
Bilinear Entropy Expansion from the Decisional Linear

Assumption

Lucas Kowalczyk
Columbia University

luke@cs.columbia.edu

Allison Bishop Lewko∗

Columbia University
alewko@cs.columbia.edu

Abstract

We develop a technique inspired by pseudorandom functions that allows us to increase
the entropy available for proving the security of dual system encryption schemes under
the Decisional Linear Assumption. We show an application of the tool to Attribute-Based
Encryption by presenting a Key-Policy ABE scheme that is fully-secure under DLIN which
exhibits an exponential improvement over the state of the art schemes in terms of public
parameter size.

1 Introduction

Since its conception in [34], attribute-based encryption (ABE) has served as a demonstrably
fertile ground for exploring the possible tradeoffs between expressibility, security, and efficiency
in cryptographically enforced access control. In addition to the potential applications it has in
its own right, the primitive of attribute-based encryption has been a catalyst for the definitions
and constructions of further cryptographic primitives, such as functional encryption for general
circuits. The rich structure of secret keys demanded by expressive attribute-based encryption
has promoted a continuing evolution of proof techniques designed to meet the challenges inherent
in balancing large and complex structures on the pinhead of simple computational hardness
assumptions.

The origins of attribute-based encryption can be traced back to identity-based encryption
[11, 5], where users have identities that serve as public keys and secret keys are generated on
demand by a master authority. A desirable notion of security for such schemes ensures resilience
against arbitrary collusions among users by allowing an attacker to demand many secret keys
for individual users and attack a ciphertext encrypted to any user not represented in the set
of obtained keys. Proving this kind of security requires a reduction design that can satisfy the
attacker’s demands without fully knowing the master secret key. This challenge is exacerbated in
the (key-policy) attribute-based setting, where user keys correspond to access policies expressed
over attributes and ciphertexts are associated with subsets of these attributes. Decryption is
allowed precisely when a single user’s policy is satisfied by a ciphertext’s attribute set. Thus,
the structure of allowable keys that the attacker can request grows more complex as the scheme
is equipped to express more complex policies.

As a consequence of this, the intuitive and elegant constructions of attribute-based encryp-
tion in bilinear groups in [18, 36] were only proven secure in the selective security model: a
weakened model of security that requires the attacker to declare the target of attack in ad-
vance, before seeing the public parameters of the system. This limitation of the model allows

∗Allison Lewko is supported in part by NSF CNS 1413971 and NSF CCF 1423306.

1

the security reduction to embed the computational challenge into its view of the public parame-
ters of the scheme in a way that partitions the space of secret keys. Keys that do not satisfy the
targeted ciphertext are able to be generated under the embedding, while keys that do satisfy
the ciphertext cannot be generated. This approach does not extend well to the full security
model, where this artificial limitation on the attacker is lifted.

The first fully secure ABE schemes appeared in [19], using the dual system encryption
methodology [35] for designing the security reduction. In a dual system approach, there are
typically multiple (computationally indistinguishable) forms of keys and ciphertexts. There
are “normal” keys and ciphertexts that are employed in the real system, and then are vari-
ous forms of “semi-functional” keys and ciphertexts. The core idea is to prove security via
a hybrid argument, where the ciphertext is changed to semi-functional and keys are changed
to semi-functional types one by one, until all the keys are of a semi-functional type incapable
of decrypting the semi-functional ciphertext (it is important that they still decrypt normal ci-
phertexts, otherwise the hybrid transitions could be detected by the attacker who can create
normal ciphertexts for itself using the public parameters). Once we reach a state where the key
and ciphertexts distributions provided to the attacker are no longer bound by correct decrypt
behavior, it is much easier for the reduction to produce these without knowing the master secret
key.

The most critical step of these dual system arguments occurs when a particular key changes
from a type that can decrypt the challenge ciphertext to a type that cannot - the fact that this
change is not detected by the attacker is where the reduction must use the criterion that the
access policy is not satisfied. The security reductions in [19] and many subsequent works (e.g.
[30, 22]) used an information-theoretic argument for this step. However, this argument requires
a great deal of entropy (specifically, fresh randomness for each attribute-use in a policy). This
entropy was supplied by parameters in the semi-functional space that paralleled the published
parameters of the normal space. This necessitated a blowup in public parameter and ciphertext
sizes, specifically a multiplicative factor of the the number of attribute-uses allowed by the
scheme within individual policies.

In [26], it was observed that the initial steps of a typical dual system encryption hybrid
argument could be re-interpreted as providing a “shadow copy” of the system parameters in the
semi-functional space that does not have to be committed to when the public parameters for
the normal space are provided. This perspective suggests that one can embed a computational
challenge into these semi-functional space parameters as semi-functional objects are produced.
For instance, when a portion of these parameters affect a single semi-functional key that is
queried after the semi-functional ciphertext, one can essentially embed the challenge in the
same way as the original selective security arguments in [18]. In the reverse case, where the
semi-functional key is queried before the challenge ciphertext, the embedding can be similar to
a selective security proof for a ciphertext-policy ABE scheme, where keys are associated with
attributes and ciphertexts are associated with access policies. In [26], state of the art selective
techniques for KP-ABE and CP-ABE systems were combined into a full security proof, avoiding
the blowup in parameters incurred by the information-theoretic dual system techniques.

However, even selective security for CP-ABE systems remains a rather challenging task,
and the state of the art technique in [36] introduces an undesirable q-type assumption into the
fully secure ABE scheme. In the CP-ABE setting, selectivity means that the attacker declares
a target access policy up front. This can then be leveraged by the security reduction to design
public parameters so that it can create keys precisely for sets of attributes that do not satisfy
this target policy. The q-type assumption in [36] was a consequence of the need to encode a
potentially large access policy into small public parameters. This leaves us still searching for
an ideal KP-ABE scheme in the bilinear setting that has parameter sizes comparable to the

2

selectively secure scheme in [18] and a full security proof from a simple assumption such as the
decisional linear assumption (DLIN). A security reduction for such a scheme must seemingly
break outside the mold of using either a purely information-theoretic or purely computational
argument for leveraging the fact that a requested key policy cannot be satisfied by the challenge
ciphertext.

Our Results To demonstrate our approach, we present two KP-ABE constructions, one in the
composite-order bilinear setting and one in the prime-order setting. Both schemes are proven
fully secure from simple assumptions, and support LSSS/MSP access policies (like their bilinear
predecessors). In the composite-order setting, we use a few specific instances of subgroup-
decision assumptions and DLIN, and in the prime-order setting we rely only on DLIN. Our
schemes greatly reduce the size of the public parameters as compared to [19, 30], as the number
of group elements we need to include in the public parameters grows only logarithmically rather
than than linearly in the bound on the number of attribute-uses in an access policy.

Our Techniques We intermix the computational and information-theoretic dual system en-
cryption approaches, using computational steps to “boost” the entropy of a small set of (un-
published) semi-functional parameters to a level that suffices to make the prior information-
theoretic argument work. Essentially, we use the fact that the semi-functional space parameters
are never published to not only “delay” their definition as exploited in [26], but further to
argue that they can (computationally) appear to provide more entropy than their size would
information-theoretically allow. The gadget that allows us do this computational pre-processing
before the running information-theoretic argument is presented as our “bilinear entropy expan-
sion lemma.”

The inspiration for the gadget construction comes from pseudorandom generators/pseudorandom
functions. Naturally, if we want a small set of semi-functional generators to seemingly produce
a large amount of entropy, we may want to view these parameters as the seed for a PRF, for
example. Out-of-the-box PRF constructions like Naor-Reingold [27] and its DLIN-based exten-
sion [25] however are unsuitable in the bilinear setting (even though the DLIN version would
remain secure) because they would require direct access to the seed for computation, and a
secure bilinear construction will only provide indirect access to the seed as exponents of group
elements.

To circumvent this difficulty, we use a subset-sum based construction that can be computed
in a bilinear group with the seed elements in the exponents. Of course, using a naked linear
structure would be detectable, but we are able to sprinkle in a rather minimal amount of
additional random exponents to push the linear sub-structure out of reach of detection by
regular group or pairing operations.

We build our construction in two steps. First, we present a construction for a one-use
KP-ABE system which only supports access policies where each attribute is used at most
once. This scheme achieves ciphertext and key sizes which rival those of selectively secure
schemes (up to constants), while significantly reducing public parameter size. Then, we apply
a standard transformation to get from a one-use system to a system which allows multiple
uses of attributes in policies (the number of uses allowed per attribute is constant and fixed
at setup). The overhead of this transformation is drastically mitigated by our scheme’s small
public parameters. The effect on ciphertext and key sizes compared to previous applications of
this transformation remain the same up to constants.

3

1.1 Other Related Work

Additional work on ABE in the bilinear setting includes various constructions of KP-ABE and
CP-ABE schemes (e.g. [4, 33, 17]), schemes supporting multiple authorities (e.g. [7, 8, 32, 22]),
and schemes supporting large attribute universes (e.g. [23, 31]). Some of the structure for
randomization in our schemes is inspired by [23].

There are also recent constructions of ABE schemes in the lattice setting. The construction
of [16] allows access policies to be expressed as circuits, which makes it more expressive than any
known bilinear scheme. It was proven selectively secure under the standard LWE assumption.
Circuit policies are also supported by the construction in [13] based on multilinear maps. This
scheme is also proven selectively secure, under a particular computational hardness assumption
for multilinear groups. The very recent multilinear scheme in [14] achieves full security, relying
on computational hardness assumptions in multilinear groups. The fully secure general func-
tional encryption scheme in [37], which relies on indistinguishability obfuscation, can also be
specialized to the ABE setting.

Some relationships between ABE and other cryptographic primitives have also been ex-
plored. The work of [2] derives schemes for verifiable computation from attribute-based en-
cryption schemes, while [15] use attribute-based encryption as a tool in designing more general
functional encryption and reusable garbling schemes. Dual system encryption proof techniques
have also been further studied in the works of [21, 10, 37, 1], applied to achieve leakage resilience
in [24, 20, 12], and applied directly to computational assumptions in [9].

1.2 Organization

In Section 2, we give the relevant background on KP-ABE systems and composite order bilinear
groups, as well as formal statements of the complexity assumptions we rely on in the composite
order setting. In Section 3, we present our KP-ABE system in composite order bilinear groups.
In Section 4, we prove its full security. Section 5 gives the proof of our Bilinear Entropy
Expansion lemma used in the proof of security for both the composite order and prime order
variants of our construction. In Section 6, we give relevant background for prime order bilinear
groups, state our complexity assumptions in this context, and present the prime order variant of
our KP-ABE construction. We prove the full security of the prime order variant in Appendix A.

2 Preliminaries

2.1 Composite Order Bilinear Groups

We will first construct our system in composite order bilinear groups, which were introduced in
[6]. We let G denote a group generator - an algorithm which takes a security parameter λ as
input and outputs a description of a bilinear group G. We define G’s output as (N,G,GT , e),
where N = pqw is a product of three distinct primes, G and GT are cyclic groups of order N ,
and e : G×G→ GT is a map with the following properties:

1. (Bilinear) ∀g, f ∈ G, a, b ∈ ZN , e(ga, f b) = e(g, f)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We refer to G as the source group and GT as the target group. We assume that the group
operations in G and GT and the map e are computable in polynomial time with respect to λ,
and the group descriptions of G and GT include a generator of each group. We let Gp, Gq, and
Gw denote the subgroups of order p, q, and w in G respectively. We note that these subgroups

4

are “orthogonal” to each other under the bilinear map e: if u, v are elements of two different
subgroups out of {Gp, Gq, Gw}, then e(u, v) is the identity element in GT . If gp generates Gp, gq
generates Gq, and gw generates Gw, then every element f of G can be expressed as f = gc1p g

c2
q g

c3
w

for some values c1, c2, c3 ∈ ZN . We will refer to gc1p as the “Gp part of f”, for example.

2.2 Complexity Assumptions

We now present the complexity assumptions we will use to prove the security of our system.
We use the notation x← S to express that element x is chosen uniformly at random from the
finite set S. We will first consider groups G whose orders are products of three distinct primes:
p, q, w. We denote the subgroups of G with these orders by Gp, Gq, Gw respectively. We use the
notation gp, gq, gw to denote generators of these respective subgroups.

Subgroup Decision Assumption 1 The Subgroup Decision Problem 1 is stated as follows:
on a group G of order pqw, given gp, gw and T where either T = gsp ← Gp or T = gspg

s̃
q ← Gpq

(where s is distributed uniformly in Zp and s̃ is distributed uniformly in Zq), output “yes” if
T = gsp, and “no” otherwise.

Definition 1. Subgroup Decision Assumption 1 in G: no polynomial time algorithm can achieve
non-negligible advantage in deciding the Subgroup Decision Problem 1 in G.

Subgroup Decision Assumption 2 The Subgroup Decision Problem 2 is stated as follows:
on a group G of order pqw, given gp, gw, g

s
pg
s̃
q , g

r̃
qg
r∗
w and T where either T = gypg

y∗
w or T = gypg

ỹ
q g
y∗
w

(where s, y are distributed uniformly in Zp, s̃, r̃, and ỹ are distributed uniformly in Zq, and r∗, y∗

are distributed uniformly in Zw), output “yes” if T = gypg
y∗
w , and “no” otherwise.

Definition 2. Subgroup Decision Assumption 2 in G: no polynomial time algorithm can achieve
non-negligible advantage in deciding the Subgroup Decision Problem 2 in G.

Subgroup Decision Assumption 3 The Subgroup Decision Problem 3 is stated as follows:
given a group G of order pqw, given gp, gq, gw, g

α
p g

α̃
q , g

s
pg
s̃
q , and T where either T = e(gp, gp)

αs or
T = X (where α, s are distributed uniformly in Zp, α̃, s̃ are distributed uniformly in Zq, and X
is distributed uniformly in GT), output “yes” if T = e(gp, gp)

αs, and “no” otherwise.

Definition 3. Subgroup Decision Assumption 3 in G: no polynomial time algorithm can achieve
non-negligible advantage in deciding the Subgroup Decision Problem 3 problem in G.

We additionally use one assumption in the prime order setting, where G is a bilinear group
of prime order q and g is a generator:

2-Linear Assumption (DLIN) The 2-Linear problem is stated as follows: given a cyclic
group G of prime order p, g, gy1 , gy2 , gy1c1 , gy2c2 , gc1+c2+r ∈ G (where y1, y2, c1, c2 are distributed
uniformly in Zp and r is either a uniform random element of Zp or 0), output “yes” if r is a
random element of Zp and “no” otherwise.

Definition 4. 2-Linear Assumption in G: no polynomial time algorithm can achieve non-
negligible advantage in deciding the 2-Linear problem in G.

2.3 Background for ABE

We now give required background material on Linear Secret Sharing Schemes, the formal defi-
nition of a KP-ABE scheme, and the security definition we will use.

5

2.3.1 Linear Secret Sharing Schemes

Our construction uses linear secret-sharing schemes (LSSS). We use the following definition
(adapted from [3]). In the context of ABE, attributes will play the role of parties and will be
represented as nonempty subsets K ⊆ [k] for a fixed k.

Definition 5. (Linear Secret-Sharing Schemes (LSSS)) A secret sharing scheme Π over a set
of attributes is called linear (over Zp) if

1. The shares belonging to all attributes form a vector over Zp.

2. There exists an ` × n matrix Λ called the share-generating matrix for Π. The matrix Λ
has ` rows and n columns. For all j = 1, . . . , `, the jth row of Λ is labeled by an attribute
K. When we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to
be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Λv is the vector of ` shares of
the secret s according to Π. The share (Λv)j = λK belongs to attribute K.

We note the linear reconstruction property: we suppose that Π is an LSSS. We let S denote
an authorized set. Then there is a subset S∗ ⊆ S such that the vector (1, 0, . . . , 0) is in the span
of rows of Λ indexed by S∗, and there exist constants {ωK ∈ Zp}K∈S∗ such that, for any valid

shares {λK} of a secret s according to Π, we have:
∑
K∈S∗

ωKλK = s. These constants {ωK} can

be found in time polynomial in the size of the share-generating matrix Λ [3]. For unauthorized
sets, no such S∗, {ωK} exist.

For our composite order group construction, we will employ LSSS matrices over ZN , where
N is a product of three distinct primes p, q, w. As in the definition above over the prime order
Zp, we say a set of attributes S is authorized if is a subset S∗ ⊆ S such that the rows of the
access matrix A labeled by elements of S have the vector (1, 0, . . . , 0) in their span modulo N .
However, in our security proof for our composite order system, we will further assume that for
an unauthorized set, the corresponding rows of A do not include the vector (1, 0, . . . , 0) in their
span modulo q. We may assume this because if an adversary can produce an access matrix A
over ZN and an unauthorized set over ZN that is authorized over Zq, then this can be used to
produce a non-trivial factor of the group order N , which would violate our subgroup decision
assumptions.

2.3.2 KP-ABE Definition

A key-policy attribute-based encryption system consists of four algorithms: Setup, Encrypt,
KeyGen, and Decrypt.

Setup(λ,U) → (PP,MSK) The setup algorithm takes in the security parameter λ and the
attribute universe description U . It outputs the public parameters PP and a master secret key
MSK.

Encrypt(PP,M, S)→ CT The encryption algorithm takes in the public parameters PP, the
message M , and a set of attributes S. It will output a ciphertext CT. We assume that S is
implicitly included in CT.

KeyGen(MSK,PP,A) → SK The key generation algorithm takes in the master secret key
MSK, the public parameters PP, and an access structure A over the universe of attributes. It
outputs a private key SK which can be used to decrypt ciphertexts encrypted under a set of
attributes which satisfies A. We assume that A is implicitly included in SK.

6

Decrypt(PP,CT,SK) → M The decryption algorithm takes in the public parameters PP,
a ciphertext CT encrypted under a set of attributes S, and a private key SK for an access
structure A. If the set of attributes of the ciphertext satisfies the access structure of the private
key, it outputs the message M .

2.3.3 Full Security for KP-ABE Systems

We define full security for KP-ABE Systems in terms of the following game:

Setup The challenger runs the Setup algorithm and gives the public parameters to the at-
tacker.

Phase 1 The attacker queries the challenger for private keys corresponding to access struc-
tures.

Challenge The attacker declares two equal length messages M0,M1 and a set of attributes
A ⊆ U where U is the attribute universe such that A does not satisfy the access structure of
any of the keys requested in Phase 1. The challenger flips a random coin β ∈ {0, 1}, encrypts
Mβ under S to yield ciphertext CTβ and gives CTβ to the attacker.

Phase 2 The attacker queries the challenger for private keys corresponding to access structures
that are not satisfied by S.

Guess The attacker outputs a guess β′.

Definition 6. The advantage of an attacker A in this game is defined as AdvKP−ABEA (λ) =
Pr[β = β′]− 1

2 .

Definition 7. A key-policy attribute based encryption scheme is fully secure if no polynomial
time algorithm can achieve a non-negligible advantage in the above security game.

2.3.4 Transformation from One-Use to Multiple Use KP-ABE

Given a KP-ABE scheme which is fully-secure when attributes are used at most once in access
policies, we can obtain a KP-ABE scheme which is fully-secure when each attribute is used
at most some constant number of times in access policies using a standard transformation.
Essentially, multiple uses of an attribute are treated as new “attributes” in the one-use system.
For example, if we want an attribute x to be able to be used up to kx times in access policies,
we will instantiate our one-use system with kx “attributes” x : 1, ..., x : kx. Each time we
want to label a row of an access matrix Λ with x, we label it with x : i for a new value of i.
Each time we want to associate a subset S of attributes to a ciphertext, we instead use the set
S′ = {x : 1, ..., x : kx | x ∈ S}. We can then employ the one-use KP-ABE scheme on this new
larger set of “attributes” and retain its full security and functionality.

Clearly, this transformation comes at a cost. Typically, the ciphertext and public parameter
size of the KP-ABE scheme resulting from the transformation now scale linearly with the number
of attribute-uses allowed in access policies, not just the number of attributes. This blowup is
seen in all previous fully secure KP-ABE schemes based on static assumptions and presents
a problem if one desires policies which have high reuse of attributes. Our one-use KP-ABE
scheme mitigates the problem with public parameter size by featuring public parameters that
scale only logarithmically with the number of attributes supported by the system, compared to
the linear scaling of all other known fully secure KP-ABE schemes based on static assumptions.

7

3 KP-ABE Construction

Our single-use KP-ABE construction assumes a polynomially sized attribute universe U where
attributes are non-empty subsets K ⊆ [k] for some fixed k. The prior fully secure single-use
KP-ABE scheme in [19] required a fresh group element to appear in the public parameters for
each attribute in the universe. After using the generic transformation discussed in section 2.3.4,
this results in the scheme requiring a fresh group element for each attribute-use allowed in access
policies. As a concrete example, if one wanted to allow 9 attributes to be used up to 7 times
each, one needed to have 9× 7 = 63 group elements in the public parameters corresponding to
this attribute. In our composite order scheme, to allow the same 63 = 26 − 1 attribute-uses,
we only need 2 × 6 group elements in the public parameters corresponding to the attribute.
The way we accomplish this dramatic “compression” of public parameters is to note that the
encryptor can produce 63 group elements from 6 by taking products of all non-empty subsets
(these correspond to subset-sums in the exponent). More generally, given k group elements
ga1 , . . . , gak , we can produce 2k − 1 group elements by enumerating over all non-empty subsets

K ⊆ [k] and computing g

∑
j∈K

aj

. We name the resulting collection of elements gAK , where

AK :=
∑
j∈K

aj . Our composite order scheme uses two parallel such subset constructions (which

is the reason for the factor of 2).
Obviously, these 2k − 1 group elements no longer look random - they have a linear rela-

tionships in their exponents by construction. However, since we are assuming the decisional
linear assumption is hard, if we choose 2k − 1 additional random exponents {tK}, then the
2(2k − 1) group elements formed as {gtK , gtKAK} are computationally indistinguishable from
2(2k − 1) uniformly random group elements (which lack any hidden linear structures in their
exponents). The proof of this is the core of bilinear entropy expansion lemma, though the
full statement of the lemma includes some additional structure that is useful for linking into
a KP-ABE construction. The dual system encryption framework allows us to apply this ar-
gument to the parameters in the semi-functional space, where we do not need to publish the
values {gaj}. (Note that publishing these would make the structure of {gtK , gtKAK} detectable
through applications of the bilinear map.)

Setup(λ,U , k) → PP,MSK The setup algorithm chooses a bilinear group G of order N =
pqw where p, q, w are primes. We let Gp, Gq, Gw represent the subgroup of order p, q, and w
respectively in G. It then draws α← ZN and random group element (generator) gp ∈ Gp. For
each j ∈ [k], it chooses values aj , bj ← ZN .

The public parameters are N, gp, e(gp, gp)
α, {gajp , g

bj
p : j ∈ [k]}. The MSK is α and a generator

gw of Gw. Such a construction is equipped to create keys for access policies which include
attributes K ⊆ [k] where K is not empty.

KeyGen(MSK,Λ, PP)→ SK The key generation algorithm takes in the public parameters,
master secret key, and LSSS access matrix Λ. First, the key generation algorithm generates
{λK}: a linear sharing of α according to policy matrix Λ (the reader is referred to section 2.3.1
for details). For each attribute K corresponding to a row in the policy matrix Λ, it then raises

generator gw to random exponents to create gzKw , g
z′K
w , g

z′′K
w ∈ Gw, chooses exponent yK ← ZN

and computes gAK
p =

∏
j∈K

g
aj
p and gBK

p =
∏
j∈K

g
bj
p . Note that here and throughout the rest of the

8

description of our construction and its proof of security we will use the notation AK =
∑
j∈K

aj

and BK =
∑
j∈K

bj . It then outputs the secret key:

SKΛ = {gλKp gyKAK
p gzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

(This implicitly includes Λ)

Encrypt(M,S, PP)→ CT The encryption algorithm first draws s← ZN . For each K ∈ S,

the encryption algorithm draws tK ← ZN and computes gAK
p =

∏
j∈K

g
aj
p and gBK

p =
∏
j∈K

g
bj
p . It

then outputs the ciphertext:

CT = Me(gp, gp)
αs, {gsp, gsAK

p gtKBK
p , gtKp : (∀K ∈ S)}

(This implicitly includes S)

Decrypt(CT, SK,PP) → M We let S correspond to the set of attributes associated to
ciphertext CT , and Λ be the policy matrix. If S satisfies Λ, the decryption algorithm computes

suitable constants ωK such that
∑
K∈S∗

ωKλK = α (recall section 2.3.1). It then computes:

∏
K∈S∗

e(gsp, gλKp gyKAK
p gzKw)

e(gyKp g
z′K
w , gsAK

p gtKBK
p)

e(gtKp , gyKBK
p g

z′′K
w)

−1ωK

=
∏
K∈S∗

(
e(gp, gp)

sλKe(gp, gp)
syKAK

(
e(gp, gp)

syKAKe(gp, gp)
tKyKBK

e(gp, gp)tKyKBK

)−1
)ωK

=
∏
K∈S∗

(
e(gp, gp)

sλKe(gp, gp)
syKAK

e(gp, gp)syKAK

)ωK

=
∏
K∈S∗

(
e(gp, gp)

sλK
)ωK

= e(gp, gp)

∑
K∈S∗

sωKλK

= e(gp, gp)
αs

The message can then be recovered by computing: Me(gp, gp)
αs/e(gp, gp)

αs = M . This demon-
strates correctness of the scheme.

4 Security Proof

Our security proof uses a hybrid argument over a sequence of games. We let Gamereal denote
the real security game. The rest of the games use semi-functional keys and ciphertexts, which
we describe below. We let gq denote a fixed generator of the subgroup Gq, which will serve as
the “semi-functional space.”

Like a typical dual system encryption proof, we will begin by transitioning from a normal
ciphertext to a semi-functional ciphertext with semi-functional components that mimic the

9

structure of their normal counterparts. This kind of transition can be done with a basic subgroup
decision assumption. We will then perform a hybrid over keys, gradually changing each one to
a semi-functional form that does not properly decrypt the semi-functional ciphertext. To start,
we can bring in semi-functional components for a particular key that mimic the structure of
normal components, up to the constraint that the shared valued in the semi-functional space
will be 0 (modulo q). Technically, this constraint arises because we will be taking a challenge
term from a subgroup decision assumption that has an unknown exponent in the normal space
and raising it to a share - so we have to make this a share of 0 and separately share the α
value in the normal space so that the unknown exponent does not affect the correctness of the
sharing in the normal space. At a higher level, this constraint explains why the simulator at
this stage of the hybrid cannot solve the challenge problem for itself by test decrypting against a
semi-functional ciphertext. Since the structure in the semi-functional space parallels the normal
structure and the shared value here is zero, the semi-functional components will cancel out upon
decryption.

So we can arrive at a stage where a key and ciphertext have semi-functional components
structured just like the normal space, but with fresh parameters modulo q that are independent
of the published parameters modulo p. This is a consequence of the Chinese Remainder Theo-
rem, that ensures when we sample an exponent uniformly at random modulo N , its modulo p
and modulo q reductions are independent and uniformly random in Zp,Zq respectively. Since
these implicit parameters in the semi-functional space are never published, we can use our bi-
linear entropy expansion lemma to argue that their subset-sum structure is hidden under the
decisional linear assumption. This allows us to replace them with higher entropy parameters
(lacking the subset-sum structure of the normal space), and then argue that the shared value
in the semi-functional space is information-theoretically hidden (this is where we use that the
access policy is not satisfied and that attributes are used at most once in the policy). This
enables us to switch the semi-functional shares in the key to shares of a random value, now
destroying correct decryption of a semi-functional ciphertext. We then remove some of the
other (now unnecessary) semi-functional components of the key, to reclaim the entropy of those
parameters to use in processing the next key in the hybrid. Finally, once we have reached a
game where all keys are semi-functional with shares of a random secret modulo q, we can use
our our Subgroup Decision 3 to create such keys without knowing the master secret and can
hence complete the proof.

We now formally present our definitions of semi-functional ciphertexts and keys and our
hybrid proof:

Semi-functional Ciphertext We will use 3 types of semi-functional ciphertexts. To pro-
duce a semi-functional ciphertext for an attribute set S, one first calls the normal encryption
algorithm to produce a normal ciphertext consisting of:

Me(gp, gp)
αs, {gsp, gsAK

p gtKBK
p , gtKp : (∀K ∈ S)}

One then draws s̃ ← ZN . For each K ∈ S, an exponent t̃K ← ZN is chosen. The remaining
composition of the semifunctional ciphertext depends on the type of ciphertext desired:

Type 1 The semi-functional ciphertext of Type 1 is formed as:

Me(gp, gp)
αs, {gspgs̃q , gsAK

p gtKBK
p gs̃AK

q gt̃KBK
q , gtKp gt̃Kq : (∀K ∈ S)}

(again, here AK =
∑
j∈K

aj and BK =
∑
j∈K

bj)

10

Type 2 The semi-functional ciphertext of Type 2 is formed as:

Me(gp, gp)
αs, {gspgs̃q , gsAK

p gtKBK
p gs̃AK

q gt̃K b̃Kq , gtKp gt̃Kq : (∀K ∈ S)}

for fixed b̃K ∈ ZN which are chosen uniformly at random and fixed if they do not already exist
(in a semi-functional key, for instance).

Type 3 The semi-functional ciphertext of Type 3 is formed as:

Me(gp, gp)
αs, {gspgs̃q , gsAK

p gtKBK
p gs̃ãKq gt̃K b̃Kq , gtKp gt̃Kq : (∀K ∈ S)}

for fixed ãK , b̃K ∈ ZN which are chosen uniformly at random and fixed if they do not already
exist.

Semi-functional Keys We will use 7 types of semi-functional keys. To produce a semi-
functional key for an access policy Λ, one first calls the normal key generation algorithm to
produce a normal key consisting of:

{gλKp gyKAK
p gzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

The first 6 types of keys fall under 3 classes which have two variants each: a “Z” variant and an
“R” variant. For Z-type keys one computes a linear sharing of 0 under access policy Λ, creating
shares λ̃K . For R-type keys one computes a linear sharing of a random element u of Zq which
is fixed once it is created and used for all R-type keys. u is shared under access policy Λ, to
create shares λ̃K . The next steps depend on the class of the key:

Class 1 First compute gAK
q and gBK

q (where, again, AK and BK represent the subset-sums
of aj and bj). For each K label in the honest key, one then draws ỹK ← ZN and forms the
semi-functional key of type 1Z or 1R (depending on the sharing λ̃K) as:

{gλKp gyKAK
p gλ̃Kq gỹKAK

q gzKw , gyKp gỹKq g
z′K
w , gyKBK

p gỹKBK
q g

z′′K
w : (∀K labels ∈ Λ)}

Class 2 First compute gAK
q . Random values b̃K ∈ ZN are chosen if they do not already exist

(in a semi-functional ciphertext, for instance) and fixed. For each K label in the honest key,
one then draws ỹK ← ZN and forms the semi-functional key of type 2Z or 2R as:

{gλKp gyKAK
p gλ̃Kq gỹKAK

q gzKw , gyKp gỹKq g
z′K
w , gyKBK

p gỹK b̃Kq g
z′′K
w : (∀K labels ∈ Λ)}

Class 3 Random values ãK , b̃K ∈ ZN are chosen if they do not already exist and fixed. For
each K label in the honest key, one then draws ỹK ← ZN and forms the semi-functional key of
type 3Z or 3R as:

{gλKp gyKAK
p gλ̃Kq gỹK ãKq gzKw , gyKp gỹKq g

z′K
w , gyKBK

p gỹK b̃Kq g
z′′K
w : (∀K labels ∈ Λ)}

Note that we now have defined 6 types of keys: 1Z, 1R, 2Z, 2R, 3Z, and 3R, where the
letter (Z/R) describes whether the λ̃K share zero or a random element of Zq respectively, and
the number (1/2/3) describes whether the semi-functional analogues of the gAK

p and gBK
p in the

Gq group are structured as subset-sums or as random elements of Gq (Class 1 keys have both

gAK
q and gBK

q . Class 2 keys have just gAK
q structured, with a random element gb̃Kq . Class 3 keys

have both replaced by random elements gãKq , gb̃Kq of Gq). There is one final type of key, type
4R, which does not contain any of these elements:

11

Type 4R Using shares λ̃K of u (which is randomly chosen from Zp and fixed if it has not
already been fixed), one forms the semi-functional key of type 4R as:

{gλKp gyKAK
p gλ̃Kq gzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

Proof Structure Our hybrid proof takes place over a series of games defined as follows:
Letting Q denote the total number of key queries that the attacker makes, we define Game`1 ,
Game`2 , Game`3 , Game`4 , Game`5 , Game`6 , and Game`7 for ` = 1, ..., Q. In each game, the
first ` − 1 keys are semi-functional of type 4R, and all keys after the `th request are normal.
They differ in the construction of the `th key and the ciphertext as follows:

Game`1 In this game, the `th key is type 1Z and the ciphertext is type 1.

Game`2 In this game, the `th key is type 2Z and the ciphertext is type 2.

Game`3 In this game, the `th key is type 3Z and the ciphertext is type 3.

Game`4 In this game, the `th key is type 3R and the ciphertext is type 3.

Game`5 In this game, the `th key is type 2R and the ciphertext is type 2.

Game`6 In this game, the `th key is type 1R and the ciphertext is type 1.

Game`7 In this game, the `th key is type 4R and the ciphertext is type 1.
Note that under this definition, we have that in Game07 , the ciphertext given to the attacker

is type 1 and the keys are all normal.
The outer structure of our hybrid argument will progress as follows. First, we transition

from Gamereal to Game07 , then to Game11 , next to Game12 , next to Game13 , next to Game14 ,
next to Game15 , next to Game16 , next to Game17 and then to Game21 and so on. We then
arrive at GameQ7 , where the ciphertext is semifunctional of type 1 and all of the keys given to
the attacker are semi-functional of type 4R.

We then transition to one last game named Gamefinal which will complete our proof.
Gamefinal uses a semi-functional ciphertext of a new type: type X, which we will now define:

Type X The semi-functional ciphertext of Type X is formed as:

MX, {gspgs̃q , gsAK
p gtKBK

p gs̃AK
q gt̃KBK

q , gtKp gt̃Kq : (∀K ∈ S)}

where X is a uniform random element of GT .(again, here AK =
∑
j∈K

aj and BK =
∑
j∈K

bj)

Gamefinal In this game, all keys are semi-functional of type 4R and the ciphertext is semi-
functional of type X.

Note that a ciphertext of type X information-theoretically hides its message M because
the message is multiplied by the uniform random X which is unused anywhere else. So, in
Gamefinal, no polynomial time adversary will be able to achieve advantage in the security
game, completing our proof.

Our hybrid argument is accomplished in the following lemmas:

12

Lemma 8. Under the Subgroup Decision Assumption 1, no polynomial time attacker can
achieve a non-negligible difference in advantage between Gamereal and Game07.

Proof. If an algorithm A has non-negligible difference in advantage between Gamereal and
Game07 , then we could use A to achieve non-negligible advantage in the Subgroup Decision
Problem 1 as follows:

Given gp, gw and T where either T = gsp ← Gp or T = gspg
s̃
q ← Gpq (where s ← Zp and

s̃← Zq), consider the following simulator B in the security game:
The public parameters are formed by using the given gp, choosing α, aj , bj randomly from

ZN and giving the constructed public parameters to A. B can respond to key requests by
running the usual key generation algorithm to make normal keys because it knows the MSK.

To return the challenge ciphertext for a set of attributes S, for each K ∈ S, a t′K ← ZN is
drawn, then the following ciphertext is constructed and provided:

Me(gp, T)α,
{
T, TAKT t

′
KBK , T t

′
K : (∀K ∈ S)

}
The simulator is able to honestly follow the rest of the scheme using generators gp, gw, so the
only difference between its execution distributions depends on the different ciphertexts formed
dependent on T .

Notice that if T = gsp for s← Zp, then the distribution of ciphertexts formed is identical to
the honest case (where tK = t′Ks), and so the simulator’s behavior is exactly that of Gamereal.

If T = gspg
s̃
q for s← Zp, s̃← Zq, the ciphertext formed is a semi-functional ciphertext of type

1 (where tK = t′Ks and t̃K = t′K s̃ are independent since the values of t′K modulo p and modulo
q are indpendent and uniform in Zp,Zq respectively by the Chinese Remainder Theorem), so
the simulator’s behavior is exactly that of Game07 .

Therefore, any adversary with non-negligible difference in advantage between Gamereal and
Game07 could be used to achieve the same non-negligible advantage in deciding the Subgroup
Decision Problem 1. By assumption this is not possible, so such an adversary cannot exist.

Lemma 9. Under the Subgroup Decision Assumption 2, no polynomial time attacker can
achieve a non-negligible difference in advantage between Game(`−1)7 and Game`1 for any ` from
1 to Q

Proof. If an algorithm A has non-negligible difference in advantage between Game(`−1)7 and
Game`1 for some ` in [1, Q], then we could use A to achieve non-negligible advantage in the
Subgroup Decision Problem 2 as follows:

Given gp, gw, g
s
pg
s̃
q , g

r̃
qg
r∗
w and T where either T = gypg

y∗
w or T = gypg

ỹ
q g
y∗
w (where s, y ← Zp,

s̃, r̃, ỹ ← Zq, and r∗, y∗ ← Zw), consider the simulator in the security game which acts as follows:
The public parameters are formed by using the provided gp, choosing α, aj , bj randomly

from Zn and giving the constructed public parameters to A.
To return the challenge ciphertext for a set of attributes S, for each K ∈ S, t′K ← ZN is

drawn, then the following semi-functional ciphertext of type 1 is constructed and provided:

Me(gp, g
s
pg
s̃
q)
α, {gspgs̃q , (gspg

s̃
q)
AK (gspg

s̃
q)
t′KBK , (gspg

s̃
q)
t′K : (∀K ∈ S)}

Here the semi-functional ciphertext has tK = s̃t′K and t̃K = s̃t′K which are independent since
the values of t′K modulo p and modulo q are indpendent and uniform in Zp,Zq respectively by
the Chinese Remainder Theorem.

13

For each requested key for policy Λ, since the simulator knows the MSK α, it can generate
an honest key:

SK = {gλKp gyKAK
p gzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

using the key generation algorithm with gp and gw. For honest keys after the `th request, the
simulator returns this key.

The simulator additionally chooses and fixes u′ ← ZN . For key requests up to the (`− 1)th
request, the simulator generates shares λ̃′K of u′. The first ` − 1 semi-functional keys of type
4R can be created by returning:

SK = {gλKp gyKAK
p (gr̃qg

r∗
w)λ̃

′
KgzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

Note that these are valid semi-functional keys of type 4R where the λ̃K = r̃λ̃′K (λ̃′K are a sharing
of u′ so the r̃λ̃′K are a sharing of u = r̃u′, which is uniformly distributed in Zq and fixed across

all R-type keys). Also, notice that the extra Gw component g
r∗λ̃′K
w is absorbed by the uniform

random gzKw .
For the `th key request, the simulator generates λ′K and λ′′K , shares of α and 0 respectively.

It then draws y′K ← ZN and produces the key:

{gλ
′
K
p T λ

′′
K (T y

′
K)AKgzKw , T y

′
Kg

z′K
w , (T y

′
K)BKg

z′′K
w : (∀K labels ∈ Λ)}

If T = gypg
y∗
w , then the key is an honest key, where λK = λ′K + yλ′′K , which is a valid sharing

of α (λ′′K is a sharing of zero which multiplying it by y does not change, and adding this to λ′K
(the sharing of α) results in another sharing of α), and yK = y′Ky. The extra Gw components

are all absorbed by the uniform random gzKw , g
z′K
w , and g

z′′K
w .

If T = gypg
ỹ
q g
y∗
w , then the key is semi-functional of type 1Z, where λK = λ′K + yλ′′K , which

is again a valid sharing of α, ỹK = y′K ỹ, and yK = y′Ky which are independent since the
values of y′K modulo p and modulo q are indpendent and uniform in Zp,Zq respectively by
the Chinese Remainder Theorem. The extra Gw components are all absorbed by the uniform

random gzKw , g
z′K
w , and g

z′′K
w .

Therefore, any adversary able to achieve a non-negligible difference in advantage between
Game(`−1)7 and Game`1 for some ` in [1, Q] could be used to achieve the same non-negligible
advantage in deciding the Subgroup Decision Problem 2. By assumption this is not possible, so
such an adversary cannot exist.

Bilinear Entropy Expansion Before the next step of the hybrid proof, we will need a result
about the indistinguishability between two distributions, based on the 2-Linear Computational
Hardness Assumption.

Definition 10. Given G, a group of prime order q, and g a generator of that group, let D1(m)
be the distribution of:

gs̃,

gỹ1 , ..., gỹM−1 ,

gỹ1r1 , ..., gỹM−1rM−1 ,

gỹ1b1 , ..., gỹM−1bM−1 ,

gt̃1 , ..., gt̃M−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 ,

14

where the ỹi, t̃i, bi, ri, s̃← Zq and M = 2m.

Definition 11. Given G, a group of prime order q, g a generator of that group, and C =
{c1, ..., cm} a set of m elements drawn uniformly at random from Zq, let D2(m) be the same

distribution as above where the ỹi, t̃i, bi, s̃ ← Zq but each ri =
∑
j∈Ci

cj where Ci denotes the ith

indexed nonempty subset of C (|C| = m and there are M − 1 = 2m − 1 nonempty subsets).

The Bilinear Entropy Expansion Lemma states that these two distributions are indistin-
guishable:

Lemma 12. The distributions D1(k) and D2(k) are computationally indistinguishable under
the 2-Linear computational hardness assumption if k = O(lg poly(λ)).

We defer the proof of this lemma to the end of this security proof, and return to the next
step in our hybrid: where the BK in the semi-functional space change to random elements gb̃Kq .

Lemma 13. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game`1 and Game`2 for any ` from 1 to Q.

Proof. From Lemma 12 we have that the distributions D1(k) and D2(k) are computationally
indistinguishable under the 2-Linear computational hardness assumption if k = O(lg poly(λ)).
However, if an algorithm A is able to achieve a non-negligible difference in advantage δ between
Game`1 and Game`2 for some ` in [1, Q], then we could use A to create a distinguisher B
for D1(k) and D2(k) where k is the same value that defines our attribute universe U . (This
presents a contradiction since |U| = O(poly(λ)) and U is defined as containing all subsets of [k],
so k = O(lg poly(λ))). We do this as follows:

Let the generator of Gq used in D1(k) and D2(k) be gq. Rename the set C as C = {b′1, ..., b′k}.
Now, given the challenge instance

gs̃q ,

gỹ1q , ..., g
ỹK−1
q ,

gỹ1r1q , ..., g
ỹK−1rK−1
q ,

gỹ1b1q , ..., g
ỹK−1bK−1
q ,

gt̃1q , ..., g
t̃K−1
q ,

gs̃r1+t̃1b1
q , ..., g

s̃rK−1+t̃K−1bK−1
q

relabel each index as the subset K ⊆ [k] associated to it, so in particular we have:

gỹKq , gỹKrKq

for all nonempty subsets K ⊆ [k]. (Note that here we do not even use all of the challenge
instance, just the sections of gỹKq , gỹKrKq . The full set is needed later when we reuse the lemma
in the next hybrid proof).

Now, B forms the public parameters using gp, choosing α, aj , bj randomly and giving the
appropriately constructed public parameters to A.

To return the challenge ciphertext for a set of attributes S, first choose an s ← ZN . The
simulator then redefines s̃ by sampling it uniformly at random from ZN . Then, tK , t

∗
K ← ZN

15

are chosen for each K ∈ S. The following semi-functional ciphertext can then be constructed
and provided:

Me(gp, gp)
αs, {gspgs̃q , gsAK

p gtKBK
p gs̃AK

q (gỹKrKq)t
∗
K , gtKp (gỹKq)t

∗
K : (∀K ∈ S)}

Here, t̃K = t∗K ỹK for all K ∈ S.
For each requested key S for policy Λ, since the simulator knows the MSK α, it can generate

an honest key:

SK = {gλKp gyKAK
p gzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

using the key generation algorithm with gp and gw. For honest keys after the `th request, the
simulator returns this key.

The simulator additionally chooses and fixes u← ZN . For key requests up to the (`− 1)th
request, the simulator generates shares λ̃K of u.The first `− 1 semi-functional keys of type 4R
can be created by returning:

SK = {gλKp gyKAK
p gλ̃Kq gzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

For the `th key request, B can compute λ̃K : a sharing of 0 and return the key:

{gλKp gyKAK
p gλ̃Kq (gỹKq)AKgzKw , gyKp (gỹKq)g

z′K
w , gyKBK

p (gỹKrKq)g
z′′K
w : (∀K labels ∈ Λ)}

Notice that if rK =
∑
j∈K

b′j , then grKq =
∏
j∈K

g
b′j
q is distributed identically to gBK

q =
∏
j∈K

g
bj
q by

the Chinese Remainder Theorem. Each bj is a random element of ZN so its value taken mod q

is independent of its value mod p. So, the distributions of (
∏
j∈K

g
bj
p ,
∏
j∈K

g
bj
q) = (gBK

p , gBK
q) and

(
∏
j∈K

g
bj
p ,
∏
j∈K

g
b′j
q) = (gBK

p , grKq) are identical.

Constructing the `th key and challenge ciphertext this way gives them alternatively struc-

tured or random components depending on whether the rK =
∑
j∈K

b′j or are uniformly random

in Zq. If the challenge set is drawn from D2(k), then B behaves as expected in Game`1 (where
the challenge ciphertext and `th key are semi-functional of type 1 and 1Z respectively). If the
challenge set is drawn from D1(k), then B behaves as expected in Game`2 (where the challenge
ciphertext and `th key are semi-functional of type 2 and 2Z respectively).

Therefore, any adversary with non-negligible difference in advantage δ between Game`1 and
Game`2 could be used to achieve the same non-negligible difference in advantage in distinguish-
ing the distributions D1(k) and D2(k). By Lemma 12 this is not possible, so such an adversary
cannot exist and therefore we have proven that no polynomial time attacker can achieve a
non-negligible difference in advantage between Game`1 and Game`2 for any ` from 1 to Q.

The proof for the next step in our hybrid is similar, as we transition from structured gAK
q

to random elements gãKq (except this uses the full version of our Bilinear Entropy Expansion
lemma):

Lemma 14. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game`2 and Game`3 for any ` from 1 to Q.

16

Proof. From Lemma 12 we have that the distributions D1(k) and D2(k) are computationally
indistinguishable under the 2-Linear computational hardness assumption if k = O(lg poly(λ)).
However, if an algorithm A is able to achieve non-negligible difference in advantage δ between
Game`2 and Game`3 for some ` in [1, Q], then again we could use A to create a distinguisher
B for D1(k) and D2(k) (where again we use the same k which defines our attribute universe U
and satisfies k = O(lg poly(λ))). We do this as follows:

Let the generator of Gq used in D1(k) and D2(k) be gq. Relabel the set C as C = {a′1, ..., a′k}.
Now, given the challenge instance

gs̃q ,

gỹ1q , ..., g
ỹK−1
q ,

gỹ1r1q , ..., g
ỹK−1rK−1
q ,

gỹ1b1q , ..., g
ỹK−1bK−1
q ,

gt̃1q , ..., g
t̃K−1
q ,

gs̃r1+t̃1b1
q , ..., g

s̃rK−1+t̃K−1bK−1
q

relabel each index as the subset K ⊆ [k] associated to it, so we have:

gs̃q , g
ỹK
q , gỹKrKq , gỹKbKq , gt̃Kq , gs̃rK+t̃KbK

q

for all nonempty subsets K ⊆ [k].
Now, B forms the public parameters using gp, choosing α, aj , bj randomly and giving the

appropriately constructed public parameters to A.
To return the challenge ciphertext for a set of attributes S, first choose an s← ZN . Then,

tK ← ZN are chosen for all K ∈ S. The following semi-functional ciphertext can then be
constructed and provided:

Me(gp, gp)
αs, {gsp(gs̃q), gsAK

p gtKBK
p (gs̃rK+t̃KbK

q), gtKp gt̃Kq : (∀K ∈ S)}

Note that here we implicitly set b̃K = bK .
For each requested key for policy Λ, since the simulator knows the MSK α, it can generate

an honest key:

SK = {gλKp gyKAK
p gzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

using the key generation algorithm with gp and gw. For honest keys after the `th request, the
simulator returns this key.

The simulator additionally chooses and fixes u← ZN . For key requests up to the (`− 1)th
request, the simulator generates shares λ̃K of u.The first `− 1 semi-functional keys of type 4R
can be created by returning:

SK = {gλKp AyKK gλ̃Kq gzKw , gyKp g
z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

For the `th key request, B can compute λ̃K : a sharing of 0, and return the key:

{gλKp gyKAK
p gλ̃Kq (gỹKrKq)gzKw , gyKp (gỹKq)g

z′K
w , gyKBK

p (gỹKbKq)g
z′′K
w : (∀K labels ∈ Λ)}

17

Again, notice that if rK =
∑
j∈K

a′j , then gAK
q =

∏
j∈K

g
aj
q is distributed identically to

∏
j∈K

g
a′j
q =

grKq by the Chinese Remainder Theorem. Each aj is a random element of ZN so its value taken

mod q is independent of its value mod p. So, the distributions of (
∏
j∈K

g
aj
p ,
∏
j∈K

g
aj
q) = (gAK

p , gAK
q)

and (
∏
j∈K

g
aj
p ,
∏
j∈K

g
a′j
q) = (gAK

p , grKq) are identical.

So, constructing the challenge ciphertext and `th key this way causes them to have alterna-

tively structured or random components depending on whether the rK =
∑
j∈K

a′j or are uniformly

random in Zq. If the challenge set is drawn from D2(k), then B behaves as expected in Game`2
(where the challenge ciphertext and `th key are semi-functional of type 2 and 2Z respectively).
If the challenge set is drawn from D1(k), then B behaves as expected in Game`3 (where the
challenge ciphertext and `th key are semi-functional of type 3 and 3Z respectively).

Therefore, any adversary with non-negligible difference in advantage δ between Game`2 and
Game`3 . could be used to achieve the same non-negligible difference in advantage in distinguish-
ing the distributions D1(k) and D2(k). By Lemma 12 this is not possible, so such an adversary
cannot exist and therefore we have proven that no polynomial time attacker can achieve a
non-negligible difference in advantage between Game`2 and Game`3 for any ` from 1 to Q.

We continue to the next step in our hybrid proof:

Lemma 15. No polynomial time attacker can achieve a non-negligible difference in advantage
between Game`3 and Game`4 for any ` from 1 to Q

Proof. Recall that in both Game`3 and Game`4 , the ciphertext is semi-functional of type 3, all
keys after the `th key request are normal, and the first ` − 1 keys are semi-functional of type
4R. The only difference is the `th key (either semi-functional of type 3Z or 3R). In Game`3 , the
shares λ̃K are a sharing of 0, while in Game`4 , they are a sharing of the u used in R-type keys.
The transition between these two modes of operation is accomplished using an information-
theoretic argument. Namely, the distribution of elements seen by an attacker in both games is
the same.

To see this, note that for any attribute K not included in the ciphertext, then the distri-
butions of the elements of the key indexed by K are identical in both cases, since the λ̃K are
masked by a gãK ỹKq where the ãK are chosen uniformly at random and used nowhere else (they
do not appear in keys other than the `th key and only appear at most once in the `th key because
of our single-use restriction), therefore hiding the value of all λ̃K information-theoretically.

For attributes K used in the ciphertext, this argument does not apply (since these ãK do
appear elsewhere - in the ciphertext). For these, note that in the security game the attacker is
not allowed to request a key that is able to decrypt the challenge ciphertext. So, for this key
with policy Λ, the rows of the policy matrix Λ corresponding to the attributes the challenge
ciphertext is encrypted under do not contain (1, 0, ..., 0) in their span (modulo N). We can
further assume that the corresponding rows of Λ do not include (1, 0, ..., 0) in their span modulo
q (because if an adversary can produce an unauthorized set over ZN that is authorized over Zq,
then this can be used to produce a non-trivial factor of the group order N , which would violate
our subgroup decision assumptions). Therefore, there exists some vector ~w ∈ Znq orthogonal
to the span of these rows which is not orthogonal to (1, 0, ..., 0) modulo q (since Zq is a finite
field). By scaling this vector we can have ~w = (1, w2, ..., wn) for some collection of wi. Now

notice that whether the shares λ̃K which comprise
~̃
λ were generated by taking Λ~r =

~̃
λ where

~r = (0, r2, ..., rn) (that is, a valid sharing of zero) or taking Λ(~r + u~w) where (that is, a valid

18

sharing of the u used in R-type keys), then the distributions of shares λ̃K modulo q (they are
exponents of gq) that are not information-theoretically hidden by the previous argument are
the same. All that is seen are λ̃K created by taking dot products with rows of Λ - for the shares
that are not information-theoretically hidden, we have that the u~w contributes 0 modulo q to
the share so the distribution of these shares is the same as those produced by an honest sharing
of zero.

Since the distributions of elements of the key given the ciphertext are identical whether the
λ̃K are formed by taking a sharing of zero or a random element of ZN , then no algorithm can
tell the difference between the two games, and so we have proven the lemma.

Now that we have changed the λ̃K from sharing 0 to sharing u, we proceed to restructure
the AK , BK :

Lemma 16. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game`4 and Game`5 for any ` from 1 to Q.

Proof. Note that this proof is identical to Lemma 14, (which uses the Bilinear Entropy Expan-
sion Lemma 12), with the only difference being that now the λ̃K are a sharing of a random
element of ZN instead of 0. So, the only change in the proof is that instead of generating λ̃K
as a sharing of 0, the λ̃K are generated as a sharing of u: a fixed random element of ZN . The
simulator is equally capable of making either set of shares, and using the sharing of a random
element does not affect the simulator’s ability to perform any of the other actions detailed in
the remainder of Lemma 14.

Lemma 17. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game`5 and Game`6 for any ` from 1 to Q.

Proof. Note that this proof is again identical to Lemma 13, with the only difference being that
now the λ̃K are a sharing of a random element of ZN instead of 0. So, again, the only change in
the proof is that instead of generating λ̃K as a sharing of 0, the λ̃K are generated as a sharing
of u: a fixed random element of ZN . The simulator is equally capable of making either set
of shares, and using the sharing of a random element does not affect the simulator’s ability to
perform any of the other actions detailed in the remainder of Lemma 13.

Lemma 18. Under the Subgroup Decision Assumption 2, no polynomial time attacker can
achieve a non-negligible difference in advantage between Game`6 and Game`7 for any ` from 1
to Q

Proof. If an algorithm A achieves non-negligible difference in advantage between Game`6 and
Game`7 for some ` in [1, Q], then we could use A to achieve non-negligible advantage in the
Subgroup Decision Problem 2 as follows:

Given gp, gw, g
s
pg
s̃
q , g

r̃
qg
r∗
w and T where either T = gypg

y∗
w or T = gypg

ỹ
q g
y∗
w (where s, y ← Zp,

s̃, r̃, ỹ ← Zq, and r∗, y∗ ← Zw), consider the simulator in the security game which acts as follows:
The public parameters are formed by using the provided gp, choosing α, aj , bj randomly and

giving the constructed public parameters to A.
To return the challenge ciphertext for a set of attributes S, for each K ∈ S, a t′K ← ZN is

chosen, then the following semi-functional ciphertext of type 1 is constructed and provided:

Me(gp, g
s
pg
s̃
q)
α, {gspgs̃q , (gspg

s̃
q)
AK (gspg

s̃
q)
t′KBK , (gspg

s̃
q)
t′K : (∀K ∈ S)}

19

Here the semi-functional ciphertext has tK = s̃t′K and t̃K = s̃t′K which are independent since
the values of t′K modulo p and modulo q are independent and uniform in Zp,Zq respectively by
the Chinese Remainder Theorem.

For each requested key for policy Λ, since the simulator knows the MSK α, it can generate
an honest key:

SK = {gλKp gyKAK
p gzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

using the key generation algorithm with gp and gw. For honest keys after the `th request, the
simulator returns this key. The first ` − 1 semi-functional keys of type 4R can be created by
generating shares λ̃′K of a fixed u′ ← Zq and returning:

SK = {gλKp gyKAK
p (gr̃qg

r∗
w)λ̃

′
KgzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

Note that these are valid semi-functional keys of type 4R where the λ̃K = r̃λ̃′K and the extra
Gw component is absorbed by the uniform random gzKw .

For the `th key request, the simulator generates λK and λ̃′K , shares of α and u′ respectively.
It then draws y′K uniformly at random from ZN and produces the key:

{gλKp (gr̃qg
r∗
w)λ̃

′
K (T y

′
K)AKgzKw , T y

′
Kg

z′K
w , (T y

′
K)BKg

z′′K
w : (∀K labels ∈ Λ)}

Again, if λ̃′K are a sharing of u′, then r̃λ̃′K is the sharing of r̃u′, which is fixed across all
R-type keys.

If T = gypg
ỹ
q g
y∗
w , then the key is semi-functional of type 1R, where ỹK = y′K ỹ, and yK = y′Ky

which are independent since the values of y′K modulo p and modulo q are independent and
uniform in Zp,Zq respectively by the Chinese Remainder Theorem. The extra Gw components

are all absorbed by the uniform random gzKw , g
z′K
w , and g

z′′K
w .

If T = gypg
y∗
w , then the key is a semi-functional key of type 4R, where yK = y′Ky. The extra

Gw components are all absorbed by the uniform random gzKw , g
z′K
w , and g

z′′K
w .

Therefore, any adversary able to achieve a non-negligible difference in advantage between
Game`6 and Game`7 for some ` in [1, Q] could be used to achieve the same non-negligible
advantage in deciding the Subgroup Decision Problem 2. By assumption this is not possible, so
such an adversary cannot exist.

This set of hybrids takes us to GameQ7 : where the semi-functional ciphertext is of type 1
and all keys are semi-functional of type 4R. We take one more step to Gamefinal where the
distribution of the ciphertext is independent of the message - a game in which the adversary
cannot have any advantage:

Lemma 19. Under the Subgroup Decision Assumption 3, no polynomial time attacker can
achieve a non-negligible difference in advantage between GameQ7 and Gamefinal.

Proof. If an algorithm A is able to achieve a non-negligible difference in advantage between
GameQ7 and Gamefinal, then we could use A to break the Subgroup Decision Assumption as
follows:

Given gp, gq, gw, g
α
p g

α̃
q , g

s
pg
s̃
q , and T where either T = e(gp, gp)

αs or X (where α, s ← Zp,
α̃, s̃← Zq, and X ← GT), consider the simulator in the security game which acts as follows:

The public parameters are formed by using the provided gp, computing e(gp, g
α
p g

α̃
q) =

e(gp, gp)
α, choosing aj , bj randomly and giving the constructed public parameters to A.

20

To return the challenge ciphertext for a set of attributes S, for each K ∈ S, tK , t̃K ← ZN
are chosen, then the following ciphertext is constructed and provided:

MT, {(gspgs̃q), (gspg
s̃
q)
AKgtKBK

p gt̃KBK
q , gtKp gt̃Kq : (∀K ∈ S)}

For all key requests, note that the simulator no longer has the value α (only gαp g
α̃
q). However,

note that it can still generate gλKp gλ̃Kq where the λK are a sharing of α and λ̃K are a sharing

of α̃ by performing the same share-generation procedure starting with gαp g
α̃
q in parallel for

both subgroups, just in the exponent of gpgq (each of which it has, separately), by choosing
random ri, r̃i, computing grip g

r̃i
q , and raising to appropriate exponents from the policy matrix /

computing products to get the desired dot product in the exponent. It then draws yK ← ZN
and gzKw , g

z′K
w , g

z′′K
w uniformly at random from Gw (by choosing exponents of gw uniformly at

random from Zn), finally producing the semi-functional key of type 4R (where u = α̃):

{gλKp gλ̃Kq gyKAK
p gzKw , gyKp g

z′K
w , gyKBK

p g
z′′K
w : (∀K labels ∈ Λ)}

Note that when T = e(gp, gp)
αs, then the simulator is acting exactly as in GameQ7 (where the

ciphertext is distributed as a semi-functional ciphertext of type 1). When T = X (a completely
random element of GT), then the ciphertext is distributed as a semi-functional ciphertext of
type X (as in Gamefinal) and the message is information-theoretically masked.

So, any adversary able to achieve a non-negligible difference in advantage between GameQ7

and Gamefinal could be used to achieve the same non-negligible advantage in deciding the
Subgroup Decision Problem 3. By assumption this is not possible, so such an adversary cannot
exist.

We have now proven the following theorem

Theorem 20. Under the 2-Linear Computational Hardness Assumption, Subgroup Decision
Assumption 1, Subgroup Decision Assumption 2, and Subgroup Decision Assumption 3, our
single-use KP-ABE scheme is fully secure.

Proof. If the 2-Linear Computational Hardness Assumption, Subgroup Decision Assumption
1, Subgroup Decision Assumption 2, and Subgroup Decision Assumption 3 hold, then by the
previous lemmas, we have shown that the real security game is computationally indistinguishable
from Gamefinal, in which the challenge ciphertext’s message is information-theoretically hidden
from the attacker. Hence, no attacker can achieve a non-negligible advantage in breaking the
KP-ABE scheme.

5 Bilinear Entropy Expansion Lemma

We return to the deferred distribution indistinguishability proof. Recall the definitions of the
two distributions:

Definition 21. Given G, a group of prime order q, and g a generator of that group, let D1(m)

21

be the distribution of:

gs̃,

gỹ1 , ..., gỹM−1 ,

gỹ1r1 , ..., gỹM−1rM−1 ,

gỹ1b1 , ..., gỹM−1bM−1 ,

gt̃1 , ..., gt̃M−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 ,

where the ỹi, t̃i, bi, ri, s̃← Zq and M = 2m.

Definition 22. Given G, a group of prime order q, g a generator of that group, and C =
{c1, ..., cm} a set of m elements drawn uniformly at random from Zq, let D2(m) be the distribu-
tion of:

gs̃,

gỹ1 , ..., gỹM−1 ,

gỹ1r1 , ..., gỹM−1rM−1 ,

gỹ1b1 , ..., gỹM−1bM−1 ,

gt̃1 , ..., gt̃M−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 ,

where the ỹi, t̃i, bi, s̃ ← Zq and M = 2m but each ri =
∑
j∈Ci

cj where Ci denotes the ith indexed

nonempty subset of C (|C| = m and there are M − 1 = 2m − 1 nonempty subsets).

We show that the distributions D1(m) and D2(m) are computationally indistinguishable if
m = O(lg poly(λ)) through an inductive proof, beginning with the base case of m = 2, where a
distinguisher for D1(2) and D2(2) (C = {c1, c2}) can be used to achieve the same advantage in
the 2-Linear Problem.

Lemma 23. If there exists a polynomial-time algorithm able to achieve advantage 22δ in dis-
tinguishing between the distributions D1(2) and D2(2), then there exists a polynomial-time al-
gorithm able to achieve advantage δ in the 2-Linear Problem.

Proof. If there exists a polynomial time algorithm A which distinguishes between D1(2) and
D2(2) with advantage 22δ, we can construct a distinguisher for the 2-Linear problem: B. B, upon
receiving g, gy1 , gy2 , gy1c1 , gy2c2 , gc1+c2+r, draws uniform random s̃, b3, ỹ3, t̃1, t̃2, t̃3, γ1, γ2 ← Zq,

22

then creates the set:

gs̃,

gy1 , gy2 , gỹ3 ,

gy1c1 , gy2c2 , (gc1+c2+r)ỹ3 ,

(gy1c1)
− s̃

t̃1 (gy1)γ1 , (gy2rc)
− s̃

t̃2 (gy2)γ2 , gỹ3b3 ,

gt̃1 , gt̃2 , gt̃3 ,

gt̃1γ1 , gt̃2γ2 , (gc1+c2+r)s̃gt̃3b3

then runs A on this input and returns the output of A.
Notice that if r = 0, this distribution is exactly D2(2) (with C = {c1, c2}, ỹ1 = y1, ỹ2 =

y2, b1 = − c1s
t̃1

+ γ1, and b2 = − c2s
t̃2

+ γ2). If r is instead random, this distribution is exactly

D1(2). Therefore, B will achieve the same advantage 22δ as A (which is greater than δ) in
deciding the 2-Linear problem.

Lemma 24. For all integers m ≥ 2, if there exists a polynomial-time algorithm able to achieve
an advantage of 2m+1δ deciding between distributions D1(m + 1) and D2(m + 1), then either
there exists a polynomial-time algorithm able to achieve an advantage of 2mδ in deciding between
distributions D1(m) and D2(m) or there exists a polynomial time algorithm able to achieve an
advantage of δ in the 2-Linear Problem.

Proof. If there exists a polynomial time algorithm A which distinguishes between D1(m + 1)
and D2(m+ 1) with non-negligible advantage 2m+1δ, we construct B: a distinguisher for D1(m)
and D2(m).
B, upon receiving

gs̃,

gỹ1 , ..., gỹM−1 ,

gỹ1r1 , ..., gỹM−1rM−1 ,

gỹ1b1 , ..., gỹM−1bM−1 ,

gt̃1 , ..., gt̃M−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 ,

where M = 2m, first draws y∗1, ..., y
∗
M−1, σ1, ..., σM−1, γ1, ..., γM−1, ỹM , t̃M , bM , cm+1 ← Zq, and

constructs the following set:

23

gs̃,

gỹ1 , ..., gỹM−1 , gỹM ,

(gỹ1)y
∗
1 , ..., (gỹM−1)y

∗
M−1 ,

gỹ1r1 , ..., gỹM−1rM−1 , gỹM cm+1 ,

(gỹ1)y
∗
1cm+1(gỹ1r1)y

∗
1 , ..., (gỹM−1)y

∗
M−1cm+1(gỹM−1rM−1)y

∗
M−1 ,

gỹ1b1 , ..., gỹM−1bM−1 , gỹM bM ,

(gỹ1b1)y
∗
1 (gỹ1)σ1y

∗
1 , ..., (gỹM−1bM−1)y

∗
M−1(gỹM−1)σM−1y

∗
M−1 ,

gt̃1 , ..., gt̃M−1 , gt̃M ,

gt̃1(gỹ1)γ1 , ..., gt̃M−1(gỹM−1)γM−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 , (gs̃)cm+1gt̃M bM ,

(gs̃)cm+1gs̃r1+t̃1b1(gt̃1)σ1(gb1ỹ1)γ1(gỹ1)σ1γ1 , ..., (gs̃)cm+1gs̃rM−1+t̃M−1bM−1(gt̃M−1)σM−1(gbM−1ỹM−1)γM−1(gỹM−1)σM−1γM−1

=

gs̃,

gỹ1 , ..., gỹM−1 , gỹM ,

gỹ1y
∗
1 , ..., gỹM−1y

∗
M−1 ,

gỹ1r1 , ..., gỹM−1rM−1 , gỹM cm+1 ,

gỹ1y
∗
1(r1+cm+1), ..., gỹM−1y

∗
M−1(rM−1+cm+1),

gỹ1b1 , ..., gỹM−1bM−1 , gỹM bM ,

gỹ1y
∗
1(b1+σ1), ..., gỹM−1y

∗
M−1(bM−1+σM−1),

gt̃1 , ..., gt̃M−1 , gt̃M ,

gt̃1+ỹ1γ1 , ..., gt̃M−1+ỹM−1γM−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 , gs̃cm+1+t̃M bM ,

gs̃(r1+cm+1)+(t̃1+ỹ1γ1)(b1+σ1), ..., gs̃(rM−1+cm+1)+(t̃M−1+ỹM−1γM−1)(bM−1+σM−1)

Notice that if B’s input is D2(m), then the distribution of sets constructed by B is exactly
D2(m + 1), where a new cm+1 element is drawn and added to form the subsets of the new
augmented set C, ỹM+i = ỹiy

∗
i , bM+i = bi + σi, and t̃M+i = t̃i + ỹiγi for i = 1, ...,M − 1 which

are all uniformly distributed at random. However, if B’s input is D1(m), then the distribution
of sets constructed by B is not exactly D1(m+ 1).

Definition 25. Let D′1(m + 1) be the distribution of sets created by B given input sets from
D1(m).

We have therefore only proved that if an algorithm is able to achieve advantage in distin-
guishing D′1(m + 1) and D2(m + 1), then it can be used to achieve that same advantage in
deciding between D1(m) and D2(m).

Fortunately, we can transition between D′1(m+ 1) and D1(m+ 1) using a hybrid proof:
First we define M = 2m hybrid distributions indexed by (j):

24

Definition 26. Let D′(j)1 (m+ 1) be the distribution of:

gs̃,

gỹ1 , ..., gỹM−1 , gỹM ,

gỹM+1 , ..., gỹ2M−1 ,

gỹ1r1 , ..., gỹM−1rM−1 , gỹM cm+1 ,

gỹM+1(r1+cm+1), ..., gỹM+j(rj+cm+1), gỹM+j+1rM+j+1 , ..., gỹ2M−1r2M−1 ,

gỹ1b1 , ..., gỹM−1bM−1 , gỹM bM ,

gỹM+1bM+1 , ..., gỹ2M−1b2M−1 ,

gt̃1 , ..., gt̃M−1 , gt̃M ,

gt̃M+1 , ..., gt̃2M−1 ,

gs̃r1+t̃1b1 , ..., gs̃rM−1+t̃M−1bM−1 , gs̃cm+1+t̃M bM ,

gs̃(r1+cm+1)+t̃M+1bM+1 , ..., gs̃(rj+cm+1)+t̃M+jbM+j , gs̃rM+j+1+t̃M+j+1bM+j+1 , ..., gs̃r2M−1+t̃2M−1b2M−1

for j = 0, ...,M − 1 where the rM+j+i are distributed uniformly at random in Zp for i =
1, ...M − j − 1

Notice that D′(0)
1 (m + 1) = D1(m + 1) and D′(M−1)

1 (m + 1) = D′1(m + 1). So, if some
adversary A could distinguish between D1(m+ 1) and D′1(m+ 1) with non-negligible advantage
2mδ, then:

|Pr[A = 1|D′(0)
1 (m+ 1)]− Pr[A = 1|D′(M−1)

1 (m+ 1)]| = 2mδ (1)

So, by the triangle inequality, there must exists some j such that:∣∣∣Pr[A = 1|D′(j+1)
1 (m+ 1)]− Pr[A = 1|D′(j)1 (m+ 1)]

∣∣∣ ≥ 2mδ

M
= δ (2)

Such an A can be used to construct a distinguisher for the 2-Linear Problem: B that achieves
advantage δ:
B, upon receiving g, gy1 , gy2 , gy1c1 , gy2c2 , gc1+c2+r, relabels the elements as:

g, gy1 , gy2 , gy1r
∗
, gy2cm+1 , gx

(defining y1 = y1, y2 = y2, r
∗ = c1, cm+1 = c2, and x = c1 + c2 + r) B then draws

s̃, γ

ỹ1, ..., ỹj , ỹj+2, ..., ỹM

y∗M+1, ..., y
∗
M+j ,

ỹM+j+1, ..., ỹ2M−1,

t1, ..., t2M−1

b1, ..., bj , bj+2, ..., b2M−1

r1, ..., rj , rj+2, ..., r2M−1

uniformly at random from Zq and constructs:

25

gs̃,

gỹ1 , ..., gỹj , gy1 , gỹj+2 , ..., gỹM ,

(gy2)y
∗
M+1 , ..., (gy2)y

∗
M+j , gỹM+j+1 , ..., gỹ2M−1 ,

gỹ1r1 , ..., gỹjrj , gy1r
∗
, gỹj+2rj+2 , ..., gỹMrM ,

((gy2)y
∗
M+1)r1(gy2cm+1)y

∗
M+1 , ..., ((gy2)y

∗
M+j)rj (gy2cm+1)y

∗
M+j , (gx)ỹM+j+1 , gỹM+j+2rM+j+2 , ..., gỹ2M−1r2M−1

gỹ1b1 , ..., gỹjbj , (gy1r
∗
)
− s̃

t̃j (gy1)γ , gỹj+2bj+2 , ..., gỹM−1bM−1 , gỹM bM ,

(gy2)y
∗
M+1bM+1 , ..., (gy2)y

∗
M+jbM+j , gỹM+j+1bM+j+1 ..., gỹ2M−1b2M−1 ,

gt̃1 , ..., gt̃M ,

gt̃M+1 , ..., gt̃2M−1 ,

gs̃r1+t̃1b1 , ..., gs̃rj+t̃jbj , gt̃j+1γ , gs̃rj+1+t̃j+1bj+1 , ..., gs̃rM+t̃M bM ,

gs̃(r1+cm+1)+t̃M+1bM+1 , ..., gs̃(rj+cm+1)+t̃M+jbM+j , (gx)s̃gt̃M+j+1bM+j+1 , gs̃rM+j+2+t̃M+j+2bM+j+2 , ..., gs̃r2M−1+t̃2M−1b2M−1

where bj+1 = − sr∗

t̃j+1
+ γ, ỹj+1 = y1, rj+1 = r∗, and the ỹM+i = y2ỹ

∗
M+i for i = 1, ..., j are

distributed uniformly at random from Zp.
B then runs A on this input and outputs the same.

Note that if x = r∗+cm+1 +0, then B has sampled an instance of D′(j+1)
1 (m+1). Otherwise,

if x = r∗ + cm+1 + r for a uniform random r it has sampled an instance of D′(j)1 (m+ 1). So, B
will enjoy the same advantage δ of A but in deciding the 2-Linear Problem.

We assumed there is a polynomial time algorithm A which distinguishes between D1(m+ 1)
and D2(m + 1) with advantage 2m+1δ. By the triangle inequality, then A must be able to be
used to either achieve advantage 2mδ in distinguishing between instances of D1(m + 1) and
D′1(m+ 1) or achieve advantage 2mδ in distinguishing between instances of between D′1(m+ 1)
and D2(m+ 1).

In the first case, if A can be used to achieve advantage 2mδ in distinguishing between
instances of D1(m+ 1) and D′1(m+ 1), then we showed in the first proof how such an algorithm
could be used to distinguish between D1(m) and D2(m) with the same advantage (2mδ).

In the second case, if A can be used to achieve advantage 2mδ in distinguishing between
instances of D′1(m+1) and D2(m+1), then we showed in the second proof how such an algorithm
could be used to break the 2-Linear problem with advantage 2mδ

M = δ.
Therefore, if there is a polynomial time algorithm A which distinguishes between D1(m+ 1)

and D2(m + 1) with advantage 2m+1δ, then either there exists a polynomial-time algorithm
able to achieve an advantage of 2mδ in deciding between distributions D1(m) and D2(m) or
there exists a polynomial time algorithm able to achieve an advantage of δ in the 2-Linear
Problem.

Now we have all the ingredients necessary for the main statement:

Lemma 27. The distributions D1(k) and D2(k) are computationally indistinguishable under
the 2-Linear computational hardness assumption if k = O(lg poly(λ)).

Proof. We have shown that for all integers m ≥ 2, if there exists a polynomial-time algorithm
able to achieve an advantage of 2m+1δ deciding between distributions D1(m+1) and D2(m+1),
then either there exists a polynomial-time algorithm able to achieve an advantage of 2mδ in

26

deciding between distributions D1(m) and D2(m) or there exists a polynomial time algorithm
able to achieve an advantage of δ in the 2-Linear Problem. We have also shown that if there
exists a polynomial-time algorithm able to achieve advantage 22δ in distinguishing between the
distributions D1(2) and D2(2), then there exists a polynomial-time algorithm able to achieve
advantage δ in the 2-Linear Problem. By induction, it follows that for all m, if an algorithm is
able to achieve an advantage of 2mδ in distinguishing between distributions D1(m) and D2(m),
then that algorithm can be used to achieve advantage δ in the 2-Linear problem. Equivalently,
if an algorithm is able to achieve an advantage of δ′ in distinguishing between distributions
D1(m) and D2(m), then that algorithm can be used to achieve advantage δ′

2m in the 2-Linear
problem.

If k = O(lg poly(λ)), then any algorithm A able to achieve non-negligible advantage δ
in distinguishing between D1(k) and D2(k) can be used to achieve non-negligible advantage
O(δ

poly(λ)) in the 2-Linear problem. This violates our 2-Linear Assumption, so no such algorithm
A can exist.

6 Prime Order KP-ABE

We will now show a version of our construction translated into the prime order setting. The full
security of this variant will be proven solely using the 2-Linear Assumption described in section
2.2. We again present a one-use KP-ABE scheme and remind the reader that the same generic
transformation from section 2.3.4 can be used to obtain a version of the scheme that works for
multiple uses of attributes in access policies. First we present some additional tools used:

6.1 Prime Order Bilinear Groups

We now let G denote a bilinear group of prime order p, with bilinear map e : G × G → GT .
In addition to referring to individual elements of G, we will also consider “vectors” of group
elements. For ~v = (v1, ..., vn) ∈ Znp and g ∈ G, we write g~v to denote the n-tuple of elements of
G:

g~v := (gv1 , ..., gvn)

We can also perform scalar multiplication and exponentiation in the exponent. For any a ∈ Zp
and ~v, ~w ∈ Zp, we have:

ga~v :=(gav1 , ..., gavn)

g~v+~w =(gv1+w1 , ..., gvn+wn)

We define en to denote the product of the component wise pairings:

en(g~v, g ~w) :=
n∏
i=1

e(gvi , gwi) = e(g, g)~v·~w

Here, the dot product is taken modulo p.

We will use the notation ~b1,j = g
~b1,j , ..., ~b9,j = g

~b9,j (and similarly for the starred vectors),
where scalar multiplication of bold vectors denotes exponentiation and addition denotes the

normal component-wise group operation; i.e: a~b1,j + b~b1,j = g(a+b)~b1,j . This notation allows us
to avoid having to write large sums in exponents.

27

Dual Pairing Vector Spaces We will employ the concept of dual pairing vector spaces from
[28, 29]. We will choose two random sets of vectors:

B := {~b1,~b2,1, ...,~b2,k,~b3,
~b4,~b5,1, ...,~b5,k,~b6,

~b7,~b8,1, ...,~b8,k,~b9}

and

B∗ := {~b∗1,1, ...,~b∗1,k,~b∗2,~b∗3,1, ...,~b∗3,k,
~b∗4,1, ...,

~b∗4,k,
~b∗5,

~b∗6,1, ...,
~b∗6,k,

~b∗7,1, ...,
~b∗7,k,

~b∗8,
~b∗9,1, ...,

~b∗9,k}

of Z3k+6
p subject to the constraint that they are “dual orthonormal” in the following sense:

~b1 ·~b∗1,j = 1 (mod p) for all j, ~b1 is orthogonal to all other vectors in B∗

~b2,j ·~b∗2 = 1 (mod p) for all j, each ~b2,j is orthogonal to all other vectors in B∗

~b3 ·~b∗3,j = 1 (mod p) for all j, ~b3 is orthogonal to all other vectors in B∗

~b4 ·~b∗4,j = 1 (mod p) for all j, ~b4 is orthogonal to all other vectors in B∗

~b5,j ·~b∗5 = 1 (mod p) for all j, each ~b5,j is orthogonal to all other vectors in B∗

~b6 ·~b∗6,j = 1 (mod p) for all j, ~b6 is orthogonal to all other vectors in B∗

~b7 ·~b∗7,j = 1 (mod p) for all j, ~b7 is orthogonal to all other vectors in B∗

~b8,j ·~b∗8 = 1 (mod p) for all j, each ~b8,j is orthogonal to all other vectors in B∗

~b9 ·~b∗9,j = 1 (mod p) for all j, ~b9 is orthogonal to all other vectors in B∗

We note that choosing sets (B,B∗) at random from sets satisfying these dual orthonormality
constraints can be realized by choosing a set of 3k+6 vectors B uniformly at random from Z3k+6

p

(these vectors will be linearly independent with high probability), then determine each vector
of B∗ from its orthonormality constraints. We will denote choosing random dual orthonormal
sets this way as: (B,B∗)← Dual(Z3k+6

p)

6.2 Prime Order KP-ABE Construction

In a typical execution of a dual system encryption proof strategy in the prime-order setting,
we use orthogonal subspaces in the exponents to play the role of normal and semi-functional
components. Since the semi-functional vectors are never published, they can serve as “hidden
parameters” that supply fresh entropy, even conditioned on the public parameters. The prior
prime order variants of fully secure dual system ABE schemes have used a fresh pair of vectors
for each attribute use to supply enough entropy to make an information-theoretic switch from
a nominal semi-functional key (one that has semi-functional components but still manages to
correctly decrypt the semi-functional ciphertext) to a real semi-functional one (a key that no
longer decrypts the semi-functional ciphertext correctly). This makes the public parameters
allocated for each attribute grow linearly with the bound on the number of attribute uses
allowed in access policies (analogously to the composite-order counterparts of these schemes).

We replace this linear dependence with a poly-logarithmic one. Essentially, for a bound of
at most 2k − 1 attribute uses, we publish O(k) vectors in a space of dimension O(k). These

28

vectors will satisfy the previously mentioned orthonormality constraints and allow us to form
2k − 1 sets of well-behaved vectors by taking subset-sum combinations in the exponent. The
semi-functional space vectors are not fixed conditioned on the published parameters, and the
additional O(k) degrees of freedom this provides allow us to argue that the {aj , bj} parameters
(in the construction below) in the semi-functional space are decorrelated from their normal space
counterparts. (This is something that comes for free in the composite-order setting, where we
can use the Chinese Remainder Theorem. In the prime-order setting, the fresh entropy is
supplied by a hidden linear transformation.)

Having subset-sums of decorellated {aj , bj} values in the semi-functional space allows us to
apply our bilinear entropy expansion lemma in the exponent of the semi-functional space. This
provides sufficient entropy to execute the information-theoretic step of a traditional dual system
encryption strategy.

Again, we identify the attribute universe U for this single-use KP-ABE with the set of all
nonempty subsets of [k].

Setup(λ,U , k) → PP,MSK The setup algorithm chooses a bilinear group G of prime order
p. It then chooses random group element g ∈ G and exponents α, α′ ← Zp. For j ∈ [k] it
chooses values aj , bj ← Zp and generates a random dual orthonormal set:

(B,B∗) = ({~b1,~b2,1, ...,~b2,k,~b3,
~b4,~b5,1, ...,~b5,k,~b6,

~b7,~b8,1, ...,~b8,k,~b9},

{~b∗1,1, ...,~b∗1,k,~b∗2,~b∗3,1, ...,~b∗3,k,
~b∗4,1, ...,

~b∗4,k,
~b∗5,

~b∗6,1, ...,
~b∗6,k,

~b∗7,1, ...,
~b∗7,k,

~b∗8,
~b∗9,1, ...,

~b∗9,k})← Dual(Z3k+6
p)

The public parameters PP are:

k, p, g, e(g, g)α, e(g, g)α
′
,

{~b∗1,j , ~b∗3,j , ~b∗4,j , ~b∗6,j : j ∈ [k]}

{aj~b∗2, bj~b∗2, aj~b∗5, bj~b∗5 : j ∈ [k]}

(We use the bolded vector notation to denote the vector in the exponent, as detailed in subsec-
tion 6.1.) The MSK is:

α, α′, {~b1, ~b2,j , ~b4, ~b5,j : j ∈ [k]},

{aj~b1, bj~b3, aj~b4, bj~b6 : j ∈ [k]}

Such a construction is equipped to create keys for access policies which include attributes
K ⊆ [k] where K is not empty.

KeyGen(MSK,Λ, PP)→ SK The key generation algorithm takes in the public parameters,
master secret key, and LSSS access matrix Λ. First, the key generation algorithm generates
{λK , λ′K}: linear sharings of α and α′ according to policy matrix Λ (the reader is referred to

29

section 2.3.1 for details). For each attribute K labeling a row in the policy matrix Λ, it then
chooses exponents yK , y

′
K ← Zp and computes:

AK~b1 =
∑
j∈K

aj~b1

BK~b3 =
∑
j∈K

bj~b3

AK~b4 =
∑
j∈K

aj~b4

BK~b6 =
∑
j∈K

bj~b6

It then outputs the secret key:

SKΛ = {λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

:(∀K labels ∈ Λ)}

Again, note that here and throughout the rest of the description of our construction and its

proof of security we will use the notation AK =
∑
j∈K

aj and BK =
∑
j∈K

bj .

Encrypt(M,S, PP)→ CT The encryption algorithm first draws s, s′ ← Zp. For each K ∈ S,
the encryption algorithm draws tK , t

′
K ← Zp and computes:

AK~b
∗
2 =

∑
j∈K

aj~b
∗
2

BK~b
∗
2 =

∑
j∈K

bj~b
∗
2

AK~b
∗
5 =

∑
j∈K

aj~b
∗
5

BK~b
∗
5 =

∑
j∈K

bj~b
∗
5

It then outputs the ciphertext:

CT = Me(g, g)αs+α
′s′ , {s

∑
j∈K

~b∗1,j

− sAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


:(∀K ∈ S)}

(This implicitly includes S)

30

Decrypt(CT, SK,PP) → M We let S correspond to the set of attributes associated to
ciphertext CT , and Λ be the policy matrix. If S satisfies Λ, the decryption algorithm computes

constants ωK such that
∑
K∈S∗

ωKλK = α and
∑
K∈S∗

ωKλ
′
K = α′ (recall section 2.3.1). It then

computes:

∏
K∈S∗

en

(
s

∑
j∈K

~b∗1,j

− sAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+ s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j

 ,

λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+ λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

)ωK
|K|

=
∏
K∈S∗

(∏
j∈K

e(g, g)sλK
~b1·~b∗1,j

∏
j∈K

e(g, g)syKAK
~b1·~b∗1,j

∏
j∈K

e(g, g)−syKAK
~b2,j ·~b∗2

∏
j∈K

e(g, g)−yKtKBK
~b2,j ·~b∗2

∏
j∈K

e(g, g)tKyKBK
~b3·~b∗3,j

∏
j∈K

e(g, g)s
′λ′K

~b4·~b∗4,j
∏
j∈K

e(g, g)s
′y′KAK

~b4·~b∗4,j

∏
j∈K

e(g, g)−s
′y′KAK

~b5,j ·~b∗5
∏
j∈K

e(g, g)−y
′
Kt
′
KBK

~b5,j ·~b∗5

∏
j∈K

e(g, g)t
′
Ky
′
KBK

~b6·~b∗6,j
)ωK
|K|

=
∏
K∈S∗

(
e(g, g)sλK |K|e(g, g)syKAK |K|

e(g, g)−syKAK |K|e(g, g)−yKtKBK |K|

e(g, g)tKyKBK |K|

e(g, g)s
′λ′K |K|e(g, g)s

′y′KAK |K|

e(g, g)−s
′y′KAK |K|e(g, g)−y

′
Kt
′
KBK |K|

e(g, g)t
′
Ky
′
KBK |K|

)ωK
|K|

31

=
∏
K∈S∗

(e(g, g)sλKe(g, g)s
′λ′K)ωK

= e(g, g)

s

∑
K∈S∗

ωKλK + s′
∑
K∈S∗

ωKλ
′
K

= e(g, g)sα+s′α′

The message can then be recovered by computing: Me(g, g)αs+α
′s′/e(g, g)αs+α

′s′ = M . This
also shows correctness of the scheme.

Security The proof of security for this prime order variant (which holds under the 2-Linear
Assumption) is presented in appendix A.

7 Concluding Remarks

We have presented a prime order KP-ABE scheme fully secure under the DLIN assumption
and an analogous composite order scheme fully secure under additional subgroup decision type
assumptions. Both schemes allow a bound of 2k − 1 attribute-uses in an access policy, where
the number of group elements required in the public parameters per attribute-use grows poly-
nomially with k. Previous fully secure schemes required either a q-type assumption or public
parameters growing linearly with 2k− 1. An interesting question for future work is whether the
ciphertext sizes can be significantly reduced (our schemes have ciphertexts still growing linearly
in size with 2k − 1).

We have chosen to demonstrate our techniques on KP-ABE schemes, though we note that
they are equally applicable to the CP-ABE setting. The core of CP-ABE schemes often mir-
ror the structure of KP-ABE schemes, and would benefit similarly from the reduced public
parameter size our lemma enables.

Finally, our bilinear entropy expansion lemma is not restricted to the ABE setting, and we
suspect it may have applications to other cryptographic primitives. Primitive structure can be
built around the lemma’s core components of {gtK , gtKAK}, which can be plugged in to replace
a need for independent random group elements. Our prime order and composite order KP-ABE
schemes demonstrate this usage.

References

[1] N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully
secure functional encryption for regular languages, and more. In EUROCRYPT, pages
557–577, 2014.

[2] M. Raykova B. Parno and V. Vaikuntanathan. How to delegate and verify in public:
Verifiable computation from attribute-based encryption. In TCC, pages 422–439, 2012.

[3] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Israel
Institute of Technology, Technion, Haifa, Israel, 1996.

[4] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based en-
cryption. In Proceedings of the IEEE Symposium on Security and Privacy, pages 321–334.

[5] D. Boneh and M. Franklin. Identity based encryption from the weil pairing. In CRYPTO,
pages 213–229, 2001.

32

[6] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC,
pages 325–342, 2005.

[7] M. Chase. Multi-authority attribute based encryption. In Theory of Cryptography, 4th
Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February
21-24, 2007, Proceedings, pages 515–534, 2007.

[8] M. Chase and S. S. M. Chow. Improving privacy and security in multi-authority attribute-
based encryption. In Proceedings of the 2009 ACM Conference on Computer and Commu-
nications Security, pages 121–130, 2009.

[9] M. Chase and S. Meiklejohn. Déjà Q: using dual systems to revisit q-type assumptions. In
EUROCRYPT, pages 622–639, 2014.

[10] J. Chen and H. Wee. Fully, (almost) tightly secure IBE and dual system groups. In
CRYPTO, pages 435–460, 2013.

[11] C. Cocks. An identity based encryption scheme based on quadratic residues. In Proceedings
of the 8th IMA International Conference on Cryptography and Coding, pages 26–28, 2001.

[12] Y. Dodis, A. B. Lewko, B. Waters, and D. Wichs. Storing secrets on continually leaky
devices. In FOCS, pages 688–697, 2011.

[13] S. Garg, C. Gentry, S. Halevi, A. Sahai, and B. Waters. Attribute-based encryption for
circuits from multilinear maps. In CRYPTO, pages 479–499, 2013.

[14] S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Fully secure attribute based encryption
from multilinear maps. IACR Cryptology ePrint Archive, 2014:622, 2014.

[15] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How to run
turing machines on encrypted data. In Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, pages 536–553, 2013.

[16] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In
STOC, pages 545–554, 2013.

[17] V. Goyal, A. Jain, O. Pandey, and A. Sahai. Bounded ciphertext policy attribute-based
encryption. In ICALP, 2008.

[18] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute based encryption for fine-grained
access control of encrypted data. In ACM conference on Computer and Communications
Security, pages 89–98, 2006.

[19] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional
encryption: Attribute-based encryption and (hierarchical) inner product encryption. In
EUROCRYPT, pages 62–91, 2010.

[20] A. Lewko, Y. Rouselakis, and B. Waters. Achieving leakage resilience through dual system
encryption. In TCC, pages 70–88, 2011.

[21] A. Lewko and B. Waters. New techniques for dual system encryption and fully secure hibe
with short ciphertexts. In TCC, pages 455–479, 2010.

33

[22] A. Lewko and B. Waters. Decentralizing attribute-based encryption. In EUROCRYPT,
pages 568–588, 2011.

[23] A. Lewko and B. Waters. Unbounded hibe and attribute-based encryption. In EURO-
CRYPT, pages 547–567, 2011.

[24] A. B. Lewko, M. Lewko, and B. Waters. How to leak on key updates. In STOC, pages
725–734, 2011.

[25] A. B. Lewko and B. Waters. Efficient pseudorandom functions from the decisional linear
assumption and weaker variants. In Proceedings of the 2009 ACM Conference on Computer
and Communications Security, pages 112–120, 2009.

[26] A. B. Lewko and B. Waters. New proof methods for attribute-based encryption: Achieving
full security through selective techniques. In CRYPTO, pages 180–198, 2012.

[27] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In FOCS, pages 458–467, 1997.

[28] T. Okamoto and K. Takashima. Homomorphic encryption and signatures from vector
decomposition. In Pairing, pages 57–74, 2008.

[29] T. Okamoto and K. Takashima. Hierarchical predicate encryption for inner-products. In
ASIACRYPT, pages 214–231, 2009.

[30] T. Okamoto and K. Takashima. Fully secure functional encryption with general relations
from the decisional linear assumption. In CRYPTO, pages 191–208, 2010.

[31] T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-based
encryption. In ASIACRYPT, pages 349–366, 2012.

[32] T. Okamoto and K. Takashima. Decentralized attribute-based signatures. In PKC, pages
125–142, 2013.

[33] R. Ostrovksy, A. Sahai, and B. Waters. Attribute based encryption with non-monotonic
access structures. In ACM conference on Computer and Communications Security, pages
195–203, 2007.

[34] A. Sahai and B. Waters. Fuzzy identity based encryption. In EUROCRYPT, pages 457–473,
2005.

[35] B. Waters. Dual system encryption: realizing fully secure ibe and hibe under simple
assumptions. In CRYPTO, pages 619–636, 2009.

[36] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization. In PKC, pages 53–70, 2011.

[37] H. Wee. Dual system encryption via predicate encodings. In TCC, pages 616–637, 2014.

A Prime Order KP-ABE Security Proof

Our security proof for the prime order variant again uses a hybrid argument over a sequence of
games. We let Gamereal denote the real security game. The rest of the games use semi-functional
keys and ciphertexts, which we will now describe.

34

Semi-functional Ciphertext We will use 4 types of semi-functional ciphertexts. To pro-
duce a semi-functional ciphertext for an attribute set S, one first calls the normal encryption
algorithm to produce a normal ciphertext consisting of:

Me(g, g)αs+α
′s′ , {s

∑
j∈K

~b∗1,j

− sAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


:(∀K ∈ S)}

One then chooses s′′ ← Zp. For each attribute K, an exponent t′′K ← Zp is drawn. For
all j ∈ [k], a′′j , b

′′
j ← Zp are drawn and fixed if they do not already exist (in a semi-functional

key, for instance). We will use the notation ÃK =
∑
j∈K

a′′j and B̃K =
∑
j∈K

b′′j . The remaining

composition of the semifunctional ciphertext depends on the type of ciphertext desired:

Type 0 The semi-functional ciphertext of Type 0 is formed as:

Me(g, g)αs+α
′s′ , {s

∑
j∈K

~b∗1,j

− sAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

~b∗7,j

− s′′AK~b∗8 − t′′KBK~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

Notice that in this type, the a′′j , b
′′
j are unused.

Type 1 The semi-functional ciphertext of Type 1 is formed as:

Me(g, g)αs+α
′s′ , {s

∑
j∈K

~b∗1,j

− sAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

~b∗7,j

− s′′ÃK~b∗8 − t′′KB̃K~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

Notice that in this type, the subset sums in the extra semifunctional space have been decoupled
from the sums in the normal space (by being replaced with subset sums of the independently
chosen a′′j and b′′j).

35

Type 2 The semi-functional ciphertext of Type 2 is formed as:

Me(g, g)αs+α
′s′ , {s

∑
j∈K

~b∗1,j

− sAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

~b∗7,j

− s′′ÃK~b∗8 − t′′K b̃K~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

for fixed b̃K ∈ Zp which are chosen uniformly at random and fixed if they do not already exist.

Type 3 The semi-functional ciphertext of Type 3 is formed as:

Me(g, g)αs+α
′s′ , {s

∑
j∈K

~b∗1,j

− sAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

~b∗7,j

− s′′ãK~b∗8 − t′′K b̃K~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

for fixed ãK , b̃K ∈ Zp which are chosen uniformly at random and fixed if they do not already
exist.

Semi-functional Keys We will use 9 types of semi-functional keys. To produce a semi-
functional key for an access policy Λ, one first calls the normal key generation algorithm to
produce a normal key consisting of:

{λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

:(∀K labels ∈ Λ)}

The first 8 types of keys fall under 4 classes which have two variants each: a “Z” variant and an
“R” variant. For Z-type keys one computes a linear sharing of 0 under access policy Λ, creating
shares λ′′K . For R-type keys one computes a linear sharing of a random element u of Zp which
is fixed and used in all R type keys. u is shared under access policy Λ, creating shares λ′′K . For
each j ∈ [k], a′′j , b

′′
j ← Zp are drawn and fixed if they do not already exist (in a semifunctional

ciphertext, for instance). Recall that we use the notation ÃK =
∑
j∈K

a′′j and B̃K =
∑
j∈K

b′′j . The

next steps depend on the class of the key:

36

Class 0 For each K in the honest key, one then chooses a new y′′K ← Zp and forms the
semi-functional key of type 0Z or 0R (depending on the sharing λ′′K) as:

{λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

+λ′′K
~b7 + y′′KAK

~b7 + y′′K

∑
j∈K

~b8,j

+ y′′KBK
~b9

:(∀K labels ∈ Λ)}

Notice that in this type, the a′′j and b′′j are unused.

Class 1 For each K in the honest key, one then chooses a new y′′K ← Zp and forms the
semi-functional key of type 1Z or 1R (depending on the sharing λ′′K) as:

{λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

+λ′′K
~b7 + y′′KÃK

~b7 + y′′K

∑
j∈K

~b8,j

+ y′′KB̃K
~b9

:(∀K labels ∈ Λ)}

Notice that in this type, the subset sums in the extra semifunctional space have been decoupled
from the sums in the normal space (by being replaced with subset sums of the independently
chosen a′′j and b′′j).

Class 2 Random values b̃K ← Zp are chosen if they do not already exist (in a semi-functional
ciphertext, for instance) and fixed. For each K in the honest key, one then chooses a new
y′′K ← Zp and forms the semi-functional key of type 2Z or 2R as:

{λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

+λ′′K
~b7 + y′′KÃK

~b7 + y′′K

∑
j∈K

~b8,j

+ y′′K b̃K
~b9

:(∀K labels ∈ Λ)}

37

Class 3 Random values ãK , b̃K ← Zp are chosen if they do not already exist (in a semi-
functional ciphertext, for instance) and fixed. For each K in the honest key, one then chooses
a new y′′K ← Zp and forms the semi-functional key of type 3Z or 3R as:

{λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

+λ′′K
~b7 + y′′K ãK

~b7 + y′′K

∑
j∈K

~b8,j

+ y′′K b̃K
~b9

:(∀K labels ∈ Λ)}

Note that we now have defined 8 types of keys: 0Z, 0R, 1Z, 1R, 2Z, 2R, 3Z, and 3R, where
the number denotes the class and the letter (Z/R) describes whether the λ′′K share zero or a
random element of Zp respectively. There is one final type of key: type 4R:

Type 4R Using shares λ′′K of u (which is randomly chosen from Zp and fixed if it has not
already been fixed), one forms the semi-functional key of type 4R as:

{λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

+λ′′K
~b7

:(∀K labels ∈ Λ)}

Proof Structure Our hybrid proof takes place over a series of games defined as follows:
Letting Q denote the total number of key queries that the attacker makes, we define Game`0 ,
Game`1 , Game`2 , Game`3 , Game`4 , Game`5 , Game`6 , Game`7 , and Game`8 for ` = 0, ..., Q. In
each game, the first `− 1 keys are semi-functional of type 4R, and all keys after the `th request
are normal. They differ in the construction of the `th key and the ciphertext as follows:

Game`0 In this game, the `th key is type 0Z and the ciphertext is type 0.

Game`1 In this game, the `th key is type 1Z and the ciphertext is type 1.

Game`2 In this game, the `th key is type 2Z and the ciphertext is type 2.

Game`3 In this game, the `th key is type 3Z and the ciphertext is type 3.

Game`4 In this game, the `th key is type 3R and the ciphertext is type 3.

Game`5 In this game, the `th key is type 2R and the ciphertext is type 2.

38

Game`6 In this game, the `th key is type 1R and the ciphertext is type 1.

Game`7 In this game, the `th key is type 0R and the ciphertext is type 0.

Game`8 In this game, the `th key is type 4R and the ciphertext is type 0.
Note that under this definition, we have that in Game08 , the ciphertext given to the attacker

is type 0 and the keys are all normal.
The outer structure of our hybrid argument will progress as follows. First, we transition

from Gamereal to Game08 , then to Game10 , next to Game11 , next to Game12 , next to Game13 ,
next to Game14 , next to Game15 , next to Game16 , next to Game17 , next to Game18 and then to
Game20 and so on. We then arrive at GameQ8 , where the ciphertext is semifunctional of type
0 and all of the keys given to the attacker are semi-functional of type 4R.

There are two more games in the security proof: Gamepenultimate and Gamefinal. We tran-
sition from GameQ8 to Gamepenultimate and lastly to Gamefinal which will complete our proof.
The games are defined as follows:

Gamepenultimate In this game, all keys are semi-functional of type 0R and the ciphertext is
semi-functional of type 0.

Gamefinal uses a semi-functional ciphertext of a new type: type X, which we will now define:

Type X The semi-functional ciphertext of Type X is formed as:

Me(g, g)αs+α
′s′ , {x

∑
j∈K

~b∗1,j

− xAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

~b∗7,j

− s′′AK~b∗8 − t′′KBK~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

for an x← Zp.

Gamefinal In this game, all keys are semi-functional of type 0R and the ciphertext is semi-
functional of type X.

Note that a ciphertext of type X information-theoretically hides its message M because
the e(g, g) blinding factor is raised to an exponent s which is unused anywhere else. So, in
Gamefinal, no polynomial time adversary will be able to achieve advantage in the security
game, completing our proof.

Our hybrid argument is accomplished in the following lemmas:

Lemma 28. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Gamereal and Game08.

Proof. If an algorithm A has non-negligible difference in advantage between Gamereal and
Game08 , then we could use A to achieve non-negligible advantage in the 2-Linear Problem as
follows:

39

Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0 or is a uniform
random element of Zp, consider the following simulator B in the security game:

The public parameters are formed by using the given g, choosing α̃, α̃′, aj , bj ← Zp, and
generating orthonormal sets (D,D∗)← Dual(Z3k+6

p).
The simulator then implicitly defines the sets (B,B∗) as:

~b∗1,j = y1
~d∗1,j + y1c1

~d∗7,j
~b∗2 = y1

~d∗2 + y1c1
~d∗8

~b∗3,j = y1
~d∗3,j + y1c1

~d∗9,j
~b∗4,j = y2

~d∗4,j + y2c2
~d∗7,j

~b∗5 = y2
~d∗5 + y2c2

~d∗8
~b∗6,j = y2

~d∗6,j + y2c2
~d∗9,j

~b∗7,j = ~d∗7,j
~b∗8 = ~d∗8

~b∗9,j = ~d∗9,j

~b1 = y−1
1
~d1

~b2,j = y−1
1
~d2,j

~b3 = y−1
1
~d3

~b4 = y−1
2
~d4

~b5,j = y−1
2
~d5,j

~b6 = y−1
2
~d6

~b7 = ~d7 − c1
~d1 − c2

~d4
~b8,j = ~d8,j − c1

~d2,j − c2
~d5,j

~b9 = ~d9 − c1
~d3 − c2

~d6

(The distribution of the sets (B,B∗) produced this way is identical to that produced byDual(Z3k+6
p),

since there is a one to one mapping between any sets produced this way and the sets produced
by the Dual(Z3k+6

p) procedure.)
The public parameters are constructed as:

p, g, e(g, gy1)α̃ = e(g, g)y1α̃, e(g, gy2)α̃
′

= e(g, g)y2α̃
′
,

{~b∗1,j , ~b∗3,j , ~b∗4,j , ~b∗6,j : j ∈ [k]}

{aj~b∗2, bj~b∗2, aj~b∗5, bj~b∗5 : j ∈ [k]}

implicitly defining α = y1α̃ and α′ = y2α̃
′. (Note that all the ~b∗ terms can be made by the

simulator by taking combinations of g, gy1 , gy2 , gy1c1 , gy2c2 raised to the appropriate vectors.)
The simulator then gives the public parameters to A. To respond to key requests for policies

Λ (all keys are honest in both games), the simulator first computes λ̃K , λ̃
′
K : sharings of α̃, α̃′

respectively. For each K attribute label in Λ, it generates ỹK , ỹ
′
K ← Zp and outputs:

SKΛ = {λ̃Ky1
~b1 + ỹKAKy1

~b1 + ỹKy1

∑
j∈K

~b2,j

+ ỹKBKy1
~b3

+λ̃′Ky2
~b4 + ỹ′KAKy2

~b4 + ỹ′Ky2

∑
j∈K

~b5,j

+ ỹ′KBKy2
~b6

:(∀K labels ∈ Λ)}

Note that the simulator cannot make any of the ~bx,j in this honest key alone (because of the

y−1
1 , y−1

2 terms). However, the simulator is able to make y1
~b1,j = ~d1,j , for example, so it can

construct keys as described above. The distribution of keys constructed this way is identical to
the distribution of normal honest keys where yK = ỹKy1 and y′K = ỹ′Ky2, which are uniformly
distributed elements of Zp. The shares λK = λ̃Ky1 and λ′K = λ̃′Ky2 are then shares of α̃y1 and
α̃′y2 respectively, which are uniformly distributed elements of Zp and appropriately matching
in the public parameters.

To return the challenge ciphertext for a set of attributes S, first, for eachK ∈ S, t̃K , t̃
′
K , t̃

′′
K ←

Zp are drawn. The following ciphertext is then constructed and provided:

40

Me(g, g)α̃e(g, g)α̃
′
,

{
∏
j∈K

[
g
~d∗1,jg

~d∗4,jT
~d∗7,j
]

(g
~d∗2g

~d∗5T
~d∗8)−AK(

g
~d∗2g

~d∗5T
~d∗8
)−t̃′′KBK

(
(gy1)

~d∗2(gy1c1)
~d∗8
)−t̃KBK

(
(gy2)

~d∗5(gy2c2)
~d∗8
)−t̃′KBK

∏
j∈K

[(
g
~d∗3,jg

~d∗6,jT
~d∗9,j
)t̃′′K (

(gy1)
~d∗3,j (gy1c1)

~d∗9,j
)t̃K (

(gy2)
~d∗6,j (gy2c2)

~d∗9,j
)t̃′K]

:(∀K ∈ S)}

which, using the definition of our sets (B,B∗)s equal to:

Me(g, g)y1α̃s+y2α̃
′s′ ,

{y−1
1

∑
j∈K

~b∗1,j

− y−1
1 AK~b

∗
2 − (t̃K + y−1

1 t̃′′K)BK~b
∗
2 + (t̃K + y−1

1 t̃′′K)

∑
j∈K

~b∗3,j


+y−1

2

∑
j∈K

~b∗4,j

− y−1
2 AK~b

∗
5 − (t̃′K + y−1

2 t̃′′K)BK~b
∗
5 + (t̃′K + y−1

2 t̃′′K)

∑
j∈K

~b∗6,j


+r

∑
j∈K

~b∗7,j

− rAK~b∗8 − t̃′′KrBK~b∗8 + t̃′′Kr

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

Notice that for T = gc1+c2+r, if r = 0, then the distribution of ciphertexts formed is identical
to the honest case where s = y−1

1 , s′ = y−1
2 , tK = t̃K + y−1

1 t̃′′K and t′K = t̃′K + y−1
2 t̃′′K , which are

distributed as uniformly random elements of Zp, so the simulator’s behavior is exactly that of
Gamereal.

If r is a uniform randomly chosen element of Zp, the ciphertext formed is distributed exactly
like a semi-functional ciphertext of type 0 where s = y−1

1 , s′ = y−1
2 , s′′ = r, tK = t̃K +

y−1
1 t̃′′K , t

′
K = t̃′K +y−1

2 t̃′′K , and t′′K = t̃′′Kr, which are all distributed as uniformly random elements
of Zp, so the simulator’s behavior is exactly that of Game08 .

Therefore, any adversary with non-negligible difference in advantage between Gamereal and
Game08 could be used to achieve the same non-negligible advantage in deciding the 2-Linear
Problem. By assumption this is not possible, so such an adversary cannot exist.

Lemma 29. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game(`−1)8 and Game`0 for any ` from 1 to Q.

Proof. If an algorithm A has non-negligible difference in advantage between Game(`−1)8 and
Game`0 for some ` in {1, ..., Q}, then we could use A to achieve non-negligible advantage in the
2-Linear Problem as follows:

Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0 or is a uniform
random element of Zp, consider the following simulator B in the security game:

The public parameters are formed by using the given g, choosing α̃, α̃′, aj , bj ← Zp, and
generating orthonormal sets (D,D∗)← Dual(Z3k+6

p).

41

The simulator then implicitly defines the sets (B,B∗) as:

~b∗1,j = ~d∗1,j
~b∗2 = ~d∗2

~b∗3,j = ~d∗3,j
~b∗4,j = ~d∗4,j

~b∗5 = ~d∗5
~b∗6,j = ~d∗6,j

~b∗7,j = ~d∗7,j − c1
~d∗1,j − c2

~d∗4,j
~b∗8 = ~d∗8 − c1

~d∗2 − c2
~d∗5

~b∗9,j = ~d∗9,j − c1
~d∗3,j − c2

~d∗6,j

~b1 = ~d1 + c1
~d7

~b2,j = ~d2,j + c1
~d8,j

~b3 = ~d3 + c1
~d9

~b4 = ~d4 + c2
~d7

~b5,j = ~d5,j + c2
~d8,j

~b6 = ~d6 + c2
~d9

~b7 = ~d7
~b8,j = ~d8,j

~b9 = ~d9

(The distribution of sets (B,B∗) produced this way is identical to that produced by Dual(Z3k+6
p),

since there is a one to one mapping between any sets produced this way and the sets produced
by the Dual(Z3k+6

p) procedure.)
The public parameters are constructed as:

p, g, e(g, gy1)α̃ = e(g, g)y1α̃, e(g, gy2)α̃
′

= e(g, g)y2α̃
′
,

{~b∗1,j , ~b∗3,j , ~b∗4,j , ~b∗6,j : j ∈ [k]}

{aj~b∗2, bj~b∗2, aj~b∗5, bj~b∗5 : j ∈ [k]}

implicitly defining α = y1α̃ and α′ = y2α̃
′. (Note that all the ~b∗ terms can be easily made by

the simulator from the ~d∗ vectors)
The simulator then gives the public parameters to A.
To return the challenge ciphertext for a set of attributes S when it is requested, first, s′′ ← Zp

is chosen. Then, for each K ∈ S, t̃K , t̃
′
K , t̃

′′
K ← Zp are chosen. The following ciphertext is then

constructed and provided:

Me(g, gy1c1)α̃s
′′
e(g, gy2c2)α̃

′s′′ ,

{
∏
j∈K

(g
~d∗7,j)s

′′

(g
~d∗8)−s

′′AK

(g
~d∗2)−t̃KBK (g

~d∗5)−t̃
′
KBK (g

~d∗8)−t
′′
KBK∏

j∈K

[
(g
~d∗3,j)t̃K (g

~d∗6,j)t̃
′
K (g

~d∗9,j)t
′′
K

]
:(∀K ∈ S)}

42

which, using the definition of our sets (B,B∗), is equal to:

Me(g, g)y1α̃s+y2α̃
′s′ ,

{c1s
′′

∑
j∈K

~b∗1,j

− c1s
′′AK~b

∗
2 − (t̃K + c1t

′′
K)BK~b

∗
2 + (t̃K + c1t

′′
K)

∑
j∈K

~b∗3,j


+c2s

′′

∑
j∈K

~b∗4,j

− c2s
′′AK~b

∗
5 − (t̃′K + c2t

′′
K)BK~b

∗
5 + (t̃′K + c2t

′′
K)

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

~b∗7,j

− s′′AK~b∗8 − t′′KBK~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

Which is properly distributed as a semi-functional ciphertext of type 0 (appropriate for both
games) where s = c1s

′′, s′ = c2s
′′, tK = t̃K + c1t

′′
K , and t′K = t̃′K + c2t

′′
K are all independently

and uniformly randomly distributed in Zp.
To respond to key requests for policies Λ, the simulator first computes an honest key by

creating λ̃K , λ̃
′
K : sharings of α̃, α̃′ under policy Λ respectively.

SKΛ = {
(

(gy1)
~d1(gy1c1)

~d7
)λ̃K (

(gy2)
~d4(gy2c2)

~d7
)λ̃′K

(
(gy1)

~d1(gy1c1)
~d7
)ỹKAK

(
(gy2)

~d4(gy2c2)
~d7
)ỹ′KAK

∏
j∈K

[(
(gy1)

~d2,j (gy1c1)
~d8,j
)ỹK (

(gy2)
~d5,j (gy2c2)

~d8,j
)ỹ′K]

(
(gy1)

~d3(gy1c1)
~d9
)ỹKBK

(
(gy2)

~d5(gy2c2)
~d9
)ỹ′KBK

:(∀K labels ∈ Λ)}

which, using the definition of our sets (B,B∗), is equal to:

SKΛ = {λ̃Ky1
~b1 + ỹKy1AK~b1 + ỹKy1

∑
j∈K

~b2,j

+ ỹKy1BK~b3

+λ̃′Ky2
~b4 + ỹ′Ky2AK~b4 + ỹ′Ky2

∑
j∈K

~b5,j

+ ỹ′Ky2BK~b6

:(∀K labels ∈ Λ)}

The distribution of keys constructed this way is identical to the distribution of normal honest
keys where yK = ỹKy1 and y′K = ỹ′Ky2, which are uniformly distributed. The shares λK = λ̃Ky1

and λ′K = λ̃′Ky2 are then shares of α = α̃y1 and α′ = α̃′y2 respectively, which are appropriately
matching in the public parameters. The simulator responds to all honest key requests (after
the `th request) in this way.

The simulator additionally chooses and fixes u ← Zp. For key requests up to the (` − 1)th
request, the simulator generates shares λ′′K of u. It then creates a semi-functional key of type

4R by adding λ′′K
~b7 to each term in the secret key set (it can create these using its knowledge

43

of ~b7 = ~d7):

SKΛ = {λ̃Ky1
~b1 + ỹKy1AK~b1 + ỹKy1

∑
j∈K

~b2,j

+ ỹKy1BK~b3

+λ̃′Ky2
~b4 + ỹ′Ky2AK~b4 + ỹ′Ky2

∑
j∈K

~b5,j

+ ỹ′Ky2BK~b6

+λ′′K
~b7

:(∀K labels ∈ Λ)}

On the `th key request, for each K attribute label in policy Λ, the simulator first creates
sharings λ̃K , λ̃′K of α̃, α̃′ respectively. It then creates a sharing λ̃′′K of 0 under Λ, then generates
ỹK , ỹ

′
K , ỹ

′′
K ← Zp and outputs:

SKΛ = {
(
g
~d1g

~d4T
~d7
)λ̃′′K

(
(gy1)

~d1(gy1c1)
~d7
)λ̃K (

(gy2)
~d4(gy2c2)

~d7
)λ̃′K

(
g
~d1g

~d4T
~d7
)ỹ′′KAK

(
(gy1)

~d1(gy1c1)
~d7
)ỹKAK

(
(gy2)

~d4(gy2c2)
~d7
)ỹ′KAK

∏
j∈K

[(
g
~d2,jg

~d5,jT
~d8
)ỹ′′K (

(gy1)
~d2,j (gy1c1)

~d8,j
)ỹK (

(gy2)
~d5,j (gy2c2)

~d8,j
)ỹ′K]

(
g
~d3g

~d6T
~d9
)ỹ′′KBK

(
(gy1)

~d3(gy1c1)
~d9
)ỹKBK

(
(gy2)

~d6(gy2c2)
~d9
)ỹ′KBK

:(∀K labels ∈ Λ)}

which, using the definition of our sets (B,B∗), is equal to:

{(λ̃′′K + λ̃Ky1)~b1 + (ỹKy1 + ỹ′′K)AK~b1 + (ỹKy1 + ỹ′′K)

∑
j∈K

~b2,j

+ (ỹKy1 + ỹ′′K)BK~b3

+(λ̃′′K + λ̃′Ky2)~b4 + (ỹ′Ky2 + ỹ′′K)AK~b4 + (ỹ′Ky2 + ỹ′′K)

∑
j∈K

~b5,j

+ (ỹ′Ky2 + ỹ′′K)BK~b6,j

+rλ̃′′K
~b7 + ỹ′′KrAK

~b7 + ỹ′′Kr

∑
j∈K

~b8,j

+ ỹ′′KrBK
~b9

:(∀K labels ∈ Λ)}

Since the λ̃′′K are a sharing of zero and the λ̃K , λ̃
′
K are sharings of α̃, α̃′ respectively, then the

λK = λ̃′′K + λ̃Ky1 and λ′K = λ̃′′K + λ̃′Ky2 are sharings of α = α̃y1 and α′ = α̃′y2 respectively,
which are appropriately matching in the public parameters.

Notice that for T = gc1+c2+r, if r = 0, then this `th key is distributed exactly like an honest
key where yK = ỹKy1 + ỹ′′K , and y′K = ỹ′Ky2 + ỹ′′K which are all distributed as uniformly random
elements of Zp, so the simulator’s behavior is exactly that of Game(`−1)8 .

If r is a uniform randomly chosen element of Zp, the `th key is distributed exactly like a
semi-functional key of type 0Z where yK = ỹKy1 + ỹ′′K , y′K = ỹ′Ky2 + ỹ′′K , and y′′K = ỹ′′Kr, which
are all distributed as uniformly random elements of Zp. Since the λ̃′′K are a sharing of zero, the

44

shares λ′′K = rλ̃′′K are also a sharing of zero, as is appropriate for a semi-functional key of type
0Z. So, if r is a uniform randomly chosen element of Zp, the simulator’s behavior is exactly that
of Game`0 .

Therefore, any adversary with non-negligible difference in advantage between Game(`−1)8

and Game`0 could be used to achieve the same non-negligible advantage in deciding the 2-
Linear Problem. By assumption this is not possible, so such an adversary cannot exist.

Lemma 30. No polynomial time attacker can achieve a non-negligible difference in advantage
between Game`0 and Game`1 for any ` from 1 to Q.

Proof. The distributions of Game`0 and Game`1 are actually identical, due to the way the sets
(B,B∗) are chosen. Namely, since not all of the vectors are used in the public parameters, there
is a invertible linear function that can be used to produce an identical distribution of sets, but
decorrelates the aj , bj in the semi-functional space.

Consider the simulation of Game`0 which first uses the normal Dual(Z3k+6
p) procedure to

generate orthonormal sets (D,D∗)← Dual(Z3k+6
p).

Consider two scenarios: in the first, the sets (B,B∗) used in the scheme’s simulation are
defined via the identity transformation on (D,D∗). That is, each ~b = ~d and ~b∗ = ~d∗. A simulator
can clearly simulate Game`0 exactly by following the procedures using these (D,D∗) = (B,B∗)
to create public parameters, semi-functional ciphertexts of type 0 and keys which are semi-
functional of type 4R up to the `th key, which is made semi-functional of type 0Z, after which
all keys are made honestly.

In the second scenario, the sets (B,B∗) are implicitly defined as follows:

~b∗1,j = ~d∗1,j
~b∗2 = ~d∗2

~b∗3,j = ~d∗3,j
~b∗4,j = ~d∗4,j

~b∗5 = ~d∗5
~b∗6,j = ~d∗6,j

~b∗7,j = ~d∗7,j + ãj ~d
∗
8

~b∗8 = ~d∗8
~b∗9,j = ~d∗9,j + b̃j ~d

∗
8

~b1 = ~d1
~b2,j = ~d2,j

~b3 = ~d3

~b4 = ~d4
~b5,j = ~d5,j

~b6 = ~d6

~b7 = ~d7
~b8,j = ~d8,j − ãj ~d7 − b̃j ~d9

~b9 = ~d9

(The distribution of all sets (B,B∗) produced this way is identical to the set created using
the identity transformation since there is a one to one mapping between both sets and our
orthogonality constraints are satisfied by both sets).

So, the (B,B∗) formed using this alternative transformation have the same distribution
as the sets straight from the Dual(Z3k+6

p) procedure. Furthermore, since this transformation

only causes differences in the ~d∗7,j ,
~d∗9,j , and ~bd,j vectors, using this set of (D,D∗) in the same

simulation described above will result in the same of public parameters, the first (`− 1) keys of
type 4R, and all honest keys (since no ~d∗7,j ,

~d∗9,j , and ~bd,j are used in these objects). The only
difference is seen in the `th key and the challenge ciphertext, where the transformation causes
the semi-functional subset-sums to lose their correlation with the sums in the normal space.

45

The `th key, which is now semi-functional of type 1Z:

{λK~d1 + yKAK~d1 + yK

∑
j∈K

~d2,j

+ yKBK~d3

+λ′K
~d4 + y′KAK

~d4 + y′K

∑
j∈K

~d5,j

+ y′KBK
~d6

+λ′′K
~d7 + y′′KAK

~d7 + y′′K

∑
j∈K

~d8,j

+ y′′KBK
~d9

:(∀K labels ∈ Λ)}

= {λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

+λ′′K
~b7 + y′′KAK

~b7 + y′′K

∑
j∈K

[~b8,j + ãj~b7 + b̃j~b9]

+ y′′KBK
~b9

:(∀K labels ∈ Λ)}

= {λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ yKBK~b3

+λ′K
~b4 + y′KAK

~b4 + y′K

∑
j∈K

~b5,j

+ y′KBK
~b6

+λ′′K
~b7 + y′′K

∑
j∈K

(aj + ãj)

 ~b7 + y′′K

∑
j∈K

~b8,j

+ y′′K

∑
j∈K

(bj + b̃j)

 ~b9

:(∀K labels ∈ Λ)}

where here, the decoupled a′′j = aj + ãj and b′′j = bj + b̃j .
The challenge ciphertext, which is now semi-functional of type 1:

Me(g, g)αs+α
′s′ , {s

∑
j∈K

~d∗1,j

− sAK~d∗2 − tKBK~d∗2 + tK

∑
j∈K

~d∗3,j


+s′

∑
j∈K

~d∗4,j

− s′AK~d∗5 − t′KBK~d∗5 + t′K

∑
j∈K

~d∗6,j


+s′′

∑
j∈K

~d∗7,j

− s′′AK~d∗8 − t′′KBK~d∗8 + t′′K

∑
j∈K

~d∗9,j


:(∀K ∈ S)}

46

Me(g, g)αs+α
′s′ , {s

∑
j∈K

~b∗1,j

− sAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

[~b∗7,j − ãj~b∗8]

− s′′AK~b∗8 − t′′KBK~b∗8 + t′′K

∑
j∈K

[~b∗9,j − b̃j~b∗8]


:(∀K ∈ S)}

= Me(g, g)αs+α
′s′ , {s

∑
j∈K

~b∗1,j

− sAK~b∗2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s′

∑
j∈K

~b∗4,j

− s′AK~b∗5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

~b∗7,j

− s′′
∑
j∈K

(aj + ãj)

 ~b∗8 − t′′K

∑
j∈K

(bj + b̃j)

 ~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

where again, the decoupled a′′j = aj + ãj and b′′j = bj + b̃j and appropriately match with the
elements used in the `th key. So the game simulated in this scenario is exactly that of Game`1 .

Since the only difference between these two scenarios is the definition of the sets (B,B∗), and
we showed that both definitions result in the same distribution of sets upon generation, then we
have shown that Game`0 and Game`1 are actually identical, and therefore no polynomial time
attacker can achieve a non-negligible difference in advantage between them.

We move on to the next lemma, in which the newly uncorrelated B̃K in the semi-functional
space lose their structure and become independently chosen fixed random values b̃K ∈ Zp via
the use of Lemma 12.

Lemma 31. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game`1 and Game`2 for any ` from 1 to Q.

Proof. This can be proved using the same idea as in Lemma 13 of the composite order proof.
From Lemma 12, we have that the distributions D1(k) and D2(k) are computationally indis-
tinguishable under the 2-Linear computational hardness assumption if k = O(lg poly(λ)). A
polynomial time attacker A able to achieve a non-negligible difference in advantage between
Game`1 and Game`2 for some ` from 1 to Q can be used to achieve non-negligible difference in
advantage deciding between the distributions D1(k) and D2(k), violating the 2-Linear Assump-
tion.

Specifically, just as in Lemma 13, setting k to be the same value that defines our attribute
universe U (so k = O(lg poly(λ))), the

gỹK , gỹKrK

obtained from the challenge 2-Linear Problem instance where |G| = p (where either rK =
∑
j∈K

b′′j

and b′′j are uniform random elements of Zp or each rK is a uniform random element of Zp) can

47

be used to replace the b′′j (so depending on whether the rK are structured or independently

random, the resulting element is either B̃K or b̃K). All other values are chosen by the simulator.
Constructing the appropriate public parameters, ciphertext, and keys as in Lemma 13 (but
modified to match the new form of the prime-order construction), allows the B̃K to lose its
structure and become independent b̃K , transitioning from Game`1 to Game`2 . So, an adversary
able to achieve a non-negligible difference in advantage δ between Game`1 and Game`2 for some
` from 1 to Q can be used to achieve the same non-negligible difference in advantage deciding
between the distributions D1(k) and D2(k), violating the 2-Linear Assumption.

The next step in the hybrid proof sees the uncorrelated ÃK in the semi-functional space lose
their structure and become independently chosen fixed random values ãK ∈ Zp again via the
use of Lemma 12.

Lemma 32. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game`2 and Game`3 for any ` from 1 to Q .

Proof. This can be proved using the same idea as in Lemma 14 of the composite order proof,
in the same way that the previous lemma used the idea of Lemma 13. Specifically, the chal-
lenge instance is used to replace the ÃK , and all other elements are chosen by the simulator
appropriately. This allows us to transition from Game`2 to Game`3 .

Now that the coefficients in the semi-functional space have become decorrelated and lost
their subset structure, we can apply a nearly identical argument to that of Lemma 15 of the
composite order proof to move from the λ′′K in the semi-functional space sharing zero to sharing
a random element of Zp.

Lemma 33. No polynomial time attacker can achieve a non-negligible difference in advantage
between Game`3 and Game`4 for any ` from 1 to Q.

Proof. The argument of Lemma 15 proving that both games have the same distribution holds
here. The only difference is that the in the information theoretic argument for attributes not
in the challenge ciphertext, the ãK that are masking the value of the share λ′′K are coefficients

of g
~b7 (instead of just exponents of g). Regardless, the argument holds.

We get the next two lemmas for free, as in the composite order proof:

Lemma 34. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game`4 and Game`5 for any ` from 1 to Q.

Lemma 35. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game`5 and Game`6 for any ` from 1 to Q .

Proof. Just as in the composite order proof, we can just perform the same hybrid as Lemma 31
and Lemma 32 in reverse, with the only difference being that the λ′′K are generated as shares of
a random element of Zp instead of zero. This doesn’t affect the argument since the simulator is
able to generate the λ′′K both ways.

Lemma 36. No polynomial time attacker can achieve a non-negligible difference in advantage
between Game`6 and Game`7 for any ` from 1 to Q.

Proof. This information-theoretic argument is the same as Lemma 30 in reverse, with the only
difference being that the λ′′K are generated as shares of a random element of Zp instead of zero.
This doesn’t affect the argument since again the simulator is able to generate the λ′′K both
ways.

48

The last step in the hybrid is to change the `th key from semi-functional of type 0R to 4R
(losing its ÃK , B̃K):

Lemma 37. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Game`7 and Game`8 for any ` from 1 to Q.

Proof. If an algorithmA has non-negligible difference in advantage between Game`7 and Game`8
for some ` in {1, ..., Q}, then we could use A to achieve non-negligible advantage in the 2-Linear
Problem as follows:

Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0 or is a uniform
random element of Zp, consider the following simulator B in the security game:

The public parameters are formed by using the given g, choosing α̃, α̃′, aj , bj ← Zp, and
generating orthonormal sets (D,D∗)← Dual(Z3k+6

p).
The simulator then implicitly defines the sets (B,B∗) as:

~b∗1,j = ~d∗1,j
~b∗2 = ~d∗2

~b∗3,j = ~d∗3,j
~b∗4,j = ~d∗4,j

~b∗5 = ~d∗5
~b∗6,j = ~d∗6,j

~b∗7,j = ~d∗7,j − c1
~d∗1,j − c2

~d∗4,j
~b∗8 = ~d∗8 − c1

~d∗2 − c2
~d∗5

~b∗9,j = ~d∗9,j − c1
~d∗3,j − c2

~d∗6,j

~b1 = ~d1 + c1
~d7

~b2,j = ~d2,j + c1
~d8,j

~b3 = ~d3 + c1
~d9

~b4 = ~d4 + c2
~d7

~b5,j = ~d5,j + c2
~d8,j

~b6 = ~d6 + c2
~d9

~b7 = ~d7
~b8,j = ~d8,j

~b9 = ~d9

(The distribution of all sets (B,B∗) produced this way is identical to that produced byDual(Z3k+6
p),

since there is a one to one mapping between any sets produced this way and the sets produced
by the Dual(Z3k+6

p) procedure.)
The public parameters are constructed as:

p, g, e(g, gy1)α̃ = e(g, g)y1α̃, e(g, gy2)α̃
′

= e(g, g)y2α̃
′
,

{~b∗1,j , ~b∗3,j , ~b∗4,j , ~b∗6,j : j ∈ [k]}

{aj~b∗2, bj~b∗2, aj~b∗5, bj~b∗5 : j ∈ [k]}

implicitly defining α = y1α̃ and α′ = y2α̃
′. (Note that all the ~b∗ terms can be easily made by

the simulator from the ~d∗ vectors)
The simulator then gives the public parameters to A.
To return the challenge ciphertext for a set of attributes S when it is requested, first, s′′ ← Zp

is chosen. Then, for each K ∈ S, t̃K , t̃
′
K , t̃

′′
K ← Zp are chosen. The following ciphertext is then

constructed and provided:

Me(g, gy1c1)α̃s
′′
e(g, gy2c2)α̃

′s′′ ,

{
∏
j∈K

(g
~d∗7,j)s

′′

(g
~d∗8)−s

′′AK

(g
~d∗2)−t̃KBK (g

~d∗5)−t̃
′
KBK (g

~d∗8)−t
′′
KBK∏

j∈K

[
(g
~d∗3,j)t̃K (g

~d∗6,j)t̃
′
K (g

~d∗9,j)t
′′
K

]
:(∀K ∈ S)}

49

which, using the definition of our sets (B,B∗), is equal to:

Me(g, g)y1α̃s+y2α̃
′s′ ,

{c1s
′′

∑
j∈K

~b∗1,j

− c1s
′′AK~b

∗
2 − (t̃K + c1t

′′
K)BK~b

∗
2 + (t̃K + c1t

′′
K)

∑
j∈K

~b∗3,j


+c2s

′′

∑
j∈K

~b∗4,j

− c2s
′′AK~b

∗
5 − (t̃′K + c2t

′′
K)BK~b

∗
5 + (t̃′K + c2t

′′
K)

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

~b∗7,j

− s′′AK~b∗8 − t′′KBK~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

Which is properly distributed as a semi-functional ciphertext of type 0 (appropriate for both
games) where s = c1s

′′, s′ = c2s
′′, tK = t̃K + c1t

′′
K , and t′K = t̃′K + c2t

′′
K are all independently

and uniformly randomly distributed in Zp.
To respond to key requests for policies Λ, the simulator first computes an honest key by

creating λ̃K , λ̃
′
K : sharings of α̃, α̃′ under policy Λ respectively.

SKΛ = {
(

(gy1)
~d1(gy1c1)

~d7
)λ̃K (

(gy2)
~d4(gy2c2)

~d7
)λ̃′K

(
(gy1)

~d1(gy1c1)
~d7
)ỹKAK

(
(gy2)

~d4(gy2c2)
~d7
)ỹ′KAK

∏
j∈K

[(
(gy1)

~d2,j (gy1c1)
~d8,j
)ỹK (

(gy2)
~d5,j (gy2c2)

~d8,j
)ỹ′K]

(
(gy1)

~d3(gy1c1)
~d9
)ỹKBK

(
(gy2)

~d5(gy2c2)
~d9
)ỹ′KBK

:(∀K labels ∈ Λ)}

which, using the definition of our sets (B,B∗), is equal to:

SKΛ = {λ̃Ky1
~b1 + ỹKy1AK~b1 + ỹKy1

∑
j∈K

~b2,j

+ ỹKy1BK~b3

+λ̃′Ky2
~b4 + ỹ′Ky2AK~b4 + ỹ′Ky2

∑
j∈K

~b5,j

+ ỹ′Ky2BK~b6

:(∀K labels ∈ Λ)}

The distribution of keys constructed this way is identical to the distribution of normal honest
keys where yK = ỹKy1 and y′K = ỹ′Ky2, which are uniformly distributed. The shares λK = λ̃Ky1

and λ′K = λ̃′Ky2 are then shares of α = α̃y1 and α′ = α̃′y2 respectively, which are appropriately
matching in the public parameters. The simulator responds to all honest key requests (after
the `th request) in this way.

The simulator additionally chooses and fixes u ← Zp. For key requests up to the (` − 1)th
request, the simulator generates shares λ′′K of u. It then creates a semi-functional key of type

4R by adding λ′′K
~b7 to each term in the secret key set (it can create these using its knowledge

50

of ~b7 = ~d7):

SKΛ = {λ̃Ky1
~b1 + ỹKy1AK~b1 + ỹKy1

∑
j∈K

~b2,j

+ ỹKy1BK~b3

+λ̃′Ky2
~b4 + ỹ′Ky2AK~b4 + ỹ′Ky2

∑
j∈K

~b5,j

+ ỹ′Ky2BK~b6

+λ′′K
~b7

:(∀K labels ∈ Λ)}

On the `th key request, for each K attribute label in Λ, the simulator first creates sharings
λ̃K , λ̃′K of α̃, α̃′ respectively. It then creates a sharing λ′′K of u under Λ, then generates uniformly
random ỹK , ỹ

′
K , ỹ

′′
K ∈ Zp and outputs:

SKΛ = {
(
g
~d7
)λ′′K

(
(gy1)

~d1(gy1c1)
~d7
)λ̃K (

(gy2)
~d4(gy2c2)

~d7
)λ̃′K

(
g
~d1g

~d4T
~d7
)ỹ′′KAK

(
(gy1)

~d1(gy1c1)
~d7
)ỹKAK

(
(gy2)

~d4(gy2c2)
~d7
)ỹ′KAK

∏
j∈K

[(
g
~d2,jg

~d5,jT
~d8
)ỹ′′K (

(gy1)
~d2,j (gy1c1)

~d8,j
)ỹK (

(gy2)
~d5,j (gy2c2)

~d8,j
)ỹ′K]

(
g
~d3g

~d6T
~d9
)ỹ′′KBK

(
(gy1)

~d3(gy1c1)
~d9
)ỹKBK

(
(gy2)

~d6(gy2c2)
~d9
)ỹ′KBK

:(∀K labels ∈ Λ)}

which, using the definition of our sets (B,B∗), is equal to:

{λ̃Ky1
~b1 + (ỹKy1 + ỹ′′K)AK~b1 + (ỹKy1 + ỹ′′K)

∑
j∈K

~b2,j

+ (ỹKy1 + ỹ′′K)BK~b3

+λ̃′Ky2
~b4 + (ỹ′Ky2 + ỹ′′K)AK~b4 + (ỹ′Ky2 + ỹ′′K)

∑
j∈K

~b5,j

+ (ỹ′Ky2 + ỹ′′K)BK~b6,j

+λ′′K
~b7 + ỹ′′KrAK

~b7 + ỹ′′Kr

∑
j∈K

~b8,j

+ ỹ′′KrBK
~b9

:(∀K labels ∈ Λ)}

Since the λ̃K , λ̃
′
K are sharings of α̃, α̃′ respectively, then the λK = λ̃Ky1 and λ′K = λ̃′Ky2 are

sharings of α = α̃y1 and α′ = α̃′y2 respectively, which are appropriately matching in the public
parameters.

Notice that for T = gc1+c2+r, if r = 0, then this `th key is distributed exactly like a semi-
functional key of type 4R where yK = ỹKy1 + ỹ′′K , and y′K = ỹ′Ky2 + ỹ′′K , which are all distributed
as uniformly random elements of Zp, so the simulator’s behavior is exactly that of Game`8 .

If r is a uniform randomly chosen element of Zp, the `th key is distributed exactly like a
semi-functional key of type 0R where yK = ỹKy1 + ỹ′′K , y′K = ỹ′Ky2 + ỹ′′K , and y′′K = ỹ′′Kr, which

51

are all distributed as uniformly random elements of Zp. So, if r is a uniform randomly chosen
element of Zp, the simulator’s behavior is exactly that of Game`7 .

Therefore, any adversary with non-negligible difference in advantage between Game`7 and
Game`8 could be used to achieve the same non-negligible advantage in deciding the 2-Linear
Problem. By assumption this is not possible, so such an adversary cannot exist.

This set of hybrids takes us to GameQ8 : where the semi-functional ciphertext is of type 0
and all keys are semi-functional of type 4R. We take two more steps to get to our final game
where the distribution of the ciphertext is independent of the message - a game in which the
adversary cannot have any advantage:

Lemma 38. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between GameQ8 and Gamepenultimate.

Proof. If an algorithm A is able to achieve a non-negligible difference in advantage between
GameQ8 and Gamepenultimate, then we could use A to break the 2-Linear Assumption as follows:

Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0 or is a uniform
random element of Zp, consider the following simulator B in the security game:

The public parameters are formed by using the given g, choosing α̃, α̃′, aj , bj ← Zp, and
generating orthonormal sets (D,D∗)← Dual(Z3k+6

p).
The simulator then implicitly defines the sets (B,B∗) as:

~b∗1,j = ~d∗1,j
~b∗2 = ~d∗2

~b∗3,j = ~d∗3,j
~b∗4,j = ~d∗4,j

~b∗5 = ~d∗5
~b∗6,j = ~d∗6,j

~b∗7,j = ~d∗7,j − c1
~d∗1,j − c2

~d∗4,j
~b∗8 = ~d∗8 − c1

~d∗2 − c2
~d∗5

~b∗9,j = ~d∗9,j − c1
~d∗3,j − c2

~d∗6,j

~b1 = ~d1 + c1
~d7

~b2,j = ~d2,j + c1
~d8,j

~b3 = ~d3 + c1
~d9

~b4 = ~d4 + c2
~d7

~b5,j = ~d5,j + c2
~d8,j

~b6 = ~d6 + c2
~d9

~b7 = ~d7
~b8,j = ~d8,j

~b9 = ~d9

(The distribution of the sets (B,B∗) produced this way is identical to that produced byDual(Z3k+6
p),

since there is a one to one mapping between any sets produced this way and the sets produced
by the Dual(Z3k+6

p) procedure.)
The public parameters are constructed as:

p, g, e(g, gy1)α̃ = e(g, g)y1α̃, e(g, gy2)α̃
′

= e(g, g)y2α̃
′
,

{~b∗1,j , ~b∗3,j , ~b∗4,j , ~b∗6,j : j ∈ [k]}

{aj~b∗2, bj~b∗2, aj~b∗5, bj~b∗5 : j ∈ [k]}

implicitly defining α = y1α̃ and α′ = y2α̃
′. (Note that all the ~b∗ terms can be easily made by

the simulator from the ~d∗ vectors)
The simulator then gives the public parameters to A.
To return the challenge ciphertext for a set of attributes S when it is requested, first, s′′ ← Zp

is chosen. Then, for each K ∈ S, t̃K , t̃
′
K , t̃

′′
K ← Zp are chosen. The following ciphertext is then

constructed and provided:

52

Me(g, gy1c1)α̃s
′′
e(g, gy2c2)α̃

′s′′ ,

{
∏
j∈K

(g
~d∗7,j)s

′′

(g
~d∗8)−s

′′AK

(g
~d∗2)−t̃KBK (g

~d∗5)−t̃
′
KBK (g

~d∗8)−t
′′
KBK∏

j∈K

[
(g
~d∗3,j)t̃K (g

~d∗6,j)t̃
′
K (g

~d∗9,j)t
′′
K

]
:(∀K ∈ S)}

which, using the definition of our sets (B,B∗), is equal to:

Me(g, g)y1α̃s+y2α̃
′s′ ,

{c1s
′′

∑
j∈K

~b∗1,j

− c1s
′′AK~b

∗
2 − (t̃K + c1t

′′
K)BK~b

∗
2 + (t̃K + c1t

′′
K)

∑
j∈K

~b∗3,j


+c2s

′′

∑
j∈K

~b∗4,j

− c2s
′′AK~b

∗
5 − (t̃′K + c2t

′′
K)BK~b

∗
5 + (t̃′K + c2t

′′
K)

∑
j∈K

~b∗6,j


+s′′

∑
j∈K

~b∗7,j

− s′′AK~b∗8 − t′′KBK~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

Which is properly distributed as a semi-functional ciphertext of type 0 (appropriate for both
games) where s = c1s

′′, s′ = c2s
′′, tK = t̃K + c1t

′′
K , and t′K = t̃′K + c2t

′′
K are all independently

and uniformly randomly distributed in Zp.
To respond to key requests for policies Λ, the simulator first creates sharings λ̃K , λ̃′K , and

λ′′K of α̃, α̃′, and u respectively (where u is a random element of Zp which is fixed the first time
it is created). It then generates uniformly random ỹK , ỹ

′
K , ỹ

′′
K ∈ Zp and outputs:

SKΛ = {
(

(gy1)
~d1(gy1c1)

~d7
)λ̃K (

(gy2)
~d4(gy2c2)

~d7
)λ̃′K

(
g
~d1g

~d4T
~d7
)ỹ′′KAK

(
(gy1)

~d1(gy1c1)
~d7
)ỹKAK

(
(gy2)

~d4(gy2c2)
~d7
)ỹ′KAK

∏
j∈K

[(
g
~d2,jg

~d5,jT
~d8
)ỹ′′K (

(gy1)
~d2,j (gy1c1)

~d8,j
)ỹK (

(gy2)
~d5,j (gy2c2)

~d8,j
)ỹ′K]

(
g
~d3g

~d6T
~d9
)ỹ′′KBK

(
(gy1)

~d3(gy1c1)
~d9
)ỹKBK

(
(gy2)

~d6(gy2c2)
~d9
)ỹ′KBK

gλ
′′
K
~d7

:(∀K labels ∈ Λ)}

53

which, using the definition of our sets (B,B∗), is equal to:

{λ̃Ky1
~b1 + (ỹKy1 + ỹ′′K)AK~b1 + (ỹKy1 + ỹ′′K)

∑
j∈K

~b2,j

+ (ỹKy1 + ỹ′′K)BK~b3

+λ̃′Ky2
~b4 + (ỹ′Ky2 + ỹ′′K)AK~b4 + (ỹ′Ky2 + ỹ′′K)

∑
j∈K

~b5,j

+ (ỹ′Ky2 + ỹ′′K)BK~b6,j

+λ′′K
~b7 + ỹ′′KrAK

~b7 + ỹ′′Kr

∑
j∈K

~b8,j

+ ỹ′′KrBK
~b9

:(∀K labels ∈ Λ)}

Since the λ̃K , λ̃
′
K are sharings of α̃, α̃′ respectively, then the λK = λ̃Ky1 and λ′K = λ̃′Ky2 are

sharings of α = α̃y1 and α′ = α̃′y2 respectively, which are appropriately matching in the public
parameters.

Notice that for T = gc1+c2+r, if r = 0, then each key is distributed exactly like a semi-
functional key of type 4R where yK = ỹKy1 + ỹ′′K , and y′K = ỹ′Ky2 + ỹ′′K which are all distributed
as uniformly random elements of Zp, so the simulator’s behavior is exactly that of GameQ8 .

If r is a uniform randomly chosen element of Zp, each key is distributed exactly like a semi-
functional key of type 0R where yK = ỹKy1 + ỹ′′K , y′K = ỹ′Ky2 + ỹ′′K , and y′′K = ỹ′′Kr, which are
all distributed as uniformly random elements of Zp, so the simulator’s behavior is exactly that
of Gamepenultimate .

Therefore, any adversary with non-negligible difference in advantage between GameQ8 and
Gamepenultimate could be used to achieve the same non-negligible advantage in deciding the
2-Linear Problem. By assumption this is not possible, so such an adversary cannot exist.

Lemma 39. Under the 2-Linear Assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Gamepenultimate and Gamefinal.

Proof. If an algorithm A is able to achieve a non-negligible difference in advantage between
Gamepenultimate and Gamefinal, then we could use A to break the 2-Linear Assumption as
follows:

Given g, gy1 , gy2 , gy1c1 , gy2c2 and T = gc1+c2+r ∈ G, where either r = 0 or is a uniform
random element of Zp, consider the following simulator B in the security game:

The public parameters are formed by using the given g, choosing α̃′, aj , bj ← Zp, and
generating orthonormal sets (D,D∗)← Dual(Z3k+6

p).
The simulator then implicitly defines the sets (B,B∗) as:

~b∗1,j = ~d∗1,j
~b∗2 = ~d∗2

~b∗3,j = ~d∗3,j
~b∗4,j = y1

~d∗4,j + y1c1
~d∗1,j

~b∗5 = y1
~d∗5 + y1c1

~d∗2
~b∗6,j = y1

~d∗6,j + y1c1
~d∗3,j

~b∗7,j = y2
~d∗7,j + y2c2

~d∗1,j
~b∗8 = y2

~d∗8 + y2c2
~d∗2

~b∗9,j = y2
~d∗9,j + y2c2

~d∗3,j

~b1 = ~d1 − c1
~d4 − c2

~d7
~b2,j = ~d2,j − c1

~d5,j − c2
~d8,j

~b3 = ~d3 − c1
~d6 − c2

~d9

~b4 = y−1
1
~d4

~b5,j = y−1
1
~d5,j

~b6 = y−1
1
~d6

~b7 = y−1
2
~d7

~b8,j = y−1
2
~d8,j

~b9 = y−1
2
~d9

54

(The distribution of the sets (B,B∗) produced this way is identical to that produced byDual(Z3k+6
p),

since there is a one to one mapping between any sets produced this way and the sets produced
by the Dual(Z3k+6

p) procedure.)
The public parameters are constructed as:

p, g, e(g, gy1) = e(g, g)y1 , e(g, gy1)α̃
′
e(gy1 , gy1c1) = e(g, g)y1α̃

′+y21c1 ,

{~b∗1,j , ~b∗3,j , ~b∗4,j , ~b∗6,j : j ∈ [k]}

{aj~b∗2, bj~b∗2, aj~b∗5, bj~b∗5 : j ∈ [k]}

implicitly defining α = y1, α′ = y1α̃
′ + αy1c1. (Note that all the ~b∗ terms can be easily made

by the simulator from combinations of the challenge terms raised to the appropriate ~d∗ vectors)
The simulator then gives the public parameters to A.
To respond to key requests for policies Λ, the simulator generates λ̃′K , and λ̃′′K : sharings

of α̃′, and α̃′′ (chosen uniformly at random from Zp upon the first key request and fixed for
each key thereafter) respectively under policy Λ. It then generates gλK where the λK are a
sharing of y1 under Λ using the procedure detailed in the final lemma of the composite proof
(Lemma 19) starting with the challenge element gy1 . Next, the simulator draws yK , ỹ

′
K , ỹ

′′
K ← Zp

and constructs:

SKΛ = {gλK ~d1gλ̃
′
K
~d4gλ̃

′′
K
~d7

gyKAK
~d1gỹ

′
KAK

~d4gỹ
′′
KAK

~d7∏
j∈K

[
gyK

~d2,jgỹ
′
K
~d5,jgỹ

′′
K
~d8,j
]

gyKBK
~d3gỹ

′
KBK

~d6gỹ
′′
KBK

~d9

:(∀K labels ∈ Λ)}

which, using the definition of our sets (B,B∗), is equal to:

SKΛ = {λK~b1 + yKAK~b1 + yK

∑
j∈K

~b2,j

+ ỹKy1BK~b3

+(λ̃′Ky1 + λKy1c1)~b4 + (ỹ′Ky1 + yKy1c1)AK~b4

+ (ỹ′Ky1 + yKy1c1)

∑
j∈K

~b5,j

+ (ỹ′Ky1 + yKy1c1)BK~b6

+(λ̃′′Ky2 + λKy2c2)~b7 + (ỹ′′Ky2 + yKy2c2)AK~b7

+ (ỹ′′Ky2 + yKy2c2)

∑
j∈K

~b8,j

+ (ỹ′′Ky2 + yKy2c2)BK~b9

:(∀K labels ∈ Λ)}

which is distributed as a semi-functional key of type 0R (which is appropriate for both games)
where y′K = ỹ′Ky1 + yKy1c1, and y′′K = ỹ′′Ky2 + yKy2c2 which are independent uniformly dis-
tributed elements of Zp. Also, λ′K = λ̃′Ky1 + λKy1c1 and λ′′K = λ̃′′Ky2 + λKy2c2 are shares of
α′ = α̃′y1 +y2

1c1 and u = α̃′′y2 +y1y2c2 where u is a fixed uniform random element of Zp because

55

the λK are a sharing of α = y1. Note also that the shared α and α′ match appropriately with
the public parameters.

To return the challenge ciphertext for a set of attributes S when it is requested, first,
s, s̃′ ← Zp are chosen. Then, for each K ∈ S, tK , t

′
K , t

′′
K ← Zp are chosen. The following

ciphertext is then constructed and provided:

M(e(g, g)α)se(g, g)α̃
′s̃′e(g, gy1c1)s̃

′
,

{
∏
j∈K

gs
~d∗1,j

∏
j∈K

[
gs̃
′ ~d∗4,jgs̃

′ ~d∗7,jT s̃
′ ~d∗1,j

]
g−sAK

~d∗2

g−s̃
′AK

~d∗5g−s̃
′AK

~d∗8T−s̃
′AK

~d∗2

g−tKBK
~d∗2

(gy1)−t
′
KBK

~d∗5(gy1c1)−t
′
KBK

~d∗2

(gy2)−t
′′
KBK

~d∗8(gy2c2)−t
′′
KBK

~d∗2∏
j∈K

g−tK
~d∗3,j

∏
j∈K

[
(gy1)−t

′
K
~d∗6,j (gy1c1)−t

′
K
~d∗3,j
]

∏
j∈K

[
(gy2)−t

′′
K
~d∗9,j (gy2c2)−t

′′
K
~d∗3,j
]

:(∀K ∈ S)}

which, using the definition of our sets (B,B∗), is equal to:

Me(g, g)αs+(α̃′y1+y21c1)s̃′y−1
1 ,

{(s+ rs̃′)

∑
j∈K

~b∗1,j

− (s+ rs̃′)AK~b
∗
2 − tKBK~b∗2 + tK

∑
j∈K

~b∗3,j


+s̃′y−1

1

∑
j∈K

~b∗4,j

− s̃′y−1
1 AK~b

∗
5 − t′KBK~b∗5 + t′K

∑
j∈K

~b∗6,j


+y−1

2 s̃′

∑
j∈K

~b∗7,j

− y−1
2 s̃′AK~b

∗
8 − t′′KBK~b∗8 + t′′K

∑
j∈K

~b∗9,j


:(∀K ∈ S)}

Notice that for T = gc1+c2+r, if r = 0, then this ciphertext is distributed exactly like a semi-
functional ciphertext of type 0 where s′ = s̃′y−1

1 and s′′ = y−1
2 s̃′ are both independently and

uniformly randomly distributed in Zp. So, the simulator behaves exactly as in Gamepenultimate.
However, if r is a uniform random element of Zp then the ciphertext is distributed exactly like

a semi-functional ciphertext of type X where s′ = s̃′y−1
1 and s′′ = y−1

2 s̃′ are both independently
and uniformly randomly distributed in Zp and x = s+rs̃′ is an independent randomly distributed
element of Zp . So, the simulator behaves exactly as in Gamefinal.

56

Therefore, any adversary with non-negligible difference in advantage between Gamepenultimate
and Gamefinal could be used to achieve the same non-negligible advantage in deciding the 2-
Linear Problem. By assumption this is not possible, so such an adversary cannot exist.

We have now proven the following theorem

Theorem 40. Under the 2-Linear Computational Hardness Assumption, our prime order KP-
ABE scheme is fully secure.

Proof. If the 2-Linear Computational Hardness Assumption holds, then by the previous lem-
mas, we have shown that the real security game is computationally indistinguishable from
Gamefinal, in which the challenge ciphertext’s message is information-theoretically hidden from
the attacker. Hence, no attacker can achieve a non-negligible advantage in breaking the KP-
ABE scheme.

57

