
Montgomery Modular Multiplication on
ARM-NEON Revisited

Hwajeong Seo1, Zhe Liu2, Johann Großschädl2, Jongseok Choi1, and Howon Kim1?

1 Pusan National University,
School of Computer Science and Engineering,

San-30, Jangjeon-Dong, Geumjeong-Gu, Busan 609–735, Republic of Korea
{hwajeong,jschoi85,howonkim}@pusan.ac.kr

2 University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue R. Coudenhove-Kalergi, L–1359 Luxembourg-Kirchberg, Luxembourg
{zhe.liu}johann.groszschaedl@uni.lu

Abstract. Montgomery modular multiplication constitutes the “arithmetic founda-
tion” of modern public-key cryptography with applications ranging from RSA, DSA
and Diffie-Hellman over elliptic curve schemes to pairing-based cryptosystems. The in-
creased prevalence of SIMD-type instructions in commodity processors (e.g. Intel SSE,
ARM NEON) has initiated a massive body of research on vector-parallel implemen-
tations of Montgomery modular multiplication. In this paper, we introduce the Cas-
cade Operand Scanning (COS) method to speed up multi-precision multiplication on
SIMD architectures. We developed the COS technique with the goal of reducing Read-
After-Write (RAW) dependencies in the propagation of carries, which also reduces the
number of pipeline stalls (i.e. bubbles). The COS method operates on 32-bit words in
a row-wise fashion (similar to the operand-scanning method) and does not require a
“non-canonical” representation of operands with a reduced radix. We show that two
COS computations can be “coarsely” integrated into an efficient vectorized variant of
Montgomery multiplication, which we call Coarsely Integrated Cascade Operand Scan-
ning (CICOS) method. Due to our sophisticated instruction scheduling, the CICOS
method reaches record-setting execution times for Montgomery modular multiplica-
tion on ARM-NEON platforms. Detailed benchmarking results obtained on an ARM
Cortex-A9 and Cortex-A15 processors show that the proposed CICOS method outper-
forms Bos et al’s implementation from SAC 2013 by up to 57% (A9) and 40% (A15),
respectively. Furthermore, our COS multiplication is faster than lastest GMP 6.0.0 by
up to 55% (A9) and 52% (A15), respectively.

Keywords: Public-key cryptography, modular arithmetic, SIMD-level parallelism, vec-
tor instructions, ARM NEON

1 Introduction

Despite more than three decades of research efforts, public-key cryptography (PKC) is still
considered computation-intensive, especially when executed on embedded processors. This
is mainly because the underlying arithmetic operations (e.g. exponentiation, scalar multipli-
cation) are performed on operands of a size of several hundreds or even thousands of bits.
Multi-precision modular arithmetic is a performance-critical building block of both traditional
public-key algorithms (e.g. RSA) and elliptic curve cryptosystems. This is in particular the
case for the modular multiplication, which demands careful optimization to achieve accept-
able performance, especially on embedded processors. In order to reduce the execution time of
modular multiplication, cryptographers have developed several efficient reduction algorithms,
while software engineers made efforts to implement them in an optimal way. One of the most

? Corresponding Author

important modular reduction techniques is Montgomery’s algorithm, which was originally in-
troduced in 1985 [14] and has been widely deployed in real-world applications. Some other
examples for reduction algorithms are the methods of Barrett [2] and Quisquater [16, 17].

In recent years, an increasing number of embedded microprocessors started to provide
Single Instruction Multiple Data (SIMD) instructions to better support multimedia workloads.
In order to exploit the parallel computing power of SIMD instructions, traditional algorithms
need to be redesigned and software needs to be rewritten into a vectorized form. There exist
a few papers related to the implementation of cryptographic algorithms; for example, the
authors of [3, 8, 18, 7] propose ways to speed up cryptography using the NEON instruction
set extensions, which is a relatively new SIMD (i.e. vector) architecture for mobile devices
developed by ARM. In particular, to achieve fast public-key cryptography, it is important to
develop optimized SIMD implementations of multi-precision modular multiplication. In [4], an
efficient 128-by-128-bit integer multiplication using Freescale’s SIMD extension is introduced.
Various implementations, including [11], adopt a reduced-radix representation with 29 bits
per word for a better handling of the carry propagation. In [5], vector instructions on the
Cell microprocessor are used to perform multiplication on operands represented with a radix
of 216. More recently, Gueron et al [10] described an implementation for the new AVX2
SIMD platform (Intel Haswell architecture) that uses 256-bit wide vector instructions and a
reduced-radix representation for faster accumulation of partial products. At HPEC 2013, a
novel modular reduction method was introduced for the NIST primes P192 and P224 [15],
which is also based on a reduced-radix representation for the operands.

However, a reduced-radix representation (sometimes also called redundant representation)
requires to compute more partial products and, thus, execute more multiply instructions
compared to a canonical (i.e. non-redundant) representation. For example, if we use a radix-
224 representation (i.e. 24 bits per word) for 192-bit operands, the total number of partial
products is 8 × 8 = 64. On the other hand, a conventional non-redundant representation
based on a radix of 232 reduces the number of partial products to only 6 × 6 = 36. At
SAC 2013, Bos et al introduced a 2-way Montgomery multiplication for SIMD processors
including ARM NEON [6]. Their implementation computes the multiplication and reduction
operation simultaneously using a non-redundant representation, which allowed them to exploit
the SIMD-level parallelism provided by the NEON engine. However, the performance of their
implementation suffers from Read-After-Write (RAW) dependencies in the instruction flow.
Such dependencies cause pipeline stalls since the instruction to be executed has to wait until
the operands from the source registers are available to be read. For example, the VMULL

instruction takes two clock cycles to issue the operation, but the result is only available after
(at least) seven clock cycles, which means VMULL has a fairly long latency3. If a data conflict
occurs, the pipeline is halted for seven clock cycles rather than just two clock cycles.

In this paper, we describe optimizations to further push the performance of multi-precision
multiplication and Montgomery multiplication on ARM-NEON processors. We present a
non-redundant Cascade Operand Scanning (COS) method for multiplication, which achieves
record-setting execution times on ARM Cortex-A9 and Cortex-A15 processors. The COS
method processes the partial products in a non-conventional order to reduce the number of
data-dependencies in the carry propagation from less to more significant words, which also
reduces the number of pipeline stalls. The same strategy can be applied for a two-way NEON-
optimized Montgomery multiplication method, called Coarsely Integrated Cascade Operand
Scanning (CICOS) method, which essentially consists of two COS computations, whereby one
contributes to the multiplication and the second to the Montgomery reduction. Our exper-
imental results show that a Cortex-A15 processor is able to execute a CICOS Montgomery
multiplication with 1024-bit operands in only 5600 clock cycles, which is almost 40% faster

3 A brief description of some important NEON instructions along with the instruction timings can
be found in Appendix D.

than the NEON implementation of Bos et al (8527 cycles according to [6, Table 3]4). Further-
more, our COS multiplication is faster than lastest GMP 6.0.0 by up to 52% on Cortex-A15
processor.

The remainder of this paper is organized as follows. In Section 2, we recap the previ-
ous best results for multiplication and Montgomery multiplication on 32-bit SIMD-based
architectures. In Section 3, we present novel methods for multi-precision multiplication and
Montgomery multiplication on SIMD-based processors, especially ARM-NEON. Thereafter,
we will summarize our experimental results in Section 4. Finally, in Section 5, we conclude
the paper.

2 Previous Work

Long integer arithmetic is not straightforward to implement on SIMD-based architectures,
mainly due to the propagation of carries from one word to the next, which has to be carried
out in addition, multiplication, and other operations. In order to deal with this problem, many
recent SIMD implementations adopt a redundant representation with a reduced number of
active bits per register with the goal of keeping the final result within remaining capacity of a
register so that no carry propagations are needed. In [10], by exploiting the AVX2 instruction
set extension with redundant representation, the authors showed a performance enhancement
of 51% over the OpenSSL 1.0.1 implementation. In [15], Pabbuleti et al. implemented the
NIST-recommended prime-field curve including P192 and P224 on the Snapdragon APQ8060
within 404, 405 clock cycles via applying multiplicand reduction method into SIMD-based ma-
chine. Recently, in SAC’13, a different approach to split the Montgomery multiplication into
two parts, being computed in parallel, was introduced [6]. They flip the sign of the precom-
puted Montgomery constant and accumulate the result in two separate intermediate values
that are computed concurrently while avoiding a redundant representation. This method is to
compute the multiplication and reduction step simultaneously using 2-way SIMD instructions
at the cost of some overhead and shows a performance increase of a factor of 1.5 or more
than sequential implementation on the Atom platform for 2048-bit modulo. In this paper,
we take a different approach computing the multiplication using 2-way SIMD instructions
first and subsequently the reduction using 2-way SIMD. The approach uses non-redundant
representation and computes the carry propagation using 2-way SIMD instructions

3 Proposed Method

Throughout the paper, we will use the following notations. Let A and B be two operands
with a length of m-bit that are represented by multiple-word arrays. Each operand is written
as follows: A = (A[n− 1], ..., A[2], A[1], A[0]) and B = (B[n− 1], ..., B[2], B[1], B[0]), whereby
n = dm/we, and w is the word size. The result of multiplication C = A·B is twice length of A,
and represented by C = (C[2n − 1], ..., C[2], C[1], C[0]). For clarity, we describe the method
using a multiplication structure and rhombus form. The multiplication structure describes
order of partial products from top to bottom and each point in rhombus form represents a
multiplication A[i]×B[j]. The rightmost corner of the rhombus represents the lowest indices
(i, j = 0), whereas the leftmost represents corner the highest indices (i, j = n − 1). The
lowermost side represents result indices C[k], which ranges from the rightmost corner (k = 0)
to the leftmost corner (k = 2n − 1). Particularly, SIMD architecture computes two 32-bit
partial products with single instruction, so we use two multiplication structures to describe
SIMD operations. These block structures placed in the row represent two partial products
with single instruction.

4 Note that the timings in the proceedings version of Bos et al’s paper differ from the version in the
IACR eprint archive at https://eprint.iacr.org/2013/519. We used the faster timings from the
eprint version for comparison with our work.

3.1 Cascade Operand Scanning Multiplication for SIMD

SIMD architecture is able to compute multiple data with single instruction. However, SIMD
instruction does not provide carry handling registers and therefore, results in imposing huge
overheads on SIMD machine to manage carry propagations. In order to alleviate this prob-
lem, many of the previous work adopted the so-called redundant representation which absorbs
carry propagations into remaining bits in the destination registers, but this architecture also
has performance degradations because redundant representation increases number of par-
tial products. In order to address both drawbacks, we choose non-redundant representation,
suggesting an efficient carry handling with simple operand realignments.

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

Fig. 1. Cascade operand scanning multiplication for 256-bit operand

In Figure 1, we designed multi-precision multiplication for SIMD architecture. Taking
the 32-bit word with 256-bit multiplication as an example, our method works as follows5.
Firstly, we re-organized operands by conducting transpose operation, which can efficiently
shuffle inner vector by 32-bit wise. Instead of a normal order ((B[0], B[1]), (B[2], B[3]),
(B[4], B[5]), (B[6], B[7])), we actually classify the operand as groups ((B[0], B[4]), (B[2], B[6]),
(B[1], B[5]), (B[3], B[7])) for computing multiplication where each operand ranges from 0 to
232 − 1(0xffff ffff in hexadecimal form). Secondly, multiplication A[0] with ((B[0], B[4]),
(B[2], B[6]), (B[1], B[5]), (B[3], B[7])) is computed, generating the partial product pairs in-
cluding ((C[0], C[4]), (C[2], C[6]), (C[1], C[5]), (C[3], C[7])) where the results are located from
0 to 264− 233 + 1(0xffff fffe 0000 0001). Third, partial products are separated into higher
bits (64 ∼ 33) and lower bits (32 ∼ 1) by using transpose operation with 64-bit initialized
registers having 0 value(0x0000 0000 0000 0000), which outputs a pair of 32-bit results rang-
ing from 0 to 232 − 1(0xffff ffff). After then the higher bits are added to lower bits of
upper intermediate results. For example, higher bits of ((C[0], C[4]), (C[1], C[5]), (C[2], C[6]),
(C[3])) are added to lower bits of ((C[1], C[5]), (C[2], C[6]), (C[3], C[7]), (C[4])). By referring
Figure 2, our method establishes SIMD friendly addition process and the carry values are
propagated in grouped cascade way. The proposed method finely rearranges each intermedi-
ate result and order of carry propagation to conduct carry handling with only four additions
in non-redundant representation and no pipeline stalls. After addition, the least significant
word (C[0], lower bits of B[0]× A[0]) is placed within 32-bit in range of [0, 0xffff ffff] so
this is directly saved into temporal registers or memory. On the other hand, remaining inter-

5 Operands A[0 ∼ 7] and B[0 ∼ 7] are stored in 32-bit registers. Intermediate results C[0 ∼ 15] are
stored in 64-bit registers. The 32-bit register means that we use half capacity of 64-bit register.

mediate results from C[1] to C[7] are placed within [0, 0x1 ffff fffe]6, which exceed range
of 32-bit in certain cases. Fortunately, the addition of intermediate results (C[1 ∼ 7]) and 32-
bit by 32-bit multiplication in next step are placed into 64-bit registers without overflowing,
because addition of maximum multiplication result 264 − 233 + 1(0xffff fffe 0000 0001)
and intermediate result 233 − 2(0x1 ffff fffe) outputs the final results within 64-bit 264 −
1(0xffff ffff ffff ffff)7. For this reason, we don’t need to propagate 33th carry bit of
intermediate results (C[1 ∼ 7]) in each round but we delay the carry propagations to very end
of round and conduct whole carry propagations at once. Before move to next round, lower
bits of C[4] and higher bits of C[7] are re-grouped into (C[4], C[8]) and then intermediate
result pairs are re-shaped in ((C[1], C[5]), (C[2], C[6]), (C[3], C[7]), (C[4], C[8])). This process
is repeated with remaining operands (A[1 ∼ 7]) by seven times more to complete the mul-
tiplication8. After eight rounds of multiplication, the results from C[0] to C[7] are perfectly
fit into 32-bit, because the least significant word is outputted in 32-bit in every round. How-
ever remaining intermediate results (C[8] ∼ C[15]) are not placed within 32-bit so we should
process a chain of carry propagation over 32-bit by conducting final alignment. The final
alignment executes carry propagation results from C[8] to C[15] with sequential addition and
transpose instructions. This process causes pipeline stalls by 8 times, because higher bits of
former results are directly added to next intermediate results. Therefore, proposed COS in-
curs pipeline stalls by the number of n for final alignment. In case of 512-, 1024- and 2048-bit
COS multiplications, we should conduct 4, 16 and 64 times of 256-bit COS multiplications
because the 256-bit COS multiplication is maximum operand size on NEON processor due to
limited number of registers9. Unlike 256-bit version, intermediate result should be stored and
re-loaded, so we assigned temporal memory and stack storages to retain intermediate results.
Finally, several load, store, push and pop instructions are used to establish 512-, 1024- and
2048-bit implementations.

3.2 Coarsely Integrated Cascade Operand Scanning Multiplication for SIMD

In [6], Bos et al. introduced a 2-way Montgomery multiplication for SIMD architecture. How-
ever, the proposed 2-way Montgomery multiplication has high data interdependency because
they used ordinary operand-scanning method for multiplication and reduction procedures
which compute partial products in incremental order and previous partial product results are
directly used in next step. Finally this resource access conflicts results in pipeline stalls. In
order to resolve this problem, we rescheduled the order of operations to achieve a dependency-
free design. We implemented the Coarsely Integrated Cascade Operand Scanning (CICOS)
algorithm by using COS method since separated version needs to load and store inter-
mediate results twice more than integrated version, while the finely integrated mode leads
to high interdependency between each intermediate result. To describe Montgomery multi-
plication properly, we grouped two rhombus forms in Figure 3. Upper rhombus represents
multi-precision multiplication and under rhombus represents Montgomery reduction. In order
to distinguish both computations, we painted structure forms of multiplication process in
white and reduction process in yellow.

6 In the first round, the range is within [0, 0x1 ffff fffd], because higher bits and lower bits of
intermediate results (C[0 ∼ 7]) are located in range of [0, 0xffff fffe] and [0, 0xffff ffff],
respectively. From second round, the addition of higher and lower bits are located within [0,
0x1 ffff fffe], because both higher and lower bits are located in range of [0, 0xffff ffff].

7 In the first round, intermediate results (C[0 ∼ 7]) are in range of [0, 0x1 ffff fffd] so multiplica-
tion and accumulation results are in range of [0, 0xffff ffff ffff fffe]. From second round, the
intermediate results are located in [0, 0x1 ffff fffe] so multiplication and accumulation results
are in range of [0, 0xffff ffff ffff ffff].

8 Pseudo and program code of cascade operand scanning are available in Appendix. A and C, the
rhombus form in 512-bit is depicted in Figure 5.

9 NEON engine supports sixteen 128-bit registers. We assigned four registers for operands (A,B),
four for intermediate results (C) and four for temporal storages.

(a)

A0X

B0B1B2B3B4B5B6B7

B6 X A0

B7 X A0

B4 X A0

B5 X A0

B2 X A0

B3 X A0

B0 X A0

B1 X A0

B0B4B2B6B1B5B3B7

A0X

B0 X A0

B2 X A0

B1 X A0

B3 X A0

B4 X A0

B6 X A0

B5 X A0

B7 X A0

1

(b)

1

42 2

3 3

1

2

3

4

5

6

7

Fig. 2. Carry propagations in non-redundant representation, (a) ordinary operand scanning method,
(b) proposed method(operand B is transposed before computations)

Algorithm 1 Calculation of the Montgomery reduction

Require: An odd m-bit modulus M , Montgomery radix R = 2m, an operand T where T = A ·B in
the range [0, 2M − 1], and pre-computed constant M ′ = −M−1 mod R

Ensure: Montgomery product Z = MonRed(T,R) = T ·R−1 mod M
1: Q← T ·M ′ mod R
2: Z ← (T + Q ·M)/R
3: if Z ≥M then Z ← Z −M end if
4: return Z

In the following, we will take a 256-bit case (M ′ has a length of 32-bit) as an exam-
ples to further explain our implementation of Montgomery reduction for Algorithm 1. As
shown in Figure 3, part of the operand Q (i.e. Q[0 ∼ 7]) are computed by multiplying
intermediate results with M ′. All partial products with Q[0] and M [0 ∼ 7] are executed
throughout the row. After then T + Q · M (i.e. Step 2 of Algorithm 1) can be computed
using COS method. For Montgomery multiplication on SIMD architecture, we integrated two
COS methods10. Firstly, we re-organized multiplicands (B) by conducting transpose opera-
tion. This process takes ((B[0], B[1]), (B[2], B[3]), (B[4], B[5]), (B[6], B[7])) as inputs and
generates the new operand groups as ((B[0], B[4]), (B[2], B[6]), (B[1], B[5]), (B[3], B[7]))
where each operand ranges from 0 to 232 − 1(0xffff ffff). Secondly, multiply A[0] with
((B[0], B[4]), (B[2], B[6]), (B[1], B[5]), (B[3], B[7])), and generating partial product pairs in-
cluding ((C[0], C[4]), (C[2], C[6]), (C[1], C[5]), (C[3], C[7])) where multiplication results range
from 0 to 264 − 233 + 1(0xffff fffe 0000 0001). Third, partial products are separated into
higher bits and lower bits by using transpose operation with initialized registers, which out-
puts results in range of [0, 0xffff ffff]. After then the higher bits are added to lower bits of
upper intermediate results. For example, higher bits of (C[0], C[4]), (C[2], C[6]), (C[1], C[5]),
(C[3]) are added to lower bits of (C[1], C[5]), (C[3], C[7]), (C[2], C[6]), (C[4]). These interme-

10 Operands A[0 ∼ 7], B[0 ∼ 7], M [0 ∼ 7], Q[0 ∼ 7] and M ′ are stored in 32-bit registers. Intermediate
results C[0 ∼ 15] are stored in 64-bit registers.

A[7]B[0]

A[0]B[7]

A[7]B[7]

C[0]C[7]C[14]

A[0]B[0]

M[0]Q[7]

M[7]Q[0]

M[7]Q[7] M[0]Q[0]

Fig. 3. Coarsely integrated cascade operand scanning for Montgomery multiplication in 256-bit

diate results are placed between 0 and 232−1(0x1 ffff fffe)11. The remaining higher bits of
(C[7]) are copied to (C[8]). After then lower bits of C[0] in range of [0, 0xffff ffff] is multi-
plied with operand M ′ to generate Q[0] in range of [0, 0xffff ffff]. In case of operand (M),
the variables are stored in ordered way like this ((M [0],M [4]), (M [2],M [6]), (M [1],M [5]),
(M [3],M [7])). Fourthly, multiply Q[0] with ((M [0],M [4]), (M [2],M [6]), (M [1],M [5]), (M [3],M [7]))
are executed with intermediate results pairs including ((C[0], C[4]), (C[2], C[6]), (C[1], C[5]),
(C[3], C[7])) where the results range from 0 to 264 − 1(0xffff ffff ffff ffff). Lastly, par-
tial products are separated into higher bits and lower bits. After then the higher bits of
((C[0], C[4]), (C[1], C[5]), (C[2], C[6]), and the lower bits of (C[4])) are added to lower bits of
((C[1], C[5]), (C[2], C[6]), (C[3], C[7]), and the higher bits of (C[3])), which output the accu-
mulated results ranging from 0 to 233 − 2(0x1 ffff fffe). Particularly, higher bits of (C[7])
are added to lower bits of (C[8]) and then higher bits of (C[3]) and lower bits of (C[8]) are
re-grouped in (C[4], C[8]). Finally, the result C[0] is set to zero which is discarded and inter-
mediate results are re-constructed like this ((C[1], C[5]), (C[2], C[6]), (C[3], C[7]), (C[4], C[8])).
The multiplication and reduction process is repeated with remaining operands (A[1 ∼ 7]) by
seven times more to complete the Montgomery multiplication12. After then, final alignment
and final subtraction follow13. As like COS, maximum operand size of CICOS method is

11 In the first round, the range is within [0, 0x1 ffff fffd], because higher bits and lower bits of
intermediate results (C[0 ∼ 7]) are located in range of [0, 0xffff fffe] and [0, 0xffff ffff],
respectively. From second round, the addition of higher and lower bits are located within [0,
0x1 ffff fffe], because both higher and lower bits are located in range of [0, 0xffff ffff].

12 The rhombus form in 512-bit is described in Figure 6
13 Pseudo and program code of coarsely integrated cascade operand scanning is available in Appendix.

B and C

256-bit. For longer integers such as 512-, 1024- and 2048-bit, we should conduct 4, 16 and 64
times of 256-bit CICOS Montgomery multiplication.

3.3 Final Subtraction without Conditional Statements

As shown in Algorithm 1, the calculation of the Montgomery multiplication may require
a final subtraction of the modulus M to get a fully reduced result in range of [0,M). In
order to get the results, the final subtraction is conducted. The operation is computable with
conditional branch by checking the carry bit. However, this method has two drawbacks. First
two operands should be compared byte by byte via the compare function and the attacker
can catch the leakage information because conditional statements consumes different clock
cycles [19]. To resolve this, in [13], author suggested without conditional branch method for
Montgomery multiplication. We adopted this method into SIMD architecture. Based on the
concept of incomplete modular arithmetic, we don’t compare exact value between Z and M ,
but we use most significant bit (zm) of Z. If zm is set, modulus remains. If not, modulus
M is set to zero. In order to compute modulus, we perform SIMD multiplication M by zn,
because the M is saved in 32-bit packed way (M [0],M [4]) like this (0x???? ???? ???? ????).
This representation is not favorable to conduct 32-bit wise subtraction because it cannot
handle borrow bit in non-redundant subtraction. By conducting multiplication by zn, each
modulus can get masked 64-bit operand with higher 32-bit in zero padding and lower 32-bit
in values ((0,M [0]), (0,M [4])) like this (0x0000 0000 ???? ????). After then we perform the
subtraction on intermediate results (Z) by modulus (M). Final result may not be the at least
non-negative residue but this is always in the range [0, 2m). This incomplete reduction does
not introduce any problems in practice because incomplete representation can still be used
as operand in a subsequent Montgomery multiplication [20]. In the following subsections, we
further explore the algorithm in instruction level to analyze the impacts of pipelined operation
order.

3.4 Requirements for Pipeline

By referring to Appendix. D. Table 5, NEON engine consists of four timing models. Among
them, we should carefully concern on both issue and result clock cycles. Issue clock is minimum
clock cycles to trigger instruction. After the issue clock cycle, we can issue next instructions
in pipelined way. In a contrast, result clock is time to get final results. If we access to result
registers before result clock, we should wait until the data is ready during remaining result
clock cycles. For fully pipelined computation, we should issue several instructions and then
access to certain results which satisfy the result clock cycle. We analyze proposed method by
referring Figure 4.

Part 1 This part starts with operand alignments. Operands B are transposed by conducting
the single VTRN instruction14 on eight 32-bit packed variables. The operation needs 1 clock
cycle to issue the instruction and 2 clock cycles take to get final results.

Part 2 The second part consists of multiplication and carry propagation. The VMULL operation
needs 2 clock cycles to issue the instruction and 7 clock cycle for result. By conducting four
VMULL instructions for ((B[0]×A[0]), (B[4]×A[0])), ((B[1]×A[0]), (B[5]×A[0])), ((B[2]×A[0]),
(B[6]×A[0])) and ((B[3]×A[0]), (B[7]×A[0])), we can get final results within 13 clock cycles,
because 8 (2×4) clock cycles for triggering four VMULL instructions and 5 additional clock cycles
to get last results are needed. Furthermore this computation order satisfies result clock cycle
because we conduct four VMULL operations taking 8 clock cycles to issue so results of first
instruction are ready. In a contrast, if there is interdependency between former destination

14 Detailed descriptions of instructions are found in Table 5

B0B4B2B6B1B5B3B7

A0X

B0 X A0

B2 X A0

B1 X A0

B3 X A0

B4 X A0

B6 X A0

B5 X A0

B7 X A0

Q0

X

M'

C0

Q0

X

M0M4M1M5M2M6M3M7

+

C1C2C3C4C5C6C7C8

C0

B0B1B2B3B4B5B6B7

C0C1C2C3C4C5C6C7C8

M0 X Q0

M2 X Q0

M1 X Q0

M3 X Q0

M4 X Q0

M6 X Q0

M5 X Q0

M7 X Q0

C1C2C3C4C5C6C7C8 ZERO

Part 1

Part 2

Part 3

Part 4

Fig. 4. Structure of coarsely integrated cascade operand scanning Montgomery multiplication

Table 1. Comparison of pipeline stall for Montgomery multiplication

Our CICOS MM Bos’s 2-way MM [6]

Pipelined Pipeline Stall Pipelined Pipeline Stall

n2 2n - n2 + n

and latter source registers, the costs rise to 28 clock cycles, because we should wait for four
result clock cycles. After then four VTRN instructions for intermediate results on previous
partial products are conducted. This takes 5 clock cycles for 4 and 1 clock cycles to trigger
the instruction and wait for final results. Lastly, the five carry propagations are conducted with
five VADD instructions. This takes 5 and 2 clock cycles to issue and get results, respectively. If
this is not pipelined, the overheads are 15 clock cycles.

Part 3 In third part, the partial product of M ′ and C[0] is executed. The result Q[0] is
directly used for Montgomery reduction in Part 4. If we conduct this instruction in Part 3,
we should wait 7 clock cycles for results to be ready for next step. However, we can avoid
the cost by conducting the product during Part 2. After obtaining C[0] and before transpose
operation, we conduct VMULL on M ′ and C[0]. This only takes 2 clock cycles to issue so we
can save 5 clock cycles.

Part 4 The last part calculates the reduction process. In contrast to Part 2, VMLAL instruction
is exploited to compute multiplication and addition simultaneously. The four partial products
of Q[0] and M [0 ∼ 7] are conducted, accumulating the intermediate results C[0 ∼ 7]. The
computation takes only 8 and 5 clock cycles to issue and get results. If we conduct the addition
and multiplication computations separately in non-pipelined way, the overheads are up-to 40
clock cycles consisting of 12 and 28 for four VADD and four VMULL instructions, respectively.
After then, four VTRN and five VADD instructions are conducted to manage carry propagation
and accumulate intermediate results, which take 5 and 7 clock cycles, respectively.

Final Alignment and Subtraction/Addition The final results from C[8] to C[15] should
be aligned to propagate carry bits from least significant word (C[8]) to most (C[15]). Firstly,
higher bits of C[8] are added to C[9] and this is iterated to most significant intermediate result
(C[15]). Unlike multiplication and reduction process, the final alignment occurs pipeline stalls
due to interdependency between former and next variables. After final alignment, final sub-
traction follows and this also requires to conduct carry propagation incurring pipeline stalls.
Finally, our Montgomery method includes the overheads of pipeline stalls by 2n times (n for
final alignment and n for final subtraction). In case of pipelined instruction, we conduct n2

times of carry propagations during multiplication and reduction process. On the other hand,
Bos’s 2-way Montgomery multiplication has n2+n times of pipeline stalls because former mul-
tiplication results are directly used in next operations by following ordinary operand scanning.
Particularly, Bos’s method incurs pipeline stalls during multiplication and reduction process
by n2 times and final subtraction/addition is required to conduct sequential subtraction by n
times. The comparison results are drawn in Table 1.

4 Results

In this section, we report the execution time of the proposed methods on 32-bit ARM Cortex-
A9 and Cortex-A15 processors and compare our results with the related works.

4.1 Target Platforms

Cortex Series The ARM Cortex series are full implementation of the ARMv7 architecture
including NEON engine. Register size is expanded to double(D) and quadruple(Q) word which
represent 64-bit and 128-bit word registers. Each register provides short bit size computations
such as 8-bit, 16-bit, 32-bit and 64-bit. This feature provide more precise operation and benefit
to various word size computation. Particularly, Cortex-A9 provides the high efficiency, dual-
issue super scalar, out-of-order execution and 8-11 stage pipeline. The processor is adopted
in several devices including iPad 2, iPhone 4S, Galaxy S2, Galaxy S3, Galaxy Note 2, and
Kindle Fire. The Cortex-A15 processor delivers twice the performance of Cortex-A9 processor.
The processor provides multi-issue, out-of-order superscalar pipeline with a tightly coupled
low latency. The pipeline is supported from 15 to 25 stages. The Cortex-A15 is used in
Chromebook, NEXUS 10, Tegra 4 and Odroid-XU.

4.2 Evaluation

We prototyped our methods for ARM Cortex-A9 and A15 processors, which are equivalent
to the target processors used in Bos et al’s work [6]. We developed the source code using
the NDK android library and measured the execution time using the system time function
clock gettime() and scaled to clock cycles based on the processor’s frequency. We compared
our results with best previous results from proceedings version of Bos et al’s paper presented at
SAC 2013 [6]. In Table 2, we categorize the timings with respect to the architecture that served
as experimental platform. In the case of 1024-bit Montgomery multiplication, we achieve
an execution time of 8358 clock cycles on the Cortex-A9 series, while Bos et al’s SIMD
implementation requires 17464 clock cycles. Furthermore, on a Cortex-A15, we compute a
1024-bit Montgomery multiplication within 5600 clock cycles rather than 8527 clock cycles
as specified in [6, Table 3]. Thus, our 1024-bit implementation outperforms Bos et al’s work
by approximately 52% and 34% on a Cortex-A9 and Cortex-A15, respectively. The speed-
ups are even more significant for 512-bit operands: 57% on the A9 and 40% on the A15.
Our results show that the NEON instructions improve the execution time by 29% and 18%
(512 and 1024-bit on Cortex-A9) as well as 37% and 35% (512 and 1024-bit on Cortex-
A15) over a sequential implementation that does not take advantage of the NEON engine.
The case for 2048-bit also shows, our method improves performance by 48.7% and 21.5% on
A9 and A15, respectively. Compared with the sequential implementations, still our 2048-bit
implementations have enhancements by 10.9% and 22.7%. The following is reason for the
significant speed-up compared to Bos et al’s NEON implementation. First, we process the
operands in a special order so as to reduce pipeline stalls caused by RAW data dependencies.
Second, we perform the carry propagation in an efficient fashion in the NEON engine by
adding grouped intermediate results.

Comparison to GMP The GNU multiple precision arithmetic library (GMP) [9] ver 6.0.0
is also tested on same target devices including Cortex-A9 and A15. They used asymptotically
fast method like Karatsuba multiplication [12]. The results of long integer multiplications
on 512-, 1024- and 2048-bit are obtained within 2346, 6970 and 21386 clock cycles for A9
and 1376, 4224 and 13792 clock cycles for A15. Compared with our COS multiplication,
GMP implementations are slower by 20∼55% and 22∼52% for A9 and A15, respectively.
Furthermore, unlike our method, the GMP is not a cryptographic library and does not provide
constant-time implementations.

5 Conclusions

We presented optimization techniques to improve the performance of multi-precision arith-
metic operations (in particular multiplication and Montgomery multiplication) on 2-way

Table 2. Results of multiplication and Montgomery multiplication in clock cycle on ARM Cortex-
A9/A15 platforms

Bit Cortex-A9 Cortex-A15

Our NEON NEON [6] ARM [6] Our NEON NEON [6] ARM [6]

Multiplication

256 308 n/a n/a 219 n/a n/a

512 1050 n/a n/a 658 n/a n/a

1024 4298 n/a n/a 2810 n/a n/a

2048 17080 n/a n/a 10672 n/a n/a

Montgomery Multiplication

256 658 n/a n/a 308 n/a n/a

512 2254 5236 3175 1485 2473 2373

1024 8358 17464 10167 5600 8527 8681

2048 32732 63900 36746 26232 33441 33961

SIMD platforms. More specifically, we introduced the COS method for multi-precision multi-
plication, which processes the words of one of the operands in a non-conventional order so as
to reduce pipeline stalls caused by data dependencies. Furthermore, we described the CICOS
method for performing Montgomery multiplication by coarsely interleaving COS-based mul-
tiplication and Montgomery reduction steps. Thanks to these optimizations, we were able to
achieve record-setting execution times for conventional multiplication as well as Montgomery
multiplication on ARM NEON platforms. For example, on an ARM Cortex-A15 processor,
our CICOS method performs a 1024-bit Montgomery multiplication only 5600 clock cycles,
which is roughly 34% faster than the NEON implementation of Bos et al (8527 cycles). On
a Cortex-A9, the performance gain is even higher, namely 52% (8358 vs. 17464 cycles, i.e.
we save 9106 cycles). In case of 2048-bit operands, our methods have improved performance
by 21.5% (A15) and 48.7% (A9). These gaps further increase for 512-bit operands to 40%
(A15) and 57% (A9). We also outperform Bos et al’s non-vectorized implementation (which
uses only standard ARM instructions) on the two platforms by between 11% and 37%. Based
on these results, we can draw the following conclusion. Our re-ordering of operands along
with a “coarse” integration of multiplication and reduction is significantly faster than the
conventional operand ordering and “fine” integration approach followed by Bos et al. The
interesting future work would be asymptotically faster integer multiplication method like
Karatsuba multiplication on SIMD architecture. Karatsuba method replaces multiplication
into several additions. However, when it comes to non-redundant representation, addition
produces a chains of carry propagations which incur high overheads. For practical purposes,
we should study further how to employ an efficient addition operation over non-redundant
representation.

References

1. ARM. Cortex-A9 NEON Media Processing Engine Technical Reference Manual Revision: r4p1.
Available for download at http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ddi0409i/index.html, June 2012.

2. P. D. Barrett. Implementing the Rivest, Shamir and Adleman public-key encryption algorithm
on a standard digital signal processor. In A. M. Odlyzko, editor, Advances in Cryptology —
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 311–323. Springer Ver-
lag, 1987.

3. D. J. Bernstein and P. Schwabe. Neon crypto. In Cryptographic Hardware and Embedded Systems–
CHES 2012, pages 320–339. Springer, 2012.

4. Bo Lin. Solving Sequential Problems in Parallel: An SIMD Solution to RSA Cryptography.
Available for download at http://cache.freescale.com/files/32bit/doc/app_note/AN3057.

pdf, Feb. 2006.

5. J. W. Bos and M. E. Kaihara. Montgomery multiplication on the cell. In Parallel Processing and
Applied Mathematics, pages 477–485. Springer, 2010.

6. J. W. Bos, P. L. Montgomery, D. Shumow, and G. M. Zaverucha. Montgomery multiplication
using vector instructions. In T. Lange, K. Lauter, and P. Lisonek, editors, Selected Areas in
Cryptography — SAC 2013, volume 8282 of Lecture Notes in Computer Science, pages 471–489.
Springer Verlag, 2014.

7. D. Câmara, C. P. Gouvêa, J. López, and R. Dahab. Fast software polynomial multiplication
on arm processors using the neon engine. In Security Engineering and Intelligence Informatics,
pages 137–154. Springer, 2013.

8. A. Faz-Hernandez, P. Longa, and A. H. Sanchez. Efficient and secure algorithms for glv-based
scalar multiplication and their implementation on glv-gls curves. Technical report, Cryptology
ePrint Archive, Report 2013/158, 2013. http://eprint.iacr.org, 2013.

9. Free Software Foundation, Inc. GMP: The GNU Multiple Precision Arithmetic Library. Available
for download at http://www.gmplib.org/, Aug. 2014.

10. S. Gueron and V. Krasnov. Software implementation of modular exponentiation, using advanced
vector instructions architectures. In Arithmetic of Finite Fields, pages 119–135. Springer, 2012.

11. Intel Corporation. Using streaming SIMD extensions (SSE2) to perform big multiplications. Ap-
plication note AP-941, available for download at http://software.intel.com/sites/default/

files/14/4f/24960, July 2000.
12. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. In Soviet physics

doklady, volume 7, page 595, 1963.
13. Z. Liu and J. Großschädl. New speed records for montgomery modular multiplication on 8-bit

avr microcontrollers. In Progress in Cryptology–AFRICACRYPT 2014, pages 215–234. Springer,
2014.

14. P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation,
44(170):519–521, Apr. 1985.

15. K. C. Pabbuleti, D. H. Mane, A. Desai, C. Albert, and P. Schaumont. Simd acceleration of mod-
ular arithmetic on contemporary embedded platforms. In High Performance Extreme Computing
Conference (HPEC), 2013 IEEE, pages 1–6. IEEE, 2013.

16. J.-J. Quisquater. Procédé de codage selon la méthode dite rsa, par un microcontrôleur et dis-
positifs utilisant ce procédé. Demande de brevet français.(Dépôt numéro: 90 02274), 122, 1990.

17. J.-J. Quisquater. Encoding system according to the so-called rsa method, by means of a micro-
controller and arrangement implementing this system, Nov. 24 1992. US Patent 5,166,978.

18. A. H. Sánchez and F. Rodŕıguez-Henŕıquez. Neon implementation of an attribute-
based encryption scheme. Technical report, Technical Report CACR 2013-07, available at
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-07.pdf, 2013.

19. C. D. Walter and S. Thompson. Distinguishing exponent digits by observing modular subtrac-
tions. In Topics in CryptologyCT-RSA 2001, pages 192–207. Springer, 2001.

20. T. Yanik, E. Savas, and Ç. Koç. Incomplete reduction in modular arithmetic. In Computers and
Digital Techniques, IEE Proceedings-, volume 149, pages 46–52. IET, 2002.

Appendix. A. Pseudo Code: COS Multiplication in 256-bit15

Input: word size 32-bit, Operands A,B ∈ [0, 256).
Output: C = A ·B.
//Register R, Memory M , Temporal registers RAC , RLOW , RHIGH ∈ [0, 8]16.
RA[7, ..., 0]←MA[7, ..., 0].
RB [7, ..., 0]←MB [7, ..., 0].
RAC [8, ..., 0]← 0.
transpose RB .
for i = 0 to 7

(RAC [4], RAC [0])← (RAC [4], RAC [0]) + (RA[i], RA[i])× (RB [4], RB [0]).
(RAC [5], RAC [1])← (RAC [5], RAC [1]) + (RA[i], RA[i])× (RB [5], RB [1]).

15 512-, 1024- and 2048-bit cases conduct 256-bit COS multiplication by 4, 16 and 64 times,
respectively. The rhombus form of 512-bit COS is available in Figure 5.

16 32-bit register: RA[0 ∼ 7], R[0 ∼ 7], 64-bit register: RAC [0 ∼ 8], RLOW [0 ∼ 8], RHIGH [0 ∼ 8]

(RAC [6], RAC [2])← (RAC [6], RAC [2]) + (RA[i], RA[i])× (RB [6], RB [2]).
(RAC [7], RAC [3])← (RAC [7], RAC [3]) + (RA[i], RA[i])× (RB [7], RB [3]).
RLOW [8, ..., 0], RHIGH [8, ..., 0]← 0.
transpose RAC into RHIGH and RLOW .
(RLOW [4])← (RLOW [4]) + (RHIGH [3]).
(RLOW [5], RLOW [1])← (RLOW [5], RLOW [1]) + (RHIGH [4], RHIGH [0]).
(RLOW [6], RLOW [2])← (RLOW [6], RLOW [2]) + (RHIGH [5], RHIGH [1]).
(RLOW [7], RLOW [3])← (RLOW [7], RLOW [3]) + (RHIGH [6], RHIGH [2]).
(RLOW [8])← (RHIGH [7]).
MC [i]← RLOW [0].
for j = 0 to 3

(RAC [j + 4], RAC [j])← (RLOW [(j + 5)], RLOW [(j + 1)]).
end for

end for
final alignment RAC .
MC [15, ..., 8]← RAC .
Return MC .

Appendix. B. Pseudo Code: CICOS Montgomery Multiplication in
256-bit17

Input: word size 32-bit, Operands A,B, Modulus M∗ ∈ [0, 256),
Inverse of Modulus M ′ ∈ [0, 32).
Output: C = MonRed(A ·B,R).
//Register R, Memory M , Temporal registers RAC , RLOW , RHIGH ∈ [0, 8]18.
RA[7, ..., 0]←MA[7, ..., 0].
RB [7, ..., 0]←MB [7, ..., 0].
RM ′ ←MM ′ .
RM∗ [7, ..., 0]←MM∗ [7, ..., 0].
RAC [8, ..., 0]← 0.
transpose RB .
for i = 0 to 7

(RAC [4], RAC [0])← (RAC [4], RAC [0]) + (RA[i], RA[i])× (RB [4], RB [0]).
(RAC [5], RAC [1])← (RAC [5], RAC [1]) + (RA[i], RA[i])× (RB [5], RB [1]).
(RAC [6], RAC [2])← (RAC [6], RAC [2]) + (RA[i], RA[i])× (RB [6], RB [2]).
(RAC [7], RAC [3])← (RAC [7], RAC [3]) + (RA[i], RA[i])× (RB [7], RB [3]).
RLOW [8, ..., 0], RHIGH [8, ..., 0]← 0.
transpose RAC into RHIGH and RLOW .
(RLOW [4])← (RLOW [4]) + (RHIGH [3]).
(RLOW [5], RLOW [1])← (RLOW [5], RLOW [1]) + (RHIGH [4], RHIGH [0]).
(RLOW [6], RLOW [2])← (RLOW [6], RLOW [2]) + (RHIGH [5], RHIGH [1]).
(RLOW [7], RLOW [3])← (RLOW [7], RLOW [3]) + (RHIGH [6], RHIGH [2]).
(RLOW [8])← (RHIGH [7]).
RQ[i]← RLOW [0]×RM ′ .
(RAC [4], RAC [0])← (RLOW [4], RLOW [0]) + (RQ[i], RQ[i])× (RM∗ [4], RM∗ [0]).
(RAC [5], RAC [1])← (RLOW [5], RLOW [1]) + (RQ[i], RQ[i])× (RM∗ [5], RM∗ [1]).
(RAC [6], RAC [2])← (RLOW [6], RLOW [2]) + (RQ[i], RQ[i])× (RM∗ [6], RM∗ [2]).
(RAC [7], RAC [3])← (RLOW [7], RLOW [3]) + (RQ[i], RQ[i])× (RM∗ [7], RM∗ [3]).
RLOW [8, ..., 0], RHIGH [8, ..., 0]← 0.
transpose RAC into RHIGH and RLOW .
(RHIGH [3])← (RHIGH [3]) + (RLOW [4]).
(RLOW [4])← (RHIGH [3]).
(RLOW [5], RLOW [1])← (RLOW [5], RLOW [1]) + (RHIGH [4], RHIGH [0]).
(RLOW [6], RLOW [2])← (RLOW [6], RLOW [2]) + (RHIGH [5], RHIGH [1]).
(RLOW [7], RLOW [3])← (RLOW [7], RLOW [3]) + (RHIGH [6], RHIGH [2]).
(RLOW [8])← (RLOW [8]) + (RHIGH [7]).
for j = 0 to 3

(RAC [j + 4], RAC [j])← (RLOW [(j + 5)], RLOW [(j + 1)]).
end for

end for
final alignment RAC .
final subtraction RAC .
MC ← RAC .
Return MC .

17 512-, 1024- and 2048-bit cases conduct 256-bit CICOS Montgomery multiplication by 4, 16 and 64
times, respectively. The rhombus form of 512-bit CICOS is available in Figure 6.

18 32-bit register: RA[0 ∼ 7], R[0 ∼ 7], RM [0 ∼ 7], RQ[0 ∼ 7], RM′ , 64-bit register: RAC [0 ∼ 8],
RLOW [0 ∼ 8], RHIGH [0 ∼ 8]

Appendix. C. Program Code: COS Multiplication and CICOS
Montgomery Multiplication in 256-bit

Table 3. Program code: COS multiplication in 256-bit

Operand A registers : q0, q1, Operand B registers : q2, q3

vtrn.32 q0, q1 vtrn.32 q10, q7 veor q0,q0,q0

vtrn.32 q8 , q9

//step 1 vtrn.32 d20, d10

vmull.u32 q13, d0, d4[0] vadd.i64 q11, q11, q5 vqadd.u64 d16, d16, d10

vmull.u32 q12, d2, d4[0] vadd.i64 q10, q10, q6 vext.8 d2, d2, d20, #4

vmull.u32 q11, d1, d4[0] vadd.i64 q8 , q8 , q7

vmull.u32 q10, d3, d4[0] vqadd.u64 d18, d18, d25 vtrn.32 d16, d11

vext.8 d28, d28, d24, #4 vqadd.u64 d18, d18, d11

veor q5,q5,q5 vext.8 d2, d2, d16, #4

veor q6,q6,q6 ...//skip step3-7

veor q7,q7,q7 vtrn.32 d18, d12

veor q8,q8,q8 //step 8 vqadd.u64 d26, d26, d12

vmlal.u32 q11, d0, d7[1] vext.8 d3, d3, d18, #4

vtrn.32 q13, q5 vmlal.u32 q10, d2, d7[1]

vtrn.32 q12, q6 vmlal.u32 q8 , d1, d7[1] vtrn.32 d26, d13

vtrn.32 q11, q7 vmlal.u32 q9, d3, d7[1] vqadd.u64 d21, d21, d13

vtrn.32 q10, q8 vext.8 d3, d3, d26, #4

veor q5,q5,q5

vadd.i64 q12, q12, q5 veor q6,q6,q6 vtrn.32 d21, d14

vadd.i64 q11, q11, q6 veor q7,q7,q7 vqadd.u64 d17, d17, d14

vadd.i64 q10, q10, q7 veor q13,q13,q13 vext.8 d4, d4, d21, #4

vqadd.u64 d16, d16, d27

vext.8 d28, d28, d26, #4 vtrn.32 q11, q5 vtrn.32 d17, d15

vtrn.32 q10, q6 vqadd.u64 d19, d19, d15

//step 2 vtrn.32 q8, q7 vext.8 d4, d4, d17, #4

vmlal.u32 q12, d0, d4[1] vtrn.32 q9, q13

vmlal.u32 q11, d2, d4[1] vtrn.32 d19, d0

vmlal.u32 q10, d1, d4[1] vadd.i64 q10, q10, q5 vqadd.u64 d27, d27, d0

vmlal.u32 q8 , d3, d4[1] vadd.i64 q8 , q8 , q6 vext.8 d5, d5, d19, #4

vadd.i64 q9 , q9 , q7 vext.8 d5, d5, d27, #4

veor q5,q5,q5 vqadd.u64 d26, d26, d23

veor q6,q6,q6 vext.8 d31, d31, d22, #4 //output q14, q15, q1, q2

veor q7,q7,q7

veor q9,q9,q9 //final alignment

veor q5,q5,q5

vtrn.32 q12, q5 veor q6,q6,q6

vtrn.32 q11, q6 veor q7,q7,q7

Table 4. Program code: CICOS Montgomery multiplication in 256-bit

Operand A registers : q0, q1, Operand B registers : q2, q3, Inverse of M register : d8

Operand M registers : q14, q15, r0 indicates pointer of value(0x00000001ffffffff)

vtrn.32 q0, q1 //final alignment vadd.i64 d20, d17, d20

veor q5,q5,q5 vtrn.32 d20, d10

//step 1 veor q6,q6,q6

vmull.u32 q13, d0, d4[0] veor q7,q7,q7 vqsub.u64 d18, d18, d10

vmull.u32 q12, d2, d4[0] veor q0,q0,q0 veor d18, d18, d16

vmull.u32 q11, d1, d4[0] vadd.i64 d18, d18, d17

vmull.u32 q10, d3, d4[0] vtrn.32 d20, d10 vtrn.32 d18, d11

vqadd.u64 d18, d18, d10

veor q5,q5,q5 vqsub.u64 d26, d26, d11

veor q6,q6,q6 vtrn.32 d18, d11 veor d26, d26, d16

veor q7,q7,q7 vqadd.u64 d26, d26, d11 vadd.i64 d26, d26, d17

veor q8,q8,q8 vtrn.32 d26, d12

vtrn.32 d26, d12

vmull.u32 q4, d8, d26 vqadd.u64 d24, d24, d12 vqsub.u64 d24, d24, d12

veor d24, d24, d16

vtrn.32 q13, q5 vtrn.32 d24, d13 vadd.i64 d24, d24, d17

vtrn.32 q12, q6 vqadd.u64 d21, d21, d13 vtrn.32 d24, d13

vtrn.32 q11, q7

vtrn.32 q10, q8 vtrn.32 d21, d14 vqsub.u64 d21, d21, d13

vqadd.u64 d19, d19, d14 veor d21, d21, d16

vadd.i64 q12, q12, q5 vadd.i64 d21, d21, d17

vadd.i64 q11, q11, q6 vtrn.32 d19, d15 vtrn.32 d21, d14

vadd.i64 q10, q10, q7 vqadd.u64 d27, d27, d15

vqadd.u64 d27, d27, d16 vqsub.u64 d19, d19, d14

vtrn.32 d27, d0 veor d19, d19, d16

veor q5,q5,q5 vqadd.u64 d25, d25, d0 vadd.i64 d19, d19, d17

veor q6,q6,q6 vtrn.32 d19, d15

veor q7,q7,q7 vtrn.32 d25, d1

veor q9,q9,q9 vqsub.u64 d27, d27, d15

//final subtraction veor d27, d27, d16

vmlal.u32 q13, d28, d8[0] vmull.u32 q1, d28, d1[0] vadd.i64 d27, d27, d17

vmlal.u32 q12, d29, d8[0] vmull.u32 q2, d29, d1[0] vtrn.32 d27, d0

vmlal.u32 q11, d30, d8[0] vmull.u32 q3, d30, d1[0]

vmlal.u32 q10, d31, d8[0] vmull.u32 q4, d31, d1[0] vqsub.u64 d25, d25, d0

veor d25, d25, d16

vtrn.32 q13, q5 vldmia r0!, {q8} vadd.i64 d25, d25, d17

vtrn.32 q12, q6

vtrn.32 q11, q7 veor q5,q5,q5 vtrn.32 q10, q9

vtrn.32 q10, q9 veor q6,q6,q6 vtrn.32 q13, q12

veor q7,q7,q7

vadd.i64 q12, q12, q5 veor q0,q0,q0 //output d20, d26, d21, d27

vadd.i64 q11, q11, q6

vadd.i64 q10, q10, q7 vsub.i64 q10, q10, q1

vqadd.u64 d18, d18, d27 vsub.i64 q9, q9, q2

vqadd.u64 d19, d19, d17 vsub.i64 q13, q13, q3

vsub.i64 q12, q12, q4

...//skip step2-8

veor d20, d20, d16

Appendix. D. Instruction Set Summary for NEON

Cycles This is the number of issue cycles the particular instruction consumes, and is the
absolute minimum number of cycles per instruction if no operand interlocks are present.

Source The Source field indicates the execution cycle where the source operands must be
available if the instruction is to be permitted to issue. The comma separated list matches
that of the Format field, indicating the register that each value applies to. Where two lines
are provided for a single format containing quad (Q) registers, this indicates that the source
registers are handled independently between top and bottom half double (D) registers. The
first line provides the information for the lower half of the quad register and the second line
provides the same information for the upper half of the quad register.

Result The Result field indicates the execution cycle when the result of the operation is
ready. At this point, the result might be ready as source operands for consumption by other
instructions using forwarding paths. However, some pairs of instructions might have to wait
until the value is written back to the register file.

Writeback The Writeback field indicates the execution cycle that the result is committed
to the register file. From this cycle, the result of the instruction is available to all other
instructions as a source operand.

Table 5. Instruction set summary for NEON [1]

Mnemonics Description Cycles Source Result Writeback

VADD Vector Addition 1 -,2,2 3 6

VSUB Vector Subtraction 1 -,2,1 3 6

VEOR Vector Exclusive-or 1 -,2,2 3 6

VMULL Vector Multiplication 2 -,2,1 7 7

VMLAL Vector Multiplication with Addition 2 3,2,1 7 7

VTRN Vector Traspose 1 -,1 2 6

Appendix E. 512-bit COS Multiplication and CICOS Montgomery
Multiplication in Rhombus Form19

A[15]B[0]

A[0]B[0]

A[0]B[15]

A[15]B[15]

C[0]C[15]C[30]

1

2

3

4

1

2

3

4

Fig. 5. Cascade operand scanning on NEON in 512-bit

A[15]B[0]

A[0]B[0]

A[0]B[15]

A[15]B[15]

C[0]C[15]C[30]

1

2

3

4

M[15]Q[0]

M[0]Q[0]

M[0]Q[15]

M[15]Q[15]
1

2

3

4

1

2

3

4

Fig. 6. Coarsely integrated cascade operand scanning on NEON in 512-bit

19 1024-and 2048-bit COS and CICOS methods can be established with 4 and 16 times of 512-bit
COS and CICOS computations.

