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ABSTRACT
Lightweight Bitcoin clients are gaining increasing adoption among
Bitcoin users, owing to their reduced resource and bandwidth con-
sumption. These clients support a simplified payment verification
(SPV) mode as they are only required to download and verify a part
of the block chain—thus supporting the usage of Bitcoin on con-
strained devices, such as smartphones. SPV clients rely on Bloom
filters to receive transactions that are relevant to their local wal-
let. These filters embed all the Bitcoin addresses used by the SPV
clients, and are outsourced to more powerful Bitcoin nodes which
then only forward to those clients transactions relevant to their out-
sourced Bloom filters.

In this paper, we explore the privacy of existing SPV clients.
We show analytically and empirically that the reliance on Bloom
filters within existing SPV clients leaks considerable information
about the addresses of Bitcoin users. Our results show that an SPV
client who uses a modest number of Bitcoin addresses (e.g., < 20)
risks revealing almost all of his addresses. We also show that this
information leakage is further exacerbated when users restart their
SPV clients and/or when the adversary has access to more than one
Bloom filter pertaining to the same SPV client. Motivated by these
findings, we propose an efficient countermeasure to enhance the
privacy of users which rely on SPV clients; our proposal can be
directly integrated within existing SPV client implementations.

1. INTRODUCTION
Bitcoin has already witnessed a wider adoption and attention

than any other digital currency proposed to date. Bitcoin imple-
ments a distributed time-stamping service [28], which operates on
top of the Bitcoin Peer-to-Peer (P2P) network and ensures that all
transactions and their order of execution are visible to all Bitcoin
users. Transactions are included in Bitcoin blocks that are broad-
casted in the entire network; blocks link to each other, thus forming
the Bitcoin block chain.

Currently, a typical Bitcoin installation requires more than 18 GB
of disk space, and requires considerable time to download and lo-
cally index blocks and transactions that are contained in the block
chain. Given its increasing use, the transactional volume in Bitcoin
is only expected to increase—thus yielding a considerable growth
in the size of the block chain [1]. In addition to disk space us-
age, the continuous growth of Bitcoin’s transactional volume in-
curs considerable overhead on the Bitcoin clients that need to ver-
ify the correctness of broadcasted blocks and transactions in the
network. This problem becomes even more evident when users
wish to perform/verify Bitcoin payments using resource-constraint
devices, such as mobile devices.

To remedy this, the Bitcoin developers released a lightweight
client, BitcoinJ [2], which supports a simplified payment verifi-

cation (SPV) mode where only a small part of the block chain is
downloaded— thus supporting the typical usage of Bitcoin on con-
strained devices (e.g., smartphones, cheap virtual private servers).
SPV clients were originally proposed by Nakamoto in [28] and
were later extended to rely on Bloom filters [20] in order to receive
transactions that are relevant to their local wallet. These Bloom fil-
ters embed all the addresses used by the SPV clients, and are out-
sourced to more powerful Bitcoin nodes; these nodes will then for-
ward to the SPV clients those transactions relevant to their Bloom
filters.

Bloom filters can be defined with a target false positive rate; by
appropriately setting the target false positive rate of Bloom filters,
Bitcoin developers aim to provide a suitable anonymity set to hide
the addresses of SPV clients. As far as we are aware, the informa-
tion leakage associated with the reliance on Bloom filters has not
been yet thoroughly analyzed in the context of Bitcoin [3].

In this paper, we address this problem, and explore the privacy
provisions due to the use of Bloom filters in existing SPV client im-
plementations. We show analytically and empirically that the cur-
rent integration of Bloom filters within Bitcoin leaks considerable
information about the addresses of Bitcoin users. More specifi-
cally, we show that the information leakage due to Bloom filters
significantly depends on the number of addresses that each user
possesses; notably, users who have a modest number of addresses
(< 20) risk leaking all of their addresses by embedding them in a
Bloom filter. This information leakage is further exacerbated when
nodes restart their client, or generate additional Bitcoin addresses
to their SPV clients; in these cases, the SPV clients re-compute new
Bloom filters. We show that the computation of new Bloom filters
considerably reduces the privacy of SPV clients.

Our work therefore motivates a careful assessment of the cur-
rent implementation of SPV clients, prior to any large-scale de-
ployment. In this work, we make the following contributions:

• We show that considerable information about users who pos-
sess a modest number of Bitcoin addresses (e.g., < 20) is
leaked by a single Bloom filter in existing SPV clients.

• We show that an adversary can easily link different Bloom
filters which embed the same elements—irrespective of the
target false positive rate. This also enables the adversary to
link, with high confidence, different Bloom filters which per-
tain to the same originator.

• We show that a considerable number of the addresses of users
are leaked if the adversary can collect at least two Bloom fil-
ters issued by the same SPV client—irrespective of the target
false positive rate and of the number of user addresses.

• Finally, we propose a lightweight and efficient countermea-
sure to enhance the privacy offered by SPV clients. Our



countermeasure can be integrated with minimum modifica-
tions within existing SPV client implementations.

The remainder of this paper is organized as follows. In Section 2,
we briefly overview the operation of SPV clients. In Section 3, we
introduce our system and attacker model. In Section 4, we ana-
lyze the privacy provisions of existing SPV client implementations
when the adversary captures a single Bloom filter of an SPV client.
In Section 5, we discuss the information leakage when the adver-
sary can acquire multiple Bloom filters of an SPV node. In Sec-
tion 6, we propose an efficient solution to enhance the privacy of
users in SPV clients. In Section 7, we review related work in the
area and we conclude the paper in Section 8.

2. BACKGROUND
In what follows, we briefly overview Bitcoin and introduce SPV

clients.
Bitcoin enables its users to perform payments by issuing trans-

actions. Standard transactions transfer Bitcoins (BTC) from one or
several input addresses to at least one output address. A Bitcoin
address corresponds to a public key, whose corresponding secret
key enables the address owner to spend the BTCs stored in the re-
spective address. In order to spend BTCs, a user first creates a
transaction, which typically takes as inputs the outputs of earlier
transactions addressed to his addresses, and specifies as outputs the
Bitcoin addresses (or their corresponding public keys) which will
collect the resulting BTCs. Finally, the user signs the transaction
and broadcasts it into the Bitcoin peer-to-peer (P2P) network.

Transactions are included and stored into Bitcoin blocks. Blocks
are generated (or mined) by solving a hash-based proof-of-work
(PoW) scheme. More specifically, miners need to find the appro-
priate block parameters (e.g., a nonce value) such that the resulting
block hash is below a given target value. Once such a block is
found, the miner broadcasts the block in the network enabling all
Bitcoin peers to verify the correctness of the included transactions
and the PoW. If the block is deemed correct, the miner is awarded
a fixed amount of BTCs. Note that every generated block points to
the previous block, thus growing the block chain.

Bitcoin requires all peers in the system to verify all broadcasted
transactions and blocks. Clearly, this comes at the expense of stor-
age and computational overhead. Currently, a typical Bitcoin in-
stallation requires more than 18 GB of disk space, and considerable
time to download and locally index blocks and transactions that are
contained in the block chain. Additionally, the continuous growth
of Bitcoin transactional volume incurs significant computational
overhead on the Bitcoin clients, when verifying the correctness of
broadcasted blocks and transactions in the network. This problem
becomes even more evident when users wish to perform/verify Bit-
coin payments from resource-constrained devices such as mobile
devices, tablets, etc.

To remedy that, lightweight client implementations (or simpli-
fied payment verification, SPV) have been proposed in [28]; SPV
clients do not store the entire block chain, nor do they validate all
transactions in the system. Notably, SPV clients only perform a
limited amount of verifications, such as the verification of block
difficulty and the presence of a transaction in the Merkle tree, etc.,
and offload the verification of all transactions and blocks to the full
Bitcoin nodes. Note that in order to calculate their own balance,
SPV clients request full blocks from a given block height on; here,
the full Bitcoin nodes can also provide “filtered blocks” to the SPV
client that only contain relevant transactions from each block.

Unlike full Bitcoin nodes, SPV clients do not receive all the
transactions that are broadcasted within the Bitcoin P2P network,
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Figure 1: Sketch of the operation undergone by an SPV client. SPV
clients connect to a full Bitcoin node, which only forwards to the
SPV clients the transactions relevant to their Bloom filters.

but instead receive a subset of transactions, filtered for them by the
full nodes to which they are connected1. This is mainly done to re-
duce the communication load on SPV clients, typically run on mo-
bile devices. To reduce bandwidth consumption, SPV clients make
use of Bloom filters [20]. A Bloom filter [14] is a space-efficient
probabilistic data structure which is used to test membership of an
element. An SPV client constructs a Bloom filter by embedding all
the Bitcoin addresses which appear in its wallets. Upon connection
to a full Bitcoin node, the constructed Bloom filter is outsourced to
the full node following an initial handshake protocol (cf. Figure 1).
Whenever the full node receives a transaction, it first checks to see
if its input and/or output addresses match the SPV client’s Bloom
filter. If so, the full node forwards the received transaction to the
SPV client.

Bloom Filters: Bloom filters have been first proposed by Bloom
in 1970; we refer the readers to [15] for detailed information on
Bloom filters. In SPV clients [2], a Bloom filterB of an SPV client
is specified by the maximum number of elements that it can fit,
denoted by M , without exceeding its target false-positive rate Pt.
Let m ≤ M denote the number of elements that are inserted in
B(M,Pt). In SPV clients, the size of the filter n is computed as
follows:

n = −M ln(Pt)

(ln(2))2
(1)

A Bloom filter B basically consists of an array B[.] of n bits
accessed by k independent hash functions H1(.), . . . , Hk(.), each
of which maps an input string x ∈ {0, 1}∗ to one of the n bits of
the array. In SPV clients, k is computed as follows:

k = ln(2)
n

M
(2)

To insert an element x ∈ {0, 1}∗ to a Bloom filter B, then
∀j ∈ {1, . . . , k}, B[Hj(x)] ← 1. Similarly, to query the pres-
ence of an element x ∈ {0, 1}∗ in B, then this entails computing
∧k

j=1B[Hj(x)] (thus returning 1, if all corresponding bits are 1).
Bloom filters can generate a number of false positives, but cannot

result in false negatives. The literature features a number of tech-
niques to estimate the false positive rate of Bloom filters [15, 24].
In this paper, we focus on the proposal due to Mullin et al. [24] to
estimate the false positive rates in Bloom filters (which is computed
1Currently, SPV clients connect to a default of four different ran-
domly chosen nodes



over all possible inputs to the Bloom filter). More specifically, we
compute the false positive rate of a filter B(M,Pt) which has m
elements, Pf (m), as follows [15]:

Pf (m) =

(
1−

(
1− 1

n

)km
)k

(3)

In Section 4.2, we show that this estimation experimentally matches
the false positive rate featured by existing implementations of SPV
clients. We acknowledge that there might be more accurate tech-
niques for computing the false positive rates (e.g., [15]); our find-
ings, however, show that the difference in false positives resulting
from [15] and [24] was negligible and did not affect our results.
We therefore elected to rely on the estimation of Pf which appears
in [24]. Here, note that Pf (M) ≈ Pt. That is, the target false
positive rate of a Bloom filter is only reached when the number of
elements contained in the filter matches M .

3. MODEL
In this section, we present our system and attacker model. We

also introduce our privacy metric which will be used to quantify
the privacy of SPV clients.

System Model.
We assume that lightweight SPV clients connect to the Bitcoin

P2P network through full Bitcoin nodes. As described earlier, full
nodes only inform the SPV clients about transactions specific to
their corresponding Bloom filters. We further assume that the full
Bitcoin nodes do not know the IP address of the SPV clients; for
example, SPV clients might rely on TOR [4] when connecting to
other Bitcoin nodes.

Attacker Model.
We assume that the adversary can compromise one or more full

Bitcoin nodes and eavesdrop on communication links in order to
acquire one or more Bloom filters pertaining to an SPV client.
Here, the goal of the adversary is to identify the Bitcoin addresses
that are inserted within a Bloom filter created by a particular SPV
client. The addresses inserted in the Bloom filter typically corre-
spond to addresses that the SPV client is interested in receiving in-
formation about (e.g., these addresses typically belong to the wallet
of the SPV client). For example, the adversary might be connected
to the node which generated the Bloom filter or might try to as-
sign an identity to nodes according to their addresses, etc. Note
that since the Bitcoin network provides currently less than 10,000
reachable full Bitcoin nodes, it is likely that regular nodes receive
one or more filter pertaining to each SPV client over a sufficiently
long period of time.

In our analysis, we assume that the adversary knows the param-
eters used to create a Bloom filter. This includes, for instance, the
target false positive rate, Pt, that the Bloom filter is designed to
achieve, and the number of hash functions k used in the Bloom fil-
ter. Since Bitcoin is an open payment system, we also assume that
the adversary has access to all addresses/transactions which appear
in the block chain, and to their respective order of execution.

Clearly, we assume that the adversary is computationally bounded.
However, since the Bitcoin network only contains a bounded num-
ber of addresses (around 33 million Bitcoin addresses), the adver-
sary can simply check whether all existing addresses match to a
given Bloom filter.

Note that an adversary who is connected to an SPV client can
see the transactions issued by the client and could potentially use

this in order to learn the clients’ addresses. This can be countered
e.g., by SPV clients using TOR whenever they issue Bitcoin trans-
actions. Instead, in this work, we focus on analyzing the privacy
issues of the use of Bloom filters within existing SPV client imple-
mentations, which as we show, cannot be solved by simply relying
on anonymizing networks. In Section 6, we still discuss the case
where the adversary can additionally link Bitcoin addresses by ob-
serving the behavior of users, timing of transactions, etc.

Let B refer to the set of all existing Bitcoin addresses. Further-
more, let Bi refer to the set of all elements y in B that are members
of Bloom filter Bi (i.e., for which a query in Bi returns true), and
Fi ⊂ Bi denote the set of false positives of Bi.

In our analysis, we assume that all elements map uniformly at
random to the bits of the Bloom filter; that is, we assume that all
addresses y ∈ Bi are equally likely to be a true member of Bi.

We further assume that the adversary can collect additional in-
formation from the system which can help her classify (a fraction
of) the false positives exhibited by Bloom filters; for example, the
adversary can try to identify some false positives generated by fil-
ters by analyzing two different Bloom filters which embed the same
true positives (cf. Section 5). We capture this additional knowledge
using the set K ⊆ Fi which contains addresses in Fi that the ad-
versary can correctly classify. We acknowledge that the adversary
could also try to gather prior knowledge about the addresses in-
serted in the Bloom filter; in this work, we focus however on the
case where the adversary does not have any prior knowledge about
the true positives of the filter.

Our analysis throughout the rest of the paper does not exploit
the fact that the adversary knows the public keys of Bitcoin ad-
dresses. Indeed, in current implementations of SPV clients, both
the addresses and their public keys are inserted in the outsourced
Bloom filter. As such, if the adversary knows both the address and
its public key, then she can trivially test whether an address is a
true positive of the filter by checking whether both the address and
its public key are inserted within the filter. If not, then it is highly
likely that the address is a false positive of the filter. We believe that
the inclusion of both the address and its public key in the Bloom fil-
ter is a severe flaw in the current SPV client implementations—and
can be easily countered; we thus do not exploit this flaw in our anal-
ysis. In fact, more than 99% of all Bitcoin transactions consist of
payments to Bitcoin addresses (or the public key hash); moreover,
only 4587 out of 33 million total addresses in the system received
transactions destined for both their public keys and their public key
hashes2. This means that for the vast majority of Bitcoin clients,
there is no need to include both the public keys and their hashes
(i.e., the Bitcoin addresses) in the Bloom filters; inserting one or
the other would suffice (in more than 99% of the cases)3.

Privacy Metric.
We quantify the privacy offered by a Bloom filter using the prob-

ability, Ph(j)
, that the adversary correctly guesses any j true posi-

tives of a Bloom filter among all positives that match the filter and
which are not included in the knowledge of the adversary. More
specifically, we measure Ph(j)

achieved by a Bloom filter Bi, as
follows: Ph(j)

=
∏j−1

k=0
N−k

N+S−k
= N

N+S
· N−1

N+S−1
. . . . Here, N

refers to the number of Bitcoin addresses inserted into Bi, and S
denotes the cardinality of the set {Fi−K}; S therefore corresponds
2We obtained these numbers by parsing the Bitcoin block chain till
block # 296000.
3Note that only inserting the addresses in the Bloom filter would
suffice since regular nodes can easily hash the public keys and
check whether they match the Bloom filter. However, this clearly
incurs computational overhead on regular Bitcoin nodes.
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Figure 2: Pf , and Pt computed analytically with respect to the number of addresses N . Here, we assume that the SPV client did not restart
since initialization.

B all existing Bitcoin addresses
Bi Bloom filter i
Bi Positives of the Bloom filter
Fi False positives of the Bloom filter
N Number of addresses inserted in the Bloom filter
S False positives, the adversary has no knowledge about
M Maximum number of elements the Bloom filter fits
m Number of elements inserted in the Bloom filter
n Size of the Bloom filter (in bits)
k Number of hash functions of the Bloom filter
Pf Actual false positive rate
Pt Target false positive rate
Ph(j)

Probability of correctly guessing any j true positives
X Number of bits in the Bloom filter set to one

Table 1: Notations used throughout the paper.

to all false positives that match Bi, but for which the adversary
does not have any knowledge about. Therefore, the probability that
the adversary correctly guesses all the addresses of Bi is given by:
Ph(N)

=
∏N−1

k=0
N−k

N+S−k
= N !S!

(N+S)!
. Clearly, the higher is Ph(.)

,
the smaller is the privacy of the SPV node. Note that if the adver-
sary is able to identify an SPV client (e.g., by some side channel
information), then simply identifying any address pertaining to that
client would be a considerable violation of its privacy. Otherwise,
if the adversary can link a number of addresses to the same anony-
mous client, then the information offered by the clustering of these
addresses offers the adversary considerable information about the
profile of the client, such as its purchasing habits, etc.

Note that our privacy metric only assesses the probability of
guessing addresses inserted within the Bloom filter. As mentioned
earlier, these are the addresses that the SPV client is interested in
receiving information about. Ph(.)

, however, does not necessarily
capture the probability of guessing addresses which belong to the
user of the SPV client. Indeed, addresses inserted within the fil-
ter do not necessarily have to belong to the user; for instance, the
privacy of users—who only embed in their Bloom filters L ≤ N
addresses—can be quantified by computing L

N
Ph(.)

. Table 1 sum-
marizes the notation used throughout the paper.

4. INFORMATION LEAKAGE DUE TO A
SINGLE BLOOM FILTER

In this section, we start by analyzing the privacy provisions of
existing SPV clients when the adversary acquires a single Bloom
filter pertaining to an SPV client. In Section 5, we address the case
when multiple Bloom filters are acquired by the adversary.

4.1 Leakage under a Single Bloom Filter
In existing SPV clients (which use the Bitcoinj library), a node

initializes its Bloom filter Bi with a random nonce r, and specifies
its target false positive rate Pt which can be achieved when a num-
ber of elements M have been inserted in the filter. M is equal to
M = m + 100 = 2N + 100, where N is the number of Bitcoin
addresses inserted in Bi.4 Note that a Bitcoin address is inserted
into the Bloom filter by adding both the corresponding public key
and the public key hash to the filter; therefore m = 2N .

By default, the target false positive rate of the Bloom filter Pt is
set to 0.05%5. The size of the filter n and the number of hashes k
are computed given Equations 1 and 2, respectively.

Note that at initialization time, the SPV client is only equipped
with j = 1 Bitcoin address. The corresponding Bloom filter will
then be initially created to fit M = 102 elements, and will only
contain m = 2 elements. However, if the SPV client restarts (e.g.,
mobile phone reboots, mobile application is restarted), then the
Bloom filter will be re-computed with M = 2j + 100 (the SPV
client stores the Bloom filter in volatile memory). In either cases,
when the user acquires 50 or more additional addresses such that
m > M , then the SPV client will resize the Bloom filter by re-
computingM = 2N+100, and will send the updated Bloom filter
to the full Bitcoin nodes that it is connected to. This process re-
iterates whenever the number of addresses inserted in Bi increase
such that m > M .

In Figure 2, we analytically compute Pt with respect to the num-
ber of addresses N that an SPV client is equipped with. Here, we
assume that the adversary has access to only one Bloom filter per-
taining to the SPV client, and that the adversary has no prior knowl-
edge about addresses in Bitcoin (i.e., K = φ). Note that given n
and k, the number of elements contained in a Bloom filter can be
estimated by the adversary as follows [29]:

m ≈ −n
ln(1− X

n
)

k
(4)

Here, X corresponds to the number of bits of the Bloom filter set
to one. Given n and Pt, M can also be computed by the adversary
from Equation 1.

Since K = φ, S + N = |Bi| (i.e., the number of all existing
Bitcoin addresses which match Bi)6. Note that, in April 2014, the
Bitcoin block chain comprised nearly |B| =33 million addresses.
This means that an adversary can simply try all possible addresses

4The additional number ‘100’ is added to m by the Bitcoin devel-
opers in order to avoid the recomputation of a new filter in the case
where a user inserts up to 50 additional Bitcoin addresses.
5The Bitcoin developers claim that a target false positive rate of
0.1% should provide “very good privacy” [9].
6|X| denotes the cardinality of set X .
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in the Bitcoin system in order to compute Bi. In doing so, it is
straightforward to see that:

Ph(j)
=

j−1∏
k=0

N − k
N + S − k ≈

j−1∏
k=0

N − k
N + |B−N |Pf (2N)− k ,

(5)
whereN � |B|, andm = 2N is the number of elements contained
in the Bloom filter seen by the adversary. In analyzing our findings,
we distinguish two cases:

1) 2N/M ≤ 0.4 and N < 100.
In Figure 2, we compute Pt and Pf with respect to the num-

ber of addresses N . Our results show that Ph(1)
(the probability

of correctly guessing one address as a true positive) is large when
2N/M ≤ 0.4, as long as N < 100. Given a modest number of
addresses in the Bloom filter (i.e, N < 100), Pf (m = 2N) is
small when m

M
is small. As m

M
increases, Pf (m = 2N) increases

(and Ph(1)
decreases). As shown in Figure 2, Pf (m = 2N) is

less affected by m
M

for larger M . For example, when N = 10,
Ph(10)

= 0.99 which corresponds to the probability of correctly
guessing all the true positives when the SPV client has 10 ad-
dresses.

This means that the information leakage in SPV clients is con-
siderable for new Bitcoin users, and for Bitcoin users which restart
their SPV clients. For instance, at initialization time, the Bloom
filter of SPV clients is typically instantiated using M = 102. Our
results show that if the user is new in the Bitcoin system and only
has 1 Bitcoin address, Ph(1)

≈ 1, which signals complete lack of
privacy. Recall that this observation also holds when the SPV client
restarts and N < 100; for instance, when N = 20, m = 40,
Ph(1)

≈ N
N+|B|Pf (m)

≈ 0.98 and Ph(20)
≈ 0.20 (cf. figure 4). We

validate our analysis experimentally in Section 4.2.

2) 2N/M > 0.4.
Conforming with our previous analysis, when 2N/M > 0.4,

Pf (m = 2N) is close to Pt. Recall that in this case, the probability
of correctly guessing one address reaches a local minimum when
N = M

2
(cf. Figure 2). Our results also show that the global

minimum achieved by Ph(1)
is 0.002961 and is reached when the

user has N = 51 addresses.
In addition, we analytically compute Ph(j)

when the SPV client
has 5, 10, 15 and 20 addresses. Our results in Figure 4 show that
guessing all addresses given one filter which embeds less than 15
addresses can be achieved with almost 0.80 probability. This prob-
ability decreases as the number of addresses embedded within the
filter increases beyond 15.
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Figure 4: Ph(j)
with respect to the number of addresses inserted

in the Bloom filter. Given an SPV client with 5 addresses, all ad-
dresses can be guessed; when the SPV client has 20 addresses, 20%
of the addresses can be guessed with almost 0.90 probability. Here,
we assume that the user restarts its SPV client.

4.2 Experimental Evaluation
We now proceed to validate our analytical results empirically, by

means of implementation. For that purpose, we parsed the block
chain from the genesis block mined in 2009 until the beginning of
April 2014 using the parser in [7] and collected nearly 33 million
distinct addresses. In our evaluation, we rely on Bitcoin Wallet [8],
which builds upon the standard Bitcoinj library (0.12-SNAPSHOT
of end of April 2014).

As mentioned earlier, Bitcoinj initializes by constructing one ad-
dress by default. The user can subsequently add addresses to his
wallet. Our implementation setup is depicted in Figure 3. Here, we
construct 10 different Bitcoin wallets, and we gradually increase
the number of Bitcoin addresses which populate each wallet from
1 address to 9,000 Bitcoin addresses. Whenever new addresses are
added to the wallets, we compute the modified Bloom filters; we
increase the number of addresses by a step of 2 addresses to reach
19 addresses, and then by a step of 5 addresses to reach 8,999 ad-
dresses. As such, our experiments resulted in the evaluation of a
total of 18,060 different Bloom filters which contain various num-
ber of elements, and pertain to 10 different SPV clients. For each
Bloom filter, we compute the matching set of Bitcoin addresses, we
compare this set with the actual addresses inserted in each Bloom
filter in order to compute S, and Ph(.)

. Since we assume here that
the adversary has no a priori knowledge about Bitcoin addresses,
S corresponds to the number of existing Bitcoin addresses (among
the 33,000,000 total Bitcoin addresses) that match the Bloom filter
of the SPV client, and that are not the addresses of the SPV client
(i.e., S corresponds to the false positives generated by the Bloom
filter).

Each data point in our experiments corresponds to the average
of 10 independent measurements obtained from each of the 10
wallets. Our results (cf. Table 2) confirm our analysis in Sec-
tion 4.1. More specifically, our results show that given few ad-
dresses (small N ), Ph(.)

is large; for example, when N = 19, Bi

results in an average of 6.1 false positives among all 33,000,000 ad-
dresses which corresponds to Ph(1)

= 0.76 and Ph(N/2)
= 0.0433.

As N increases to 49 addresses, Ph(1)
and Ph(N/2)

decrease to
0.004 and 0, respectively. Indeed, when N = 49, N/M ≈ 0.5,
since initially Bi is computed with M = 102. Here, Bi incurs
Pf (98) ≈ Pt false positive rates. When N increases beyond 51,
then m > M , and the Bloom filter is resized to fit M = 2N +100



elements. In this case, when 2N/M is small, Ph(.)
is large. For

instance, when N = 54, Ph(1)
is 0.36, which corresponds to a to-

tal of 96 false positives seen by the adversary among all addresses
in B. This process re-iterates whenever Bi is resized, however as
N increases, we observe that the fluctuations in Ph(.)

decrease as
Pf (2N) converges towards Pt.

Our results therefore show that the information leakage due to
the reliance on Bloom filters in SPV clients is considerable when
the user has a modest number of addresses. In this case, our find-
ings show that an adversary who captures a single Bloom filter can
learn with high probability the Bitcoin addresses inserted within
the filter.

In Figure 5, we also measure Ph(1)
and the number of false posi-

tives when the SPV client restarts and has to re-compute its Bloom
filter Bi. As mentioned earlier, our results show that the restarting
of an SPV client causes Ph(1)

to significantly increase when com-
pared to the case where the client is not restarted. As mentioned
earlier, at any restart and given N addresses, the SPV client re-
computesBi with a size ofM = 2N+100. Therefore, for modest
values ofN (e.g.,N < 100), 2N/M becomes small, thus resulting
in modest Pf (2N) and a large Ph(1)

. Our findings also show that
as N increases above 500 addresses, Ph(1)

also increases. This
is the case since the number of false positives provided by Bi is
bounded by Pt|B|, and does not depend on N .

Summary.

• We show that the probability Ph(.)
that the attacker correctly

guesses the addresses of the SPV client is large when the
number N of addresses inserted in the filter is smaller than
20. For example, if the SPV client has 15 addresses in its
wallet and restarts, correctly guessing all of its address can
be achieved with a probability of at least Ph(15)

= 0.8.

• Due to addition of the constant ‘100’ to M (the maximum
number of elements the Bloom filter is designed for), the
closer m (the actual number of elements in the filter) is to
M , the higher is the privacy offered by the Bloom filter.

5. INFORMATION LEAKAGE DUE TO
MULTIPLE BLOOM FILTERS

In Section 4.1, we analyzed the information leakage in the pres-
ence of an adversary who has access to a single Bloom filter in-
stance of an SPV client. In this section, we extend our analysis to
cover a more powerful adversary who can acquire multiple Bloom
filters pertaining to SPV clients.

5.1 Leakage under Multiple Bloom Filters
In what follows, we assume that the adversary can acquire b > 1

Bloom filters pertaining to different users. For example, the adver-
sary might be connected to SPV clients for a long period of time,
and receive their updated Bloom filter. Alternatively, the adversary
can acquire additional Bloom filters by compromising/colluding
with other full Bitcoin nodes. Note that in our analysis, we do
not assume that the adversary knows the correct association of the
Bloom filters to the respective users.

Two Bloom Filters.
We start by analyzing the case where the adversary acquires two

different Bloom filtersB1 andB2. In the sequel, we focus on com-
puting Ph(.)

corresponding to filter B1, which we assume to be the
smallest of the two filters (in size). In analyzing the information
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Figure 5: Ph(.)
and S computed experimentally for the first 200 in-

sertion of Bitcoin addresses into the Bloom filter (with and without
restart of the SPV client).

leakage due to the acquisition of two Bloom filters, we distinguish
two cases.

1) B1 and B2 pertain to different users.
Recall that each Bloom filter is initialized with a random seed,

chosen uniformly at random from {0, 1}64. Therefore, if B1 and
B2 pertain to different users, then it is highly likely that they are
initialized with different random seeds. This means that the false
positives generated by each filter are highly likely to correspond
to different addresses. Moreover, since different users will have
different Bitcoin addresses, B1 and B2 will contain different ele-
ments. Therefore, B1 ∩ B2 is likely to be comprised of only few
addresses, if any. Notably, when B1 and B2 pertain to different
users, then |B1 ∩ B2| can be computed as follows:

E[|B1 ∩ B2|] ≈ (|B1| −N1)|B2|
1

|B| −N1
(6)

≈ Pf (m1)Pf (m2)|B|2

|B| −N1
(7)

≈ Pf (m1)Pf (m2)|B|, (8)

where N1 corresponds to the number of elements inserted in B1.
E[|B1 ∩ B2|] is the expected number of elements which match B2

and B1. The number of elements in B which match B2 is given
by Pf (m2)|B|. Then, E[|B1 ∩ B2|] can be computed by assuming
a binomial distribution with success probability Pf (m2), and with
Pf (m2)|B| number of trials.

Note that the adversary can compute m1 (using Equation 4); if
m1 > |B1 ∩ B2|, then this offers a clear distinguisher for the ad-
versary that the two acquired Bloom filters B1 and B2 pertain to
different user wallets.

2) B1 and B2 pertain to the same user.
On the other hand, in the case where B1 and B2 correspond to

the same SPV client, three sub-cases emerge:

B1 and B2 use the same size/seed: This is the case when users,
e.g., create additional Bitcoin addresses and need to update
their outsourced Bloom filters to include those addresses. In
this case, B1 and B2 are likely to comprise of similar Bitcoin
addresses. This includes both the actual elements of the fil-
ters, i.e., the Bitcoin addresses of the user, and the false pos-



N Ph(1)
Ph(1)

Ph(1)
Ph(dN/2e) Ph(dN/2e) Ph(dN/2e) Ph(N)

Ph(N)
Ph(N)

Pt (0.05%) (0.1%) (0.5%) (0.05%) (0.1%) (0.5%) (0.05%) (0.1%) (0.5%)
1 1(±0) 1(±0) 1(±0) - - - 1 1 1
3 1(±0) 1(±0) 1(±0) 1 1 1 1 1 1
19 0.76(±0.03) 0.42(±0.03) 0.03(±0.002) 0.0433 0.000026 0 0 0 0
49 0.004(± 0.00032) 0.0021(±0.00019) 0.00035(±0.00002) 0 0 0 0 0 0
54 0.36(±0.02) 0.14(±0.0059) 0.01(±0.00089) 0 0 0 0 0 0
8,999 0.35(±0.002) 0.21(±0.00075) 0.05(±0.00032) 0 0 0 0 0 0

Table 2: Ph(.)
with respect to Pt and N . Each data point is averaged over 10 independent runs; we also show the corresponding 95%

confidence intervals.

itives generated by the Bloom filter. In this case, |B1 ∩ B2|
can be computed as follows:

E[|B1 ∩ B2|] ≈ N1 + Pf (2N1)|B| (9)

Ph(j)
≈

j−1∏
k=0

N1 − k
N1 + Pf (2N1)|B| − k

(10)

Notice that |B1 ∩ B2| = S1 + N1 = |B1| (since B1 ⊂
B2); therefore, Ph(j)

is not affected by the acquisition of the
second filter B2.

B1 and B2 use different seeds: In existing SPV clients, the ran-
dom nonce r used to instantiate the Bloom filter is stored
in volatile memory. Therefore, each time the SPV client is
restarted (e.g., smartphone reboots), a new filter will be cre-
ated with a new seed chosen uniformly at random. If the
adversary acquires two Bloom filters of the same user which
are initialized with different seeds, then these filters are likely
to exhibit different false positives. B1 and B2 will however
comprise of a number of identical elements (which map to
the Bitcoin addresses of the user). More specifically,

E[|B1 ∩ B2|] ≈ N1 + (|B1| −N1)
|B2|

|B| −N1
(11)

≈ N1 + Pf (m1)Pf (m2)|B| (12)

Ph(j)
≈

j−1∏
k=0

N1 − k
N1 + Pf (m1)Pf (m2)|B| − k

(13)

As we show in Section 5.2, the obtained Ph(j)
is consider-

ably large in this case, when compared to the case where the
adversary has access to only one filter.

B1 and B2 use the same seed, but have different sizes: This is
the case when users, e.g., create additional Bitcoin addresses
beyond the capacity of their current Bloom filters. SPV clients
therefore need to resize their Bloom filters. Note that fil-
ter resizing typically shuffles the bits of the Bloom filters;
the resulting distribution of bits in the new resized filter is
not necessarily pseudo-random (since the same seed is used)
and depends on the sizes of the filters. As such, only the
lower bound on |B1∩B2| can be estimated using Equation 12
(which estimates the worst case where filter resizing causes a
pseudo-random permutation of the bits of the filters); in Sec-
tion 5.2, we confirm our analysis by means of experiments.

Recall that since there are only few tens of millions of addresses
in Bitcoin, the adversary can brute-force search the entire list of Bit-
coin addresses in order to acquire B1 and B2 and compute B1∩B2.
Given any two Bloom filters B1 and B2, the adversary can easily
guess whether these two Bloom filters contain Bitcoin addresses
from the same wallet. Indeed, if |B1∩B2| is small, then it is highly

likely that B1 and B2 map to different elements (if m1 and m2 are
not small), and therefore pertain to different users. On the other
hand, when |B1 ∩ B2| � 0, it is highly likely that all the Bitcoin
addresses in the set B1 ∩ B2 belong to the same SPV client.

Multiple Bloom Filters.
In the previous paragraphs, we discussed the case where the ad-

versary is equipped with only two Bloom filters. We point out that
our analysis equally applies to the case where the adversary pos-
sesses any number b > 2 of Bloom filters pertaining to the same
entity.

As mentioned earlier, by computing the intersection between
each pair of filters, the adversary can find common elements to dif-
ferent filters; this also enables the adversary to guess with high con-
fidence whether different filters have been generated by the same
client. Given b filters which belong to the same SPV client, the ad-
versary can compute the number of elements inserted within each
filter using Equation 4. In the sequel, we assume that filtersB1, . . . ,
Bb are sorted by increasing number of elements (i.e., Bb contains
the largest number of elements), and that filters are constructed us-
ing different seeds. Let Kj = Bj ∩ · · · ∩ B(b−1), ∀j ∈ [1, b− 1].

Note that |K1| ≤ |K2| · · · ≤ |K(b−1)|. Here, the larger the num-
ber of Bloom filters at the disposal of the adversary, the smaller is
the error of the adversary in correctly classifying the genuine ad-
dresses of the SPV client, and the larger is Ph(.)

. That is, the larger
is b, the smaller are the number of common false positives that are
exhibited by the different filters, and the higher is the confidence
of the adversary in identifying the false positives of Bj . Following
Equation 12,

E[|K1|] = min(|B1|, |B2|, . . . ) ≈ N1 + |B|
∏
∀j

Pf (mj) (14)

Ph(j)
≈

j−1∏
k=0

Ni − k
Ni − k + |B|

∏
∀j Pf (mj)

(15)

Moreover, as j increases, Kj will contain more false positives,
and Ph(j)

will decrease.

5.2 Experimental Evaluation
In what follows, we validate our analysis in Section 5.1 by ex-

periments using existing SPV clients. For that purpose, we rely on
a similar setup to the one used in Section 4.2, and we perform four
different experiments. We perform all four experiments by setting
the target false positive rate Pt to 0.05%, 0.1% and 0.5%, respec-
tively.

In our first experiment (Experiment 1), we create 10 different
user wallets, each generating five different Bloom filter B1,B2,. . . ,
B5 with the same size and using the same random seed r, but each
having a different number of elements N = {25, 30, 35, 40, 45}.
This corresponds to the case where 10 different users constantly



Ni, Nj Pt |Bi ∩ Bj | Ph(1)
Ph(1)

Ph(N/2)
Ph(N)

Ni, Nj Pt |Bi ∩ Bj | Ph(1)
Ph(1)

Ph(N/2)
Ph(N)

(%) (b = 2) (b = 1) (b = 2) (b = 2) (%) (b = 2) (b = 1) (b = 2) (b = 2)

Experiment 1 (Same client, same seed, same size) Experiment 2 (Same client, same seed, different size)
25,45 0.05 83.6(±10.88) 0.2990 0.2910 0 0 70,270 0.05 70.3(±0.28) 0.9957 0.0678 0.8145 0.2502
25,45 0.1 245.0(±15.36) 0.1020 0.1070 0 0 70,270 0.1 71.70(±0.48) 0.9762 0.0266 0.3177 0.0011
25,45 0.5 3192.90(±230.79) 0.0078 0.0075 0 0 70,270 0.5 671.20(±46.54) 0.1043 0.0031 0 0

Experiment 3 (Same client, different seed)
10, 10 0.05 10.0(±0.0) 1 0.9997 1 1 10, 10 0.5 10.0(±0.0) 1 0.7448 1 1 1
100, 100 0.05 100.0(±0.0) 1 0.1164 1 1 100, 100 0.5 110.90(±1.40) 0.9017 0.0052 0.0009 0
1,000, 1,000 0.05 1004.70(±1.54) 0.9953 0.0785 0.0390 0 1,000, 1,000 0.5 1499.70(±22.7) 0.6668 0.0077 0 0
5,000, 5,000 0.05 5007.30(±1.96) 0.9985 0.0003 0.0064 0 5,000, 5,000 0.5 5755(±15.05) 0.8688 0.0308 0 0
10, 10 0.1 10.0(±0.0) 1 0.9969 1 1 1,000, 1,000 0.1 1015.60(±2.37) 0.9846 0.0395 0 0
100, 100 0.1 100.30(±0.28) 0.9970 0.0464 0.8138 0.225 5,000, 5,000 0.1 5032.40(±3.15) 0.9936 0.1376 0 0

Table 3: Measuring |Bi ∩ Bj | and Ph(.)
in Experiments 1,2, and 3, using filters of the same SPV client with respect to N and Pt. Here,

mi ≤ mj . Each data point is averaged over 10 independent runs; we also present the 95% confidence intervals.

insert new Bitcoin addresses and update their outsourced Bloom
filters. Here, we assume that our adversary captures all 50 Bloom
filters and applies our analysis described in Section 5.1 to learn
additional information about the user addresses. In this experiment,
we compute I1 = B1 ∩ B5 for each SPV client; we then report the
average intersection size for all 10 wallets in Table 3.

Our results in Table 3 show that Bloom filters pertaining to the
same SPV client, and which share the same initial seed, are likely to
exhibit the same false positives (in addition to the elements inserted
in the Bloom filter). Indeed, our results show that |I1|—measured
experimentally—matches Equation 9, irrespective of the target Pt;
moreover, in this case, Ph(.)

obtained using b = 2 Bloom filters
(cf. Equation 13) is similar to Ph(.)

when b = 1 one Bloom filter.
In our second experiment (Experiment 2), we extend our evalu-

ation to account for the case where Bloom filters originating from
the same user have different sizes. Here, we also create 10 different
user wallets, each generating five different Bloom filtersB1,B2,. . . ,
B5 using the same random seed, but each having a different num-
ber of elements (respectively N = {70, 120, 170, 220, 270}) and
different sizes (M ranges between 3224 and 9680 bits). Analo-
gously to Experiment 1, we compute I2 = B1 ∩ B5 for each SPV
client; we then report the average intersection size for all 10 wallets
in Table 3. Additionally, we compute the intersection set I3 shared
by B1 from the first wallet, with a randomly chosen Bloom filter
from the remaining 9 wallets. In Table 5, we report the average in-
tersection set size over the 9 wallets. Our results in Tables 3 and 5
confirm our aforementioned analysis. Indeed, |I2| matches the val-
ues derived using Equation 12 when the Bloom filters pertain to the
same user. Otherwise, |I3| matches Equation 6.

Our results also show that Ph(.)
obtained using b = 2 Bloom

filters (cf. Equation 12) is considerably larger when compared to
the case where the adversary has access to only one Bloom filter
(cf. Equation 5).

In our third experiment (Experiment 3), we investigate the case
where Bloom filters pertaining to the same user are initialized with
different random seeds. As mentioned earlier, this, e.g., corre-
sponds to the case when the user restarts the SPV client. In this
experiment, we create 10 different user wallets, each generating
16 different Bloom filters constructed using different initial seeds
as follows: 4 filters B1,B2,B3,B4 with N = 10, N = 100,
N = 1, 000, and N = 10, 000, respectively. For each wallet,
and all filters of the same size, we compute I4 = B1 ∩ B4 and we
report the average |I4| for each filter sizes in Table 3. Additionally,
for each filter size, we also compute the intersection set I5 using
B1 from the first wallet, with a randomly chosen Bloom filter from
all other 9 wallets. In Table 5, we report the average intersection

set size over the 9 wallets. Similar to Experiment 2, our results in
Table 3 show that, irrespective of the filter size, and of the target
false positive rate, Ph(.)

significantly decreases when the adversary
acquires b = 2 Bloom filters pertaining to the same SPV client.

Finally, in our final experiment (Experiment 4), we investigate
the impact of having b > 2 Bloom filters pertaining to the same
SPV client. For that purpose, we use 5 Bloom filters B1,B2,. . . ,B5

generated using different seeds withN = {3070, 3120, 3170, 3220
, 3270}. We then computeKj = B1∩· · ·∩B(j+1), ∀j ∈ [1, b−1],
and the corresponding Ph(.)

using Equation 15. Our findings are
depicted in Table 4; our results validate our aforementioned analy-
sis and show that the larger the number b of acquired Bloom filters
of the same SPV client, the larger is Ph(.)

, and the smaller is the
privacy of the user’s addresses.

Summary.

• In Experiments 1,2, and 3, notice that |I3| ≈ |I5| � min(m1,m2)
2

.
This means that given any two Bloom filters B1 and B2, if
|B1∩B2| � min(m1,m2)

2
(estimated using Equation 1), then

an adversary can easily tell whether any two Bloom filters
pertain to the same SPV client.

• If the two Bloom filters acquired by the adversary belong to
the same SPV client, the adversary can identify whether the
SPV client has restarted while generating his Bloom filters;
here, notice that min(m1,m2)

2
≤ |I4| � |I2| � |I1|.

• Ph(.)
corresponding to b = 2 filters is considerably larger

when compared to the case where the adversary has access to
one Bloom filter. This means that an adversary which can ac-
quire more than one Bloom filter pertaining to an SPV client
can learn considerable information about the addresses of the
node—irrespective of the size of the Bloom filter and Pt. In
this case, our results show that Ph(N)

approaches 1, which
signals full leakage of the addresses of the SPV client. Ph(.)

increases to 1 as the number b of Bloom filters of the same
SPV client captured by the adversary increases.

6. OUR PROPOSED SOLUTION
Given our findings, we propose in what follows a solution that

enhances the privacy of SPV clients which rely on Bloom filters.
Before presenting our solution, we briefly summarize our observa-
tions from Sections 4 and 5.



b Ph(1)
Ph(1)

Ph(N/2)
Ph(N/2)

Ph(N)
Ph(N)

(Pt = 0.05%) (Pt = 0.1%) (Pt = 0.05%) (Pt = 0.1%) (Pt = 0.05%) (Pt = 0.1%)
(Analy.) (Emp.) (Analy.) (Emp.) (Analy.) (Emp.) (Analy.) (Emp.) (Analy.) (Emp.) (Analy.) (Emp.)

1 0.1713 0.1715 0.0926 0.0916 0 0 0 0 0 0 0 0
2 0.9978 0.9977 0.9911 0.9908 0.0091 0.0079 0 0 0 0 0 0
3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1

Table 4: Experiment 4: Ph(.)
w.r.t. the number b of Bloom filters which pertain to same SPV client. Here, we assume that each filter is

generated using a different seed.

Ni Pt E[|Bi ∩ Bj |] |Bi ∩ Bj |
(%) (Analytical) (Empirical)

Experiment 2 (Different client, different seed, different size)
- 0.05 - 0.0(±0)
- 0.1 - 1.22(±0.60)
- 0.5 - 31.60(±6.34)

Experiment 3 (Different client, different seed, same size)
10 0.05 0 0.0(±0.0)
10 0.1 0 0.0(±0.0)
10 0.5 0 0.0(±0.0)
100 0.05 0 0.0(±0.0)
100 0.1 0.13 0.0(±0.0)
100 0.5 11.27 13.89(±1.64)
1,000 0.05 4.21 5.0(±0.97)
1,000 0.1 18.06 21.11(±2.35)
1,000 0.5 523.20 512.89(±23.21)
5,000 0.05 7.37 11.89(±1.73)
5,000 0.1 30.01 40.11(±3.40)
5,000 0.5 753.41 789.78(±18.92)

Table 5: Measuring |B1 ∩ B2| in Experiments 1,2, and 3, using
filters pertaining to different SPV clients with respect to Pt. Each
data point is averaged over 10 independent runs.

Observation 1: The number of elements inserted within a Bloom
filter significantly affects the resulting false positive rate of
the filter. This is especially true when the filter’s size is mod-
est (e.g., < 500). Indeed, the number of elements inserted in
the filter should match at all times the filter’s size in order to
achieve the target false positive rate (i.e., Pf (m) = Pt).

Observation 2: The acquisition of multiple Bloom filters consid-
erably reduces the privacy of SPV clients. The construction
of multiple Bloom filters per SPV client should be avoided.
Otherwise, different Bloom filters should be constructed with
different initial seeds, and should contain different elements.
In this way, an adversary does not gain considerable advan-
tage when acquiring two or more Bloom filters.

Observation 3: SPV clients should keep state about their outsourced
Bloom filters (i.e., on persistent storage) to avoid the need to
re-compute a filter which contains the same elements using
different parameters.

Observation 4: As mentioned earlier, inserting both the public key
and the public key hash (the address) in the Bloom filter pro-
vides a sufficient distinguisher for the adversary in guessing
whether an address is a true positive or not. Note that for
the most common transaction type Pubkey Hash (P2PKH),
inserting the hash of the public key is sufficient. However,
there might be other transaction types where it is beneficial to
also store the public key in the Bloom filter. In this case, the
client can insert either a Bitcoin address or its corresponding
public key (but not both) in the same Bloom filter. Indeed,

sample experimental results that we conducted show that for
almost 99% of all addresses in the network, it suffices to in-
sert either the public key or the public key hash within the
same Bloom filter in order to receive all the relevant transac-
tions destined to the address.

Our Solution.
In what follows, we describe a solution which leverages Obser-

vations 1, 2, 3, and 4. Our proposed solution unfolds as follows.
During the first setup of the client, each SPV client generates N
Bitcoin addresses, and embeds them in a Bloom filter which can fit
M = m = N . Here, the Bloom filter is constructed with a real-
istic target false positive rate Pt, which combined with N and M ,
results in a target privacy level (cf. Equation 3). Note that since
M = m, then we ensure that the Bloom filter’s false positive rate
matches Pt (cf. Section 4). Here, we assume that only the address
is inserted within each filter.

Clearly, since the user might not directly use all N addresses,
some of his Bitcoin addresses will not be revealed and will remain
in his wallets. Whenever users run out of their N addresses and
need to get additional addresses, they repeat the aforementioned
setup process. That is, users create an additional set ofN addresses
and embed them in a new Bloom filter—constructed with a new
initial seed— with M = m = N , and using the previously chosen
Pt. Here, the advantage of an adversary which captures one or
more Bloom filters pertaining to the same SPV client is negligible,
since these filters do not have any element in common.

Additionally, our solution requires the SPV clients to keep state,
e.g., about each Bloom filter, to avoid the need of re-computation of
the same filter if the client restarts at any point in time. We point out
that the required storage overhead to maintain information about
the state of each Bloom filter is negligible. Indeed, to keep all the
necessary state to reconstruct a Bloom filter, an SPV client needs
to locally store: (i) the number of addresses embedded in the filer
(4 bytes), (ii) the used target false positive rate Pt (8 bytes), (iii)
the used seed value (8 bytes), (iv) the BloomUpdate flag (2 bytes),
and (v) the addresses inserted in the filter. The SPV client can add a
pointer in the ECKey class of Bitcoinj in order to link each Bitcoin
address to the Bloom filter that embeds it; the size of the pointer
is roughly 2 bytes per address. This amounts to a total storage of
2N + 20 bytes per Bloom filter. For example, when N = 100, the
SPV client needs to store an additional 220 bytes per Bloom filter
in order to reconstruct the filter upon restart; clearly, this overhead
can be easily tolerated in existing SPV client implementations.

Clearly, our proposed solution can be directly integrated within
existing SPV clients, and only incurs in small modifications to ex-
isting client implementations. Moreover, our solution does not in-
cur additional overhead on the SPV clients—apart from the pre-
generation of N Bitcoin addresses (which is only done at setup
time), and the storage space required for each generated Bloom fil-
ter. Note that our solution requires SPV clients to outsource all their
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Figure 6: Evaluation of our countermeasure. Here, we measure
Ph(1)

and Ph(N)
given Pt = 0.05 and assuming the current SPV

client implementation. In computing Ph(1)
, we assume that the

SPV client did not restart since initialization.

filters to full Bitcoin nodes since different filters embed different
sets of their addresses. Therefore, N should be carefully chosen.
If a user needs many addresses, choosing a larger N would avoid
the generation of a larger number of Bloom filters. We leave the
task of finding the best parameters when constructing a Bloom fil-
ter as an interesting direction for future work. Since users typically
have few hundred Bitcoin addresses, we argue that this overhead
can be largely tolerated given the current usage patterns in Bitcoin.
Notice that the larger is N , the smaller are the number of Bloom
filters created by the SPV client. Note that, in our solution, an SPV
client should not outsource more than one Bloom filter to each reg-
ular node that it connects to. Indeed, if the client outsources several
filters to the same node, then the regular node can correlate these
filters (even if they do not embed the same elements).

In Figure 6, we analytically compute Ph given our countermea-
sure. Clearly, our countermeasure considerably decreases Ph, es-
pecially for clients that have a small number of addresses.

Additional Insights.
We point out that an adversary which has access to the Bitcoin

block chain can observe that Bitcoin addresses which recently were
used by an SPV client do match the Bloom filter of that client. This
knowledge clearly reduces the privacy of newly used addresses.
Here, we stress that every newly used address of an SPV client
is likely to match the Bloom filters of a fraction Pt of all other
SPV clients. In our solution, Pt therefore defines the minimum
anonymity set size of each address.

One alternative would be to embed existing Bitcoin addresses
that do not belong to the node, when constructing each Bloom fil-
ter. Subsequently, whenever an SPV client needs to generate a new
Bitcoin address, it will choose a Bitcoin address which matches its
existing Bloom filter7. However, this alternative also results in an
anonymity set defined by Pt; it also comes at the expense of com-
putational overhead incurred on the SPV clients. In an experiment
that we conducted using a Bloom filter Bt of size 1608 bits with
Pt = 0.05% and m = 102, we were able to generate three new
Bitcoin addresses which match Bt; these addresses were found af-
ter 240,351, 415,877, and 5,767,346 tries, respectively.

7That can be achieved, e.g., by constantly generating a new Bitcoin
address until it matches its existing Bloom filter.

Moreover, we point out that our analysis and solution do not ad-
dress the case where the adversary can link addresses by using side-
channel information from the Bitcoin block chain, namely:

Filtering false positives by date: SPV client implementations only
appeared in the second half of 2011, which is 1.5 years af-
ter Bitcoin started. Therefore, if a Bitcoin address which
was created before 2011 matches the Bloom filter of an SPV
client, the adversary can label it, with high confidence, to be
a false positive, and not a Bitcoin address of the node. Our
proposed solution however relies on the assumption that the
number of addresses created from 2011 exceeds by far that
corresponding to the period from 2009-2011, during which
Bitcoin was still not widely used at the time.

Clustering Bitcoin addresses: The adversary can make use of tech-
niques such as [11, 18, 22] to link/cluster certain Bitcoin ad-
dresses based on user behavior, transaction amounts/time,
etc., and assess whether an address matching a Bloom fil-
ter is a false positive or a true positive. For instance, if two
addresses which match Bi are used as inputs to the same
transaction, then the adversary can be certain that these ad-
dresses are linked to the same entity [11], and as such are
unlikely to be false positives. Here, we point out that our
proposed solution can be used in conjunction with existing
solutions such as [10, 23] to prevent the linking/clustering of
addresses using such techniques.

7. RELATED WORK
In this section, we overview related work in the area.

User Privacy in Bitcoin: Bitcoin has received considerable atten-
tion from the research community [5, 12, 16–19, 21].

In [11], Androulaki et al. evaluate user privacy in Bitcoin and
show that Bitcoin leaks considerable information about the profiles
of user. In [6], Elias investigates the legal aspects of privacy in
Bitcoin. In [26], Reid and Harrigan explore user anonymity lim-
its in Bitcoin. In [27], Ron and Shamir investigate how users move
BTCs between their various accounts in order to better protect their
privacy. In [22], the authors investigated the possibility of linking
addresses of the same user together by utilizing the Bitcoin peers
network address information (IPs). Miers et al. introduced in [23]
ZeroCoin, a cryptographic extension to Bitcoin that augments the
protocol to prevent the tracing of coin expenditure. In [10], An-
droulaki and Karame proposed an extension of ZeroCoin to hide
the transaction values and address balances in the system.

Privacy in Bloom Filters: As far as we are aware, Mullin et al. [24]
were the first to propose an estimate the false positive rate of Bloom
filters. In [15], Christensen et al. propose a novel technique for
computing the false positive rate, which results in tighter estimates
when compared to [24].

In [13], Bianchi et. al quantify the privacy properties of Bloom
filters; their analysis, however, does not address the privacy pro-
visions when the adversary has access to multiple Bloom filters
originating from the same entity. In [25], Nojima et. al, propose a
cryptographically secure privacy-preserving Bloom-filtering proto-
col based on blind signatures; this proposal, however, incurs addi-
tional computational load on SPV nodes.

8. CONCLUSION
In this paper, we explored the privacy provisions due to the in-

tegration of Bloom filters in SPV clients. Our results show that



Bloom filters incur serious privacy leakage in existing SPV client
implementations. More specifically, we show that a considerable
number of the addresses of users of SPV clients which possess a
modest number of Bitcoin addresses (e.g., < 20) are leaked by a
single Bloom filter. Moreover, we show that a considerable number
of the addresses of users is leaked if the adversary can collect two
different Bloom filters issued by the same node, irrespective of the
target false positive rate of the filter, and of the number of addresses
owned by the user.

Given that such an information leakage might severely harm the
privacy of users, we argue that the integration of appropriate coun-
termeasures in the current SPV client implementation of Bitcoin
emerges as a necessity. To this end, we propose a lightweight so-
lution that enhances the privacy offered by Bloom filters; our pro-
posal can be integrated within existing SPV client implementations
with minimum modifications.
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