {u1, · · · , uk+ℓ},

• s =
∑

si∈S si, t =
∑

ui∈T (−1)αi · ui, s+ c1t = c2, where c1, c2 ∈R
{1, · · · , c} (the aim of this condition is to assure the checkability
property of Algprpr),

• R := U1 ∪ U2 ∪ U3 ∪ U4 := {r1, · · · , rℓ}, A := U5 ∪ U6 ∪ U7 ∪ U8

:= {a1, · · · , ak},

• r =
∑ℓ

i=1 ri, a =
∑k

i=1 ai. Note that the elements of R are used to
randomize the private exponent a.

– C chooses a random permutation σ ∈R Sℓ+k(U) and sets the permuted
elements U = σ(U) := (σ1, · · · , σk+ℓ).

– Note that we use a temporary value temp in our main algorithm for the
following reason: First observe that the following values are computed
during the main algorithm:

• U∓’s are computed for the sets U = ∪8i=1Ui

• R∓’s are computed for the sets R = ∪4i=1Ui

• S∓’s are computed for the sets S = ∪i=1,2,6,7Ui,
• T∓’s are computed for the sets T = ∪i=1,4,5,6Ui.

Since the sets R,S, T have common and disjoint values temp is used
to minimize modular multiplications by distributing the elements into
these sets. Note that temp is not used

• in the first round because U1 = U ∩R ∩ S ∩ T . After assigning U∓
to T∓ temp will be used to compute the final T∓.

• in the second round because U2 = U ∩ R ∩ S. After assigning U∓
to S∓ temp will be used to compute the final S∓.

• in the third round because U3 = R ⊂ U .

– Let U := {u1, · · · , uk+ℓ}. C chooses a random permutation σ ∈R Sℓ+k(U)
and sets the permuted elements U = σ(U) := (σ1, · · · , σk+ℓ). The per-
mutation σ basically mixes the subcomponents of a and r to ensure
the privacy of the exponent a. Moreover, the invocations take place
with signed values of the subcomponents using α = (α1, · · · , αℓ+k) ∈R
{0, 1}ℓ+k (i.e., S computes w(−1)

ασ(i) ·σ(ui)).

Algorithms for Secure Outsourcing of Cryptographic Computations 15

– After S returns the computed values C basically computes wa+r, wr, ws

and wt and verifies the correctness of the result wa by checking s+c1t =
c2 in the exponents.

– If the verification is successful, C outputs wa by removing wr from wa+r.

– C finally returns the expected outcome ua by computing µZwa.

We give a toy example in Section 3.2.2 for better understanding of the
algorithm. The algorithm is now given as follows.

Algorithm 1 (Algprpr): Private-Base & Private-Exponent Modular
Exponentiations

Input: (a, u, k, ℓ, c) (where a ∈ Z/mZ with u ∈< g >= G ≤ F
∗
n for DLP or

u ∈R G = (Z/nZ)∗ for RSA with |G| = m, where n,m ∈ N, and an arbitrary
small c ∈ N).
Output: The value ua in G.
Precomputation: A Rand algorithm computes (y, gy) ∈R Z/mZ × G and
(x, gx, g−x) ∈ Z/mZ×G

2 for C with v = gx and µ = gy.

1. C computes w ← uv−1, z ← ax− y, runs Z = SubAlg(z, g, c).
2. For the sign of the values C chooses further a random α = (α1, · · · , αℓ+k)
∈R {0, 1}

ℓ+k.
3. Using Figure 1, C first chooses random subsets Ui, i = 1, · · · , 8 (with arbi-

trary length) such that

– S := U1 ∪ U2 ∪ U6 ∪ U7,
– T := U1 ∪ U4 ∪ U5 ∪ U6,
– Ui 6= ∅ ∀ i, Ui ∩ Uj = ∅ ∀ i 6= j,
– U := A ∪R := ∪8i=1Ui := {u1, · · · , uk+ℓ},
– s =

∑

si∈S si,
– t =

∑

ui∈T (−1)αi · ui

– s+ c1t = c2, where c1, c2 ∈R {1, · · · , c},
– R := U1 ∪ U2 ∪ U3 ∪ U4 := {r1, · · · , rℓ},
– A := U5 ∪ U6 ∪ U7 ∪ U8 := {a1, · · · , ak},

– r =
∑ℓ

i=1 ri, a =
∑k

i=1 ai.

4. C chooses a random permutation σ ∈R Sℓ+k(U) and sets the permuted
elements U = σ(U) := (σ1, · · · , σk+ℓ).

5. C sets U−, U+ ← 1 and uses the partitions in Figure 1. Furthermore, C
runs and computes in random order for j ∈ {1, · · · , k + ℓ}
(U−, U+ are negative/positive parts of the exponents of U)

(a) If σj ∈ U1: (Computation of signed elements of U1)

i. If ασ(j) = 1: wj ← Exp(−σj , w)

A. U− ← U− · wj

ii. If ασ(j) = 0: wj ← Exp(σj , w)

A. U+ ← U+ · wj

iii. C sets T− ← U− and T+ ← U+

16 Mehmet Sabır Kiraz, Osmanbey Uzunkol

(b) If σj ∈ U2: (Computation of signed elements of U2)

i. If ασ(j) = 1: wj ← Exp(−σj , w)

A. U− ← U− · wj

ii. If ασ(j) = 0: wj ← Exp(σj , w)
A. U+ ← U+ · wj

iii. C sets S− ← U− and S+ ← U+

(c) If σj ∈ U3: (Computation of signed elements of U3)

i. If ασ(j) = 1: wj ← Exp(−σj , w)
A. U− ← U− · wj

ii. If ασ(j) = 0: wj ← Exp(σj , w)
A. U+ ← U+ · wj

(d) If σj ∈ U4, C sets temp−, temp+ ← 1: (Computation of signed

elements of U4)

i. If ασ(j) = 1: wj ← Exp(−σj , w)
A. temp− ← temp− · wj

ii. If ασ(j) = 0: wj ← Exp(σj , w)
A. temp+ ← temp+ · wj

iii. C sets U−, R− ← U− · temp−, T− ← T− · temp−, U+, R+ ← U+ ·
temp+ and T+ ← T+ · temp+

(e) If σj ∈ U5, C sets temp−, temp+ ← 1: (Computation of signed

elements of U5)

i. If ασ(j) = 1: wj ← Exp(−σj , w)
A. temp− ← temp− · wj

ii. If ασ(j) = 0: wj ← Exp(σj , w)
A. temp+ ← temp+ · wj

iii. C sets U− ← U− · temp−, T− ← T− · temp−, U+ ← U+ · temp+ and
T+ ← T+ · temp+

(f) If σj ∈ U6, C sets temp−, temp+ ← 1: (Computation of signed

elements of U6)

i. If ασ(j) = 1: wj ← Exp(−σj , w)
A. temp− ← temp− · wj

ii. If ασ(j) = 0: wj ← Exp(σj , w)
A. temp+ ← temp+ · wj

iii. C sets U− ← U− · temp−, T− ← T− · temp−, S− ← S− · temp−, U+
← U+ · temp+, T+ ← T+ · temp+ and S+ ← S+ · temp+.

(g) If σj ∈ U7, C sets temp−, temp+ ← 1: (Computation of signed

elements of U7)

i. If ασ(j) = 1: wj ← Exp(−σj , w)
A. temp− ← temp− · wj

ii. If ασ(j) = 0: wj ← Exp(σj , w)
A. temp+ ← temp+ · wj

iii. C sets U− ← U− · temp−, S− ← S− · temp−, U+ ← U+ · temp+ and
S+ ← S+ · temp+

(h) If σj ∈ U8: (Computation of signed elements of U8)

i. If ασ(j) = 1: wj ← Exp(−σj , w)

Algorithms for Secure Outsourcing of Cryptographic Computations 17

A. U− ← U− · wj

ii. If ασ(j) = 0: wj ← Exp(σj , w)
A. U+ ← U+ · wj

6. C verifies S+ · (T− · T+)
c1 ?

= wc2 · S−
(Verification step by checking s+ c1t = c2 in the exponents)

7. C returns µ · Z · (U− · R+)
−1 · (R− · U+)

(This is the expected outcome ua)

3.2.1 Correctness and Termination.

Theorem 2 Algprpr terminates and outputs correctly.

Proof Precomputation and Step 1 of Algprpr imply that ua = (vw)a = gxawa =
µgzwa = µZwa, where w = uv−1 and z = ax− y.

We set Θ = {ασ(j) : ασ(j) = 1, j = 1, · · · , k + ℓ}. Let the u−
i (reps. u+

i)
denotes the sum of the negatively (reps. positively) signed part of the elements
of Ui for all i ∈ {1, · · · , 8}. In Step 7 part (a) with using the query results of

S, C computes the negative part wu−

1 and the positive part wu+
1 as follows:

wu−

1 =
∏

ασ(i)∈Θ,
σi∈U1

w−σi and wu+
1 =

∏

ασ(i) 6∈Θ,
σi∈U1

wσi .

The output will be assigned to the negative part T− and the positive part
T+ in the exponent the elements of T . Analogously, C computes in steps (b)
and (c) the corresponding negative parts and the positive parts, and assigns
the output to the exponent elements of the contributed sets.

Different from the steps (a), (b) and (c), C computes in step (d) the negative

part wu−

4 and the positive part wu+
4 :

wu−

4 =
∏

ασ(i)∈Θ,
σi∈U4

w−σi and wu+
4 =

∏

ασ(i) 6∈Θ,
σi∈U4

wσi .

The output will be multiplied in this case with the negative parts U−, T−
and the positive parts U+, T+ in the exponent elements of U and T . Anal-

ogously, C computes wu−

j and wu+
j for j = 5, 6, 7, 8 and multiply with the

corresponding positive and negative parts in the exponent elements of the
contributed sets. As a result, one obtains:

wr =









∏

ασ(i)∈Θ,
σi∈R

w−σi









−1

·
∏

ασ(i) 6∈Θ,
σi∈R

wσi = R−1
− · R+,

18 Mehmet Sabır Kiraz, Osmanbey Uzunkol

ws =









∏

ασ(i)∈Θ,
σi∈S

w−σi









−1

·
∏

ασ(i) 6∈Θ,
σi∈S

wσi = S−1
− · S+.

Using the definition of t, we obtain also

wt =
∏

σi∈T

w(−1)
ασ(i)σi =

∏

ασ(i)∈Θ,
σi∈T

w−σi ·
∏

ασ(i) 6∈Θ,
σi∈T

wσi = T− · T+,

Together with steps (a) to (g) and step (h), we obtain

wa+r ==









∏

ασ(i)∈Θ,
σi∈A∪R

w−σi









−1

·
∏

ασ(i) 6∈Θ,
σi∈A∪R

wσi = U−1
− · U+,

wc2 = ws+c1t = ws · (wt)c1 = S−1
− · S+ · (T− · T+)

c1 , hence,

S+ · (T− · T+)
c1 = wc2 · S−.

If the equality does not hold then the checkability fails. If S runs the query
algorithm properly then the algorithm ends with Step 7 as follows:

µ · Z · (U− · R+)
−1 · (R− · U+) = µ · Z · U−1

− · U+ · R− · R
−1
+

= µ · Z · U−1
− · U+ · (R

−1
− · R+)

−1

= gy · gax−y · wr+a · (wr)−1

= gy · gax−y · wr+a · w−r

= gax · wa

= (gx · w)a = (v · w)a

= ua.

⊓⊔

3.2.2 A Toy Example.

We illustrate with a toy example our main algorithm Algprpr for better under-
standing. Note that this example is just to explain our algorithm in a simple
setting. For real-life applications, the group size should be at least 1024 bit
for DLP or RSA and 160 bit for the elliptic curve DLP. In particular, the
computational advantage of our algorithms increases with the key sizes (see
Section 5). Let p = 103 be given with the primitive element g = 3. Hence,
G =< 3 > with |G| = p − 1 = 102. Furthermore, assume that (a, u, k, ℓ, c)=
(72, 37, 4, 4, 4) are given as an input of Algprpr. We want to compute ua ≡ 3772

Algorithms for Secure Outsourcing of Cryptographic Computations 19

mod 103.

Precomputation:: If we choose x = 59, y = 23 then we have (x, gx, g−x)
= (59, 31, 10) and (y, gy)=(23, 95). Moreover, we have v = gx = 31 and
v−1 = g−x = 10. Note that µ = gy = 95.

First of all, w ≡ u·v−1 ≡ 37·10 mod 103 = 61. We also have z ≡ a·x−y ≡
72 · 59− 23 ≡ 43 mod 102. Next, run SubAlg(43, 3, 4) which outputs 343 ≡ 10
mod 103 (i.e., we have Z ≡ gz ≡ 10 mod 103).

Hence, we have 3772 = µ ·Z ·6172 = 95 ·10 ·6172. We now need to outsource
6172 securely. Since k = ℓ = 4 we have 8 non-empty sets that we choose
randomly with the conditions of steps 2, 3, 4 and 5. U1 = {u1 = 13}, U2 =
{u2 = 79}, U3 = {u3 = 19}, U4 = {u4 = 93}, U5 = {u5 = 82}, U6 = {u6 = 42},
U7 = {u7 = 57}, U8 = {u8 = 95}. Note that U = {u1, u2, u3, u4, u5, u6, u7, u8}.

We now choose α = (10011010) as in Step 4. Then, the signed U becomes
USigned={ −u1, u2, u3,−u4,−u5, u6,−u7, u8 }. Let also s = u1+u2+u6+u7 =
13+79+42+57 ≡ 89 mod 102 and t ≡ −u1−u4−u5+u6 = −13−93−82+42 ≡
58 mod 102.

Now, for c1 = 2 and c2 = 1 we have 89 + 2 · 58 ≡ 1 mod 102 (because
s+ c1 · t ≡ c2 mod p− 1).

Now, we have U = {13, 79, 19, 93, 82, 42, 57, 95 } and USigned= {−13,
79, 19, -93, -82, 42, -57, 95 } = {89, 79, 19, 9, 20, 42, 45, 95 } (modulo 102).

Furthermore, we choose σ =
(

1 2 3 4 5 6 7 8
4 5 2 7 1 8 6 3

)

.Then, σ(USigned) = { 9, 20,
79, 45, 89, 95, 42, 19 }. Now calculating each single substep of Step 7 we obtain
the following:

w−u1 ≡ 6189 ≡ 66 mod 103

wu2 ≡ 6179 ≡ 100 mod 103

wu3 ≡ 6119 ≡ 13 mod 103

w−u4 ≡ 619 ≡ 79 mod 103

w−u5 ≡ 6120 ≡ 72 mod 103

wu6 ≡ 6142 ≡ 30 mod 103

w−u7 ≡ 6145 ≡ 100 mod 103

wu8 ≡ 6195 ≡ 81 mod 103

At Step 7, we obtain

20 Mehmet Sabır Kiraz, Osmanbey Uzunkol

R− ≡ w−u1 · wu4 ≡ 66 · 79 ≡ 64 mod 103

R+ ≡ wu2 · wu3 ≡ 100 · 13 ≡ 64 mod 103

S− ≡ w−u1 · w−u7 ≡ 66 · 100 ≡ 8 mod 103

S+ ≡ w−u2 · wu6 ≡ 100 · 30 ≡ 13 mod 103

T− ≡ w−u1 · wu4 · wu5 ≡ 66 · 79 · 72 ≡ 76 mod 103

T+ ≡ wu6 ≡ 30 mod 103.

Now at Step 8 we check whether S+ · (T− · T+)
2 ?
= w · S−. In fact, S+ · (T− ·

T+)
2 ≡ 13 · (76 · 30)2 ≡ 76 mod 103 and w · S− ≡ 61 · 8 ≡ 76 mod 103.
Step 9 finally computes the outcome as follows: U− ≡ w−u1 · w−u4 · w−u5

· w−u7 ≡ 66 · 79 · 72 · 100 ≡ 81 mod 103. Similarly, U+ ≡ wu2 · wu3 · wu6

· wu8 ≡ 100 · 13 · 30 · 81 ≡ 93 mod 103.
U− · R+ ≡ 81 · 64 ≡ 34 mod 103. Next, (U− · R+)

−1 ≡ 34−1 ≡ 100
mod 103. Similarly, R− · U+ ≡ 64 · 93 ≡ 81 mod 103. Hence, we have µ ·Z
· (U− · R+)

−1 (U+ · R−) ≡ 95 · 10 · 100 · 81 ≡ 76 mod 103.
The final outcome is ua ≡ 76 mod 103.

3.2.3 Security and Checkability.

In this part, we give the security analysis of Algprpr and show that a malicious
server cannot be able to get any valuable information about u and a.

The next lemma gives the probability that a malicious server obtains the
exponent.

Lemma 1 A malicious server S ′ learns the exponent a with probability at

most
√
πk

23k
for k = ℓ.

Proof The output will only be disclosed if S ′ obtains exactly the same position

of ai’s with their signs. Hence, the probability of this event is 1/
(

(

2k
k

)

· 2k
)

.

Hence, S ′ cannot distinguish the two test queries from all of the 2k queries
that C makes, and during any execution of Algprpr the server S ′ can success-

fully cheat without being detected with probability at most
√
πk

23k
by using the

Stirling’s approximation
(

2k
k

)

≈ 4k√
πk

[38]. Note that letting k = ℓ = 29 the

probability becomes negligible (≈ 2−80). ⊓⊔

We are now ready to prove the security of Algprpr. As explained above,
outsource-security informally means that there exists a simulator which sim-
ulates the view of the adversary in a real algorithm run. This means that
the adversary obtains no relevant information from the real run since it could
output any result from what it knows by itself.

Theorem 3 The algorithms (C,S) are an outsource-secure implementation
of Algprpr, where the input (a, u) may be honest secret; or honest protected; or
adversarial protected.

Algorithms for Secure Outsourcing of Cryptographic Computations 21

Proof We note that this proof is inspired from the proof of the security analy-
sis of [3]. Let A = (E ,S ′) be a probabilistic polynomial-time (PPT) adversary
interacting with a PPT-based algorithm C in the outsource-security model.

Firstly, we prove EVIEWreal ∼ EVIEWideal. (Pair One– The external adver-
sary E learns nothing.)

Let (a, u) be a private input of an honest party. Assume that SimE is a PPT
simulator which acts as follows. SimE ignores the the ith round when getting
input, like using Figure 1 it chooses random sets R := U1 ∪ U2 ∪ U3 ∪ U4 :=
{r1, · · · , rℓ} and A := U5∪U6∪U7∪U8 := {a1, · · · , ak} such that r =

∑ℓ
i=1 ri,

a =
∑k

i=1 ai. SimE first forms random subsets Ui with arbitrary length such
that U := A ∪ R = ∪8i=1Ui, where Ui 6= ∅, ∀ i and Ui ∩ Uj = ∅, ∀ i 6= j.
For the sign of the values SimE chooses further a random α = (α1, · · · , αℓ+k)
∈R {0, 1}

ℓ+k. Next, SimE forms random subsets S := U1 ∪ U2 ∪ U6 ∪ U7 and
T := U1 ∪U4 ∪U5 ∪U6 of U such that s =

∑

si∈S si and t =
∑

ti∈T (−1)αi · ti
satisfying the condition that s + c1t = c2, where c1, c2 ∈R {1, · · · , c}. Let
U := {u1, · · · , uk+ℓ}. C chooses a random permutation σ ∈R Sℓ+k(U) and sets
the permuted elements U = σ(U) := (σ1, · · · , σk+ℓ). SimE sets U−, U+ ← 1
and uses the partitions in Figure 1.

If an error occurs, SimE stores its own and S ′’s states and outputs Y i
p =

“error′′, Y i
u = ∅, repi = 1. If all checkability steps are valid, SimE outputs

Y i
p = ∅, Y i

u = ∅, repi = 0; otherwise, SimE chooses a random group value

h ∈R G and outputs Y i
p = h, Y i

u = ∅, repi = 1. Next, SimE stores the corre-
sponding states. The distributions in the real and ideal executions of the input
to S ′ are computationally indistinguishable. In the ideal setting, the inputs are
uniformly chosen random from Z/mZ×G. In the real setting, we follow Step 7
of Algprpr to assure that all parts of Exp C invokes is randomized independently
using σ and α. Now, we consider all possible cases. If S ′ behaves in an honest
manner in the ith round, then EVIEWi

real ∼ EVIEWi
ideal, because in the real

execution CS
′

perfectly runs Algprpr and in the ideal execution SimE does not
change the output of Algprpr. If S

′ gives a incorrect output in the ith round, then

the output will be detected by C and SimE with probability at most
√
πk

23k
due

to Lemma 1, resulting in an output of “error′′; otherwise, the software will
indeed be successful in manipulating the output of Algprpr (e.g., because each
request is independent of each other, sending approximately 29 wrong results
with their signs to the client C makes the probability of not being detected to
negligibly small (≈ 1/280).).

In the real execution, the k+ℓ real outputs of S ′ are firstly grouped into two
different parts corresponding to their signs (positive or negative). The negative
and positive parts will be independently computed due to the checkability
condition s + c1t = c2. The result will be multiplied corresponding to their
signs (7 and 8 of Algprpr). At the last step, we multiply the overall result with
the masking values of the base element generated at the first step according
to their signs. Hence, a manipulated output of Algprpr will seem to be wrong,
but random to E .

22 Mehmet Sabır Kiraz, Osmanbey Uzunkol

We simulate this situation in the ideal execution by replacing the output
of Algprpr with a random element in G when there is an attempt to behave
maliciously by S ′ which would not be detected by C in the real execution.
Hence, even if S ′ behaves maliciously in the ith round, EVIEWi

real ∼ EVIEWi
ideal.

By the hybrid argument, we can easily conclude that EVIEWreal ∼ EVIEWideal.
Next, we prove EVIEWreal ∼ EVIEWideal. (Pair Two– The untrusted server

S ′ obtains no useful information).
We now consider the cases where (a, u) is honest secret/protected or ad-

versarial protected. Let SimS′ be a PPT simulator that acts in the following
manner. SimS′ ignores the ith round when getting input, and instead chooses
a permutation σ ∈ Sℓ+k and prepares a signed permuted random query of the
form ((−1)ασ(j)σj) ∈ Z/mZ × G to S ′ using ασ(j), where j ∈ {1, · · · , k + ℓ}.
SimE randomly checks (k + ℓ) outputs from each procedure using σ. Then,
SimS′ stores its own and states of S ′. Note that these real and ideal executions
are distinguishable by E but E cannot use this information to S ′ (e.g., the
output of the ideal execution is never manipulated). During the ith round of
the real execution, the inputs of C) are always randomized to 2(k+ ℓ) utilizing
σ, α (see steps 6 and 7 of Algprpr). In the ideal execution, SimS′ always generates
independently random queries for S ′. The view is consistent and indistinguish-
able from the server’s view when there is an interaction with honest C. Thus,
for each round we have EVIEWreal ∼ EVIEWideal, which by the hybrid argument
yields EVIEWreal ∼ EVIEWideal.

Consequently, we simulate every step of Algprpr for the simulator which com-
pletes the simulation for both malicious environment and server. ⊓⊔

Lemma 2 The algorithm (C,S) is an O(log2(l)/l)-efficient implementation
of Algprpr, where l denotes the number of bits of the exponent a.

Proof We use the same approach of the proof of the algorithm in [3]. The
algorithm SubAlg makes 3 calls to Rand and 4 log c+8 modular multiplications.
The proposed algorithm Algprpr makes 2 further calls to Rand and together
with SubAlg, k + ℓ + 4 log c + 30 modular multiplications (MMs) and only 1
modular inversion (MInv) in order to compute ua mod n (other operations
like modular additions, doubling or multiplication with very small numbers
like c are omitted). Also, a server aided exponentiation takes O(log2(l)) MMs
using the number theoretic complexity analysis of Nguyen, Shparlinski, and
Stern [14], or O(1) MMs if a table-lookup method is used. On the other hand,
it takes in average 1.5l MMs to compute ua mod n by the classical square-
and-multiply method. Thus, the algorithm (C,S) is an O(log2 l/l)-efficient
implementation of Algprpr. ⊓⊔

Lemma 3 The algorithm (C,S) is an (1 − 1
c(c−1))-checkable implementation

of Algprpr.

Proof By Algprpr, a malicious server S gives a incorrect result without being
detected if it can find either

1. the correct values c1 and c2 in SubAlg, or

Algorithms for Secure Outsourcing of Cryptographic Computations 23

2. the correct value a or r, or
3. the correct value s or t, or

4. the position of a value si, where S={s1, · · · , sk′} with s =
∑k′

j=1 si, or

5. the position of a value ti, where T={t1, · · · , tk′′} with t =
∑k′′

j=1 ti

For the first case, S finds the correct values c1 and c2 in SubAlg with
probability 1

c(c−1) (see Theorem 1 for details).

For the second case, finding either the exact value of a or r has negligibly
probability (see Lemma 1).

For the third case, to be able to find the correct values of s, the server S first

needs to find out the subset S from the power set P(U) such that s=
∑k′

i=1 si.
The value t can subsequently be obtained by solving the subset sum problem
for s+c1t = c2, where c1 and c2 are small integers. Similarly, one can start with
t to find s. The complexity of finding such (s, t) pairs from the power set P(U)
is 2k+ℓ · 2(k+ℓ)/2 = 23/2(k+ℓ) (note that |P(U)| = 2k+ℓ). The reason is that
the best generic algorithms to solve the subset sum problem are lattice-based
methods which require 2n/2 for any set of cardinality n [11, 39–42].

For the last two cases, S can attack the checkability of the system if it
can find a value si (or ti) with its sign. Namely, the checkability follows from
∑k′

i=1 si + c1
∑k′′

i=1 ti = c2 and with the knowledge of si (or ti) and its sign
and the knowledge of c1 and c2. Finding a value si has probability at least 1/2
and with probability at least 1/2 to decide whether it has negative or positive
sign. Therefore, the overall probability of this event is 1

4c2 .
Hence, the overall probability for a malicious server S to declare a incorrect

value without being detected is

1−
1

c(c− 1)
= min{1−

1

4c2
, 1−

1

c(c− 1)
}.

⊓⊔

Now the security and the checkability of Algprpr follow obviously from the
following corollary.

Corollary 1 The algorithm (C,S) is an (O(log2(l)/l), (1− 1
c(c−1))-outsource-

secure implementation of Algprpr.

Remark 1 Letting c = 4 gives us the probability 11/12 by Lemma 3 which is
the best checkability result compared to previous works [2–5].

Note that in outsourced computation model the malicious server S can be
seen as a covert adversary [43], which may arbitrarily behave to cheat depend-
ing on whether being detected with reasonable probability (not necessarily
with very high probability) by an honest party. In [43], covert adversaries are
described for many real-life scenarios where they are always eager to cheat but
only if they are not detected. Therefore, cloud servers can be seen as covert
adversaries in outsourced computation setting because their financial interests
and their reputation deter them from cheating.

24 Mehmet Sabır Kiraz, Osmanbey Uzunkol

4 Other Relevant Algorithms

In this section, we simplify Algprpr for Public-Base & Private-Exponent and
Private-Base & Public-Exponent cases, and modify it to obtain a more efficient
simultaneous modular exponentiations algorithm.

4.1 Public-Base & Private-Exponent

In this part, we modify Algprpr for the case of public-base & private-exponent.
The modified method is especially designed to outsource the cryptographic
outsourced computation for the cases in which there is no need to hide the
base element if it is not required in the cryptographic setting (e.g., signatures).
The first precomputation of Algprpr is unnecessary in this case since we are not
forced to hide our base element u. The new algorithm Alg

pr

pb for public-base &
private-exponent is a special case of Algprpr by setting the values x = y = 0 in
the precomputation step.

Theorem 4 Alg
pr

pb terminates and outputs correctly. Furthermore, there exists

an algorithm which is an
(

O(log2(l)/l), 1
4c2

)

-outsource-secure implementation
of Algprpb.

Proof Correctness, termination and security of the algorithm follow easily as a
corollary of the results for Algprpr by excluding the subalgorithm SubAlg. Because

SubAlg is not used for Algprpb, the checkability property becomes 1− 1
4c2 . ⊓⊔

4.2 Private-Base & Public-Exponent

In this part, we give another algorithm for private-base & public-exponent
cryptographic computation by modifying Algprpr. Note that especially for public-
key encryption or signature verification based systems it could be desirable to
have private-base & public-exponent. This algorithm is denoted by Algpbpr which
works in detail as follows.

Algorithm 3 (Algpbpr): Private-Base & Public-Exponent Modular Ex-
ponentiations

Input: (u, a, c) (where a ∈ Z/mZ, u ∈ G with < g >= G ≤ F
∗
n for DLP or

g ∈R G = (Z/nZ)∗ for RSA with |G| = m, where n,m ∈ N, and an arbitrary
i ∈ N).
Output: The value ua in G.
Precomputation: A Rand algorithm computes and stores the following values
for C:

– (si, g
si , g−si), (ti, g

ti , g−ti) ∈R Z/mZ×G
2 for i = 1, 2.

– I={1, · · · , c} ⊆ Z/mZ with I−1 = {1−1, · · · , c−1} ⊆ Z/mZ.

Algorithms for Secure Outsourcing of Cryptographic Computations 25

1. C picks random elements c1, c2 ∈R I, where gcd(c1, c2) = 1, and computes
u1 ← uc1 · gb1s1 and u2 ← uc2 · gb2s2 , where b1, b2 ∈R {1,−1}.

2. C runs

(a) U1 ← Exp(a, u1).
(b) U2 ← Exp(a, u2).
(c) T1 ← Exp((b′1a · s1 + b3t1) · c

−1
3 , g), where b′1, b3 ∈R I and c3 ∈ I−1.

(d) T2 ← Exp((b′2a · s2 + b4t2) · c
−1
4 , g), where b′2, b4 ∈R I and c−1

4 ∈ I−1.

3. For verification, C does the following computations:

(a) T ′
1 = T c3

1 · g
−b3t1 and T ′

2 = T c4
2 · g

−b4t2 (masking removal)

(b) if b1 6= b′1 computes U ′
1 ← U1 · T

′
1 else computes U ′

1 ← U1 · (T
′
1)

−1

(c) if b2 6= b′2 computes U ′
2 ← U2 · T

′
2 else computes U ′

2 ← U2 · (T
′
2)

−1

(d) verifies (U ′
1)

c2 ?
= (U ′

2)
c1 , where k = c1 · c2 and returns ua

(easily computable since gcd(c1, c2) = 1)

Theorem 5 Algpbpr terminates and outputs correctly. Furthermore, there exists

an algorithm which is an (O(log2(l)/l), 1− 1
c(c−1))-outsource-secure implemen-

tation of Algpbpr .

Proof Precomputation and Step 1 of Algpbpr imply that

u1 = uc1 · gb1s1 ,

u2 = uc2 · gb2s2 ,

where b1, b2 ∈R {1,−1}, c1, c2 ∈R I and gcd(c1, c2) = 1.
At Step 2 S returns the query results

U1 = ua
1 = uac1 · gb1as1 ,

U2 = ua
2 = uac2 · gb2as2 ,

and

T1 = g(b
′

1as1+b3t1)·c−1
3 and T2 = g(b

′

2as2+b4t2)·c−1
4 .

Then C computes the following to verify the result.
C first removes the masking values t1 and t2 using c3 and c4 as

T ′
1 = T c3

1 · g
−b3t1 = gb

′

1as1 ,

T ′
2 = T c4

2 · g
−b4t2 = gb

′

2as2 .

Next, the masking values from U1 and U2 will be removed, i.e. U ′
1 = uac1

and U ′
2 = uac2 . In order to avoid inversion, we basically compare b1 with b′1

and b2 with b′2 (U ′
1 = U1 · T

′
1 or U ′

2 = U2 · (T
′
2)

−1, respectively).

C verifies (U ′
1)

c2 ?
= (U ′

2)
c1 , where c1, c2 ∈ I and k = c1 · c2. If the equality

does not hold then algorithm outputs checkability failure. Finally, because
gcd(c1, c2) = 1 and c1, c2 are very small C efficiently computes ua.

26 Mehmet Sabır Kiraz, Osmanbey Uzunkol

A malicious server cannot learn the private base u because it is randomized
with gs1 and gs2 . Furthermore, a malicious server cannot also change the
outcome unless it finds either c1, c2 or c3, c4 and the probability of this event
is 1− 1

c(c−1) . ⊓⊔

4.3 t-Simultaneous Modular Exponentiations

We now generalize the notion of simultaneous modular exponentiation method
of [2] to the notion of t-simultaneous modular exponentiations ua1

1 · · ·u
at

t in the
group G for t ∈ N. t-simultaneous modular exponentiations are extensively
used in many real-life cryptographic schemes including [19, 35, 44–47]. As de-
scribed in [2], computing 2-simultaneous modular exponentiations is trivial by
simply invoking Algprpr twice. Here, we show that it is possible to reduce the com-
putation cost significantly for a generalized t-simultaneous setting by improv-
ing the method of [2] and utilizing only one untrusted server (instead of two
non-colluding malicious servers). We denote by t-Sim-Algprpr for t-simultaneous
modular exponentiation algorithm.

The scheme of Chen et al. [2] has probability 2/3 for checkability in modular
exponentiation utilizing and has probability 1/2 for 2-Sim-Algprpr using two non-
colluding servers. They simply add a one more variable on the exponentiation
at the expense of reducing the probability from 2/3 to 1/2. Our solution has
a scalable probability 1 − 1

c(c−1) for checkability and utilizes only one single

untrusted server.
We further emphasize that the natural generalization for 2-simultaneous

modular exponentiation method in [2] reduces the checkability probability
from 1

2 of single exponentiation case to 2
t+2 for t-simultaneous modular ex-

ponentiations. However, the use of t-simultaneous modular exponentiation in
real-life protocols, like anonymous credentials [35], causes significant complex-
ity overhead. Hence, this reduction hinders the use of this generalization from
2-simultaneous to t-simultaneous modular exponentiation. Unlike the scheme
in [2], our scheme has an adjustable probability 1− 1

c(c−1) which is independent

of t. More concretely, the algorithm works as follows:
Algprpr first runs Rand to compute the blinding pairs (x, gx), (y, gy) and

(k, gk). Denote v = gx and µ = gy. Now, we have

ua1
1 · · ·u

at

t = (vw1)
a1 · · · (vwt)

at = µZgzwa1
1 · · ·w

at

t ,

where wi = uiv
−1 and Z = gz with z = x

∑t
i=1 ai − y for 1 ≤ i ≤ t. First, Z

is computed by invoking Z = SubAlg(z, g, c) to S.
Note that wi’s are completely random and therefore, can be revealed to S.

Hence, instead of invoking Algprpr t times, it is now possible to invoke more effi-
cient algorithm Alg

pr

pb t times. In particular, we gain a linear factor for the num-
ber of total multiplication in the number t. More precisely, a t-simultaneous
modular exponentiation requires t(ℓ + k + 4 log c + 28) + 10 + 4 log c modu-
lar multiplications and t modular inversions instead of invoking Algprpr t-times

Algorithms for Secure Outsourcing of Cryptographic Computations 27

which requires t(ℓ + k + 8 log c + 38) modular multiplications and t modular
inversions. Hence, we save 10t+ 4 log ct modular multiplications by using our
t-simultaneous modular exponentiation technique.

For instance, the complexity of 2-simultaneous modular exponentiations
running 2-Sim-Algprpr for c = 4 requires 184 MMs and 2 MInvs (instead of 200
MMs and 2 MInvs by running Algprpr twice).

By utilizing t calls of Algprpb and Theorem 4 the following holds.

Theorem 6 There exists an algorithm (C,S) which is an (O(t log2(l)/l), 1−
(1
c(c−1)))-outsource-secure implementation of t-Sim-Algprpr.

Table 1 Computation Complexity of the Proposed Algorithms Using Single Server

Exp (S) MM MInv Rand Check
SubAlg 2 4 log c+ 8 0 3 1− 1

c(c−1)

Algprpr ℓ+ k + 2 ℓ+ k + 8 log c+ 38 1 5 1− 1
c(c−1)

Alg
pr
pb ℓ+ k ℓ+ k + 4 log c+ 28 1 0 1− 1

4c2

Algpbpr 4 16 log c+ 16 2 8 1− 1
c(c−1)

t-Sim-Algprpr t(ℓ+ k) + 1 t(ℓ+ k + 4 log c+ t 5 1− 1
c(c−1)

28) +10 + 4 log c

5 Complexity Analysis of the Proposed Algorithms

In this section, we first illustrate the complexity of our proposed algorithms
using Table 1. In this table, we give the complexity results by counting the
number of modular exponentiations for the server side; and for the client side
the number of modular multiplications (MMs), the number of modular inver-
sions (MInvs), the number of Rands and checkability probabilities. Note that
we count the number of multiplication in the worst case by using classical
double and algorithm, i.e., for an l−bit exponent we require 2l + 1 MMs.

In Table 2, we give the complexity of the proposed algorithms by setting
ℓ = k = 29 and c = 4. We note that by Lemma 3 letting ℓ = k = 29 reduces
the probability of privacy leakage to negligible levels.

In order to compare Algprpr with the previous results properly, we need to
equate the checkability probabilities of all algorithms and count the number
of all operations in terms of modular multiplications. For this purpose, we use
the fact that in a real-life hardware setting a modular inversion is about 100
times slower than a modular multiplication [48]. In order to have the same
checkability probability 11/12, we have to run the algorithm [3] log2 12 ≈ 3, 58
times, and the algorithm [2] log3 12 ≈ 2, 26 times. The comparison will now
be as follows:

28 Mehmet Sabır Kiraz, Osmanbey Uzunkol

Table 2 Computation Complexity for Proposed Algorithms for k = ℓ = 29, c = 4

Exp (S) MMs MInvs Rand Check
SubAlg 2 10 0 3 11/12
Algprpr 60 100 1 5 11/12

Alg
pr

pb 58 86 1 0 63/64

Algpbpr 4 48 2 8 11/12

2-Sim-Algprpr 117 184 2 5 11/12

In [3], we have 9 MMs and 5 MInvs in one round. Hence, in log2 12 rounds
we obtain 9 · log2 12 MMs and 5 · log2 12 MInvs. Hence, we have a total number
of 9 · log2 12 + 100 · 5 · log2 12 ≈ 1825 MMs for [3].

In [2], we have 7 MMs and 3 MInvs in one round. Hence, in log3 12 rounds
we obtain 7 · log3 12 MMs and3 · log3 12 MInvs. Hence, we have a total number
of 7 · log3 12 + 100 · 3 · log3 12 ≈ 694 MMs for [2].

In [5], the goal is to outsource ua, where c = a − bξ with b and c are
known by the server with probability 1/6. Therefore, ξ must be large enough
to prevent the brute-force attack. Hence, to have a negligible level, one has to
choose ξ ≈ 277. There are 167 MMs and 4 MInvs for the checkability of 1/2.
Hence, in log2 12 rounds we obtain 167 · log2 12 MMs and 4 · log2 12 MInvs.
Hence, we have a total number of 167 · log2 12 + 100 · 4 · log2 12 MMs for [5].

The algorithm Algprpr has 100 MMs and only 1 MInv. Hence, there is a total
number of approximately 100 + 1 · 100 = 200 MMs.

Table 3 Comparison is shown for the client side. Total MMs are counted after equating
the checkability to 11/12 for all schemes.

MM MInv
Single
Server

Check Total MMs

[3] TC05 9 5 ✗ 1/2
log2 12 · 509

≈ 1825

[2] ESORICS12 7 3 ✗ 2/3
log3 12 · 307

≈ 694

[5] ESORICS14 167 4 X 1/2
log2 12 · 567

≈ 2033

Ours 100 1 X 11/12
100 + 100

≈ 200

In Table 3, we compare our algorithm Alg
pr
pb with the results of [3], [2]

and [5]. In the last column of Table 3, we give the total number of MMs which
shows that our algorithm Alg

pr
pb is the most efficient algorithm using only one

single untrusted server S with the best checkability.

Algorithms for Secure Outsourcing of Cryptographic Computations 29

Remark 2 Although the number of MMs of Algprpr is slightly better than the
number of MMs in the algorithm of [2] for only one outsourced modular ex-
ponentiation, using t-Sim-Algprpr we gain a linear factor in t which gives signifi-
cantly better complexity results for the number of MMs.

Furthermore, Algprpr has better checkability probability (11/12 versus 2/3).
We highlight that our checkability probability increases with the value of c
at the expense of increasing the number of modular multiplication logarith-
mically. In particular, our approach enables the designer to obtain privacy
preserving outsourcing algorithms with scalable checkability.

Memory complexity is also an important criteria especially for resource-
constrained devices. The schemes [3] and [2], which use two-non colluding
servers, need to store 22 and 17 group elements, respectively. In [5], which
uses only one single untrusted server, 6kℓ+5ℓ+16 group elements are stored,
where r, s are security parameters. By equating the checkability to 11/12 in
all these schemes [2, 3, 5], the required memory becomes 22 · log2 12 ≈ 78.87,
17 · log3 12 ≈ 38.45, and 6kℓ+5ℓ+16 · log2 12, respectively. Our main algorithm
only stores k + ℓ + c + 27 group elements, where k, ℓ are security parameters
and c is a small integer. When compared to the only existing scheme using one
untrusted server [5] we gain a linear factor in ℓ for the the memory requirement.

We remark that one demerit of Algorithm 1 (Algprpr) in comparison with
other schemes may be the communication overhead. More concretely, [3] re-
quires 8 logm +16 · g, [2] requires 6 logm + 12 · g, and [5] requires 4 logm
+8 · g bits of transmission, where g denotes the group size and m is the order
of the group. For the same checkability, [3] requires log2 12·(8 logm +16·g), [2]
requires log3 12 · (6 logm + 12 · g), and [5] requires log2 12 · 4(logm +8 · g) bits
of transmission. Our main algorithm transmits (k+ℓ+2) · logm+(k+ℓ+2) ·g
group elements to the server. We remark that the communication overhead of
our algorithm for k = ℓ = 29 (for security with negligible error probability)
is just slightly larger than the others. In particular, this disadvantage is not
noticeable from the practical point of view with the current computational
power.

6 Applications: Outsourced Oblivious Transfer and Blind
Signatures

6.1 Oblivious Transfer

Oblivious transfer is a powerful cryptographic primitive which is complete for
secure multiparty computation [27,28]. In an OT protocol, the sender has two
private input bits (s0, s1) and the chooser has one private input bit b. At the
end of the protocol, the chooser learns only the bit sb, whereas the sender does
not know any information which bit was selected by the chooser.

With the help of cloud providers it is possible to compute independently
any outsourced functionality without disclosing the private input. Namely,
clients only need to randomize/encrypt their data and de-randomize/decrypt

30 Mehmet Sabır Kiraz, Osmanbey Uzunkol

Sender Server Chooser

r ∈R G

gr mod n=Algprpr(r, g, n)

hb = gr mod n
h1−b = h/gr mod n

h0, h1

r0, r1 ∈R G
gri mod n= Algprpr(ri, g, n), i = 0, 1

Private Input: s0, s1 Private Input: bPrivate Input: ⊥

(A0, B0) = (gr0 mod n, gs0hr0
0 mod n)

(A1, B1) = (gr1 mod n, gs1hr1
1 mod n)

(A0, B0), (A1, B1)

Private Output: ⊥ Private Output: sb

gsihi
ri mod n= 2-Sim-Algprpr((si, g), (ri, hi), n), i = 0, 1

(Ab)
r mod n = Algprpr(r,Ab, n)

Fig. 2 Outsourcing Oblivious Transfer

the returned messages to get the desired results. OT is one of the major com-
putational overhead for Yao’s garbled circuit protocol [23,29], and used in sev-
eral applications like biometric authentication, e-auctions, private information
retrieval, private search [30–33]. Hence, running OT protocols for resource-
constrained mobile environment may have substantial benefits.

In this section, we provide an example of outsourcing an OT protocol in a
discrete log setting (see Figure 2). Assume that G is a group generated by g
(i.e. G =< g >) and h ∈ G, where logg h is unknown to any party. At the first
step, the chooser chooses random r ∈R G and invokes the cloud server S to
compute Algprpr(r, g, n) and computes hb = gr mod n. Note that at this stage,
cloud server and the environment do not learn any valuable information about
the inputs or the outputs. The chooser then computes h1−b = h/gr. Next,
the chooser sends (h0, h1) to the sender. The sender now invokes S to run
Algprpr(r0, g, n) and 2 − Sim-Algprpr((si, g), (ri, hi), n), i = 0, 1 to compute and
receive gri and hri

i gsi for i = 0, 1, respectively. The sender then returns homo-
morphic ElGamal encryptions of s0 and s1 denoted as (A0, B0) = (gr0 , gs0hr0

0)
and (A1, B1) = (gr1 , gs1hr1

1), respectively. Depending on his bit b, the chooser
is able to decrypt one of these encryptions to learn either s0 or s1. Hence, if
both parties follow the protocol specification, the chooser learns exactly one
of the bits s0 and s1, and the sender does not know any information about
what the chooser learns. The OT protocol used for outsourcing is secure in
the semi-honest model but malicious versions of OT can be used analogously.
We finally would like to highlight that in the original OT protocol, for each
input bit, the Chooser computes 2 exponentiations, and the Server computes 2

Algorithms for Secure Outsourcing of Cryptographic Computations 31

exponentiations and 2 simultaneous exponentions. Therefore, our outsourcing
algorithm gains higher computational efficiency in case the private inputs are
longer. See Table 4 for the comparison of the standard OT protocol with the
outsourced version.

Table 4 Comparison of Outsourced OT and BS with Classical Versions

Standard Outsourced
OT 4 MExp + 2 2-Sim-MExp + 1 MInv ≈ 24100 MMs ≈ 1668 MMs
BS 2 MExp + 1 MInv + 1 MM ≈ 6100 MMs ≈ 500 MMs

Cloud Server Verifier
Private Input: d, p, q

Signer
Private Input: ⊥

Public Input: e, n Public Input: e, n

r ∈R (Z/nZ)∗
re mod n=Algprpr(e, r, n)

c = mre mod n

c′ = cd mod n=Algprpr(d, c, n)

c

c′

md = c′/r mod n

Private Input: ⊥
Public Input: ⊥

Fig. 3 Outsourcing Blind Signatures

6.2 Blind Signatures

Blind signatures have been suggested by Chaum [34]. Roughly speaking, it
allows a signer interactively issue signatures and allows users to obtain them
such that the signer does not see the resulting message, and the signature pair
during the signing session. Like any conventional electronic signatures they
are unforgeable and can be verified using a public key.

Blind signatures can be applied to privacy preserving protocols like e-cash,
e-voting and anonymous credentials. For a e-cash scenario, a bank blindly
signs coins withdrawn by the users. For an e-voting scenario, an authority
blindly signs a vote for later to cast the signed votes. As for anonymous cre-
dentials which especially needs simultaneous exponentiations with expensive
zero-knowledge proofs, the issuing authority blindly signs a key [35] for later to
authenticate services anonymously. We would like to highlight that in the orig-
inal blind signature protocol, the signer and the verifier computes exponentia-
tion using private and public keys respectively. Hence, for mobile environment

32 Mehmet Sabır Kiraz, Osmanbey Uzunkol

and constrained-devices, outsourcing blind signatures gains higher computa-
tional efficiency, and therefore can be beneficial for real-life applications (see
Figure 3). See Table 4 for the comparison of the standard OT protocol with
the outsourced version.

7 Conclusion

In this paper, we propose new, scalable, secure and efficient algorithms for
outsourcing modular exponentiations (i.e., public-base & private-exponent,
private-base & public-exponent, private-base & private-exponent, and simul-
taneous modular exponentiations). Our algorithms are significantly more ef-
ficient than the previous algorithms. Moreover, the proposed algorithms are
modeled, where only one single untrusted cloud server exists. Our algorithms
also enjoy the predetermined checkability property which is a significant im-
provement compared to the prior works. The security of our algorithms is
proven formally based on the model of [3]. We finally utilize our algorithms
for outsourcing oblivious transfer protocols and blind signatures, which may
be beneficial for resource-constrained mobile secure environments running on
a client.

The algorithm for single server in [5] requires extremely large number of
MMs whereas our algorithm needs comparably very small number of MMs
(≈ 10, 17 times less MMs). On the other hand, although the communication
round of our algorithm is constant, the overhead of information exchange is
still large. Therefore, it is an interesting open problem to find better construc-
tions achieving smaller (possibly constant) communication overhead together
with smaller number of modular multiplications without any modular inver-
sions.

Acknowledgements

This work is partly supported by a joint research project funded by Bun-
desministerium für Bildung und Forschung (BMBF), Germany (01DL12038)
and TÜBİTAK, Turkey (TBAG-112T011). It is also partially supported by the
project (114C027) funded by EU FP7-The Marie Curie Action and TÜBİTAK
(2236-CO-FUNDED Brain Circulation Scheme). It has also been partially sup-
ported by the COST Action CRYPTACUS (IC1403).

References

1. Marten Van Dijk and Ari Juels. On the impossibility of cryptography alone for privacy-
preserving cloud computing. In Proceedings of the 5th USENIX Conference on Hot
Topics in Security, HotSec’10, pages 1–8. USENIX Association, 2010.

2. Xiaofeng Chen, Jin Li, Jianfeng Ma, Qiang Tang, and Wenjing Lou. New algorithms for
secure outsourcing of modular exponentiations. In Sara Foresti, Moti Yung, and Fabio
Martinelli, editors, Computer Security ESORICS 2012, volume 7459 of Lecture Notes
in Computer Science, pages 541–556. Springer Berlin Heidelberg, 2012.

Algorithms for Secure Outsourcing of Cryptographic Computations 33

3. Susan Hohenberger and Anna Lysyanskaya. How to securely outsource cryptographic
computations. In Joe Kilian, editor, Theory of Cryptography, volume 3378 of Lecture
Notes in Computer Science, pages 264–282. Springer Berlin Heidelberg, 2005.

4. Praveen Gauravaram Lakshmi Kuppusamy, Jothi Rangasamy. On secure outsourcing of
cryptographic computations to cloud. In ACM Symposium on Information, Computer
and Communications Security ASIACCS. ACM, 2014.

5. Yujue Wang, Qianhong Wu, Duncan S. Wong, Bo Qin, Sherman S.M. Chow, Zhen Liu,
and Xiao Tan. Securely outsourcing exponentiations with single untrusted program for
cloud storage. In Mirosaw Kutyowski and Jaideep Vaidya, editors, Computer Security
- ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pages 326–343.
Springer International Publishing, 2014.

6. Jingwei Li, Duncan Wong, Jin Li, Xinyi Huang, and Yang Xiang. Secure outsourced
attribute-based signatures. IEEE Transactions on Parallel and Distributed Systems,
99(PrePrints), 2014.

7. Haixin Nie, Xiaofeng Chen, Jin Li, Josolph Liu, and Wenjing Lou. Efficient and veri-
fiable algorithm for secure outsourcing of large-scale linear programming. In Advanced
Information Networking and Applications (AINA), 2014 IEEE 28th International Con-
ference on, pages 591–596, May 2014.

8. Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In
STACS 90, volume 415 of Lecture Notes in Computer Science, pages 37–48. Springer
Berlin Heidelberg, 1990.

9. D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Locally random reductions:
Improvements and applications. Journal of Cryptology, 10(1):17–36, 1997.

10. M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC
’87, pages 195–203. ACM, 1987.

11. Victor Boyko, Marcus Peinado, and Ramarathnam Venkatesan. Speeding up discrete
log and factoring based schemes via precomputations. In Advances in Cryptology EU-
ROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 221–235.
Springer Berlin Heidelberg, 1998.

12. Peter de Rooij. On schnorrs preprocessing for digital signature schemes. Journal of
Cryptology, 10(1):1–16, 1997.

13. Tsutomu Matsumoto, Koki Kato, and Hideki Imai. Speeding up secret computations
with insecure auxiliary devices. In Advances in Cryptology CRYPTO 88, volume 403
of Lecture Notes in Computer Science, pages 497–506. Springer New York, 1990.

14. Phong Q. Nguyen, Igor E. Shparlinski, and Jacques Stern. Distribution of modular sums
and the security of the server aided exponentiation. In Cryptography and Computational
Number Theory, volume 20 of Progress in Computer Science and Applied Logic, pages
331–342. Birkhauser Basel, 2001.

15. C.P. Schnorr. Efficient identification and signatures for smart cards. In Jean-Jacques
Quisquater and Joos Vandewalle, editors, Advances in Cryptology EUROCRYPT 89,
volume 434 of Lecture Notes in Computer Science, pages 688–689. Springer Berlin Hei-
delberg, 1990.

16. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryp-
tology, 4(3):161–174, 1991.

17. Marten Van Dijk, Dwaine Clarke, Blaise Gassend, G.Edward Suh, and Srinivas Devadas.
Speeding up exponentiation using an untrusted computational resource. Designs, Codes
and Cryptography, 39:253–273, 2006.

18. Marc Fischlin and Roger Fischlin. Efficient non-malleable commitment schemes. Journal
of Cryptology, 22(4):530–571, 2009.

19. Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Advances in Cryptology CRYPTO
94, volume 839 of Lecture Notes in Computer Science, pages 174–187. Springer Berlin
Heidelberg, 1994.

20. Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In Proceedings of CRYPTO 84 on Advances in Cryptology, pages 10–18.
Springer-Verlag New York, Inc., 1985.

21. Xu Ma, Jin Li, and Fangguo Zhang. Outsourcing computation of modular exponentia-
tions in cloud computing. Cluster Computing, 16(4):787–796, 2013.

34 Mehmet Sabır Kiraz, Osmanbey Uzunkol

22. Jie Liu, Bo Yang, and Zhiguo Du. Outsourcing of verifiable composite modular expo-
nentiations. In INCoS, pages 546–551, 2013.

23. Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd An-
nual Symposium on Foundations of Computer Science, SFCS ’82, pages 160–164. IEEE
Computer Society, 1982.

24. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology EUROCRYPT 99, volume 1592 of Lecture Notes in Com-
puter Science, pages 223–238. Springer Berlin Heidelberg, 1999.

25. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts.
In Theory of Cryptography, volume 3378 of Lecture Notes in Computer Science, pages
325–341. Springer Berlin Heidelberg, 2005.

26. Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA,
USA, 2009.

27. Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 20–31, New
York, NY, USA, 1988. ACM.

28. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 2004.

29. Yehuda Lindell and Benny Pinkas. A proof of security of yaos protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

30. Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky. Single database private infor-
mation retrieval implies oblivious transfer. In Advances in Cryptology EUROCRYPT
2000, volume 1807 of Lecture Notes in Computer Science, pages 122–138. Springer
Berlin Heidelberg, 2000.

31. Ari Juels and Michael Szydlo. A two-server, sealed-bid auction protocol. In Matt Blaze,
editor, Financial Cryptography, volume 2357 of Lecture Notes in Computer Science,
pages 72–86. Springer Berlin Heidelberg, 2003.

32. Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality test. In
Advances in Cryptology - ASIACRYPT 2003, volume 2894 of Lecture Notes in Com-
puter Science, pages 416–433. Springer Berlin Heidelberg, 2003.

33. Julien Bringer, Herv Chabanne, and Alain Patey. Shade: Secure hamming distance
computation from oblivious transfer. In Financial Cryptography and Data Security,
volume 7862 of Lecture Notes in Computer Science, pages 164–176. Springer Berlin
Heidelberg, 2013.

34. David Chaum. Blind signatures for untraceable payments. In David Chaum, RonaldL.
Rivest, and AlanT. Sherman, editors, Advances in Cryptology, Proceedings of CRYPTO
’82, pages 199–203. Springer US, 1983.

35. Stefan A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge-London, 2000.

36. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren.
Handbook of elliptic and hyperelliptic curve cryptography. Chapman & Hall, Boca
Raton, FL, 1st edition, 2006.

37. Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A quasi-
polynomial algorithm for discrete logarithm in finite fields of small characteristic. CoRR,
abs/1306.4244, 2013.

38. Keith Conrad. Stirlings formula, 2011. Available at
http://www.math.uconn.edu/~kconrad/blurbs/analysis/stirling.pdf (Retrieved in
28.05.2015).

39. Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knap-
sack problem. J. ACM, 21(2):277–292, April 1974.

40. A.K. Lenstra, Jr. Lenstra, H.W., and L. Lovsz. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

41. MatthijsJ. Coster, Antoine Joux, BrianA. LaMacchia, AndrewM. Odlyzko, Claus-Peter
Schnorr, and Jacques Stern. Improved low-density subset sum algorithms. computa-
tional complexity, 2(2):111–128, 1992.

42. C.P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical Programming, 66(1-3):181–199, 1994.

43. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. Journal of Cryptology, 23(2):281–343, April 2010.

http://www.math.uconn.edu/~kconrad/blurbs/analysis/stirling.pdf

Algorithms for Secure Outsourcing of Cryptographic Computations 35

44. Giovanni Di Crescenzo and Rafail Ostrovsky. On concurrent zero-knowledge with pre-
processing. In Advances in Cryptology CRYPTO 99, volume 1666 of Lecture Notes in
Computer Science, pages 485–502. Springer Berlin Heidelberg, 1999.

45. TorbenPryds Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In Advances in Cryptology CRYPTO 91, volume 576 of Lecture Notes in
Computer Science, pages 129–140. Springer Berlin Heidelberg, 1992.

46. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally ef-
ficient multi-authority election scheme. In Proceedings of the 16th Annual International
Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT’97,
pages 103–118, Berlin, Heidelberg, 1997. Springer-Verlag.

47. Rosario Gennaro. Multi-trapdoor commitments and their applications to proofs of
knowledge secure under concurrent man-in-the-middle attacks. In Advances in Cryptol-
ogy CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 220–236.
Springer Berlin Heidelberg, 2004.

48. Martin Seysen. Using an rsa accelerator for modular inversion. In Cryptographic Hard-
ware and Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh,
UK, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture Notes in
Computer Science, pages 226–236. Springer, 2005.

	Introduction
	Related Work
	Our Contributions
	Roadmap

	Security and Privacy Model
	Main Algorithm for Modular Exponentiation (Private-Base & Private-Exponent)
	Preliminaries
	DLP case
	RSA case

	The Main Algorithm
	Correctness and Termination.
	A Toy Example.
	Security and Checkability.

	Other Relevant Algorithms
	Public-Base & Private-Exponent
	Private-Base & Public-Exponent
	t-Simultaneous Modular Exponentiations

	Complexity Analysis of the Proposed Algorithms
	Applications: Outsourced Oblivious Transfer and Blind Signatures
	Oblivious Transfer
	Blind Signatures

	Conclusion

