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Abstract. We construct a 3-move public coin special honest verifier zero-knowledge
proof, a so-called Sigma-protocol, for a list of commitments having at least one commit-
ment that opens to 0. It is not required for the prover to know openings of the other
commitments. The proof system is efficient, in particular in terms of communication
requiring only the transmission of a logarithmic number of commitments.

We use our proof system to instantiate both ring signatures and zerocoin, a novel mech-
anism for bitcoin privacy. We use our Sigma-protocol as a (linkable) ad-hoc group identi-
fication scheme where the users have public keys that are commitments and demonstrate
knowledge of an opening for one of the commitments to unlinkably identify themselves
(once) as belonging to the group. Applying the Fiat-Shamir transform on the group
identification scheme gives rise to ring signatures, applying it to the linkable group iden-
tification scheme gives rise to zerocoin.

Our ring signatures are very small compared to other ring signature schemes and we
only assume the users’ secret keys to be the discrete logarithms of single group elements
so the setup is quite realistic. Similarly, compared with the original zerocoin protocol
we rely on a weak cryptographic assumption and do not require a trusted setup.

A third application of our Sigma protocol is an efficient proof of membership of a secret
committed value u belonging to a public list £ = {\1,...,An}.

Keywords: Sigma-protocol, zero-knowledge, disjunctive proof, ring signature, zerocoin,
membership proof.

1 Introduction

A large fraction of deployed cryptographic schemes rely either on cryptographic hash-functions
or the discrete logarithm assumption for their security. As a consequence their mathematical
structures, compression functions and cyclic prime-order groups respectively, receive a fair
amount of scrutiny. This makes them attractive building-blocks for peer-to-peer applications
that operate in a world in which no-one is trusted and everyone is potentially malicious. We
revisit two such applications, ring signatures and zerocoin, and show how to construct both
of them using a X-protocol that relies only on the security of a homomorphic commitment
scheme. When instantiated with Pedersen commitments it is computationally sound, relying
only on the discrete logarithm assumption. This results in very efficient instantiations under
a weak cryptographic assumption for both ring signatures and zerocoin and reveals a striking
connection between the two schemes.

X -protocols are 3-move interactive protocols that allow a prover to convince a verifier that
a statement is true. The prover sends an initial message, the verifier responds with a random
challenge, and the prover sends a response. At the end of the interaction, the verifier looks at
the transcript and decides whether to accept or reject the proof that the statement is true. A
X -protocol should be complete, sound and zero-knowledge in the following sense:

Complete: If the prover knows a witness w for the statement u then she should be able to
convince the verifier.

Special sound: If the prover does not know a witness w for the statement, she should not
be able to convince the verifier. This is formalized as saying that if the prover can answer
several different challenges satisfactorily, then it is possible to extract a witness from the
accepting transcripts.

* The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.
307937.



Special honest verifier zero-knowledge: The X-protocol should not reveal anything
about the prover’s witness. This is formalized as saying that given any verifier challenge it
is possible to simulate a protocol transcript.

Y -protocols are widely used. When working in cyclic prime-order groups or RSA-type
groups there are very efficient X-protocols such as the identification schemes of Schnorr [Sch91]
and Guillou-Quisquater [GQ88]. An advantage of X-protocols is that they are easy to make
non-interactive by using the Fiat-Shamir heuristic [F'S86] where a cryptographic hash-function
is used to compute the challenge instead of having an online verifier. It can be argued in the
random oracle model [BR93] where the hash-function is modeled as a truly random function
that this gives us secure non-interactive zero-knowledge proofs. This makes X-protocols very
useful in the construction of digital signature schemes and encryption schemes, which are non-
interactive in nature.

1.1 Our contribution

It is well-known that there are efficient X-protocols with linear complexity for NP-complete
languages such as circuit satisfiability. We consider statements consisting of N commitments
co,---,cN—1- The prover’s claim is that she knows an opening of one of the commitments ¢,
to the value 0. Our main contribution is a new X-protocol for this type of statement that has
logarithmic communication complexity.

Our construction works for any additively homomorphic non-interactive commitment
scheme (see Sect. 2.1) over Z,, where ¢ is a large prime. Examples of such commitment schemes
include Pedersen commitments [Ped91] and variants of ElGamal encryption [E1G85] where the
message is encoded as an exponent. These commitment schemes specify a commitment key ck,
which in the case of Pedersen commitments specifies a prime-order group G and two group
elements g, h. Given a value m € Z, and perhaps some randomness r € Z, it is then possible to
compute a commitment, which in the case of Pedersen commitments is computed as ¢ = g"*h".

Given a commitment key ck and a statement of the form (cg,...,cy—1) the prover who
knows an opening (0,7) of one of the commitments ¢, = Comc(m;r) with m = 0 can use
our Y-protocol to convince the verifier of having this knowledge. Our X-protocol has perfect
completeness, i.e., the verifier can always convince the verifier when she has a witness (0, 7). It
has (log N + 1)-special soundness, which means given log N + 1 accepting transcripts for the
statement with distinct challenges g, ..., Ziog ;v from the verifier, it is possible to compute an
opening (0, ) of one of the commitments. Finally, it has special honest verifier zero-knowledge
such that given a challenge = from the verifier it is possible to simulate a transcript without
knowing an opening of any of the commitments. When instantiated with the Pedersen com-
mitment scheme our X-protocol has perfect special honest verifier zero-knowledge, since the
Pedersen commitment scheme is perfectly hiding.

Our XY-protocol requires the prover to send 4log N commitments and 3log N + 1 elements
in Z4. When instantiated with Pedersen commitments the prover has to compute roughly
Nlog N exponentiations and the verifier has to compute roughly N exponentiations. Multi-
exponentiation techniques and batching techniques can be used to reduce the computational
cost.

Finally, when the prover knows the openings of all the commitments its computation can be
faster and is determined by the cost of approximately 3N log N multiplications in Z, and mak-
ing 4log N commitments. This is a huge improvement over existing protocols in the literature
like those employed by [DMV13] for rate-limited function evaluation.

Another example where the prover knows the openings is in a membership proof. Here
the prover has a commitment ¢ and wants to prove knowledge of an opening to a value u

that belongs to a list £ = {Ag,...,Any—1}. This can be done by forming commitments ¢y =
¢+ Comer(—=Ng), ..., en—1 = ¢+ Come(—Any—1) and proving knowledge of an opening of one of
the commitments to 0. Due to the special structure of the commitments cg,...,cy_1 we get

very efficient computation of 2/Vlog N and 2N multiplications in Z, for the prover and verifier,
respectively. This is an improvement over the membership proofs of Bayer and Groth [BG13]
that use O(N log® N ) multiplications for both the prover and verifier.?

3 Bayer and Groth’s technique also yields a non-membership proof with the same complexity. Our
techniques do not provide non-membership proofs.



1.2 Applications to ring signatures and zerocoin

Ring signatures enable a signer to include herself in an ad-hoc group, a ring, and sign a message
as a user in the ring without disclosing which one of them is the signer. A ring signature scheme
can for instance be used by a whistle blower that wants to assure the recipient that the message
has been signed by a knowledgeable source, e.g., an employee of a company laundering money,
yet at the same time wishes to remain anonymous, such that the company does not fire her
when she tells the world about their misdeeds.

Our X-protocol gives rise to a natural ad-hoc group identification scheme. All users have a
commitment that they know how to open to 0. When a user wants to identify herself as a mem-
ber of an ad-hoc group, she forms the statement consisting of the commitments cg,...,cn_1
of the users in the group and uses the X-protocol to prove she knows an opening of one of the
commitments.

By applying the Fiat-Shamir heuristic, i.e., by computing the challenge as a hash of the
initial message and the message to be signed, we can convert the group identification scheme
into a ring signature scheme. The ring signatures inherit the properties of the X-protocol.
Completeness implies that it is possible for users in the ring to sign messages since they know
an opening of one of the commitments to 0. Special soundness implies that ring signatures can
only be generated by somebody in the ring, since they imply knowledge of an opening of at
least one of the commitments. Special honest verifier zero-knowledge implies that one cannot
tell which commitment the signer can open, so the signer remains anonymous within the ring.

Specifying the ring in a ring signature may in the worst case require linear communication
but can be amortized over many ring signatures when the same ring is used repeatedly or the
ring can be specified indirectly, e.g., by saying the ring is all employees of a particular company.
Decreasing the cost of ring signatures has therefore received attention in the cryptographic
literature (see related work in Sect. 1.3). Our construction gives rise to a communication-
efficient ring signature scheme, where the signature size grows logarithmically in the number of
users in the ring. If we use the Pedersen commitment scheme, the ring signature only relies on
the discrete logarithm assumption in the random oracle model. Furthermore, the users’ keys
are just single group elements for which the users know the discrete logarithms. This makes it
easy to make ring signatures on top of a pre-existing setup in an organization that has a PKI
where users have been assigned public keys consisting of group elements of which they know
the discrete logarithms.

Zerocoin, also known as decentralized e-cash, enables users to generate their own coins.
Coins become valuable once they are accepted on a public bulletin board. These coins can
then be anonymously spent by their respective owners without disclosing which coin they are
spending. To prevent double spending a secret serial number is revealed during the spend-
ing protocol. Zerocoin was proposed as an add on, or decentralized mix, to provide strong
anonymity guarantees for bitcoin.

Our XY-protocol gives rise to a natural one-time ad-hoc group identification scheme. Each
user has a commitment ¢; to a secret random serial number S that only she knows the opening
of. When a user wants to identify herself as a member of an ad-hoc group, she reveals her
serial-number S and forms a statement for the X-protocol consisting of the commitments
co - Comer(S)™1, ... en_1 - Comy,(S)~! and proves that she knows an opening to zero for
one of these commitments. To enforce the one-time property, the verifier accepts the proof
only if S has not previously been recorded. By applying the Fiat-Shamir heuristic to this
adapted identification scheme one obtains a zerocoin protocol. An important benefit of our
construction is that in contrast to existing zerocoin instantiations it does not rely on a trusted
setup process assuming the commitment parameters ck have been generated in a way that is
publicly verifiable and excludes trapdoors, e.g., using hash functions.

1.3 Related work

There has been a significant amount of research on efficient zero-knowledge proofs. An impor-
tant early work in this direction was by Kilian [Kil92] that used probabilistically checkable
proofs and hash-trees to create an interactive argument for circuit satisfiability with polylog-
arithmic communication complexity. Kilian’s argument has computational soundness, if we
require unconditional soundness the communication complexity grows linearly in the witness
size as is for instance the case in Ishai et al. [IKOS09]. Using fully homomorphic encryption it



is possible to get unconditionally sound proofs of size |w| + poly(\) [GGIT14], where w is the
witness and A is the security parameter, although this comes at a huge computational cost.
There has also been works targeting specifically the discrete logarithm setting such as Cramer
and Damgard [CD98] getting linear communication complexity and Groth [Gro09] that gives
computationally sound arguments for circuit satisfiability with communication that is propor-
tional to the square root of the circuit size. Our X-protocol is much more efficient than these
works since it is fine-tuned for a specific language.

Our XY-protocol can be used to prove that one out of many commitments can be opened
to 0, which can be seen as a large disjunctive statement. Cramer, Damgard and Schoen-
makers [CDS94] gave a general method to construct X-protocols for disjunctive statements.
Their technique leads to a Y-protocol with linear communication complexity. There has been
works on related types of statements to the one we consider, i.e., proving something about one
out of N elements [Gro09,CGS07,BDD07] that could be potentially be used to get a square
root complexity although we are not aware of this actually having been done. Bayer and
Groth [BG13] give logarithmic size arguments for proving membership in a list, i.e., having
values Ag,...,Ay_1 and commitment ¢ to a value A; in the list. This can be seen as a dual
to our type of disjunctive statement, we in contrast have many commitments cg, ...,cy—1 but
just a single value Ay = 0 and want to prove one of the commitments ¢, contains this value.
The membership proofs of Bayer and Groth rely on an efficient proof of correct polynomial
evaluation in a a secret committed value. We draw some inspiration from the balancing and
cancellation of low degree polynomials in the challenge in the construction of our X-protocol
but do otherwise consider the problems and resulting protocols to be quite different.

Ring signatures were introduced by Rivest, Shamir and Tauman [RST01] and Bender, Katz
and Morselli [BKMO09] provide rigorous security definitions for ring signatures and generic con-
structions based on trapdoor permutations. The idea of using X-protocol for anonymous iden-
tification within a group has been proposed before, see e.g. [CDS94,Cam97], and has found
use in the constructions of ring signatures based on non-interactive zero-knowledge proofs
in the random oracle model or using pairings. Abe et al. [AOS04] use disjunctive proofs to
demonstrate possession of one out of N secret keys to construct ring signatures. The in-
stantiation of their scheme based on the discrete logarithm assumption and using the same
group for all users is similar to our ring signature except their X-protocol based on tech-
niques from [CDS94] give signatures that grow linearly in the size of the ring. Herranz and
Sdez [HS03] also give a linear size ring signature based on the discrete logarithm problem in
the random oracle model. There are also several pairing-based constructions of ring signatures
including [BGLS03,CWLY06,SW07,Boy07,CGS07]. The most efficient without random oracles
is by Chandran, Groth and Sahai [CGS07] who exhibit square root size ring signatures using
pairing based non-interactive zero-knowledge proofs.

The smallest ring signatures are by Dodis et al. [DKNS04] who use accumulators based on
the strong RSA assumption [CL02] to get ring signatures consisting of a constant number of
group elements in the random oracle model. Their construction, however, requires a setup that
includes an RSA modulus, which may not be readily available. Furthermore, since RSA moduli
have to be of size % bits to resist factorization attacks they end up with ring signatures
where the size has cubic growth in the security parameter. Nguyen [Ngu05] also give constant
size ring signatures in the random oracle model, but requires a linear size public key and relies
on pairing-based cryptography, which also leads to a ring signature size of ﬁ bits. In
contrast, our construction is based on the discrete logarithm assumption and if we use elliptic
curve groups with group elements of size O(\) bits, we end up with an asymptotic quasilinear
complexity of O(Alog N) = O(Alog ) bits for our ring signatures when the ring size N is

polynomial in the security parameter.

Zerocoin was introduced by Miers et al. [MGGR13]. Their construction is in the random
oracle model and uses an accumulator based on the strong RSA assumption together with
cut-and-choose techniques to prove group representations in the exponent. The cut-and-choose
technique results in their proofs of spending having quintic growth in the security parameter.
Danezis et al. [DFKP13] show how to efficiently construct zerocoin using succinct arguments
of knowledge (SNARKSs). Ben-Sasson et al. [BSCG114] extend zerocoin with secret balances
to build a SNARKSs based alternative currency. All known zerocoin constructions rely on a
common reference string with a specific probability distribution, except for the original zerocoin



protocol when used together with the techniques of Sander [San99] to construct theoretically
efficient RSA UFOs*

While existing constructions are constant in the number of coins on the bulletin board, RSA
accumulator based zerocoin proofs consist of ~ 50,000 bytes, compared with 32(71log N + 1)
bytes in our construction using 256-bit elliptic curve groups. This means that for all practical
purposes the logarithmic size will be preferable. The constant size of SNARK based construc-
tions, usually below a dozen group elements, is hard to beat, and indeed these constructions
pay for this by having to rely on knowledge of exponent assumptions.

2 Preliminaries

We write y = A(z;r) when the algorithm A on input 2 and randomness r, outputs y. We write
y < A(x) for the process of picking randomness r at random and setting y = A(z; 7). We also
write y < S for sampling y uniformly at random from a set S.

All algorithms in our schemes get a security parameter A € N as input written in unary 1*.
The intuition is that the higher the security parameter, the greater security we get.

Given two functions f,g: N — [0, 1] we write f(\) = g(\) if [f(A) —g(A)] = A~ We say
f is negligible if f(\) ~ 0 and that f is overwhelming if f(\) = 1.

2.1 Homomorphic commitment schemes

A non-interactive commitment scheme allows a sender to construct a commitment to a value.
Later on the sender may open the commitment and reveal the value. The receiver of the
commitment can then verify the opening and check that indeed it was this particular value
that was committed in the first place. A commitment scheme must be hiding and binding.
Hiding means that the commitment does not reveal the committed value. Binding means that
the sender cannot open the commitment to two different values.

Formally, a non-interactive commitment scheme is a pair of probabilistic polynomial time
algorithms (G, Com). The setup algorithm ck + G(1*) generates a commitment key ck. The
commitment key specifies a message space M, a randomness space R ; and a commitment
space Cc. The commitment algorithm combined with the commitment key specifies a function
Comygg : Mep X Rer — Ce. Given a message m € M,y the sender picks uniformly at random
r < R and computes the commitment ¢ = Comey(m; 7).

Definition 1 (Hiding). A non-interactive commitment scheme (G, Com) is hiding if a com-
mitment does not reveal the value. For all probabilistic polynomial time stateful adversaries

A
1

Pr |ck < G(1*); (mg,m1) < A(ck); b+ {0,1}; ¢ < Comeg(my) : Ac) = b| = 2
where A outputs mo, m1 € M. If the probability is exactly % we say the commitment scheme

is perfectly hiding.

Definition 2 (Binding). A non-interactive commitment scheme (G,Com) is binding if a
commitment can only be opened to one value. For all probabilistic polynomial time adversaries

A
Pr |ck + G(1Y); (mg, ro, m1, 1) < A(ck) : mg # mq A Comeg(mo; 7o) = Come(my;71)| ~ 0,

where A outputs mg,my € Mg and ro,71 € Rek. If the probability is exactly 0 we say the
commitment scheme is perfectly binding.

4 An RSA UFO is a large integer generated in a specific way from a source of uniformly random bits
such that there is overwhelming probability that there are two large random primes that cannot
be split from each other in a factorization of the integer. Known constructions of RSA UFOs yield
integers much larger than standard RSA moduli, so in practice protocols built on RSA UFOs are
inefficient.



Definition 3 (Strongly binding). A non-interactive commitment scheme (G,Com) is
strongly binding if a commitment can only be opened in one way, i.e., not even the randomness
can change. For all probabilistic polynomial time adversaries A

Pr |ck + g(l/\); (mg, ro,m1,71)  A(ck) : (mg,r9) # (mq,7r1)ACom.k(mo;ro) = Comer(mi;r1)| = 0,

where A outputs mg,mi; € Mg and 1,71 € Rek.

We will focus on the case where the message and randomness spaces are Z, for a prime
q > 2* specified in the commitment ck. Furthermore, we will want the commitment scheme
to be homomorphic, which means that the commitment space is also a group (written mul-
tiplicatively) and we have for all well-formed commitment keys ck and mgy, m; € M, and
79,71 € Rer that

Com,y(mo;ro) - Comeg(my;r1) = Comep(mg + my;ro +71).

Pedersen commitments. The Pedersen commitment scheme [Ped91] is a natural example of a
homomorphic commitment scheme with the desired properties. The key generation algorithm
G outputs a description of a cyclic group G of prime order g and random generators g, h. The
commitment key is ck = (G, ¢, g, h). To commit to m € Z, the committer picks randomness
r € Zg and computes Com.t(m;r) = ¢g"h". The commitment scheme is perfectly hiding and
computationally strongly binding under the discrete logarithm assumption.

2.2 JX-protocols

A Y-protocol is a special type of 3-move interactive proof system that allows a prover to
convince a verifier that a statement is true. The prover sends an initial message to the verifier,
the verifier picks a random public coin challenge z < {0,1}*, and the prover responds to the
challenge. Finally the verifier checks the transcript of the interaction and decides whether the
proof should be accepted or rejected.

We assume the existence of a probabilistic polynomial time setup algorithm G that generates
a common reference string ck that is available to all parties. In this paper the common reference
string will be a public key ck for a homomorphic non-interactive commitment scheme. It is
worth noting that such keys may be set up using prime order groups based on the discrete
logarithm problem, which makes it possible to sample them from uniformly random bits. So at
a small overhead of using uniformly random bits, we could set our schemes up in the common
random string model.

Let R be a polynomial time decidable ternary relation, we call w a witness for a statement
w if (ck,u,w) € R. We define the CRS-dependent language

Lo, ={u | Jw: (ck,u,w) € R}

as the set of statements u that have a witness w in the relation R.
A Y-protocol for R is a triple of probabilistic polynomial time stateful interactive algorithms
(G, P,V). The following run of a X-protocol describes the interaction of the algorithms

ck < G(1*): Generates the common reference string.

a < P(ck,u,w): Given (ck,u,w) € R the prover generates an initial message a.

x + {0,1}*: A public coin challenge z is chosen uniformly at random by the verifier.

z + P(z): The prover responds to the challenge x.

b« V(ck,u,a,x,z): The verifier algorithm, which will always be deterministic in this paper,
returns 1 if accepting the proof and 0 if rejecting the proof.

The triple (G,P,V) is called a X-protocol for R if it is complete, special sound and special
honest verifier zero-knowledge as defined below.

Definition 4 (Perfect completeness). (G, P,V) is perfectly complete if for all probabilistic
polynomial time adversaries A

Pr |ck < G(1M); (u, w) + A(ck);a <+ P(ck,u,w);z < {0,1}*; 2+ P(z) : V(ck,u,a,z,2) = 1} =1,

where A outputs (u,w) such that (ck,u,w) € R.



A XY-protocol should be a proof of knowledge; a prover should only be able to respond to
a random challenge if the prover “knows” a witness for the statement u. We define this in the
form of special soundness, which says that given responses to a number of different challenges
it is possible to compute a witness for the statement.

Definition 5 (n-special soundness). (G,P,V) is n-special sound if there is an efficient
extraction algorithm X that can compute the witness given n accepting transcripts with the
same initial message. Formally, for all probabilistic polynomial time adversaries A

Pr|ck «+ G(AY); (u,a, 21, 21, . .., Tp, 2n) < A(ck);w < X(ck,u,a, 21,21, ..., %0, 2n) : (ck,u,w) € R} ~ 1,

where A outputs distinct x1,..., 2, € {0,1}* and for all i € {1,...,n} the transcript is
accepting, i.e., V(ck,u,a,x;, 2;) = 1.
We say the proof has perfect n-special soundness if the probability is exactly 1.

A non-standard requirement that many X-protocols satisfy is that responses are unique,
or at least quasi unique, i.e. given an accepting proof an adversary cannot find a new valid
response for that proof. This non-malleability property is important to achieve simulation
soundness [Fis05,FKMV12].

Definition 6 (Quasi unique response). (G, P,V) has quasi unique responses if for all prob-
abilistic polynomial time adversaries A

Pr|ck < G(1Y); (u,a, 2,2, 2') « A(ck) : z # 2/ ANV(ck,u,a,z,2) = V(ck,u,a,z,2') = 1| = 1,

A Y-protocol is zero-knowledge if it does not leak information about the witness beyond
what can be inferred from the truth of the statement. We will present X-protocols that are
special honest verifier zero-knowledge in the sense that if the verifier’s challenge is known in
advance, then it is possible to simulate the entire argument without knowing the witness.

Definition 7 (Special honest verifier zero-knowledge (SHVZK)). (G,P,V) is special
honest verifier zero knowledge if there exists a probabilistic polynomial time simulator S such
that for all interactive probabilistic polynomial time adversaries A

Pr [ck — G(N); (u,w, ) < A(ck); a + P(ck,u,w); z < P(z) : Aa, 2) = }
~ Pr [ck — G(1*); (uw,w, ) + A(ck); (a, 2) < S(ck,u,z) : Ala, 2) = 1],

where A outputs (u,w,z) such that (ck,u,w) € R and x € {0,1}*.
The X'-protocol is said to be perfect special honest verifier zero-knowledge if the two proba-
bilities are exactly equal to each other.

In real life applications, special honest verifier zero-knowledge may not suffice since a ma-
licious verifier may give non-random challenges. However, it is easy to convert an SHVZK
argument into a full zero-knowledge argument secure against arbitrary verifiers in the common
reference string model using standard techniques (see e.g. [Dam00]). The conversion can be
very efficient and only incur a small additive overhead, so we will in the paper without loss of
generality just focus on building efficient SHVZK arguments.

For our application to ring signatures and zerocoin we do not need full zero-knowledge.
It suffices to have have witness-indistinguishability, which is implied by perfect special honest
verifier zero-knowledge. A X-protocol is witness indistinguishable if it is infeasible to distinguish
which of several possible witnesses the prover uses.

Definition 8 (Witness-indistinguishability). (G, P,V) is witness indistinguishable if for
all interactive polynomial time adversaries A

Pr |ck < G(1*); (u, wo, w1 ) < A(ck); b + {0,1};a < P(ck,u,wy); ¢ < A(a);z + P(z) : A(z) = b

Q
\

where A outputs (u,wg,w1) such that (ck,u,wy) € R and (ck,u,w;) € R and x € {0,1}*.
The X-protocol is perfectly witness-indistinguishable if the probability is exactly half.



Theorem 1 ([CDS94]). A perfect SHVZK X-protocol is perfectly witness-indistinguishable.

Proof. Perfect special honest verifier zero-knowledge implies the existence of a simulator that
for any x € {0,1}* simulates (a, z) that is perfectly indistinguishable from a real proof. This
means that conditioned on any particular € {0,1}*, two different witnesses wo and w;
both lead to proofs with the same probability distribution as the simulation. This implies that
conditioned on a,x we get the same probability distribution of the response z regardless of
which witness was used. Moreover, the perfect special honest verifier zero-knowledge property
also guarantees that the initial messages a are distributed identically regardless of the witness
used. O

2.3 X-protocol for commitment to 0 or 1

We will now give a well-known example of a X-protocol for knowledge of a committed value
being 0 or 1, which will be useful later. Let ck be a commitment key for a homomorphic com-
mitment scheme as described in Sect. 2.1 and let R be the relation consisting of commitments
to 0 or 1, with the witnesses being openings of the commitment, i.e.,

R = {(ck,c,(m,r)) | ¢ = Come,(m;r) where m € {0,1} and r € Z} .

Fig. 1 gives a X-protocol (G,P,V) for R, where G is the key generation algorithm for the
commitment scheme, and where P,V are running on ck + G(1*), m € {0,1} and r € Z,.

P(ck,c, (m,r)) V(ck,c)
a,8,t < Zg Cay Cb N

¢qo = Comeg(a;s)

¢y = Comeg(am;t) xz < {0,1}}

Accept if and only if
f=mz+a fizas 2 . CasCb € Ces [ 2052 € Zg
Zo=TX+ S ccq = Comer(f;24)
z=r(x—f)+t ™ fep, = Come (05 23,)

Fig. 1. X-protocol for commitment to m € {0, 1}.

Theorem 2. The X-protocol in Fig. 1 for commitment to m € {0,1} is perfectly complete,
perfect 2-special sound and perfect SHVZK.

Proof. By the homomorphic property of the commitment scheme ¢*~/¢;, is a commitment to
m(z — f)+am =m(l —m)x —ma+ am = (1 — m)m, which is 0 if m € {0,1}. With this in
mind, it is straightforward to verify that the X-protocol is perfectly complete.

We will now show that the X-protocol is perfect 2-special sound. Given responses f, z,, 2p
and f’, 2}, z; to two different challenges « and 2’ on the same initial commitments ¢, ¢, we get
by combining the verification equations that e Comer(f — /524 — 25) and Rt
Com,(0; 2 — zp,). Defining m = i:i: and r = % we extract an opening of ¢ = Comeg(m; 7).
Furthermore, since ¢®~ +'=f = ((=m)@=2") — Com, (m(1 — m)(z — 2'); (1 — m)(z — 2')) =
Com,(0; zp) we either get a breach of the binding property of the commitment scheme (in
which case the opening of ¢ can be modified into an opening to m € {0,1}) or we have
m(1 —m) = 0, which implies m € {0,1}.

Finally, let us prove that the protocol is perfect special honest verifier zero-knowledge. The
simulator given ¢ and z first chooses f, z4, 25 <= Z4. It then computes ¢, = ¢~ *Come(f; 2z4) and
cp = cf ~*Comck(0; z). Both in a real proof and in the simulation this gives independent and
uniformly random f, z4, 2, € Z4. Conditioned on these values and x the verification equations
uniquely determine cg, ¢y in both real proofs and simulated proofs. This shows that real proofs
and simulated proofs have identical probability distributions. a




3 JX-protocol for one out of N commitments containing 0

We will now give a X-protocol for knowledge of one out of N commitments cg,...,cy—_1 being
a commitment to 0. More precisely, we will give a X-protocol for the relation

R= {(ck‘, (coy--vyCN=1), (ﬁ,r)) |Vi:c; € CouNLe{0,..., N=1}Ar € ZyNc, = Comck(O;r)}.

To explain the idea behind the X-protocol let us for simplicity assume the commitment
scheme is perfectly binding such that each commitment has a unique committed value. Saying
that one of the commitments contains 0 is equivalent to saying there exists an index ¢ such that
va 01 c‘s“ is a commitment to 0, where ;¢ is Kronecker’s delta, i.e., dpy = 1 and d§;; = 0 for i #£ £.
We can always copy some commitments in the statement, so let us without loss of generality
assume N = 2", Writing i =41 ...4, and £ = {1 ...4, in binary, we have 6;p = H;’ 10i,0; SO

-1 H 5
we can reformulate what we want to prove as ]_[Z 0 G Y “ being a commitment to 0.

The prover will start by making commitments c,,...,ce, to the bits ¢1,...,¢,. She then
engages in n parallel X-protocols as described in Sect. 2.3 to demonstrate knowledge of openings
of these commitments to values ¢; € {0,1}. In the X-protocols for ¢; € {0,1} the prover
reveals f1,..., f, of the form f; = ljx + a;. Let f;1 = f; = {jx + a; = 01,7 + a; and
fio =12~ f; = (1—{;)x—aj = do¢g;x —aj. Then we have for each i that the product [T7_, f;,
is a polynomial of the form

n n—1 n—1
= [ Gs,e,2) + > pina® = 6™+ piga®. (1)

j=1 k=0 k=0
The idea is now that the prover in the initial message will send commitments cq4,,,...,cq, ,
that will be used to cancel out the low order coefficients corresponding to 2°,...,z"!. Mean-

while the high order coefficient for ™ will guarantee the commitment ¢, can be opened to 0.
More precisely, the verifier will at the end check that

N—-1
4% T

=0

is a commitment to 0, which by the Schwartz-Zippel lemma has negligible probability of being
true unless indeed ¢, is a commitment to 0.

Fig. 2 gives the full X-protocol (G, P, V) for R with G being the key generation algorithm for
the commitment scheme and P, V running on ck < G(1*), co,...,cn—1 € Cep, £ € {0,..., N—1}
and r € Z, such that ¢, = Com.x(0; 7). Without loss of generality we assume N = 2.

Theorem 3. The X-protocol in Fig. 2 for knowledge of one out of N commitments opening
to 0 is perfectly complete. It is (perfect) (n + 1)-special sound if the commitment scheme is
(perfectly) binding. It is (perfect) special honest verifier zero-knowledge if the commitment
scheme is (perfectly) hiding.

Proof. To see that the YX-protocol is complete observe that H _1 fj,i,; 1 a polynomial in the

challenge z of the form p;(z) = dpz™ + Zk Opl %", When ¢, is a commitment to 0 we

[17-1 fie;

therefore get that ¢, in the verification equation is a commitment to 0, while the other

commitments ¢; get raised to polynomials of degree n — 1 in z as cH] 134 i1 the verification

equation. With this in mind straightforward verification shows that the X-protocol is perfectly
complete.

We will now show how to convert an adversary with probability e of breaking (n + 1)-
soundness, into an adversary with approximately the same runtime that has probability e of
breaking the binding property of the commitment scheme.

Suppose the adversary creates n + 1 accepting responses fl(o), . zr(lo), RN 1(n)7 . ,zén) to
n + 1 different challenges 2(*), ..., 2(" on the same initial message cy,,...,cq,_,-
The 2-special soundness of the Y-protocol from Sect. 2.3 gives us openings of ¢y, ..., ce, Of

the form cy; = Comy(¢;;7;) with £; € {0,1}. From the verification equations it is then easy to
get openings of ¢,; = Comx(ay;s;). Unless the adversary breaks the binding property of the
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P(ck, (co,...,cn—1), (L, 1)) V(ck, (co,---,cn=1)))
Forj=1,...,nusingk=j5—1
Ti,Qj, Sj,tjypk < Zq
ce; = Comey,(£5575)
ca; = Comey(ay; s5) Clys CaysChys Cdgs - -+ »
cy; = Comey(Cjay;t5) Cly>CapnsChy>Cdy_y . Accept if and only if
Ccd, = H?;Bl cfi"“Comck(O; Pk) CoyseensCd, 4 € Cek
using p; j from (1) oo, 2d4 € Zyg
x < {0,1}* For all j € {1,...,n}
Forj=1,...,n Cz ca]—Comck(f],za])
fi =4z +a; 1y Zays Zbys -y zj fjcb = Com, (0; zb)
— NlH;lfil n—1 _T
ZOLJ —le“l’Sj fnazan7zbnyzd . Hz o G Hk 0 dk
2y, =1j(2 fa) +t = Com,(0; z4)
zqg = ra" Zk o PEaF using f;1 = f; and fo=x — f;
Fig. 2. Y-protocol for commitment to m = 0 in list ¢, ...,cn—1-
commitment scheme, it must hold for all challenges that f;o) = ﬂjx(O)Jraj, RN f;n) = ij(”)Jraj

forall j=1,...,n
The form of the f;’s gives us that f;; = ;o + a; and fjo = (1 — ¢j)x — a;. For i # { we
therefore get that H?Zl fj,i; is a degree n — 1 polynomial p;(z) and for 4 = £ it is a polynomial

of the form py(x) = 2™ + .... This means we can rewrite the last verification as

n—1 .

- H cfk' = Comx(0; z4)

k=0
for some fixed c4,,...,cCs,_, that can be computed from commitments in the statement and
the initial message.

Observe that the vectors (1,z(),..., (z(9)") can be viewed as rows in a Vandermonde

matrix and since (9, ..., (") are all different the matrix is invertible and we can therefore find
a linear combination («o, ..., a;,) of the rows that gives us the vector (0,...,0,1). Combining

the n + 1 accepting verification equations we therefore get

n m(e) n n- m(e) k e n e
o= H (cé " ,(kk ) > = Com,(0; Zaez((i ))
k=0 e=0

e=0
This gives us an extracted opening of ¢, to 0 with randomness r = ZZ:O aez((ie).
Finally, let us describe a special honest verifier zero-knowledge simulator that is given a
challenge x € {0,1}*. Tt starts by picking the elements of the response uniformly at random
as fi,..., 24 < Zg. It then chooses ¢y, ,...,¢e,,Cays- -+, Ca,_,  Comey (0) as random commit-

ments to 0. Finally, it computes c,; = =y, Comck(f]7 zaJ) and ¢, = cé Comck(O 2, ) to finish

N—1 IIj=1 fis, 1 —ak
the simulation of the proofs that cy,, ..., ¢, contain 0 and g, = [[;.Zy ¢; 77777 - T[,Z; eg”

Com,(0; —z4) to satisfy the last verification equation. It returns the simulated initial message
and response (Co,y ..., Cd_1s 15+ 2d)-

We will now argue that an adversary that distinguishes the simulation from a real argument
with ¢ advantage can be turned into an adversary that breaks the hiding property of the
commitment scheme with 55 advantage. First, we observe that in both real proofs and
simulated proofs f1, ..., zq4 are uniformly random in Z,. Furthermore, the verification equations
uniquely determine cq,,cp,,...,Ca,,Cs, and cq, conditioned on fi,...,2z4 and copy,...,cq,_,
both in real and in simulated proofs. The adversary’s advantage of € must therefore come
from being able to distinguish real and simulated commitments ¢, ,...,ce,,Cdys---5Ca, - A
standard hybrid argument gives us a 5= advantage in breaking the hiding property of the
commitment scheme. ad
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We state in the following two lemmas a couple of additional properties that will be useful
later.

Lemma 1. If the commitment scheme is strongly binding, the X-protocol in Fig. 2 has quasi
unique responses.

Lemma 2. For each possible initial message in the X-protocol in Fig. 2 there is negligible
probability that it will be chosen by the SHVZK simulator.

Proof. The simulator picks ¢;, as a random commitment to 0. We will now argue that ¢, has
negligible probability of matching a fixed value ¢. We have by the hiding and binding properties

Pr [ck — G(17); ¢+ Comer (0); ¢, + Come(0) : ¢, = c}
~Pr [ck — G(1M); ¢ = Comep,(0); ¢, + Comep(1) : ¢, = c] ~ 0.
]

Efficiency. The prover sends 4log N commitments and 31log NV +1 field elements. With N being
polynomial in the security parameter the prover only sends O(log \) group and field elements.
If we use the Pedersen commitment scheme in an elliptic curve based group where the group
elements are of size O(\) bits the total communication cost is just O(Alog A) bits.

If we are using the Pedersen commitment scheme the prover’s cost is dominated by
n multi-exponentiations of N group elements when computing cq,,...,cq, ,. Using multi-
exponentiation techniques [Lim00] we can reduce the cost of computing cgy,...,cq, , tO
roughly 2N single exponentiations. Computing the commitments is more efficient than this
once pre-computation techniques are factored in; and the polynomial coefficients p; ; can be
computed by fast polynomial multiplication techniques, which will have significantly smaller
cost than the exponentiations because they are done over Z,.

The verifier’s computation is dominated by the multi-exponentiation Hivzgl cinj =t fj’ij. If
we are using Pedersen commitments this can be done at a cost equivalent to lfévN single

exponentiations.

When prover knows openings of all commitments. If the prover knows openings of all

commitments cg,...,cy—1 she can reduce her computation significantly. Observe that if
N—-1 pik

¢; = Comer(mg;yi) then cq, = [y ¢"*Comek(0;p8) = Comex(dy,dx + pr) where

do, Py ,dn_1,¢Pn_1 are coefficients in the two polynomials

n—1 N-1 n—1 N-1
d(z) = drz® =" mipi(x) $x) = dwa® =D yipi(x) — yea”,
k=0 =0 k=0 =0

where the latter holds because p;(x) = d;02™ + ZZ;S pi k", s0 pe(x) is the only polynomial
with a non-zero coefficient for x™.

The two polynomials d(z) and ¢(x) can be efficiently computed using Lagrange interpo-
lation. Picks n distinct elements ws,...,w, € Z, and evaluate d(w1), p(w1), ..., d(wy), ¢(wy)
from which the coefficients dy, ¢g, . .., dn—1, $n—1 can be computed in time depending only on
n = log N. We will now show that given w € Z, it is possible to compute both d(w) and
¢(w) using 3N multiplications in Z,. Each f;o and f;1 is a degree 1 polynomial in = and
we can compute all fjo(w), fj1(w) for j =1,...,n using a few modular additions for each of
them. Now, p;(w) = H?:1 fj,i; (W), so we can view po(w),...,py-1(w) as leaves on a binary
tree, where the root is H;.Lzl fio(w) and for each parent at level j — 1 we let the left child

be the same as the parent and the right child be the parent multiplied by % The leaves
Js

can be computed using roughly N = 2™ multiplications, which gives us po(w),...,pn—1(w).
Computing the sums d(w) = Zﬁigl m;p;(w) and ¢(w) = Zili_ol ~ipi(w) — yew™ costs an ad-
ditional 2N multiplications, for a total of 3N + o(N) multiplications to compute d(w), $(w).
Doing this for n distinct elements wy, ..., w, costs roughly 3N log N multiplications. Once we
have the evalutions in the n elements, we can at moderate cost compute dg, ¢g, ..., dn_1, Pn_1
using Lagrange interpolation. The prover’s computation when she knows the openings of all the
commitments is therefore determined by the cost of approximately 3N log N multiplications
in Z4 and making 4log N commitments.
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Membership proof. The X-protocol in Fig. 2 can be used to construct a membership proof. We
are given a commitment ¢ and a set of values Ag, ..., Any_1 and want to prove that we know an
opening of the commitment ¢ to one of the values Ay. This can be done using our 1-out-of-N
XY-protocol by defining ¢y = ¢ - Comex(—XAg;0),...,en—1 = ¢+ Comer(—An_1;0) and proving
there is a ¢y with an opening to 0.

From the prover’s perspective this is a case where all the commitments have known openings
(A¢ — i, ve) of commitment ¢;. Observe that all the commitments have the same randomness,
which implies ¢(x) = 0 and reduces the computation to 2N log N multiplications for the prover.
To see that ¢(x) = 0 recall that ¢(x) =, Zi]\gl pi(z) — yex™ and

N-1 N—-1 n n n
> opi@) = > I i, (@) = [[Fi0@) + fin(2) = [[ 2 = 2™
i=0 i=0 j=1 j=1 j=1
The verifier also has efficient computation, he can compute the product
N—-1 T £ N—1
H Ci J=LIRN H (C' COmck(*/\i;O))pi(m)
i=0 i=0

n

N—1 N—-1
= 250 2@ Comep (— 3 Api(e);0) = ¢ - Come (— Y Aipi(); 0)
1=0 =0

using 2N multiplications, which dominates the verifier’s computation for large N.

This efficiency compares favorably with the membership proof in Bayer and Groth [BG13].
They prove membership by demonstrating the committed value is a root in the polynomial
P(u) = Hfigl(u — );) but the initial step of computing the coefficients of the polynomial
requires O(N log? N) multiplications (and only if the modulus ¢ is of a form suitable for using
the Fast Fourier Transform).

Bayer and Groth’s method also gives rise to a non-membership proof: prove that the poly-
nomial P(u) does not evaluate to 0 to show the committed value u does not belong to the list.

Our Y-protocol does not appear to yield a non-membership proof.

4 Ring Signature

Ring signatures allow users to sign messages on behalf of ad-hoc groups that include themselves.
The ad-hoc groups are called rings and contain public keys for the signer and the other users
that the signer has chosen to include to include. We formally define ring-signatures in the
following section.

Our XY-protocol for one out of N commitments containing 0 can be used as an ad-hoc
group identification scheme. Each user has a commitment to 0 with the private key being the
randomness used. To identify yourself as a member of a group you prove that you know the
opening of one of the commitments to 0. We can use the Fiat-Shamir heuristic to transform
the ad-hoc group identification scheme into a ring signature scheme.

4.1 Definitions

A ring signature scheme consists of a quadruple of PPT algorithms (Setup, KGen, Sign, Vfy)
for generating a common key available to all users, generating keys for users, signing messages
and verifying ring signatures.

pp < Setup(1*): Generates and outputs public parameters pp available to all users.

(vk, sk) < KGen(pp): Generates a public verification key vk and a private signing key sk.

o < Sign,, (M, R): Outputs a signature o on the message M € {0, 1}* with respect to the
ring R = (vky,...,vkn). We require that (vk, sk) is a valid key pair output by KGen(pp)
and that vk € R.

b« Viy,,(M, R,0): Verifies a purported ring signature o on a message M with respect to the
ring of public keys R. It outputs 1 if accepting and 0 if rejecting the ring signature.

The quadruple (Setup, KGen, Sign, Vfy) is a ring signature scheme with perfect anonymity if
it is correct, unforgeable and anonymous as defined below.
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Definition 9 (Perfect correctness). We require that a user can sign any message on behalf
of a ring where she is a member. A ring signature scheme (Setup, KGen, Sign, Viy) has perfect
correctness if for all adversaries A

Pr [pp <+ Setup(1*); (vk, sk) + KGen(pp)

(M, R) < A(pp, vk, sk); o « Sign P iy, (M, R,0) =1 V vk ¢ R] =1

M,R)°

pp,sk(

Definition 10 (Unforgeability). A ring signature scheme (Setup, KGen, Sign, VIy) is un-
forgeable (with respect to insider corruption) if it is infeasible to forge a ring signature on a
message without controlling one of the members in the ring. Formally, it is unforgeable when
for all probabilistic polynomial time adversaries A

Pr |pp « Setup(1?); (M, R, o) « AVKGenSign.Corrupt () . Viy,,(M,R,0) =1| =0,

— VKGen on the ith query picks randomness r;, runs (vk;, sk;) < KGen(pp;r;) and returns
’Ukii.

— Sign(i, M, R) returns o < Sign,
VKGen and vk; € R.

— Corrupt (i) returns r; (from which sk; can be computed) provided (vk;, sk;) has been gener-
ated by VKGen.

— A outputs (M, R, o) such that Sign has not been queried with (x, M, R) and R only contains
keys vk; generated by VKGen where ¢ has not been corrupted.

sk (M, R), provided (vk;,sk;) has been generated by

Definition 11 (Perfect anonymity). A ring signature scheme (Setup, KGen, Sign, Vfy) has
perfect anonymity, if a signature on a message M under a ring R and key vk;, looks exactly
the same as a signature on the message M under the ring R and key vk;,. This means that the
signer’s key is hidden among all the honestly generated keys in the ring. Formally, we require
that for any adversary A

pp < Setup(1*); (M, g, 41, R) « AKG®P) (pp)

P {0,1);0 < Sign M, R)

1
.A(O'):b :§7

pp,ski, (

where A chooses 1,11 such that (vki,, ski,), (ki , ski,) have been generated by the key gener-
ation oracle KGen(pp) and vk;,,vk;, € R.

We remark that perfect anonymity implies anonymity against full key exposure, which is the
strongest definition of anonymity of ring signatures in [BKMO09].

4.2 Construction

An additively homomorphic commitment perfectly hiding scheme (G,Com) as defined in
Sect. 2.1 and the X-protocol (G,P,V) in Fig. 2 for one out of N commitments being a com-
mitment to 0 can be combined to build an ad-hoc group identification scheme. We generate a
commitment key as setup and let the users’ verification keys be commitments to 0. In order to
identify herself as a member of an ad-hoc group with N members, the user uses the X-protocol
to prove that she knows an opening of one of the commitments. If her commitment is among
the commitments in the ad-hoc group the correctness of the X-protocol guarantees that she
manages to identify herself as a member. If on the other hand her commitment is not among
the commitments in the group, then the ([log N + 1)-special soundness of the X-protocol
guarantees that she has negligible chance of answering a challenge and being accepted. Finally,
the special honest verifier zero-knowledge property of the X-protocol implies that it is witness-
indistinguishable, i.e., even a malicious verifier cannot tell which commitment opening it is
that she knows how to open.

We will use the Fiat-Shamir to make the ad-hoc group identification scheme non-interactive.
Let H be a hash-function generator such that H < H(1*) returns a hash-function H : {0,1}* —
{0,1}*. By computing the challenge x in the X-protocol using the hash function on the initial
message in the X-protocol and the message to be signed, we get a transformation of the ad-hoc
group identification protocol to a ring signature scheme. Modeling the hash-function H as a
random oracle allows us to give a heuristic proof that the ring signature scheme is unforgeable.
The ring signature scheme is described in Fig. 3
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Setup(1*) Sign,,, (M, R) Viy,,(M, R, o)
ck « G(1%) Parse R = (cg,...,cN-1) Parse R = (co,...,cN—1)
H + H(1?) with ¢; = Com(0; sk) Parse 0 = (a, 2)

Return pp = (ck, H)
a < P(ck, (co,...,cn-1), (£, sk))
k

KGen(pp) x = H(ck,M,R,a) x = H(ck,M,R,a)

T4 ZLq z + P(x)

¢ = Comy (0;7)

Return (vk, sk) = (c,r)|Return o = (a, 2) Return V(ck, (co,...,cN-1), 0,2, 2)

Fig. 3. Ring signature based on X-protocol (G,P,V) for l-out-of-N commitments containing
0.

Theorem 4. The scheme (Setup, KGen, Sign, Viy) is a ring signature scheme with perfect cor-
rectness. It has perfect anonymity if the commitment scheme is perfectly hiding. It is unforgeable
in the random oracle model if the commitment scheme is perfectly hiding and computationally
binding.

Proof. Perfect correctness follows from the perfect completeness of the X-protocol. Perfect
anonymity follows from the perfect witness indistinguishability of the X-protocol, which guar-
antees that it is impossible to distinguish which secret key has been used to generate the ring
signature.

To see that the ring signature scheme is unforgeable we will rely on the (n 4 1)-special
soundness of the Y-protocol in Fig. 2 and model the hash-function H as a random oracle.
Consider a polynomial time adversary A that makes at most gy (\), ¢s(A) and ¢g(A) queries
to VKGen, Sign and the random oracle, respectively, and for infinitely many A € N has at least
ﬁ probability of breaking the unforgeability property for a positive polynomial p. We will
show that it can be used to construct a polynomial time attack that breaks the binding property
of the commitment scheme with approximately m chance on infinitely many A € N.
We will without loss of generality assume the adversary checks that it has made a successful
forgery, which simplifies the proof since it guarantees the adversary does at some point call the
random oracle on a query (ck, M, R, a) corresponding to the forged ring signature.

Given the public parameters we first pick at random j € {1,...,qv} and set vk; =
Comgy(1;r;) for r; < Zg. Our goal is to run A using this key for user j and hoping to
use rewinding to get n + 1 forgeries with a ring R that includes vk;. The (n + 1)-soundness
of the SHVZK argument may permit extraction of an opening of some vk; to (0,r;). By the
perfect hiding property of the commitment scheme, with probability q% we have i = j giving
us a breach of the commitment scheme’s binding property.

Let us now give more details of how the attack works. Whenever A queries VKGen we run
as in a real ring signature scheme, except on the jth query where we return vk;. If A ever
queries Corrupt(j) we abort (type I). If A queries Sign(j, M, R) we pick = < {0,1}* at random
and use the special honest verifier zero-knowledge simulator to simulate the proof (a,z). We
then program the random oracle H(-) to have H(ck, M, R,a) = x, except if (ck, M, R,a) has
already been queried before in which case we abort (type II).

In the end, A tries to create a forged ring signature with uncorrupted users in the ring and
where the signature does not come from the signing oracle. If A fails to create a forgery we
halt. Otherwise, we get a successful forged ring signature o = (a, z) on M using ring R coming
from a random oracle query H(ck, M, R,a) used to get a challenge 2. We now rewind the
adversary to the point where it made the query H(ck, M, R,a) used in the forged signature
and give it random answers to the oracle query until it has produced n additional forged ring
signatures with challenges =), ..., (") using the same query. As above, in each rewinding,
if the simulation of a signature leads to reuse of a query to the oracle we abort (type II).
Furthermore, if the number of rewindings exceed 2p(A)n we halt.

If the adversary after rewinding gave us answers to a total of n + 1 distinct challenges, we
can now use the (n+ 1)-special soundness property to either break the binding property of the
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commitment scheme or to get an opening (0,7;) of some vk; = Com,(0; ;). With probability
q% we have vk; = vk;, giving us a breach of the binding property of the commitment scheme.

Let us analyze the attack described above. A useful starting point is running the real un-
forgeability experiment, i.e., instead of picking vk; = Com.x(1;7;) we pick vk; = Com,(0;7;)
as a correctly generated key and answer all queries honestly (so we do not have type I or II
aborts). Let us consider some A € N where A has at least ﬁ chance of creating a succcesful
forgery. Observe that an adversary that has probability v of using a specific random oracle
query in a successful forgery will be rewound n = v - 2 times on average on this query to
sample n additional forgeries. The probability of the attack entering the rewinding stage and
exceeding 2p(A\)n rewindings will therefore be at most #(X)’ since otherwise we would exceed

o . 1 1 1
the expected number of rewindings. This means we have at least 0 T 0) = Y chance

of getting n + 1 successful forgeries using a specific oracle query (ck, M, R, a).

Switching to simulation of ring signatures instead of giving real ring signatures may result
in type II aborts when the simulation accidentally results in an oracle query H(ck, M, R, a)
that has been used before, but with a different challenge. However, Lemma 2 tells us that
the simulator has negligible probability of colliding with another oracle query: the probability
of a single simulation hitting a specific oracle query is a negligible function v(\) and with a
maximum of gg(A) signing queries in each run of the adversary, and a total of gg () + gs(\)
random oracle queries in each run of the adversary we get an upper bound of (2p(A\)n +
1)gs(N) (g (X)) + gs(A)v(A) for the probability of running into a type II abort.

Another problem that can arise is a collision in the n+ 1 challenges we get after rewinding.
With a maximum of gs(A) +¢g (A\) queries to the random oracle in each run of A we get a total
2((1+2p(>\)n)(qf(x\)JrqH(/\)))2

2

risk of of having a collision in any random oracle outputs. Avoiding

type II aborts and collisions leaves us with #(A) — 2p(AN)n 4+ Dags(N)(ga(N) + gs(M)v(A) —

2((1+2P(>\)n)(q§(>\)+QH(>\)))2 r~
2

21)%/\) chance of being able to use (n + 1)-special soundness to
break the commitment scheme or extract an opening (0,r;) of some vk; in the ring of a ring
signature forgery.

If we extract an opening (0,7;) of some vk; in the ring of a ring signature forgery there is
1

oy chance that ¢ = j. If ¢ = j we observe as a part of this being a successful forgery, the
adversary never queried Corrupt(j), so we do not have any type I aborts. Since the commitment
scheme is perfectly hiding, the switch to using vk; = Come(1; 7";) does not change the success
probability of the attack. But now an opening of vk; = vk; to vk; = Com.;(0;7;) corresponds
to a breach of the binding property of the commitment scheme. So for infinitely many A € N
our attack has close to or higher than Wl)p@) chance of breaking the binding property of the
commitment scheme. The attack runs in polynomial time since it will make at most 14 2p(A\)n

runs of the polynomial time adversary A. a

Instantiation with Pedersen commitments. The Pedersen commitment scheme is a natural
candidate for the commitment scheme. When our ring signature scheme is instantiated with
the Pedersen commitment scheme, the public keys are of the form ¢ = A", i.e., they are single
group elements and the corresponding secret keys are the discrete logarithms.

The instantiation with Pedersen commitments requires a simple setup that is realistic in
many settings. Consider any organization where a standard group G is used for all users and
their secret keys are discrete logarithms of public group elements. The ring signature easily fits
on top of this setup.

The ring signature scheme yields small signatures. The signature size is logarithmic in the
number of ring members and instantiated over a compact group where elements have size O(\)
it is O(Alog N) = O(Alog\) bits. This compares favorably with all previous ring signature
schemes.

The signer does O(N log N) exponentiations to generate a ring signature and the verifier
uses O(N) exponentiations to verify a ring signature. However, when the same ring is used
many times or there is significant overlap between different rings, the cost of verification can
be reduced to O(N) multiplications in Z, by batching the verification of many signatures.
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5 Zerocoin

Zerocoin enables users to generate their own coins which become valuable by public consensus
by being included on a bulletin board. These coins can then be spent anonymously with double
spending being prevented by a secret serial number encoded in each coin which is revealed
during the spend protocol.

5.1 Definition

A zerocoin scheme consists of a quadruple of PPT algorithms (Setup, Mint, Spend, Vfy) for
generating a common setup available to all users, generating coins, generating proofs that a
coin was spend to pay for a transaction and verifying proofs of spending.

— pp Setup(l)‘). Generates public parameters available to all users.

— (e, ske) < Mint(pp). Mints a coin ¢ together with a key skc used to authorize its spending.

— (m,8) < Spend,, 4.(M,c,C). On input some transaction string M € {0,1}* and an
arbitrary set of coins C containing ¢, the algorithm outputs a proof 7 and a serial number
S. We require that skc is a valid key for coin ¢ as produced by Mint(pp) and that ¢ € C.

— b+ nypp(M7 S, C, ). Verifies a purported proof 7 of a spend transaction with string M
of a coin with serial number S from the set of coins C.

The transaction string M in the call to Spend is intended, e.g., for the identity of the
transaction recipient, or the terms of a contract.

The quadruple (Setup, Mint, Spend, Vfy) is a zerocoin scheme with perfect anonymity if it
is correct, balanced and anonymous as defined next.

Definition 12 (Perfect correctness). We require that a user can spend any coin with respect
to any set of coins. A zerocoin scheme (Setup, Mint, Spend, VIy) has perfect correctness if for
all adversaries A

Pr [pp < Setup(1*); (e, ske) < Mint(pp)

. VFE M,S,CU , =1| =1.
(M, C) + A(pp,c, ske): (. S) « Spend, 4. (M,c,CU{c}) * VPl {ehm) ]

Definition 13 (Balance). A zerocoin scheme (Setup, Mint, Spend, VIy) is balanced (with re-
spect to insider corruption) if an adversary cannot spend more coins than he controls. Formally,
it 1s balanced when for all probabilistic polynomial time adversaries A

Pr [pp — Setup(1M); (1, ..+, Em, Sty - oo, Sy Smy1)  ACCImGen Spend, Corrupt () . Vi Viy,,(Si) = 1} ~ 0,

— CoinGen on query number i selects randomness r;, runs (c;, ske;) < Mint(pp;r;) and
returns c; after adding c; to a set C.

— Spend(i, M, C) returns (m,S) <= Spend,,, ... (M, ¢;, C'), provided (c;, ske;) has been gener-
ated by CoinGen and was not leaked using Corrupt(i). The oracle records (M, S,C,x) in a
set T.

— Corrupt(i) provided (c;,skec;) has been generated by CoinGen runs (m,S) <+
Spend,,, ., (“ 7, cis {ci}) to determine the serial number of the coin and then returns r;
(from which skc; can be computed). The oracle removes any tuple matching the pattern
(x, S, %, %) from T and records (x,S,*,*) in T .

— A outputs ¢1,...,¢m,S1,...,Sm,Sm+1 such that S; = (M;,S;,Ci,m;), C; C CU
{¢1,...,Cm}, no S; matches a pattern in T, and all S; are distinct.

Definition 14 (Perfect anonymity). A zerocoin scheme (Setup, Mint, Spend, Vfy) has per-
fect anonymity if a proof of spending with transaction string M for a set of coins C and coin
ci, looks exactly the same as a proof of spending with transaction string M for the set C' and
coin c;,. This means that the spender’s coin is hidden among all the honestly generated coins
in the set. Formally, we require that for any adversary A

pp = Setup(1*); (M, g, i1, C) += AMMEP) (pp) !
Prlb e (0,13 (m,S) < Spend,, g, (M,e,0) - ATS) =0 =5

where A chooses ig,i1 such that (ci,, skci,), (¢iy, skeiy) have been generated by the minting
oracle Mint(pp) and ¢;,,¢;, € C.
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5.2 Construction

While a ring-signature scheme can be constructed from an ad-hoc group identification scheme
using the Fiat-Shamir heuristic, a zerocoin scheme can be obtained from a linkable ad-hoc
group identification scheme. In particular, almost the same construction can be used to con-
struct zerocoin schemes from a X-protocol for 1-out-of-IN commitments containing 0. Instead
of public keys that are commitments to 0 we now employ coins that are commitments to serial
numbers. We homomorphically subtract a serial number S from all coins used in a statement
by multiplying them with Comx(S;0)~! before computing the proof, such that the commit-
ment with this serial number turns into a commitment to 0. The zerocoin scheme is described
in Fig. 4.

Setup(1*) Spend,,, 4.(M, ¢, C) Viy,, (M, S,C, )

ck + G(1%) Parse C' = (cg,...,cn—1) Parse C' = (cg,...,cn—1)

H + H(1*) and ske = (r, S) Parse 7 = (a, 2)

Return pp = (ck, H) |with ¢, = ¢ = Com(S;7)

Mint(pp) i+ ¢; - Comg(S;0)~1 i+ ¢; - Comg(S;0)~1

T4 Zg a + Plck, (chy - n_q), (L,1))

S Z, x=H(ck,M,S,C,a) x=H(ck,M,S,C,a)

¢ « Comg(S;7) z < P(x)

ske < (r,S)

Return (¢, skc) Return 7 = (a,z) and S Return V(ck, (¢hy ..., Cn_1),a, T, 2)

Fig. 4. Zerocoin protocol based on X-protocol (G, P, V) for 1-out-of-N commitments contain-
ing 0.

Theorem 5. The scheme (Setup, Mint, Spend, Viy) is a zerocoin scheme with perfect correct-
ness. It has perfect anonymity if the commitment scheme is perfectly hiding. It is balanced in
the random oracle model if the commitment scheme is perfectly hiding and strongly binding.

Proof. Perfect correctness follows from the perfect completeness of the X-protocol. Perfect
anonymity follows from the perfect witness indistinguishability of the X-protocol, which guar-
antees that it is impossible to distinguish which coin has been used to generate a proof of
spending.

To see that the zerocoin scheme is balanced we will rely on the (n + 1)-special soundness
of the XY-protocol and model the hash-function H as a random oracle. We will show that a
zerocoin adversary A, which for a positive polynomial p and an infinite number of A € N has
more than ﬁ chance of forging more spending proofs than controlled coins can be used to
construct an attack on the strong binding property of the commitment scheme.

Given the public parameters pp we start by forwarding them to .A. We simulate the random
oracle and the CoinGen, and Corrupt oracles honestly. We use the SHVZK simulator and the
random oracle programmability to answer Spend queries with fresh random serial numbers. If
this fails because the pre-image is already in the oracle list we abort with “Error 1”. Finally
A outputs m coins (é1,...,6y,) and m + 1 valid spending proofs (S1,...,Sm, Smy1). We will
for simplicity assume in the proof that A checks that all its spendings are valid such that for
each spent coin the random oracle has been queried on H(ck, M, S, C, a).

For each 1 < i < m+1 we do the following. We find the first entry on the oracle list where
A asked (ck, M;,S;,C;,a;) to the random oracle; if we created the entry ourselves during
the simulation of a Spend query we abort with “Error 2”. We then simulate a fresh copy of
A identically up to the point where the above query was asked and answer with a different
uniformly random value from the oracle. We repeat this process until we obtain n; = [log |C;||+

1 proofs with the same a;. If the total number of rewindings exceeds 2p(\) ZZ:{I n; we halt.

Since the expected number of rewindings for each query is n;, we have at least 5=~ chance of

2p(A)
getting the desired number of proofs for each i before running out of time.
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If we end up with a collision in the oracle answers such that for any query i there are two
rewindings that yield the same uniformly random challenge = we abort. However, since we run
in polynomial time such collisions happen with negligible probability, so let us analyze the case
where we have n; 4+ 1 distinct challenges for each proof. We can now use the (n; + 1)-special
soundness property to break the binding property of the commitment scheme or to get an
opening Com,(0;7) for one of the commitments in the statement, which translates into an
opening Com,(S;;r) for one of the commitments in C;.

Let us now consider the probability of “Error 1”7 and “Error 2”. “Error 1”7 occurs if A
already queried (ck, M, S, C,a) before the simulation of a spend query but this happens with
neglible probability. “Error 2”7 occurs if the adversary finds a different answer to a challenge
than we used in the simulation, since a successful attack on the balance property implies one
of the spending proofs S; does not match with a pattern in 7. By Lemma 1 this happens
with negligible probability. We will now proceed under the assumption that such errors did not
happen.

Consider the serial numbers of coins in C. As commitments are perfectly hiding and as
we revealed freshly sampled random serial numbers in the simulation of Spend an attacker
that uses an honest coin to win the game will with high probability also use a different serial
number. In case of corrupted coins he is forced by the rules of the security game to always
use a different serial number. This yields a break of the binding property of the commitment
scheme.

From now on we assume that A did not use an honest coin. Then there are m different
adversary controlled coins and thus commitments but m + 1 verifying proofs with distinct
serial numbers. By extracting from all m + 1 proofs we are guaranteed that one commitment
is opened twice to different serial numbers, which yields a break of the binding property of the
commitment scheme. O
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