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Abstract

Secure 2-party computation (2PC) is becoming practical for some applications. However, most ap-
proaches are limited by the fact that the desired functionality must be represented as a boolean circuit.
In response, random-access machines (RAM programs) have recently been investigated as a promising
alternative representation.

In this work, we present the first practical protocols for evaluating RAM programs with security
against malicious adversaries. A useful efficiency measure is to divide the cost of malicious-secure evalu-
ation of f by the cost of semi-honest-secure evaluation of f . Our RAM protocols achieve ratios matching
the state of the art for circuit-based 2PC. For statistical security 2−s, our protocol without preprocessing
achieves a ratio of s; our online-offline protocol has a pre-processing phase and achieves online ratio
∼ 2s/ log T , where T is the total execution time of the RAM program.

To summarize, our solutions show that the “extra overhead” of obtaining malicious security for RAM
programs (beyond what is needed for circuits) is minimal and does not grow with the running time of
the program.

1 Introduction

General secure two-party computation (2PC) allows two parties to perform “arbitrary” computation on
their joint inputs without revealing any information about their private inputs beyond what is deducible
from the output of computation. This is an extremely powerful paradigm that allows for applications to
utilize sensitive data without jeopardizing its privacy.

From a feasibility perspective, we know that it is possible to securely compute any function, thanks to
seminal results of [Yao82, GMW87]. The last decade has also witnessed significant progress in design and
implementation of more practical/scalable secure computation techniques, improving performance by orders
of magnitude and enabling computation of circuits with billions of gates.

These techniques, however, are largely restricted to functions represented as Boolean or arithmetic cir-
cuits, whereas the majority of applications we encounter in practice are more efficiently captured using
random-access memory (RAM) programs that allow constant-time memory lookup. Modern algorithms
of practical interest (e.g., binary search, Dijkstra’s shortest-paths algorithm, and the Gale-Shapely stable
matching algorithm) all rely on fast memory access for efficiency, and suffer from major blowup in running
time otherwise. More generally, a circuit computing a RAM program with running time T requires Θ(T 2)
gates in the worst case, making it prohibitively expensive (as a general approach) to compile RAM programs
into a circuit and then apply known circuit 2PC techniques.

A promising alternative approach uses the building block of oblivious RAM, introduced by Goldreich
and Ostrovsky [GO96]. ORAM is an approach for making a RAM program’s memory access pattern input-
oblivious while still retaining fast (polylogarithmic) memory access time. Recent work in 2PC has begun
to investigate direct computation of ORAM computations as an alternative to RAM-to-circuit compilation
[GKK+12, LO13, KS14, GHL+14, LHS+14]. These works all follow the same general approach of evaluating a
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sequence of ORAM instructions using traditional circuit-based 2PC phases. More precisely, they use existing
circuit-based MPC to (1) initialize and setup the ORAM, a one-time computation with cost proportional
to the memory size, (2) evaluate the next-instruction circuit which outputs “shares” of the RAM program’s
internal state, the next memory operations (read/write), the location to access, and the data value in case
of a write. All of these existing solutions provide security only against semi-honest adversaries.

Challenges for malicious-secure RAM evaluation. It is possible to take a semi-honest secure protocol
for RAM evaluation (e.g., [GKK+12]) and adapt it to the malicious setting using standard techniques. Doing
so näıvely, however, would result in several major inefficiencies that are avoidable. We point out three
significant challenges for efficient, malicious-secure RAM evaluation:

1: Integrity and consistency of state information, by which we mean both the RAM’s small
internal state and its large memory both of which are passed from one CPU step to the next. A natural
approach for handling internal state is to have parties hold secret shares of the state (as in [GKK+12]), which
they provide as input to a secure evaluation of the next-instruction circuit. Using standard techniques for
malicious-secure SFE, it would incur significant overhead in the form of oblivious transfers and consistency
checks to deal with state information as inputs to the circuit.

A natural approach suitable for handling RAM memory is to evaluate an Oblivious RAM that encrypts
its memory contents. In this approach, the parties must evaluate a next-instruction circuit that includes
both encryption and decryption sub-circuits. Evaluating a block cipher’s circuit securely against malicious
adversaries is already rather expensive [KsS12], and this approach essentially asks the parties to do so at
every time-step, even when the original RAM’s behavior is non-cryptographic. Additional techniques are
needed to detect any tampering of data by either participant, such as computing/verifying a MAC of each
memory location access inside the circuit or computing a “shared” Merkle-tree on top of the memory in order
to check its consistency after each access. All these solutions incur major overhead when state is passed or
memory is accessed and are hence prohibitively expensive (see Appendix A for a concrete example).

2: Compatibility with batch execution and input-recovery techniques. In a secure computation,
every input bit must be “touched” at some point. Oblivious RAM programs address this with a pre-processing
phase that “touches” the entire (large) RAM memory, after which the computation need not “touch” every
bit of memory. Since an offline phase is already inevitable for ORAMs, we would like to use such a phase
to further increase the efficiency of the online phase of the secure evaluation protocol. In particular, recent
techniques of [HKK+14, LR14] suggest that pre-processing/batching garbled circuits can lead to significant
efficiency improvement for secure evaluation of circuits. The fact that the ORAM next-instruction circuits
are used at every timestep and are known a priori makes the use of batch execution techniques even more
critical.

Another recent technique, called input-recovery [Lin13], reduces the number of garbled circuits in cut-
and-choose by a factor of 3 by only requiring that at least one of the evaluated circuits is correct (as opposed
to the majority). This is achieved by running an input-recovery step at the end of computation that recover’s
the garbler’s private input in case he cheats in more than one evaluated circuit. The evaluator then uses
the private input to do the computation on his own. A natural applications of this technique in case of
RAM programs, would require running the input-recovering step after every timestep which would be highly
inefficient (see Appendix A for a concrete example).

3: Run-time dependence. The above issues are common to any computation that involves persistent,
secret internal state across several rounds of inputs/outputs (any so-called reactive functionality). RAM pro-
grams present an additional challenge, in that only part of memory is accessed at each step, and furthermore
these memory locations are determined only at run-time. In particular, it is non-trivial to reconcile run-time
data dependence with offline batching optimizations.

Our approach: In a RAM computation, both the memory and internal state need to be secret and resist
tampering by a malicious adversary. As mentioned above, the obvious solutions to these problem all incur
major overhead whenever state is passed from one execution to the next or memory is accessed. We bypass
all these overheads and obtain secrecy and tamper-resistance essentially for free. Our insight is that these
are properties also shared by wire labels in most garbling schemes — they hide the associated logical value,
and, given only one wire label, it is hard to “guess” the corresponding complementary label.
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Hence, instead of secret-sharing the internal state of the RAM program between the parties, we simply
“re-use” the garbled wire labels from the output of one circuit into the input of the next circuit. These wire
labels already inherit the required authenticity properties, so no oblivious transfers or consistency checks are
needed.

Similarly, we also encode the RAM’s memory via wire labels. When the RAM reads from memory location
`, we simply reuse the appropriate output wire labels from the most recent circuit to write to location ` (not
necessarily the previous instruction, as is the case for the internal state). Since the wire labels already hide
the underlying logical values, we only require an oblivious RAM that hides the memory access pattern and
not the contents of memory. More concretely, this means that we do not need to add encryption/decryption
and MAC/verify circuitry inside the circuit that is being garbled or perform oblivious transfers on shared
intermediate secrets. Importantly, if the RAM program being evaluated is “non-cryptographic” (i.e., has a
small circuit description) then the circuits garbled at each round of our protocols will be small.

Of course, it is a delicate task to make these intuitive ideas work with the state of art techniques for
cut-and-choose. We present two protocols, which use different approaches for reusing wire labels.

The first protocol uses ideas from the LEGO paradigm [NO09, FJN+13] for 2PC and other recent works
on batch-preprocessing of garbled circuits [HKK+14, LR14]. The idea behind these techniques is to generate
all the necessary garbled circuits in an offline phase (before inputs are selected), open and check a random
subset, and randomly assign the rest into buckets, where each bucket corresponds to one execution of the
circuit. But unlike the setting of [HKK+14, LR14], where circuits are processed for many independent
evaluations of a function, we have the additional requirement that the wire labels for memory and state
data should be directly reused between various garbled circuits. Since we cannot know which circuits must
have shared wire labels (due to random assignment to buckets and run-time memory access pattern), we
use the “soldering” technique of [NO09, FJN+13] that directly transfers garbled wire labels from one wire
to another, after the circuits have been generated. However, we must adapt the soldering approach to make
it amenable to soldering entire circuits as opposed to soldering simple gates as in [NO09, FJN+13]. For a
discussion of subtle problems that arise from a direct application of their soldering technique, see Section 3.

Our second approach directly reuses wire labels without soldering. As a result, garbled circuits cannot
be generated offline, but the scheme does not require the homomorphic commitments required for the LEGO
soldering technique. At a high level, we must avoid having the cut-and-choose phase reveal secret wire labels
that are shared in common with other garbled circuits. The technique recently proposed in [MGFB14] allows
us to use a single cut-and-choose for all steps of the RAM computation (rather than independent cut-and-
choose steps for each time step), and further hide the set of opened/evaluated circuits from the garbler using
an OT-based cut-and-choose [KMR12, KsS12]. We observe that this approach is compatible with the state
of the art techniques for input-consistency check [MR13, sS13].

We also show how to incorporate the input-recovery technique of [Lin13] for reducing the number of
circuits by a factor of three. The naive solution of running the cheating recovery after each timestep would
be prohibitively expensive since it would require running a malicious 2PC for the cheating recovery circuit
(and the corresponding input-consistency checks) at every timestep. We show a modified approach that only
requires a final cheating recovery step at the end of the computation.

Based on some concrete measurements in Appendix A (see table 1), the “extra overhead” of achieving
malicious security for RAM programs (i.e. the additional cost beyond what is needed for malicious security
of the circuits involved in the computation), is at least an order of magnitude smaller than the naive solutions
and this gap grows as the running time of the RAM program increases.

Related work. Starting with seminal work of [Yao86, GMW87], the bulk of secure multiparty computation
protocols focus on functions represented as circuits (arithmetic or Boolean). More relevant to this work, there
is over a decade’s worth of active research on design and implementation of practical 2PC protocols with
malicious security based on garbled circuits [MF06, KS06, LP07, LP11, sS11, sS13, Lin13, HKE13, MR13],
based on GMW [NNOB12], and based on arithmetic circuits [DPSZ12].

The work on secure computation of RAM programs is much more recent. [GKK+12] introduces the idea
of using ORAM inside a Yao-based secure two-party computation in order to accommodate (amortized)
sublinear-time secure computation. The work of [LO13, GHL+14] study non-interactive garbling schemes
for RAM programs which can be used to design protocols for secure RAM program computation. The
recent work of [KS14], implements ORAM-based computation using arithmetic secure computation protocol
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of [DPSZ12], hence extending these ideas to the multiparty case, and implementing various oblivious data-
structures. SCVM [LHS+14] and Obliv-C [Zah14] provide frameworks (including programming languages)
for secure computation of RAM programs that can be instantiated using different secure computation RAM
programs on the back-end. The above work all focus on the semi-honest adversarial model. To the best of
our knowledge, our work provides the first practical solution for secure computation of RAM program with
malicious security. Our constructions can be used to instantiate the back-end in SCVM and Obliv-C with
malicious security.

2 Preliminaries

2.1 (Oblivious) RAM Programs

A RAM program is characterized by a deterministic circuit Π and is executed in the presence of memory
M . The memory is an array of blocks, which are initially set to 0n. An execution of the RAM program Π
on inputs (x1, x2) with memory M is given by:

RAMEval(Π,M, x1, x2)

st := x1‖x2‖0n; block := 0n; inst := ⊥
do until inst has the form (halt, z):

block := [if inst = (read, `) then M [`] else 0n]
r ← {0, 1}n; (st, inst, block) := Π(st, block, r)
if inst = (write, `) then M [`] := block

output z

Oblivious RAM, introduced in [GO96], is a technique for hiding all information about a RAM program’s
memory (both its contents and the data-dependent access pattern). Our constructions require a RAM
program that hides only the memory access pattern, and we will use other techniques to hide the contents of
memory. Throughout this work, when we use the term “ORAM”, we will be referring to this weaker security
notion. Concretely, such an ORAM can often be obtained by taking a standard ORAM construction (e.g.,
[SvDS+13, CP13]) and removing the steps where it encrypts/decrypts memory contents.

Define I(Π,M, x1, x2) as the random variable denoting the sequence of values taken by the inst variable
in RamEval(Π,M, x1, x2). Our precise notion of ORAM security for Π requires that there exist a simulator S
such that, for all x1, x2 and initially empty M , the output S(1λ, z) is indistinguishable from I(Π,M, x1, x2),
where z is the final output of the RAM program on inputs x1, x2.

2.2 Garbling Schemes

In this section we adapt the abstraction of garbling schemes [BHR12b] to our needs. Our 2PC protocol
constructions re-use wire labels between different garbled circuits, so we define a specialized syntax for
garbling schemes in which the input and output wire labels are pre-specified.

We represent a set of wire labels W as a m× 3 array. Wire labels W [i, 0] and W [i, 1] denote the two wire
labels associated with some wire i. We employ the point-permute optimization [PSSW09], so we require
lsb(W [i, b]) = b. The value W [i, 2] is a single-bit translation bit, so that W [i,W [i, 2]] is the wire label that
encodes false for wire i. For shorthand, we use τ(W ) to denote the m-bit string W [1, 2] · · ·W [m, 2].

We require the garbling scheme to have syntax F ← Garble(f,E,D) where f is a circuit, E and D
represent wire labels as above.

For v ∈ {0, 1}m, we define W |v = (W [1, v1], . . . ,W [m, vm]), i.e., the wire labels with select bits v. We
also define W |∗x := W |x⊕τ(W ), i.e., the wire labels corresponding to truth values x. The correctness condition
we require for garbling is that, for all f , x, and valid wire label descriptions E, D, we have:

Eval(Garble(F,E,D), E|∗x) = D|∗f(x)

If Y denotes a vector of output wire labels, then it can be decoded to a plain output via lsb(Y )⊕τ(D), where
lsb is applied component-wise. Hence, τ(D) can be used as output-decoding information. More generally, if
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µ ∈ {0, 1}m is a mask value, then revealing (µ, τ(D) ∧ µ) allows the evaluator to learn only the output bits
for which µi = 1.

LetW denote the uniform distribution of m×3 matrices of the above form (wire labels with the constraint
on least-significant bits described above). Then the security condition we need is that there exists an efficient
simulator S such that for all f, x,D, the following distributions are indistinguishable:

Real(f, x,D):

E ←W
F ← Garble(f,E,D)
return (F,E|∗x)

SimS(f, x,D):

E ←W
F ← S(f,E|∗x, D|∗f(x))
return (F,E|∗x)

To understand this definition, consider an evaluator who receives garbled circuit F and wire labels E|∗x
which encode its input x. The security definition ensures that the evaluator learns no more than the correct
output wires D|∗f(x).

Consider what happens when we apply this definition with D chosen from W and against an adversary
who is given only partial decoding information (µ, τ(D)∧µ).1 Such an adversary’s view is then independent of
f(x)∧µ. This gives us a combination of the privacy and obliviousness properties of [BHR12b]. Furthermore,
the adversary’s view is independent of the complementary wire labels D|∗

f(x)
, except possibly in their least

significant bits (by the point-permute constraint). So the other wire labels are hard to predict, and we
achieve an authenticity property similar to that of [BHR12b].2

Finally, we require that it be possible to efficiently determine whether F is in the range of Garble(f,E,D),
given (f,E,D). For efficiency improvements, one may also reveal a seed which was used to generate the
randomness used in Garble.

These security definitions can be easily achieved using typical garbling schemes used in practice (e.g.,
[KS08]). We note that the above arguments hold even when the distribution W is slightly different. For
instance, when using the Free-XOR optimization [KS08], wire label matrices E and D are chosen from a
distribution parameterized by a secret ∆, where E[i, 0]⊕ E[i, 1] = ∆ for all i. This distribution satisfies all
the properties of W that were used above.

Conventions for wire labels. We exclusively garble the ORAM circuit which has its inputs/outputs
partitioned into several logical values. When W is a description of input wire labels for such a circuit, we
let st(W ), rand(W ), block(W ) denote the submatrices of W corresponding to the incoming internal state,
random tape, and incoming memory block. When W describes output wires, we use st(W ), inst(W ) and
block(W ) to denote the outgoing internal state, output instruction (read/write/halt, and memory location),
and outgoing memory data block. We use these functions analogously for vectors (not matrices) of wire
labels.

2.3 (XOR-Homomorphic) Commitment

In addition to a standard commitment functionality Fcom, one of our protocols requires an XOR-homomorphic
commitment functionality Fxcom. This functionality allows P1 to open the XOR of two or more commited
messages without leaking any other information about the individual messages. The funcionality is defined
in Figure 1. Further details, including an implementation, can be found in [FJN+13].

3 Batching Protocol

3.1 High-level Overview

Roughly speaking, the LEGO technique of [NO09, FJN+13] is to generate a large quantity of garbled gates,
perform a cut-and-choose on all gates to ensure their correctness, and finally assemble the gates together into

1Our definition applies to this case, since a distinguisher for the above two distributions is allowed to know D which
parameterizes the distributions.

2We stress that the evaluator can indeed decode the garbled output (using τ(D) and the select bits), yet cannot forge valid
output wire labels in their entirety. This combination of requirements was not considered in the definitions of [BHR12b].
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The functionality is initialized with internal
value i = 1. It then repeatedly responds to com-
mands as follows:

• On input (commit,m) from P1, store (i,m)
internally, set i := i + 1 and output
(committed, i) to both parties.

• On input (open, S) from P1, where S is a
set of integers, for each i ∈ S find (i,mi)
in memory. If for some i, no such mi

exists, send ⊥ to P2. Otherwise, send
(open, S,

⊕
i∈Smi) to P2.

Figure 1: XOR-homomorphic commitment functionality Fxcom.

a circuit which can tolerate a bounded number of faulty gates (since the cut-and-choose will not guarantee
that all the gates are correct). More concretely, with sN gates and a cut-and-choose phase which opens
half of them correctly, a statistical argument shows that permuting the remaining gates into buckets of
size O(s/ logN) each ensures that each bucket contains a majority of correct gates, except with negligible
probability in s.

For each gate, the garbler provides a homomorphic commitment to its input/output wire labels, which
is also checked in the cut and choose phase. This allows wires to be connected on the fly with a technique
called soldering. A wire with labels (w0, w1) (here 0 and 1 refer to the public select bits) can be soldered
to a wire with labels (w′0, w

′
1) as follows. If w0 and w′0 both encode the same truth value, then decommit

to ∆0 = w0 ⊕ w′0 and ∆1 = w1 ⊕ w′1. Otherwise decommit to ∆0 = w0 ⊕ w′1 and ∆1 = w1 ⊕ w′0. Then
when an evaluator obtains the wire label wb on the first wire, wb ⊕∆b will be the correct wire label for the
second wire. To prove that the garbler hasn’t inverted the truth value of the wires by choosing the wrong
case above, she must also decommit to the XOR of each wire’s translation bit (i.e., β⊕β′ where wβ and w′β′
both encode false).

Next, an arbitrary gate within each bucket is chosen as the head. For each other gate, we solder its
input wires to those of the head, and output wires to those of the head. Then an evaluator can transfer the
input wire labels to each of the gates (by XORing with the appropriate solder value), evaluate the gates, and
transfer the wire labels back. The majority value is taken to be the output wire label of the bucket. The
cut-and-choose ensures that each bucket functions as a correct gate, with overwhelming probability. Then
the circuit can be constructed by appropriately soldering together the buckets in a similar way.

For our protocol we use a similar approach but work with buckets of circuits, not buckets of gates.
Each bucket evaluates a single timestep of the RAM program. To transfer RAM memory and internal
state between timesteps, we solder wires together appropriately (i.e., state input of time t soldered to state
output of time t− 1; memory-block input t soldered to memory-block output of the previous timestep that
wrote to the desired location). Additionally, the approach of using buckets also saves an asymptotic log T
factor in the number of circuits needed for each timestep (i.e., the size of the buckets), where T is the total
running time of the ORAM, a savings that motivates similar work on batch pre-processing of garbled circuits
[HKK+14, LR14].

We remark that our presentation of the LEGO approach above is a slight departure from the original
papers [NO09, FJN+13]. In those works, all gates were garbled using Free XOR optimization, where w0⊕w1

is a secret constant shared on all wires. Hence, we have only one “solder” value w0 ⊕ w′0 = w1 ⊕ w′1. If
the sender commits to only the “false” wire label of each wire, then the sender is prevented from inverting
the truth value while soldering (“false” is always mapped to “false”). However, to keep the offset w0 ⊕ w1

secret, only one of the 4 possible input combinations of each gate can be opened in the cut-and-choose
phase. The receiver has only a 1/4 probability of identifying a faulty gate. This approach does not scale to a
cut-and-choose of entire circuits, where the number of possible input combinations is exponential. Hence our
approach of forgoing common wire offsets w0⊕w1 between circuits and instead committing to the translation
bits. As a beneficial side effect, the concrete parameters for bucket sizes are improved since the receiver will
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GC(1)

GC(2)

GC(3)

maj
E(1) D(1)

E(2) D(2)

E(3) D(3)

∆(1→2)

∆(1→3)

∆(2→1)

∆(3→1)

Figure 2: Illustration of MkBucket(B = {1, 2, 3}, hd = 1).

detect faulty circuits with probability 1, not 1/4.
Back to our protocol, P1 generates O(sT/ log T ) garblings of the ORAM’s next-instruction circuit, and

commits to the circuits and their wire labels. P2 chooses a random half of these to be opened and aborts if
any are found to be incorrect.

For each timestep t, P2 picks a random subset of remaining garbled circuits and the parties assemble
them into a bucket Bt (this is the MkBucket subprotocol) by having P1 open appropriate XORs of wire
labels, as described above. We can extend the garbled-circuit evaluation function Eval to EvalBucket using
the same syntax. Then EvalBucket inherits the correctness property of Eval with overwhelming probability,
for each of the buckets created in the protocol.

After a bucket is created, P2 needs to obtain garbled inputs on which to evaluate it. See Figure 3 for
an overview. Let Xt denote the vector of input wire labels to bucket Bt. We use block(Xt), st(Xt), rand(Xt)
to denote the sets of wire labels for the input memory block, internal state, and shares of random tape,
respectively. The simplest wire labels to handle are the ones for internal state, as they always come from
the previous timestep. We solder the output internal state wires of bucket Bt−1 to the input internal state
wires of bucket Bt. Then if Yt−1 were the output wire labels for bucket Bt−1 by P2, we obtain st(Xt) by
adjusting st(Yt−1) according to the solder values.

If the previous memory instruction was a read of a location that was last written to at time t′, then
we need to solder the appropriate output wires from bucket Bt′ to the corresponding input wires of Bt. P2

then obtains block(Xt) by adjusting the wire labels block(Yt′) according to the solder values. If the previous
memory instruction was a read of an uninitialized block, or a write, then P1 simply opens these input
wire labels to all zero values (see GetInputpub).

To obtain wire labels rand(Xt), we have P1 open wire labels for its shares (GetInput1) and have P2 obtain
its wire labels via a standard OT (GetInput2).

At this point, P2 can evaluate the bucket (EvalBucket). Let Yt denote the output wire labels. P1 opens
the commitment to their translation values, so P2 can decode and learn these outputs of the circuit. P2 sends
these labels back to P1, who verifies them for authenticity. Knowing only the translation values and not the
entire actual output wire labels, P2 cannot lie about the circuit’s output except with negligible probability.

3.2 Detailed Protocol Description

Let Π be the ORAM program to be computed. Define Π̃(st, block, inp1, inp2,1, . . . , inp2,n) = Π(st, block, inp1,
⊕

i inp2,i).
Looking ahead, during the first timestep, the parties will provide inp1 = x1 and inp2 = x2, while in subse-
quent timesteps they input their shares r1 and r2 of the RAM program’s randomness. P2’s input is further
secret shared to prevent a selective failure attack on both x2 and his random input r2. We first define the
following subroutines / subprotocols:

prot Solder(A,A′) // A, A′ are wire labels descriptions

P1 opens Fxcom-commitments to τ(A) and τ(A′)
so that P2 receives τ = τ(A)⊕ τ(A′)

for each position i in τ and each b ∈ {0, 1}:

7



bucket Bt−1 bucket Btst(·)

block(·)

inst(·)

st(·)

block(·)

rand(·)

D(hdt−1)

Yt−1

E(hdt)

Xt

∆st = Solder(·, ·)
Adjust(·,∆st)

read from block

last written at t′

∆block = Solder(·, ·)
Adjust(·,∆block)

no read, or read

from uninitialized

block GetInputpub(·, 0n)

decode via τ(·)

GetInput1,GetInput2

Text above an edge refers to the entire
set of wire labels. Text below an edge
refers to the wire labels visible to P2

while evaluating.

Figure 3: Overview of soldering and evaluation steps performed in the online phase.

P1 opens Fxcom-commitments to A[i, b] and A′[i, τi ⊕ b]
so that P2 receives ∆[i, b] = A[i, b]⊕A′[i, τi ⊕ b]

return ∆

prot MkBucket(B, hd) // B is a set of indices

for each j ∈ B \ {hd}:
∆(hd→j) = Solder(E(hd), E(j))
∆(j→hd) = Solder(D(j), D(hd))

∆(hd→hd) := all zeroes // for convenience

func Adjust(X,∆) // X is a vector of wire labels

for each i do X̃[i] = X[i]⊕∆[i, lsb(X[i])]

return X̃

func EvalBucket(B, X, hd)

for each j in B:

X̃j = Adjust(X,∆(hd→j)))

Yj = Adjust(Eval(GC(j), X̃j),∆
(j→hd))

return the majority element of {Yj}j∈B

prot GetInputpub(A, x) // A describes wire labels; x public

P1 opens commitments of A|∗x; call the result X
P1 opens commitments of τ(A)
P2 aborts if lsb(X) 6= τ(A)⊕ x; else returns X

prot GetInput1(A, x) // A describes wire labels; P1 holds x

P1 opens commitments of A|∗x; return these values

prot GetInput2(A, x) // A describes wire labels; P2 holds x

for each position i in A, parties invoke an instance of Fot:
P1 uses input (A[i, A[i, 2]], A[i, 1⊕A[i, 2]])
P2 uses input xi
P2 stores the output as X[i]

P2 returns X
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We now describe the main protocol for secure evaluation of Π. We let s denote a statistical security parameter,
and T denote an upper bound on the total running time of Π.

1. [Pre-processing phase] Circuit garbling: P1 and P2 agree on the total number N = O(sT/ log T )
of garbled circuits to be generated. Then, for each circuit index i ∈ {1, . . . , N}:

(a) P1 chooses random input/output wire label descriptions E(i), D(i) and commits to each of these
values component-wise under Fxcom.

(b) P1 computes GC(i) = Garble(Π̃, E(i), D(i)) and commits to GC(i) under Fcom.

2. [Pre-processing phase] Cut and choose: P2 randomly picks a subset Sc of {1, . . . , N} of size N/2
and sends it to P1. Sc will denote the set of check circuits and Se = {1, . . . , N} \Sc will denote the set
of evaluation circuits. For check circuit index i ∈ Sc:

(a) P1 opens the commitments of E(i), D(i), and GC(i).

(b) P2 checks that GC(i) ∈ Garble(Π̃, E(i), D(i)); if not, P2 aborts.

3. Online phase: For each timestep t:

(a) Bucket creation: P2 chooses a random subset of Bt of Se of size Θ(s/ log T ) and a random head
circuit hdt ∈ Bt. P2 announces them to P1. Both parties set Se := Se \ Bt.

(b) Garbled input: randomness: P1 chooses random r1 ← {0, 1}n, and P2 chooses random
r2,1, . . . , r2,n ← {0, 1}n. P2 sets

rand1(Xt) = GetInput1(rand1(E(hdt)), r1)

rand2(Xt) = GetInput2(rand2(E(hdt)), r2,1 · · · r2,n)

(c) Garbled input: state: If t > 1 then the parties execute:

∆st = Solder(st(D(hdt−1)), st(E(hdt)))

and P2 sets st(Xt) := Adjust(st(Yt−1),∆st).

Otherwise, in the first timestep, let x1 and x2 denote the inputs of P1 and P2, respectively. For
input wire labels W , let st1(W ), st2(W ), st3(W ) denote the groups of the internal state wires
corresponding to the initial state x1‖x2‖0n. To prevent selective abort attacks, we must have
P2 encode his input as n-wise independent shares, as above. P2 chooses random r2,1, . . . , r2,n ∈
{0, 1}n such that

∑n
i r2,i = x2, and sets:3

st(Xt) = GetInput1(st1(E(hdt)), x1)

‖ GetInput2(st2(E(hdt)), r2,1 · · · r2,n)

‖ GetInputpub(st3(E(hdt)), 0n)

(d) Garbled input: memory block: If the previous instruction instt−1 = (read, `) and no previous
(write, `) instruction has happened, or if the previous instruction was not a read, then the
parties do block(Xt) = GetInputpub(block(E(hdt)), 0n).

Otherwise, if instt−1 = (read, `) and t′ is the largest time step with instt′ = (write, `), then the
parties execute:

∆block = Solder(block(D(hdt′ )), block(E(hdt)))

Then P2 sets block(Xt) := Adjust(block(Yt′),∆block).

3We are slightly abusing notation here. More precisely, the parties are evaluating a slightly different circuit Π̃ in the first
timestep than other timesteps. In the first timestep, it is P2’s input x2 that is encoded randomly, whereas in the other steps it
is P2’s share r2 of the random tape. However, the difference between these circuits is only in the addition of new XOR gates,
and only at the input level. When using the Free-XOR optimization, these gates can actually be added after the fact, so the
difference is compatible with our pre-processing.
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(e) Construct bucket: P1 and P2 run subprotocol MkBucket(Bt, hdt) to assemble the circuits.

(f) Circuit evaluation: For each i ∈ Bt, P1 opens the commitment to GC(i) and to τ(inst(D(i))).
P2 does Yt = EvalBucket(Bt, Xt, hdt).

(g) Output authenticity: P2 sends Ỹ = inst(Yt) to P1. Both parties decode the output instt =
lsb(Ỹ ) ⊕ τ(inst(D(hdt))). P1 aborts if the claimed wire labels Ỹ do not equal the expected wire
labels inst(D(hdt))|∗instt . If instt = (halt, z), then both parties halt with output z.

3.3 Security proof

Due to page limits, we give only an overview of the simulator S and security proof. The complete details
are deferred to Appendix C.

When P1 is corrupted: The pre-processing phase does not depend on party’s inputs, so it is trivial
to simulate the behavior of an honest P2. However, S can obtain P1’s commitments to all circuits and wire
labels. Hence, it can determine whether each of these circuits is correct.

In each timestep t of the online phase, S can abort if an bucket is constructed with a majority of incorrect
circuits; this happens with only negligible probability. S can abort just as an honest P2 would abort if P1

cheats in the Solder, GetInput1, or GetInputpub subprotocols. Using a standard argument from [LP07], S can
also match (up to a negligible difference) the probability of an honest P2 aborting due to cheating in the
GetInput2 subprotocol. S can extract P1’s input x1 in timestep t = 1 by comparing the sent wire labels to
the committed wire labels extracted in the offline phase. S can send x1 to the ideal functionality and receive
the output z. Then S generates a simulated ORAM memory-access sequence. Each time in step (3g), S
knows all of the relevant wire labels so can send wire labels Ỹ chosen to encode the desired simulated ORAM
memory instruction.

When P2 is corrupted: In the pre-processing phase, S simulates commit messages from Fcom. After
receiving Sc from P2, it equivocates the opening of the check sets to honestly garbled circuits and wire labels.

In each timestep t of the online phase, S sends random wire labels in the GetInput1 and GetInputpub
subprotocols, and also simulates random wire labels as the output of Fot in the GetInput2 subprotocols.
These determine the wire labels that are “visible” to P2. S also extracts P2’s input x2 from its select bits
sent to Fot. It sends x2 to the ideal functionality and receives the output z. Then S generates a simulated
ORAM memory-access sequence.

In the Solder steps, S equivocates soldering values chosen to map visible wire labels to their counterparts
in other circuits, and chooses random soldering values for the non-visible wire labels. When it is time to open
the commitment to the garbled circuit, S chooses a random set of visible output wire labels and equivocates
to a simulated garbled circuit generated using only these visible wire labels. S also equivocates on the
decommitment to the decoding information τ(inst(D(i))), chosen so that the visible output wires will decode
to the next simulated ORAM memory instruction. Instead of checking P2’s claimed wire labels in step (3g),
the simulator simply aborts if these wire labels are not the pre-determined visible output wire labels.

3.4 Efficiency and Parameter Analysis

In the offline phase, the protocol is dominated by the generation of many garbled circuits, O(sT/ log T ) in
all. In Appendix B we describe computation of the exact constant. As an example, for T = 1 million, and
to achieve statistical security 2−40, it is necessary to generate 10 · T circuits in the offline phase.

In the online phase, the protocol is dominated by two factors: the homomorphic decommitments within
the Solder subprotocol, and the oblivious transfers (in GetInput2) in which P2 receives garbled inputs. For the
former, we require one decommitment for each input and output wire label (to solder that wire to another
wire) of the circuit Π̃. Hence the cost in each timestep is proportional to the input/output size of the circuit
and the size of the buckets. Continuing our example from above (T = 106 and s = 40), buckets of size 5 are
sufficient.

In Appendix B we additionally discuss parameter settings for when the parties open a different fraction
(i.e., not 1/2) of circuits in the cut-and-choose phase. By opening a smaller fraction in the offline phase, we
require fewer circuits overall, at the cost of slightly more circuits per timestep (i.e., slightly larger buckets)
in the online phase.
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We require one oblivious transfer per input bit of P2 per timestep (independent of the size of buckets).
P2’s input is split in an s-way secret share to assure input-dependent failure probabilities, leading to a
total of sn OTs per timestep (where n is the number of random bits required by Π̃). However, online
oblivious transfers are inexpensive (requiring only few symmetric-key operations) when instantiated via OT
extension [IKNP03, ALSZ13], where the more expensive “seed OTs” will be done in the pre-processing phase.
In Section 5 we suggest further ways to reduce the required number of OTs in the online phase.

Overall, the online overhead of this protocol (compared to the semi-honest setting) is dominated by the
bucket size, which is likely at most 5 or 7 for most reasonable settings.

In terms of memory requirements, P1 must store all pre-processed garbled circuits, and P2 must store
all of their commitments. For each bit of RAM memory, P1 must store the two wire labels (and their
decommitment info) corresponding to that bit, from the last write-time of that memory location. P2 must
store only a single wire label per memory bit.

4 Streaming Cut-and-choose Protocol

4.1 High-level Overview

The standard cut-and-choose approach is (for evaluating a single circuit) for the sender P1 to garble O(s)
copies of the circuit, and receiver P2 to request half of them to be opened. If all opened circuits are correct,
then with overwhelming probability (in s) a majority of the unopened circuits are correct as well.

When trying to apply this methodology to our setting, we face the challenge of feeding past outputs (in-
ternal state, memory blocks) into future circuits. Näıvely doing a separate cut-and-choose for each timestep
of the RAM program leads to problems when reusing wire labels. Circuits that are opened and checked in
time step t must have wire labels independent of past circuits (so that opening these circuits does not leak
information about past garbled outputs). Circuits used for evaluation must be garbled with input wire labels
matching output wire labels of past circuits. But the security of cut and choose demands that P1 cannot
know, at the time of garbling, which circuits will be checked or used for evaluation.

Our alternative is to use a technique suggested by [MGFB14] to perform a single cut-and-choose that
applies to all timesteps. We make O(s) independent threads of execution, where wire labels are directly
reused only within a single thread. A cut-and-choose step at the beginning determines whether each entire
thread is used for checking or evaluation. Importantly, this is done using an oblivious transfer (as in [KMR12,
KsS12]) so that P1 does not learn the status of the threads.

More concretely, for each thread the parties run an oblivious transfer allowing P2 to pick up either kcheck
or keval. Then at each timestep, P1 sends the garbled circuit but also encrypts the entire set of wire labels
under kcheck and encrypts wire labels for only her input under keval. Hence, in check threads P2 receives
enough information to verify correct garbling of the circuits (including reuse of wire labels — see below), but
learns nothing about P1’s inputs. In evaluation threads, P2 receives only P1’s garbled input and the security
property of garbled circuits applies. If P1 behaves incorrectly in a check thread, P2 aborts immediately.
Hence, it is not hard to see that P1 cannot cause a majority of evaluation threads to be faulty while avoiding
detection in all check threads, except with negligible probability.

Reusing wire labels is fairly straight-forward since it occurs only within a single thread. The next circuit
in the thread is simply garbled with input wire labels matching the appropriate output wire labels in the
same thread (i.e., the state output of the previous circuit, and possibly the memory-block output wires of an
earlier circuit). We point out that P1 must know the previous memory instruction before garbling the next
batch of circuits: if the instruction was (read, `), then the next circuit must be garbled with wire labels
matching those of the last circuit to write to memory location `. Hence this approach is not compatible with
batch pre-processing of garbled circuits.

For enforcing consistency of P1’s input, we use the approach of [sS13]4, where the very first circuit is
augmented to compute a “hiding” universal hash of P1’s input. For efficiency purposes, the hash is chosen
as M · (x1‖r), where M is a random binary matrix M of size s× (n+ 2s+ log s) chosen by P2. We prevent
input-dependent abort based on P2’s input using the XOR-tree approach of [LP07], also used in the previous
protocol.

4although our protocol is also compatible with the solution of [MR13].
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GC(i,t′) GC(i,t−1) GC(i,t)· · ·

inst(·)
⇒ (write, `)

inst(·)
⇒ (read, `)

rand(·) rand(·)

block(·) block(·)

st(·)
E(i,t) D(i,t)E(i,t−1) D(i,t−1)E(i,t′) D(i,t′)

Figure 4: Wire-label reuse within a single thread i, in the streaming cut-and-choose protocol.

We ensure authenticity of the output for P1 using an approach suggested in [MR13]. Namely, wire labels
corresponding to the same output wire and truth value are used to encrypt a random “output authenticity”
key. Hence P2 can compute these output keys only for the circuit’s true output. P2 is not given the
information required for checking these ciphertexts until after he commits to the output keys. At the time
of committing, he cannot guess complementary output keys, but he does not actually open the commitment
until he receives the checking information and is satisfied with the check circuits.

The adaptation of the input-recovery technique of Lindell [Lin13] is more involved and hence we discuss
it separately in Section 4.5.

4.2 Detailed Protocol Description

We now describe the streaming cut-and-choose protocol for secure evaluation of Π, the ORAM program to
be computed. Recall that Π̃(st, block, inp1, inp2,1, . . . , inp2,n) = Π(st, block, inp1

⊕
i inp2,i). We let s denote a

statistical security parameter parameter, and T denote an upper bound on the total running time of Π. Here,
we describe the majority-evaluation variant of the protocol and discuss how to integrate the input-recovery
technique in Section 4.5.

1. Cut-and-choose. The parties agree on S = O(s), the number of threads (see discussion below). P2

chooses a random string b← {0, 1}S . Looking ahead, thread i will be a check thread if bi = 0 and an
evaluation thread if bi = 1.

For each i ∈ {1, . . . , S}, P1 chooses two symmetric encryption keys k(i,check) and k(i,eval). The parties
invoke an instance of Fot with P2 providing input bi and P1 providing input (k(i,check), k(i,eval)).

2. RAM evaluation. For each timestep t, the following are done in parallel for each thread i ∈
{1, . . . , S}:

(a) Wire label selection. P1 determines the input wire labels E(t,i) for garbled circuit GC(t,i) as
follows. If t = 1, these wire labels are chosen uniformly. Otherwise, we set st(E(t,i)) = st(D(t−1,i))
and choose rand1(E(t,i)) and rand2(E(t,i)) uniformly. If the previous instruction instt−1 = (read, `)
and no previous (write, `) instruction has happened, or if the previous instruction was not a
read, then P1 chooses block(E(t,i)) uniformly at random. Otherwise, we set block(E(t,i)) =
block(D(t′,i)), where t′ is the last instruction that wrote to memory location `.

(b) Input selection. Parties choose shares of the randomness required for Π̃: P1 chooses r1 ←
{0, 1}n, and P2 chooses r2,1, . . . , r2,n ← {0, 1}n.

(c) P1’s garbled input transfer. P1 sends the following wire labels, encrypted under k(i,eval):

st1(E(t,i))|∗x1
if t = 1

rand1(E(t,i))|∗r1

The following additional wire labels are also sent in the clear:

st3(E(t,i))|∗0n if t = 1

block(E(t,i))|∗0n if write or uninitialized read
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(d) P2’s garbled input transfer. P2 obtains garbled inputs via calls to OT. To guarantee that P2

uses the same input in all threads, we use a single OT across all threads for each input bit of P2.
For each input bit, P1 provides the true and false wire labels for all threads as input to Fot, and
P2 provides his input bit as the OT select bit.

Note that P2’s inputs consist of the strings r2,1, . . . , r2,n as well as the string x2 for the case of
t = 1.

(e) Input consistency. If t = 1, then P2 sends a random s × (n + 2s + log s) binary matrix M to
P1. P1 chooses random input r ∈ {0, 1}2s+log s, and augments the circuit for Π̃ with a subcircuit
for computing M · (x1‖r).

(f) Circuit garbling. P1 chooses output wire labelsD(t,i) at random and doesGC(t,i) = Garble(Π̃, E(t,i), D(t,i)),

where in the first timestep, Π̃ also contains the additional subcircuit described above. P1 sends
GC(t,i) to P2 as well as τ(inst(D(t,i))).

In addition, P1 chooses a random ∆t for this time-step and for each inst-output bit j, he chooses
random strings w(t,j,0) and w(t,j,1) (the same across all threads) to be used for output authenticity,
such that w(t,j,0)⊕w(t,j,1) = ∆t. For each thread i, output wire j and select bit b corresponding to
truth value b′, let vi,j,b denote the corresponding wire label. P1 computes ci,j,b = Encvi,j,b(w(t,j,b′))
and hi,j,b = H(ci,j,b), where H is a random oracle. P1 sends hi,j,b in the clear and sends ci,j,b
encrypted under k(eval,i).

(g) Garbled input collection. If thread i is an evaluation thread, then P2 assembles input wire
labels X(t,i) for GC(t,i) as follows:

P2 uses k(eval,i) to decrypt wire labels sent by P1. Along with the wire labels sent in the clear and
those obtained via OTs in GetInput2, these wire labels will comprise rand(X(t,i)); block(X(t,i)) in
the case of a write or uninitialized read; and st(X(t,i)) when t = 1.

Other input wire labels are obtained via:

st(X(t,i)) = st(Y(t−1,i))

block(X(t,i)) = block(Y(t′,i))

where t′ is the last write time of the appropriate memory location, and Y denote the output wire
labels that P2 obtained during previous evaluations.

(h) Evaluate and commit to output. If thread i is an eval thread, then P2 evaluates the circuit
via Y(t,i) = Eval(GC(t,i), X(t,i)) and decodes the output inst(t,i) = lsb(Y(t,i)) ⊕ τ(D(t,i)). He sets
instt = majorityi{inst(t,i)}.
For each inst-output wire label j, P2 decrypts the corresponding ciphertext ci,j,b, then takes w′j
to be the majority result across all threads i. P2 commits to w′j .

If t = 1, then P2 verifies that the output of the auxiliary function M · (x1‖r) is identical to that
of all other threads; if not, he aborts.

(i) Checking the check threads. P1 sends
Enck(i,check)

(seed(t,i)) to P2, where seed(t,i) is the randomness used in the call to Garble. Then if

thread i is a check thread, P2 checks the correctness of GC(t,i) as follows. By induction, P2 knows
all the previous wire labels in thread i, so can use seed(t,i) to verify that GC(t,i) is garbled using

the correct outputs. In doing so, P2 learns all of the output wire labels for GC(t,i) as well. P2

checks that the wire labels sent by P1 in the clear are as specified in the protocol, and that the
ci,j,b ciphertexts and hi,j,b are correct and consistent. He also decrypts ci,j,b for b ∈ {0, 1} with
the corresponding output label to recover w′(t,j,b) and checks that w′(t,j,0)⊕w

′
(t,j,1) is the same for

all j. Finally, P2 checks that the wire labels obtained via OT in GetInput2 are the correct wire
labels encoding P2’s provided input. If any of these checks fail, then P2 aborts immediately.

(j) Output verification. P2 opens the commitments to values w′j and P1 uses them to decode the
output instt. If a value w′j does not match one of w(t,j,0) or w(t,j,1), then P1 aborts.
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4.3 Security Proof

Again we only give a brief overview of the simulator, with the details deferred to Appendix D.
When P1 is corrupt: In the cut-and-choose step, the simulator S extracts both encryption keys k(i,eval)

and k(i,check). Just as P2, the simulator designates half of the threads to be check threads and half to be eval
threads, and aborts if a check thread is ever found to be incorrect. However, the simulator can perform the
same check for all threads, and keeps track of which eval threads are correct. A standard argument shows
that if all check threads are correct, then a majority of eval threads are also correct, except with negligible
probability. Without loss of generality, we can have S abort if this condition is ever violated.

Knowing both encryption keys, S can associate P1’s input wire labels with truth values (at least in the
correct threads). If P1 provides disagreeing inputs x1 among the correct eval threads, then S aborts, which
is negligibly close to P2’s abort probability (via the argument regarding the input-consistency of [sS13]).
Otherwise, this determines P1’s input x1 which S sends to the ideal functionality, receiving output z in
return. S generates a simulated ORAM memory access pattern.

In the output commitment step, S simulates a commit message. Then after the check phase, S learns
all of the output-authenticity keys. So S simply equivocates the opening of the output keys to be the ones
encoding the next ORAM memory instruction.

When P2 is corrupt: In the cut-and-choose phase, S extracts P2’s selection of check threads and
eval threads. In check threads, S always sends correctly generated garbled circuits, following the protocol
specification and generates dummy ciphertexts for the encryptions under k(i,eval). Hence, these threads can
be simulated independently of P1’s input.

In each eval thread, S maintains visible input/output wire labels for each circuit, chosing new output
wire labels at random. S ensures that P2 picks up these wire labels in the input collection step. S also
extracts P2’s input x2 in this phase, from its select bit inputs to Fot. S sends x2 to the ideal functionality
and receives output z. Then S generates a simulated ORAM memory access pattern.

At each timestep, for each eval thread, S generates a simulated garbled circuit, using the appropriate
visible input/output wire labels. It fixes the decoding information τ so that the visible output wire labels
will decode to the appropriate ORAM instruction. In the output reveal step, S aborts if P2 does not open
its commitment to the expected output keys. Indeed, P2’s view in the simulation is independent of the
complementary output keys.

4.4 Efficiency and Parameter Analysis

At each timestep, the protocol is dominated by the generation of S garbled circuits (where S is the number
of threads) as well as the oblivious transfers for P2’s inputs. As before, using OT extension as well as
the optimizations discussed in Section 5, the cost of the oblivious transfers can be significantly minimized.
Other costs in the protocol include simple commitments and symmetric encryptions, again proportional to
the number of threads. Hence the major computational overhead is simply the number of threads.

Compared to our other protocol, this one has a milder memory requirement. Garbled circuits are gener-
ated on the fly and can be discarded after they are used, with the exception of the wire labels that encode
memory values. P1 must remember 2S wire labels per bit of memory (although in Section 5 we discuss a
way to significantly reduce this requirement). P2 must remember between S and 2S wire labels per bit of
memory (1 wire label for evaluation threads, 2 wire labels for check threads).

Using the standard techniques described above, we require S ≈ 3s threads to achieve statistical security
of 2−s. Recently, techniques have been developed [Lin13] for the SFE setting that require only s circuits
for security 2−s (concretely, s is typically taken to be 40). We now discuss the feasibility of adapting these
techniques to our protocol:

4.5 Integrating Cheating Recovery

The idea of [Lin13] is to provide a mechanism that would detect inconsistency in the output wire labels
encoding the final output of the computation. If P2 receives output wire labels for two threads encoding
disparate values, then a secondary computation allows him to recover P1’s input (and hence compute the
function himself). This technique reduces the number of circuits necessary by a factor of 3 since we only
need a single honest thread among the set of evaluated threads (as opposed to a majority). We refer the
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reader to [Lin13] for more details. We point out that in some settings, recovering P1’s input may not be
enough. Rather, if P2 is to perform the entire computation on his own in the case of a cheating P1, then he
also needs to know the contents of the RAM memory!

Cheating recovery at each timestep. It is possible to adapt this approach to our setting, by performing
an input-recovery computation at the end of each timestep. But this would be very costly, since each input-
recovery computation is a maliciously secure 2PC that requires expensive input-consistency checks for both
party’s inputs, something we worked hard to avoid for the state/memory bits. Furthermore, each cheating-
recovery garbled circuit contains non-XOR gates that need to be garbled/evaluated 3s times at each timestep.
These additional costs can become a bottleneck in the computation specially when the next-instruction circuit
is small.

Cheating recovery at the end. It is natural to consider delaying the input-recovery computation until
the last timestep, and only perform it once. If two of the threads in the final timestep (which also computes
the final output of computation) output different values, the evaluator recovers the garbler’s input. Unfor-
tunately, however, this approach is not secure. In particular, a malicious P1 can cheat in an intermediate
timestep by garbling one or more incorrect circuits. This could either lead to two or more valid memory
instruction/location outputs, or no valid outputs at all. It could also lead to a premature “halt” instruction.
In either case, P2 cannot yet abort since that would leak extra information about his private input. He also
cannot continue with the computation because he needs to provide P1 with the next instruction along with
proof of its authenticity (i.e. the corresponding garbled labels) but that would reveal information about his
input.

We now describe a solution that avoids the difficulties mentioned above and at the same time eliminates
the need for input-consistency checks or garbling/evaluating non-XOR gates at each timestep. In particular,
we delay the “proof of authenticity” by P2 for all the memory instructions until after the last timestep.
Whenever P2 detects cheating by P1 (i.e. more than two valid memory instructions), instead of aborting,
he pretends that the computation is going as planned and sends “dummy memory operations” to P1 but
does not (and cannot) prove the authenticity of the corresponding wire labels yet. For modern tree-based
ORAM constructions ([SvDS+13, CP13], etc) the memory access pattern is always uniform, so it is easy for
P2 to switch from reporting the real memory access pattern to a simulated one. Note that in step (h) of
the protocol, P2 no longer needs to commit to the majority w′j . As a result, step (j) of the protocol will be
obsolete. Instead, in step (h), P2 sends the instt in plaintext. This instruction is the single valid instruction
he has recovered or a dummy instruction (if P2 has attempted to cheat).

After the evaluation of the final timestep, we perform a fully secure 2PC for an input-recovery circuit
that has two main components. The first one checks if P1 has cheated. If he has, it reveals P1’s input to
P2. The second one checks the proofs of authenticity of the inst instructions P2 reveals in all timesteps and
signals to P1 to abort if the proof fails.

First cheating recovery, then opening the check circuits. For this cheating recovery method to
work, we perform the evaluation steps (step (h)) for all time-steps first (at this stage, P2 only learns the
labels for the final output but not the actual value), then perform the cheating recovery as described above,
and finally perform all the checks (step (i)) for all time-steps.

We now describe the cheating recovery circuit which consists of two main components in more detail.

• The first component is similar to the original cheating recovery circuit of [Lin13]. P2’s input is the
XOR of two valid output authenticity labels for a wire j at step t for which he has detected cheating
(if there is more than one instance of cheating he can use the first occurrence). Lets denote the
output authenticity labels for jth bit of block(Y(t,i)) at time-step t with w(t,j,b), b ∈ {0, 1}. Then P2

will input w(t,j,0) ⊕ w(t,j,1) to the circuit. If there is no cheating, he inputs garbage. Notice that
w(t,j,0) ⊕ w(t,j,1) = ∆t for valid output authenticity values, as described in the protocol (note that we
assume that all output authenticity labels in timestep t use the same offset ∆t).

P1 inputs his input x1. He also hardcodes ∆t. For timestep t (as shown in Figure 5) the circuit compares
P2’s input against the hardcoded ∆t. If P2’s input is the same as the ∆t, cheating is detected and the
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circuit outputs 1. To check that P2’s input is the same as at least one of the hard-coded ∆s, in the
circuit of Figure 6 we compute the OR of all these outputs. Thus, if the output of this circuit is 1, it
means that P1 has cheated in at least one timestep.

To reveal P1’s input, we compute the AND of output of circuit of Figure 6 with each bit of P1’s input
as depicted in Figure 7. This concludes the description of the first component for cheating recovery.

• In the second component, we check the authenticity of the memory instructions P2 provided in all
timesteps. In particular, he provides the hash of concatenation of all output authentication labels he
obtained during the evaluation corresponding to inst in all timesteps (P2 uses dummy labels if he does
not have valid ones due to P1’s cheating), while P1 does the same based on the plaintext instructions
he received from P2 and the labels which he knows. The circuit then outputs 1 if the two hash values
match. The circuit structure is therefore identical to that of Figure 5, but the inputs are the hash
values. An output of 0 would mean that P2 does not have a valid proof of authenticity.

As shown in the final circuit of Figure 7 then, if P1 was not already caught cheating in the previous
step, and P2’s proof of authenticity fails, the circuit outputs a 1 to signal an abort to P1. This is a
crucial condition, i.e., it is important to ensure P1 did not cheat (the output of circuit of Figure 6)
before accusing P2 of cheating, since in case of cheating by P1 say in timestep t, P2 may be able to
prove authenticity of the instructions for timestep t or later.

Efficiency: Following the techniques of [Lin13], all the gates of Figures 5, and 6 can be garbled using
non-cryptographic operations (XORs) and only the circuit of Figure 7 has non-XOR gates. More precisely
it requires |x1| ANDs and a NOT gate.

Of course, the final circuit will be evaluate using a basic maliciously secure 2PC. Thus, we need to add
a factor of 3s to the above numbers which results in garbling a total of 3s(|x1|+ 1) non-XOR gates which is
at most 12s(|x1|+ 1) symmetric operations.

The input consistency checks are also done for P1’s input x1 and P2’s input which is a proof of cheating
of length |∆| and a proof of authenticity which is the output of a hash function (both are in the order of the
computational security parameter). We stress that the gain is significant since both the malicious 2PC and
the input consistency cheks are only done once at the end.

∆t[0]
(w(t,j,0) ⊕ w(t,j,1))[0]

∆t[1]
(w(t,j,0) ⊕ w(t,j,1))[1]

∆t[m]
(w(t,j,0) ⊕ w(t,j,1))[m]

outt

MatchBoxt

Figure 5: Cheating recovery component 1: MatchBox. Where ∆t[i] denotes the ith bit of ∆t and m = |∆t|.

5 Optimizations

Here we present a collection of further optimizations compatible with our 2PC protocols:

5.1 Hide only the input-dependent behavior

Systems like SCVM [LHS+14] use static program analysis to “factor out” as much input-independent program
flow as possible from a RAM computation, leaving significantly less residual computation that requires
protection from the 2PC mechanisms.
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Figure 6: Cheating Recovery component 1: Garbler Cheating Detection.

w(t,j,0) ⊕ w(t,j,1)

Hash(w(t,j,b)),
t ∈ {0, . . . , T},

j ∈ {1, . . . , |instt|}

GarbCheat
Detection

MatchBox

x1

P2’s
output

P1 aborts
if equal to 1

Figure 7: Final Circuit

The backend protocol currently implemented by SCVM achieves security only against semi-honest ad-
versaries. However, our protocols are also compatible with their RAM-level optimizations, which we discuss
in more detail:

Special-purpose circuits. For notational simplicity, we have described our RAM programs via a single
circuit Π that evaluates each timestep. Then Π must contain subcircuits for every low-level instruction
(addition, multiplication, etc) that may ever be needed by this RAM program.

Instruction-trace obliviousness means that the choice of low-level instruction (e.g., addition, mul-
tiplication) performed at each time t does not depend on private input. The SCVM system can compile
a RAM program into an instruction-trace-oblivious one (though one does not need full instruction-trace
obliviousness to achieve an efficiency gain in 2PC protocols). For RAM programs with this property, we
need only evaluate an (presumably much smaller) instruction-specific circuit Πt at each timestep t.

It is quite straight-forward to evaluate different circuits at different timesteps in our cut-and-choose
protocol of Section 4. For the batching protocol of Section 3, enough instruction-specific circuits must be
generated in the pre-processing phase to ensure a majority of correct circuits in each bucket. However, we
point out that buckets at different timesteps could certainly be different sizes! One particularly interesting
use-case would involve a very aggressive pre-processing of the circuits involved in the ORAM construction
(i.e., the logic translating logical memory accesses to physical accesses), since these will dominate the com-
putation and do not depend on the functionality being computed.5 The bucket size / replication factor for

5Such pre-processing yields an instance of commodity-based MPC [Bea97].
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these timesteps could be very low (say, 5), while the less-aggressively pre-processed instructions could have
larger buckets. In this case, the plain-RAM internal state could be kept separate from the ORAM-specific
internal state, and only fed into the appropriate circuits.

Along similar lines, we have for simplicity described RAM programs that require a random input tape
at each timestep. This randomness leads to oblivious transfers within the protocol. However, if it is known
to both parties that a particular instruction does not require randomness, then these OTs are not needed.
For example, deterministic algorithms require randomness only for the ORAM mechanism. Concretely, tree-
based ORAM constructions [SCSL11, SvDS+13, CP13] require only a small amount of randomness and at
input-indepenent steps.

Memory-trace obliviousness. Due to their general-purpose nature, ORAM constructions protect all
memory accesses, even those that may already be input-independent (for example, sequantial iteration over
an array). One key feature of SCVM is detecting which memory accesses are already input-independent and
not applying ORAM to them. Of course, such optimizations to a RAM program would yield benefit to our
protocols as well.

5.2 Reusing memory

We have described our protocols in terms of a single RAM computation on an initially empty memory. How-
ever, one of the “killer applications” of RAM computations is that, after an initial quasi-linear-time ORAM
initialization of memory, future computations can use time sublinear in the total size of data (something
that is impossible with circuits). This requires an ORAM-initialized memory to be reused repeatedly, as in
[GKK+12].

Our protocols are compatible with reusing garbled memory. In particular, this can be viewed as a single
RAM computation computing a reactive functionality (one that takes inputs and gives outputs repeatedly).

5.3 Other Protocol Optimizations

Storage requirements for RAM memory. In our cut-and-choose protocol, P1 chooses random wire
labels to encode bits of memory, and then has to remember these wire labels when garbling later circuits that
read from those locations. As an optimization, P1 could instead choose wire labels via Fk(t, j, i, b), where
F is a suitable PRF, t is the timestep in which the data was written, j is the index of a thread, i is the
bit-offset within the data block, and b is the truth value. Since memory locations are computed at run-time,
P1 cannot include the memory location in the computation of these wire labels. Hence, P1 will still need to
remember, for each memory location `, the last timestep t at which location ` was written.

Adaptive garbling. In the batching protocol, P1 must commit to the garbled circuits and reveal them
only after P2 obtains the garbled inputs. This is due to a subtle issue of (non)adaptivity in standard security
definitions of garbled circuits; see [BHR12a] for a detailed discussion. These commitments could be avoided
by using an adaptively-secure garbling scheme.

Online/offline tradeoff. For simplicity we described our online/offline protocol in which P1 generates
many garbled circuits and P2 opens exactly half of them. Lindell and Riva [LR14] also follow a similar
approach of generating many circuits in an offline phase and assigning the remainder to random buckets;
they also point out that changing the fraction of opened circuits results in different tradeoffs between the
amount of circuits used in the online and offline phases. For example, checking 20% of circuits results in
fewer circuits overall (i.e., fewer generated in the offline phase) but larger buckets (in our setting, more
garbled circuits per timestep in the online phase).
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A Streaming Cut-and-choose Protocol Efficiency

To signify the efficiency advantages of our streaming cut-and-choose protocol, we compare our approach with
a naive but natural transformation of [GKK+12] from semi-honest to malicious security.

A.1 Naive Approach

In order to check consistency of the shared state values passing from one circuit to another, one could compute
the one-time MAC of the shares in one circuit and verify the MACs in the next. And to maintain integrity
and privacy of the memory blocks, a natural solution is to encrypt them using an authenticated encryption
scheme and store a ciphertext that is decrypted whenever the memory location is accessed. Furthermore,
one would need to repeat the cheating-recovery component after each timestep (or otherwise use 3s threads).

For the one-time MAC, we use the efficient scheme of [sS13] which we used earlier for input-consistency.
This way, MACing is essentially free (since it is all XOR gates) while it costs only 2M AND gates to
verify where M is the size of the input to the MAC. For the authenticated encryption (AE), one can use
any standard AE scheme such as the efficient OCB-AES128 [RBBK01] which requires two AES calls when
encrypting only one block of input. The decryption cost is similar with an extra τ AND gates where τ is the
length of the authenticity tag (let τ = 128). Assuming that an AES circuit implementation would require
6,800 non-XOR gates [TS], authenticated encryption of a block of 128 bit would require a circuit size of
13,600 non-XOR gates while decryption requires 13,728 non-XOR gates.

In the construction of [GKK+12], the tree-ORAM circuit can be broken into four main circuits: 1) the
circuit that given the shares of a virtual address, returns its corresponding label to the Receiver, 2) a circuit
that given the shares of a virtual address and an encrypted path from root to a leaf, returns the shares of the
data corresponding to the virtual address and removes it from the path, 3) a circuit that adds the removed
data to the root node, and 4) a circuit that given a label, evicts the nodes from root to that label. Note that
one would need to apply a separate cheating recovery for each of these circuits.

Given these circuits, we compute the total number of bits (state information) that are passed between
circuits. We also compute the number of times that we need to call encryption and decryption algorithms
on the memory items. Note that these numbers are for a single ORAM operation.

Consider the following parameters. The number of actual data items stored in memory is denoted by N .
In the level-0 tree of the ORAM, each node contains a constant number of blocks, Z. Each block consists of
a metadata section of length D and a data section of the same size. Encrypting a block is implemented by
AES-128. The security parameter (for key length and the length of the tag in authenticated encryption) is
S′. We also denote the Sender side storage for the ORAM by CS. For simplicity, we consider the case of a
non-recursive ORAM. Therefore, CS is equal to N ×D (i.e. Sender needs to store his share of metadata for
all memory locations). Since we are assuming the use of cheating recovery technique, the number of threads
is S = s.

To compare the efficiency of our approach with the naive transformation, we compare the overhead
incurred by each approach. The overhead is computed in three aspects: 1) the number of extra gates
necessary, 2) the extra input consistency checks, and 3) the extra storage requirement on Sender’s side.
These extra cost are computed over the run-time (T ) of the program. To clarify what we mean by “extra”
overhead, consider the following.

If the size of a circuit (number of non-XOR gates) computing a semi-honest 2PC ORAM is denoted by SO
and it stores CS bytes of data in Sender’s side, using cut-and-choose and cheating recovery, we would at least
need a circuit size of MS = s× SO for cut-and-choose and 3s× |x1| non-XOR gates for cheating recovery.
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We would also need s× CS bytes at Sender’s side. Moreover, we would require the usual input consistency
checks on x1. Therefore, in the run-time of the program, we would need MST = MS×T+3s×|x1| non-XOR
gates and CSs = s×CS bytes of storage. Any cost other than MST , CSs and the input consistency checks
on the |x1| is considered an overhead. In what follows, we compute the overhead of the naive transformation
approach.

For each invocation of ORAM, we have the following costs. We need to apply MACing and verification
for 8D + 2CS bits. The authenticated encryption and decryption are each called on 3Z logN + Z blocks.
We need to check input consistency on 2D+3S′+CS bits of data. And finally, the cost of cheating recovery
for a circuit with input size M is 3s ×M non-XOR gates. Thus, for an ORAM application with running
time T and assuming the use of cheating recovery, the overhead for time-steps t1 to t2 such that t′ = t2 − t1
(corresponding to a single ORAM call) is as follows.

• MAcing: almost free.

• Verification: t′s× (2× (8D + 2CS)) non-XOR gates.

• Authenticated Encryption: t′s× (13,600× (3Z logN + Z)) non-XOR gates.

• Authenticated Decryption: t′s× (13,728× (3Z logN + Z)) non-XOR gates.

• Cheating Recovery: 3t′s× (8D + 2CS) non-XOR gates.

Note that during the run time of a program, many such ORAM calls are performed such that T =
t′ × num of calls.

Given D = 64 (so that we can feed 2D = 128 blocks of data to AES), N = 210, S′ = 128, s = 40, Z = 4,
and CS = N ×D the total size of the overhead is T × 154.36× 220 non-XOR gates. We would also have a
computational overhead of O(T × IC×ND) for input consistency checks, where IC is the overhead of input
consistency check for one bit of data on s garbled circuits. The Sender storage does not have any overhead.

A.2 Our approach

In our approach, we do not need to check the correctness of the state information using MAC. We also, do
not need authenticated encryption and decryption. Moreover, we perform the cheating recovery only once
at the end of the protocol. Therefore, our only overhead is introduced by the final cheating recovery which
is equal to 3s× (|x1|+ 1) (see section 4.5), where x1 is the input to the circuit in the first time-step. Notice
that only 3s of it is considered “extra” overhead.

Our approach achieves the above at a cost of increasing the Sender’s storage requirements. In our
approach Sender needs know for each memory location and for each thread, which circuit updated that
location (i.e. he needs to store the seed (|seed| = S′) of the circuit) and also when was the last update
performed (i.e. he needs to store a time-step t (|t| = log T )). This results in an extra N × s × (S′ + log T )
storage for Sender. As for input consistency, note that we do not need any input consistency checks for the
intermediate circuits which are responsible for ORAM access.

Given the same concrete parameters as above, with the addition of |x1| = 128 the overheads are as
follows. Our approach needs only 120 extra non-XOR gates at the cost of an extra 5MB+ log T × 40KB of
Sender storage.

Table 1 provides a comparison of the overhead of the two approaches. Notice that as the running time
increase our performance on circuit overhead increases linearly while the storage requirements increases only
logarithmic. As can be seen in this table, our approach saves orders of magnitude on circuit size (number
of non-XOR gates) and removing the need for costly input consistency checks, while adding only a small
overhead on Sender storage size.

B Concrete Bounds for Batch Preprocessing Protocol

Here we compute the number of circuits ρ needed per bucket in the protocol of Section 3. Let T denote the
total number of time steps taken by the RAM program.
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Table 1: Comparison of “overhead” of naive implementation with streaming cut-and-choose approach
Naive implementation Streaming cut-and-choose

Circuit Size (T × 154.36× 220) non-XOR gates (120) non-XOR gates
Sender Storage 0 5MB + log T × 40KB
Input Consistency Checks O(T × IC ×ND) 0

In that protocol, P1 generates 2ρT circuits and exactly half are checked. The remaining ones get placed
randomly into T buckets of ρ circuits each.

Let B(ρ, T,m) denote the probability that some bucket contains a minority of good circuits, when m
circuits are bad. Then we have the following recurrence:

B(ρ, T,m) =

ρ∑
i=0

(
m
i

)(
ρT−m
ρ−i

)(
ρT
ρ

) {
if i < ρ/2 then B(ρ, T − 1,m− i)

else 1

}
In this recurrence, i indexes the number of bad circuits in the first bucket. The fraction gives the

probability of the first bucket receiving exactly i bad circuits. If i < ρ/2 then the condition is not yet met
and it must further hold on the remaining T − 1 buckets; if i ≥ ρ/2 then the condition is met (hence 1).

Then let B∗(ρ, T,m) denote the overall probability that an adversary will be successful by generating m
bad circuits. Since the bad circuits must survive the cut and choose, and then a minority-good bucket is
generated, we have:

B∗(ρ, T,m) =

(
2ρT−m
ρT

)(
2ρT
ρT

) · B(ρ, T,m)

A value of ρ is sufficient to achieve security 2−s if we have

max
m
{B∗(ρ, T,m)} < 2−s

Using these recurrences, we were able to exactly compute the minimal values of ρ for s = 40 and selected
values of T :

T minimum ρ needed:
100 13
250 11
500 9

5,000 7
100,000 7
500,000 5

These are admittedly a very small sample size, though we can report that the points are fit closely (r = 0.97)
by the linear regression ρ = 1.86 · (40/ log2 T ) + 1.46.

We note that the analyses of [HKK+14] are slightly different, in that they need only a single good circuit
in each bucket (i.e., the adversary succeeds only by making a bucket with no good circuits).

Checking a different fraction of circuits. In [LR14], it is suggested to check a different (i.e., not 1/2)
fraction of circuits in the offline phase. Indeed, if the parties check a smaller fraction of circuits, then P1

generates fewer circuits overall (in the offline phase) but P2 evaluates more circuits per timestep in the online
phase (i.e., buckets must be bigger).

Suppose that 1− φ fraction of circuits are checked in the offline phase. In order to have T buckets of ρ
circuits each, P1 must generate N = dρT/φe circuits total and the parties must check N −ρT of them. Then
the probability of m bad circuits surviving the cut and choose is:

B∗(ρ, T,m) =

( dρT/φe−m
dρT/φe−ρT

)( dρT/φe
dρT/φe−ρT

) · B(ρ, T,m)

Following [LR14], we compute the parameters for several values of T and φ (again for s = 40):
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T fraction checked (1− φ) circuits per timestep
online only (bucket size) total (eval + check)

100 0.80 9 45.0
100 0.60 11 27.5
100 0.40 13 21.7
100 0.25 15 20.0
500 0.90 7 70.0
500 0.50 9 18.0
500 0.25 11 14.7
1000 0.80 7 35.0
1000 0.40 9 15.0
1000 0.20 11 13.7
5000 0.50 7 14.0
5000 0.15 9 10.6
104 0.35 7 10.8
104 0.10 9 10.0

5× 104 0.15 7 8.2

We note that [LR14] also prove a bound on the bucket size ρ; namely, if:

ρ ≥ 2s+ 2 log T − log(−1.25 log φ)− 1

log T + log(−1.25 log φ)− 2

then the total probability of a majority-bad bucket is at most 2−s, when using buckets of size ρ. However,
the exact bounds that we have computed are significantly tighter.

C Security Proof of Batching Protocol

In this section we prove the security of the batching protocol of Section 3.

Case 1: P1 is corrupted. In this part, we are going to construct a simulator S progressively by using a
standard hybrid argument. Let πf denote the protocol of section 3.2. We begin by showing the real view
of P1 during the protocol and then constructing the simulator such that S can therefore simulate the whole
protocol independent of P2’s input. We define H0 to be the real protocol πf , i.e. P1 and P2 follow the
protocol while S does not change anything, it acts the same as P2. During the execution of πf , the view of
P1 consists of

1. A random check circuits set Sc.

2. A random subset of B of Se of size Θ(s/ log T ).

3. The view in the standard oblivious transfer protocols when running protocol GetInput2. Also, notice
that P2 may abort during the execution of protocol GetInputpub and GetInput2, S needs to compute
such abort probabilities which are independent of P2’s input.

4. At the end of πf , P1 receives a message Ỹ = inst(Yt).

We construct S that simulates all P1’s view of above. Since (a) and (b) does not depend on any of P2’s
input, S can just behave the same as an honest P2: For the cut-and-choose, S picks a random subset Sc and
sends it to P1, if any checking circuit in Sc fails, S abort the protocol. Also, at each timestep t, S chooses
a random subset B and announces it to P1. Now we describe the simulation of the rest of P1’s view, via a
sequence of hybrid interactions:

Hybrid H0: Ideal functionality: We define hybrid H0 to be the same as the real interaction, where the
simulator S plays the role of an honest P2 and also honestly plays the role of the ideal functionalities
of Fxcom, Fcom and Fot. One thing we highlight is that S can extract P1’s input and all wire labels
from the ideal functionlities.

24



Hybrid H1: Ensure good buckets: At each timestep t, in step (3f) of Circuit Evaluation, S learns
all garbled circuits and wire labels from the ideal functionality Fcom and Fxcom, even for evaluation
circuits. So we define hybrid H1 to be identical to H2 except that S will abort if Bt does not have a
majority of good circuits. Here, by “good” circuit we mean that its the circuit would be accepted by
P2 in checking phase if P1 had opened it (along with its wire labels).

To show that H1 ≈ H0, it suffices to show that the simulator aborts due to a bad bucket only with
negligible probability.

In Appendix B, we define a value B∗(ρ, T,m), which is the probability that the adversary successfully
generates m malicious circuits, P2 does not abort in the cut-and-choose phase, and yet some Bt does
not contain a majority of good circuits, when buckets have size ρ and there are T timesteps. This
event corresponds exactly to the event that the simulator aborts in H1. We assume that ρ is chosen
so that B∗(ρ, T,m) < 2−s, which is negligible.

Hybrid H2: Compute Ỹ differently: Define H2 to be the same as H1, except for the following changes.
S extracts P1’s plain input x1 from the ideal functionalities in the first timestep, then executes the
RAM program Π on inputs (x1, x2) as RamEval(Π,M, x1, x2).

At each “Circuit evaluation” step of the protocol, where P2 performs Yt = EvalBucket(Bt, Xt, hdt), S
instead computes Yt = D(hdt)|∗(st,inst,block), where (st, inst, block) denote the internal variables defined in

RamEval(Π,M, x1, x2) for the corresponding timestep.

Then we claim that H2 ≡ H1. This follows the correctness condition of garbling schemes. Specifically,
the correctness condition for garbling schemes is:

Eval(Garble(F,E,D), E|∗x) = D|∗f(x)

Thus, if the majority circuits in bucket Bt are good (which is guaranteed in these hybrids), it is easy
to see that the correctness condition extends to EvalBucketas:

EvalBucket(Bt, E(hdt)|∗x, hdt) = D(hdt)|∗f(x).

Then, one can verify that at each timestep t, the garbled inputs Xt to EvalBucket always encode the
inputs to Π within RamEval, and the garbled outputs Yt of EvalBucket always encode the outputs of
Π within RamEval.

Hybrid H3: Selective abort: In subprotocol GetInput2, parties invoke an instance of a standard oblivious
transfer protocol Fot. However, P1 can use malicious wire labels for oblivious transfer and cause P2 to
abort when execute protocol πf . Then the probability of P2 aborting depends on P2’s input.

Our protocol used the technique of [LP07] to deal with selective aborts: namely, we encoded P2’s input
via s-way XOR shares. We define H3 to be identical to H2 except that S uses the technique of [LP07]
to simulate the probability of P2’s aborts, by extracting P1’s inputs to Fot. The analysis of [LP07]
shows that S can simulate the probability of P2’s abort to within `2−s+1, where ` denotes the length
of input and s is the security parameter. Hence H3 ≈ H2.

Hybrid H4: Simulating ORAM memory accesses Let SORAM be the simulator from the security def-
inition of ORAMs (Section 2.1).

Notice that H3 does not actually use all outputs of the RAM next-instruction circuit Π. In the output
of RamEval(Π,M, x1, x2), only I(Π,M, x1, x2) is used in H3, to generate Ỹt which is sent to P1. Define
H4 to be identical toH3 except that S uses the simulated access pattern of SORAM (1λ, f(x1, x2)). From
the security of ORAM, we have that H4 ≈ H3.

Now the simulator S described in hybrid H4 is a valid simulator in the ideal world. S does not require
P2’s input x2 — it only requires f(x1, x2) which it can receive from the ideal functionality.
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Case 2: P2 is corrupted: First we give a overview of P2’s real view in the protocol. Then we use a sequence
of hybrids to construct S step by by step until eventually, S can implement the protocol independent of P1’s
input. Consider the protocol, P2’s view consists of:

1. Commitments to all garbled circuits and wire labels under Fcom and Fxcom.

2. The set of check circuits with size ρT .

3. The set of evaluation circuits with size ρT .

4. At each timestep t, P2 receives wire labels from GetInputpub and P1’s auxiliary input wire labels in
subprotcols GetInput1.

5. At each timestep t, P2 receives his auxiliary input wire labels from Fot before he can evaluate the
bucket Bt. Notice that at the end of the protocol, P2 sends the output Ỹ = inst(Yt) to P1. P1 may
abort if Ỹ 6= inst(D(hd[Bt]))|∗instt .

We now describe the sequence of hybrids: Let H0 be the real protocol πf and we formally describe the
simulator S.

Hybrid H0: Ideal functionalities: We begin by letting S follow Π as an honest P1 except that S also
plays the role of all of the ideal functionalities.

Hybrid H1: Circuits: From P2’s view, we see that P2 eventually receives a set of check circuits Sc and
a set of evaluation circuits Se, both of size ρT . In the real world, P1 generates those garbled circuits
and commits to all of them in step (1) of pre-processing phase. We define H1 to be the same as H0

except that, instead of letting S generate all circuits at the very beginning, we have S simulate the
commitment messages in the pre-processing phase, but actually garble a circuit (honestly) only when
its associated commitments are about to be opened opened.

It is not hard to see that H1 ≡ H0 since we only delay the time of constructing circuits and such
construction is independent of P1’s input.

Hybrid H2: Visible wire labels: Now, we would like to generate simulated garbled circuits for the eval-
uation circuits, but before that we must know exactly which wire labels will be visible to P2.

Recall that in hybrid H1, S chooses random translation bits τ(E) for the wire labels. Then in sub-
protocol GetInput2, P2 specifies certain inputs v and receives E|∗v = E|τ(E)⊕v. Let λ(E) = τ(E) ⊕ v
denote these select bits which become “visible” to P2.

We define H2 so that S first chooses λ(E) at random. Then it arranges so that P2 receives these
wire labels from subprotocol GetInput2. At the same time, S still extracts P2’s input v and sets
τ(E) = λ(E)⊕ v accordingly.

Similarly, in H1, P2 chooses the translation bits τ(D) randomly for output wire labels D. Conversely,
in H2, at the time that S actually garbles this circuit, S already knows what the logical input to this
circuit will be. Hence, it can simulate the steps of RamEval and predict what the output v of this
circuit will be. Hence it chooses λ(D) at random and sets τ(D) = λ(D)⊕ v accordingly.

Also note that in subprotocol Solder(A,A′), P1 is supposed to open a commitment to τ(A)⊕ τ(A′). In
this hybrid, however, we can replace τ(A)⊕ τ(A′) = λ(A)⊕λ(A′) since the protocol only solders wires
that will carry the same logical value.

We have that H1 ≡ H2, since all the distributions involved are identical.

Hybrid H3: Simulated circuits: We define hybrid H3 to be the same as H2 except that S generates each
evaluation circuit using the simulator SGC from the security of garbling schemes. More concretely, for
each evaluation circuit, instead of running Garble(Π̃, E,D), we run SGC(Π̃, E|λ(E), D|λ(D)).

Then we have H3 ≈ H2, by the security of the garbling scheme.

26



Hybrid H4: Simulated access pattern: Observe that in H3, the values λ(A) are used to simulate the
garbled circuits, but corresponding τ(A) values are no longer used in the Solder subprotocol. The only
place τ(A) values are used is when P1 reveals τ(inst(D(hdt))).

Hence, as S is simulating the steps of RamEval, the only values it actually uses in H3 are the access
pattern I(Π,M, x1, x2). We define H4 to be identical, except that S uses the simulated access pattern
SORAM (1λ, f(x1, x2)). Then we have that H4 ≈ H3 by the security of ORAM.

Finally, H4 describes a valid simulator S for the ideal model. It does not use P1’s input x1 except to
obtain f(x1, x2) to provide as input to SORAM .

D Security Proof of Streaming Cut-and-choose Protocol

We assume an adversary A that can control any of the two parties (at most one party in a run of protocol).
In what follows, we consider two cases: adversary controlling party P1 or P2.

1. P1 is corrupted. Simulator S sets the simulated P2’s input as follows. It sets x2 to all zeros since
P2’s input can be anything. It will randomly choose the values for r2,1, · · · , r2,n as an honest P2 would
do, since the security of the ORAM depends on these values to be sampled randomly.

Simulator would pick a random string b as an honest P2 would and sets it as the input of Fot. The
adversary will choose the two keys for each thread and sends them as his input to Fot. Since S is
simulating the Fot, it will know both the “eval” and “check” keys for all the threads. Later on in the
protocol, this will enable it to extract P1’s input.

At each time-step,

• S receives P1’s garbled input as described in the protocol. More specifically, for the first time-step
t = 1, S receives st1(E(t,i))|∗x1

and rand1(E(t,i))|∗r1 encrypted under k(i,eval). Since the simulator
already knows k(i,eval), it can decrypt them to extract the actual garbled value. To extract the
actual input, simulator needs to know the opening of circuit. S will not know that until the check
phase, which happens after the evaluation phase.

• S continues with the rest of the protocol as an honest P2 would, choosing a random matrix M,
gather the garbled input, evaluate the “eval” circuits, check the “check” circuits, and perform
output verification. S will abort if an honest P2 would have aborted.

• In checking phase, simulator will receive the seeds encrypted by k(i,check). Since it already knows
k(i,check) for “all” the threads, it can extract P1’s input (for the first time-step, t = 1) as follows.
S reconstruct the circuits of all “eval” threads using the seeds it had recovered. Afterwards, for
the set of reconstructed eval circuits, it compares the input garbled values that it had received
before against their corresponding circuits.

If the garbled values match the opened circuits, S can extract P1’s input for that circuit. Simulator
will then set P1’s input to be majority input to “eval” threads.

Simulator will abort if either of the following events happen. 1) if the majority of “eval” circuits
are bad (the reconstructed circuits are not valid garbling of the function that is being computed).
2) The majority of extracted inputs are invalid (if the garbled input values do not match the
reconstructed circuits) or the valid input are inconsistent.

Adversary can distinguish the simulator in the following cases. 1) The majority of the “eval”
circuits are bad. In this case, an honest P2 will not abort but S will. Following the standard
cut-and-choose arguments, this event happens with negligible probability. 2) All “eval” circuits
are correct, the output of the hash function M is the same, but the inputs are inconsistent. In this
case the honest P2 will not abort but the simulator will. As discussed in [sS13], the probability
of this event is negligible.

• Simulator will pass the extracted input of P1 to TTP. It will then resume the protocol by perform-
ing the steps in checking phase and following the protocol for the rest of the time-steps, behaving
as an honest P2 would.
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• To ensure that A cannot distinguish the block output of each time-step from a real execution, S
create a sequence of simulated, random looking RAM accesses and in each time-step it returns one
of them. Since the simulator has the seed to all the eval circuits of each time-steps, as describe
above, it can return correct garbled values corresponding the simulated RAM access that it wishes
to return. By security of ORAM, this simulated RAM access is indistinguishable from the actual
execution.

• When the protocol finishes, S will then output whatever A outputs.

To prove the indistinguishability consider the following arguments.

• The simulator can abort in three cases: 1) if the output of the augmented circuits are not identical,
or 2) if P1 fails the checking phase. None of them depend on P2’s input. And 3) If inputs to
“eval” threads are invalid, are inconsistent, or if the majority of “eval” circuits are bad circuits. As
described above, in these casesA can distinguish the simulator but only with negligible probability.

• By security of ORAM, and the hiding property of the commitment scheme used, the choice of
x2 will not have a distinguishable effect on the view of A since all he sees during the run of the
protocol are the commitments regarding the output authenticity and the memory access patterns.
In particular, following the ORAM properties, memory access patterns look random in the view
of the adversary and are indistinguishable regardless of P2’s input value.

2. P2 is corrupted. Similar to the previous case, simulator sets x2 to all zeros and assigns a random
value to r1. The rest of the simulation is as follows.

• S chooses random values for k(i,eval) and k(i,check) for all i ∈ {1, . . . , S} and sets them as input
to Fot. By simulating Fot, S can extract P1’s choices of cut-and-choose bits.

• Simulator follows the protocol as an honest P1 would do and selects garbled values for input wires,
and sends the encrypted garbled values corresponding to his inputs as stated in the protocol.

• S will use the garbled values corresponding to P2’s input wires as input to Fot. As before, since
S is simulating Fot, it will receive P1’s input when he passes them to Fot. S will then pass P1’s
input to TTP and receive the result of the computation z.

• In time-step t = 1, as instructed by the protocol, S will interact with P2 to receive the matrix M .
It would then choose r randomly.

• Having the matrix M, P1’s inputs, P1’s choices of cut-and-choose bits, and the result of compu-
tation z, S proceeds to garble the circuits as follows.

(a) Simulator will create garbled circuits corresponding to checked threads as an honest P1 would
do. Simulator will also create the output authenticity values wj,0 and wj,1. And computes
the values for ci,j,b and hi,j,b, b ∈ {0, 1} for “check” circuits as an honest P1 would.

(b) For the “eval” circuits, S behaves differently. In each time-step (except for the last), circuits
should output some garbled value for st output wires (can be any arbitrary value) and a valid
garbled value for block output wires. In the last time-step, the st output wires represent the
output of the computation, so they cannot be arbitrary.
S creates a series of random looking memory access instructions that it intents to output at
each time-step. It also knows the values z of the last time-step st output wires. By security
of garbling scheme, S can simulate garbled circuits that always output the garbled value
corresponding the these predetermind values and leak nothing else.

• After garbling the circuits, S sends them along with output authenticity checks as stated above.

• It will continue the protocol to the end as an honest P1 would and aborts accordingly.

The proof of indistinguishability is as follows.

• For input consistency check circuits, since P1 is choosing the random values r and feeds x1||r to
the hash function M , following [sS13] the output of the sub-circuit computing hash function M
looks random.
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• For the evaluation circuits, by security of the garbling scheme, A can guess the actual values
of the garbled st values, with negligible probability. By security of the garbling scheme, if A
knows one of the two garbled values of wire, he can correctly guess the other value only with
negligible probability. Therefore, even though A will know the truth value of the garbled value
corresponding to block output wires, he cannot obtain the other garbled value. Therefore, by
security of the encryptions used, he cannot decrypt the ci,j,1−b since he does have access to the
decryption key. As a result, A cannot distinguish the fake circuit from the correct circuit, except
with negligible probability.

For the last time-step, we can employ the same reasoning about the indistiguishability of the fake
circuit that always outputs z with the actual circuit that computes z.

• Moreover, by security of the ORAM, the randomly created access patterns are indistinguishable
from the real run of the protocol.

• The check circuits are constructed correctly and by security of Yao’s protocol they do not leak
any information regarding P1’s input. Therefore, they do not effect the view of the A.

• In the rest of the simulation S acts as an honest P1 would and aborts accordingly.
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