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Abstract

Bitcoin is the first and most popular decentralized cryptocurrency to date. In this work, we
extract and analyze the core of the Bitcoin protocol, which we term the Bitcoin backbone, and
prove two of its fundamental properties which we call common prefix and chain quality. Our
proofs hinge on appropriate and novel assumptions on the “hashing power” of the adversary
relative to network synchronicity; our results are shown to be tight under high synchronization.

Next, we propose and analyze applications that can be built “on top” of the backbone pro-
tocol, specifically focusing on Byzantine agreement (BA) and on the notion of a public trans-
action ledger. Regarding BA, we observe that Nakamoto’s suggestion falls short of solving it,
and present a simple alternative which works assuming that the adversary’s hashing power is
bounded by 1/3. The public transaction ledger captures the essence of Bitcoin’s operation as
a cryptocurrency, in the sense that it guarantees the “liveness” and “persistence” of committed
transactions. Based on this notion we describe and analyze the Bitcoin system as well as a
more elaborate BA protocol, proving them secure assuming high network synchronicity and
that the adversary’s hashing power is strictly less than 1/2, while the adversarial bound needed
for security decreases as the network desynchronizes.

1 Introduction

Bitcoin, introduced in [Nak08a], is a decentralized payment system that is based on maintaining
a public transaction ledger in a distributed manner. The ledger is maintained by anonymous par-
ticipants (“players”) called miners, executing a protocol that maintains and extends a distributed
data structure called the blockchain. The protocol requires from miners to solve a “proof of work”
(POW, aka “cryptographic puzzle” — see, e.g., [DN92, RSW96, Bac97, JB99]), which essentially
amounts to brute-forcing a hash inequality based on SHA-256, in order to generate new blocks
for the blockchain. The blocks that comprise the blockchain contain sets of transactions that are
generated at will by owners of bitcoins, who issue transactions that credit any entity of their choice
who accepts payments in bitcoin. Payers broadcast transactions and miners include the transactions
they receive into the blocks they generate. Miners are rewarded for maintaining the blockchain by
receiving bitcoins; it is in this manner bitcoins are created and distributed among the miners who
are the first recipients of newly minted bitcoins.

An important concern in Bitcoin (or any e-payment system for that matter) is the prevention of
double-spending attacks. Specifically, in the context of Bitcoin, a double-spending attack can occur
∗Research partly supported by ERC project CODAMODA.
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when the attacker initially credits an account, receives service or goods by the account holder, but
then manages to reorganize the transaction ledger so that the transaction that credits the account
holder is reverted. In this way, the attacker keeps her bitcoin while receiving services and thus she
is able to spend it again somewhere else.

In [Nak08a], Nakamoto provides an initial set of arguments of why the Bitcoin system will
prevent double-spending attacks. Specifically, he argues that if a payee waits for the transaction
that gives her credit to advance into the blockchain a number of k blocks, then the probability
that an attacker can build an alternative blockchain that “reorganizes” the public blockchain (which
contains the credit transaction) drops exponentially with k. Nakamoto argues this by modeling the
attacker and the set of honest players as two competing actors performing a random walk moving
toward a single direction with probabilistic steps. He demonstrates that the k blocks the payee
waits are enough to ensure a negligible (in k) probability of the attacker catching up with the
honest players.

Nevertheless, the above analysis can be easily seen to be oversimplified: in particular, it does not
account for the fact that in Bitcoin’s decentralized setting the attacker may attempt to introduce
disagreement between the honest miners, thus splitting their hashing power on different POW
instances. Nakamoto himself appeared to recognize the relevance of agreement in the context of
Bitcoin, arguing in a forum post [Nak08b] that actually “Bitcoin’s basic concept” of building and
exchanging a blockchain is capable of solving Byzantine agreement (BA) [PSL80, LSP82] in the
presence of an actively malicious adversary.1 However a thorough analysis establishing the exact
security properties of the Bitcoin system has yet to appear.

Our results. In this paper we extract, formally describe, and analyze the core of the Bitcoin
protocol. We call this protocol the Bitcoin backbone, as we describe it in a way that is versatile and
extensible and can be used to solve other problems as well — not just the problem of maintaining
a public transaction ledger. The Bitcoin backbone protocol is executed by players that build a
blockchain following the Bitcoin source code [Nak09] and allows a set of players to maintain a
blockchain in a distributed fashion. The protocol is parameterized by three external functions
V (·), I(·), R(·) which we call the input validation predicate, the input contribution function, and the
chain reading function, respectively. At a high level, V (·) determines the proper structure of the
information that is stored into the blockchain, I(·) specifies how the contents of the blocks are formed
by the players, and R(·) determines how a blockchain is supposed to be interpreted in the context
of the application. Note that the structure, contents, and interpretation of the blockchain are not
important for the description of the backbone protocol and are left to be specified by the three
external functions above, which are application-specific (we provide examples of these functions in
Section 5).

We analyze the Bitcoin backbone protocol when the players operate in a synchronous communi-
cation network (more details below and in Section 2) in the presence of an adversary that controls
a subset of the players. We assume that the protocol is executed by a fixed number n of players;
note, however, that this number is not necessarily known to the protocol participants. The players
themselves cannot authenticate each other and therefore there is no way to know the source of a
message; we capture this by allowing the adversary to “spoof” the source address of any message
that is delivered. We assume that messages are eventually delivered and all parties in the network
are able to synchronize in the course of a “round.” The notion of round is not important for the

1In [Nak08b] Nakamoto refers to the problem as “Byzantine Generals,” which is often used to refer to the single-
source version of the problem, while in fact he is referring to the case where every party has an input value (Byzantine
agreement). In the cryptographic setting, the problems are not equivalent in terms of the number of tolerated
misbehaving parties t (t < n vs. t < n/2, respectively).
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description of the backbone protocol (which can also be executed in a loose and asynchronous fash-
ion in the same way that Bitcoin works), however, it is important in terms of Bitcoin’s inherent
computational assumption regarding the players’ ability to produce POWs.

Specifically, we assume that in a single round, all parties involved are allowed the same number
of queries to a cryptographic hash function, as well as to communicate with the other participants.
The hash function is modeled as a random oracle [BR93]. For simplicity we assume a “flat model,”
where all parties have the same quota of hashing queries per round, say q; the non-flat model where
parties have differing hashing power capabilities can be easily captured by clustering the flat-model
parties into larger virtual entities that are comprised by more than one flat-model player. In fact
“mining pools” in Bitcoin can be thought of such aggregations of flat-model players. The adversary
itself represents such pool as it controls t < n players; for this reason, the adversary’s quota per
round is t · q hashing queries. Note that in this setting, the fact t < n/2 directly corresponds
to the adversary controlling strictly less than half of the system’s total “hashing power” that all
players collectively harness, thus, we will use terms such as “honest majority” and “(1/2)-bounded
adversary” interchangeably.

In our analysis of the Bitcoin backbone protocol we formalize and prove two fundamental prop-
erties it possesses. The properties are quantified by three parameters γ, β and f ; γ and β roughly
correspond to the collective hashing power per round of the honest players and the adversary, re-
spectively, while f represents the expected number of POWs that may be found per round by the
Bitcoin network participants as a whole.

The common prefix property. We prove that if γ > λβ for some λ ∈ [1,∞) that satisfies
λ2 − fλ + 1 ≥ 0, then the blockchains maintained by the honest players will possess a large
common prefix. More specifically, if two honest parties “prune” (i.e., cut off) k blocks from the
end of their local chains, the probability that the resulting pruned chains will not be mutual
prefixes of each other drops exponentially in k (see Definition 2 for the precise formulation).
Provided that f is very close to 0 this enables us to choose λ very close to 1 and thus establish
the common prefix property as long as an honest majority of participants in the flat-model
setting is guaranteed (equivalently, when the adversary controls strictly less than 50% of the
hashing power). On the other hand, when the network “desynchronizes” and f gets closer to 1,
achieving a common prefix requires λ→ φ, where φ is the golden ratio, which in turn suggests
much stricter bounds on the adversarial behavior (in fact, the upper bound on the adversary
for our analysis approaches 0).
The chain-quality property. We prove that if γ > λβ, for some λ ∈ [1,∞), then the ratio
of blocks in the chain of any honest player that are contributed by honest players is at least
(1− 1

λ). Again observe that if λ is close to 1, we obtain that the blockchain maintained by honest
players is guaranteed to have few, but still some, blocks contributed by honest players; a higher
λ would be necessary to guarantee bigger percentages of blocks contributed by honest players
in the blockchain. We also show that this result is basically tight, i.e., that the adversary is
capable of following a strategy (that deviates from the strategy of honest players) that enables
the introduction of that many blocks in the blockchain, under a favorable assumption on the
propagation of adversarial blocks in the network.

While the above two security properties may seem rather abstract since they refer to properties
of the data structure that is maintained distributively by the parties, we demonstrate that they
are in fact quite powerful and show that the Bitcoin backbone protocol armed with the above
properties can be used as a basis for solving other problems, including the problem of distributively
maintaining a “robust” public transaction ledger. In Figure 1 we show how the two properties imply
the properties of the applications that are explained below.
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Figure 1: An overview of the backbone protocol’s applications: Nakamoto’s BA protocol Πnak
BA , our

BA protocols Π
1/3
BA and Π

1/2
BA, and the public ledger protocol ΠPL. All properties must be satisfied

with overwhelming probability. In each box we state the name of the property as well as the
maximum ratio of the adversarial hashing power that we can prove the protocol withstands (based
on the corresponding backbone property). The value ε stands for a negligible quantity.

Byzantine agreement for (1/3)-bounded adversaries. As a first application, we show how a ran-
domized BA protocol can be built on top of the Bitcoin backbone protocol more or less directly,
and based solely on the POW assumption. We instantiate the V (·), I(·), R(·) functions so that
parties form blockchains and act according to the following rules: each party i attempts to insert
its own input vi ∈ {0, 1} into the blockchain; a blockchain is valid only if blocks contain elements
in {0, 1}; the protocol terminates when the blockchain has reached a sufficient length; and, the
blockchain is read by the honest parties by pruning k elements from its end and returning the ma-
jority bit appearing in the resulting blockchain’s prefix. We show how the common prefix property
and the chain-quality property of the backbone protocol ensure Agreement and Validity (BA’s basic
properties; see Section 2) with high probability, thus turning the Bitcoin backbone protocol into a
probabilistic BA protocol.

Observe that for the above protocol to work the chain-quality property should ensure that a
majority of blocks in the blockchain originate from the honest players (otherwise Validity is lost).
Our chain quality property enables this with overwhelming probability assuming the adversarial
power is bounded by 1/3. This approach is different from Nakamoto’s proposal [Nak08b] for BA,
which, as we also show, only guarantees Validity with overwhelming probability if the adversary
has a negligible amount of hashing power. On the positive side, we stress that Nakamoto’s protocol
fails gracefully when the adversarial power gets close to 50% as Validity can be shown with constant
probability (but not overwhelming).

Public transaction ledgers and BA for honest majority. Next, we focus on how a “robust public
transaction ledger” can be built on top of the Bitcoin backbone. We instantiate the V (·), I(·), R(·)
functions so that parties form blockchains and act according to the following rules: each party
(which in this context is called a “miner”) receives a set S of transactions on its input tape and
attempts to insert those in its blockchain, omitting any transactions in S that are already included
in it. (A Bitcoin transaction is, for example, a statement of the type “account A credits account
B a z number of bitcoins,” which is signed using the secret key that corresponds to account A’s
Bitcoin address; each account has a unique Bitcoin address.) Reading a blockchain, on the other
hand, amounts to returning the total sequence of transactions that is contained in the blockchain
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of the miner (and note that miners may disagree about the chain they report).
We show how the common prefix property and the chain-quality property ensure two properties

needed by the ledger, which we call Persistence and Liveness, assuming an honest majority and
arbitrary adversarial behavior. Persistence states that once a transaction goes more than k blocks
“deep” into the blockchain of one honest player, then it will be included in every honest player’s
blockchain with overwhelming probability, and it will be assigned a permanent position in the ledger.
On the other hand, Liveness says that all transactions originating from honest account holders will
eventually end up at a depth more than k blocks in an honest player’s blockchain, and hence the
adversary cannot perform a selective denial of service attack against honest account holders. For
both properties to hold we require an honest majority (i.e., that the adversary’s hashing power is
strictly less than 50%) assuming high network synchronicity (i.e., that the expected number of POW
solutions per round f → 0). If this is violated, Persistence requires stricter bounds on adversarial
hashing power in order to be preserved following the bounds of the common prefix property. Note
that for the liveness property, unforgeability of digital signatures is also a necessary assumption.

In the context of Bitcoin, our analysis implies that Bitcoin provides an operational transaction
ledger under the assumptions: (i) the adversary controls less than half of the total hashing power,
and (ii) the network synchronizes much faster relative to the POW solution rate, (iii) digital sig-
natures cannot be forged. On the other hand, when the network desynchronizes our results cannot
support that the ledger is maintained by assuming an honest majority. This negative result is con-
sistent with the experimental analysis provided by Decker and Wattenhoffer [DW13], who predicted
a drop below 50% in the required adversarial bound for any setting when information propaga-
tion is problematic. Our result also provides some justification for the “slow” rate of 10-minute
increments used in Bitcoin block generation. Specifically, information propagation in the Bitcoin
network is on the order of seconds2 so the ratio (essentially f) of this time window over the average
10-minute period is reasonably close to “small” and thus transaction persistence can be shown for
roughly an honest majority. On the other hand, cryptocurrencies including Litecoin, Primecoin and
others, reacting to the demand to offer faster transaction processing times, opted for a much faster
response rate (some as little as 1 minute), which results in more precarious situations, e.g., f > 0.1,
which is far from being “negligible” and thus cannot support our analysis that a common prefix
would be guaranteed by merely assuming an honest majority. We finally note that the Persistence
and Liveness properties we put forth and prove should not be interpreted as proofs that Bitcoin’s
objectives are all met. In particular, they do not guarantee that miners are properly incentivized to
carry out the backbone protocol, and hence they can only offer guarantees in a setting of an honest
majority as opposed to a setting where all parties act rationally; see Related work below as well as
our summary section for further discussion.

Finally, we present a BA protocol assuming an honest majority, by suitably exploiting the
properties of the robust transaction ledger above. The protocol substitutes Bitcoin’s transactions
with a type of transactions that are themselves based on POWs, and hence uses POWs in two
distinct ways: for the maintenance of the ledger and for the generation of the transactions. We
show that the ledger’s Persistence implies Agreement, and that Liveness implies Validity, because
assuming the ledger is maintained for long enough, a majority of transactions originating from
the honest parties will be included (despite the fact that honest parties may control a minority of
blocks in the blockchain). The protocol requires special care in the way it employs POWs since the
adversary should be incapable of “shifting” work between the two POW tasks that it faces in each
round. To solve this problem, we introduce a special strategy for POW-based protocol composition
which we call “2-for-1 POWs.”

2See e.g., http://bitcoinstats.com/network/propagation/.
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Related work. Realizing a digital currency with a centralized entity but while achieving strong
privacy was proposed early on by Chaum in [Cha82]. A number of other works improved various
aspects of this concept, however the approach remained centralized. Nakamoto [Nak08a] proposed
the first decentralized currency system based on POWs while relaxing the anonymity property of
the payment system to mere pseudonymity. This work was followed by a multitude of other related
proposals including Litecoin3, Primecoin [Kin13], and Zerocash [BSCG+14], to mention a few. Our
analysis of the Bitcoin backbone covers all these works as well, since they are based on exactly the
same protocol.

It is interesting to juxtapose our positive results to the results of Eyal and Sirer [ES14], who
introduce an attack strategy called “selfish mining” that shows how the number of blocks contributed
to the blockchain by an adversary can exceed the percentage of the hashing power the adversary
possesses. Their results are consistent and complementary to ours. The crux of the issue is (in
our terminology) in terms of the chain-quality property, as its formulation is quite permissive: in
particular we show that if the adversary controls a suitably bounded amount of hashing power,
then it is also suitably bounded in terms of the number of blocks it has managed to insert in
the blockchain that honest players maintain. Specifically, recall that we prove that if the hashing
power of the adversary satisfies β < 1

λγ (where γ roughly corresponds to the hashing power of the
honest players), then the adversary may control at most a 1

λ percentage of the blocks in the chain.
For instance, if the adversary controls up to 1/3 of the hashing power (i.e., λ = 2), then it will
provably control less than 50% of the blocks in the honest players’ blockchain. As it can be easily
seen, this does not guarantee that the rate of a party’s hashing power translates to an equal rate
of rewards (recall that in Bitcoin the rewards are linearly proportional to the number of blocks
that a party contributes in the chain). We define as ideal chain quality the property that for any
coalition of parties (following any mining strategy) the percentage of blocks in the blockchain is
exactly proportional to their collective hashing power. The chain quality property that we prove is
not ideal and the results of [ES14] show that in fact there is a strategy that magnifies the percentage
of a malicious coalition. Still, their mining attack does much worse than our bound. To close the
gap, we sketch (cf. Remark 3) a simple selfish mining strategy that matches our upper bound and
hence our chain quality result is tight in our model4 assuming the number of honest parties is large.

Byzantine agreement (BA, aka distributed consensus) [PSL80, LSP82] considers a set of n parties
connected by reliable and authenticated pair-wise communication links and with possible conflicting
initial inputs that wish to agree on a common output in the presence of the disruptive (even
malicious) behavior of some of them. The problem has received a considerable amount of attention
under various models. In this paper we are interested in randomized solutions to the problem (e.g.,
[BO83, Rab83, BG93, FM97, FG03, KK09])5 as in the particular setting we are in, deterministic BA
algorithms are not possible. In more detail, we consider BA in the anonymous synchronous setting,
i.e., when processors do not have identifiers and cannot correlate messages to their sources, even
across rounds. This model for BA was considered by Okun, who classified it as “anonymous model
without port awareness,” and proved the aforementioned impossibility result, that deterministic
algorithms are impossible for even a single failure [Oku05b, Oku05a]. In addition, Okun showed
that probabilistic BA is feasible by suitably adapting Ben-Or’s protocol [BO83] for the standard,

3http://www.litecoin.com.
4Our model allows the unfavorable event of adversarial messages winning all head-to-head races in terms of delivery

with honestly generated messages in any given round.
5We remark that, in contrast to the approach used in typical randomized solutions to the problem, where achieving

BA is reduced to (the construction of) a shared random coin, the probabilistic aspect here stems from the parties’ like-
lihood of being able to provide proofs of work. In addition, as our analysis relies on the random oracle model [BR93],
we are interested in computational/cryptographic solutions to the problem.
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non-anonymous setting (cf. [Oku05b])6; the protocol, however, takes exponentially many rounds.
It turns out that by additionally assuming that the parties are “port-aware” (i.e., they can correlate
messages to sources across rounds), deterministic protocols are possible and some more efficient
solutions were proposed in [OB08].

The anonymous synchronous setting was also considered by Aspnes et al. [AJK05] who pointed
to the potential usefulness of proofs of work (e.g., [DN92, RSW96, Bac97, JB99]) as an identity
assignment tool, in such a way that the number of identities assigned to the honest and adversarial
parties can be made proportional to their aggregate computational power, respectively. For example,
by assuming that the adversary’s computational power is less than 50%, one of the algorithms
in [AJK05] results in a number of adversarial identities less than half of that obtained by the honest
parties. By running this procedure in a pre-processing stage, it is then suggested that a standard
authenticated BA protocol could be run. Such protocols, however, would require the establishment
of a consistent PKI (as well as of digital signatures), details of which are not laid out in [AJK05].

In contrast, and as mentioned above, building on our analysis of the Bitcoin backbone protocol,
we propose two BA protocols solely based on POWs that operate in O(k) rounds with error prob-
ability e−Ω(k). The protocols solve BA with overwhelming probability under the assumption that
the adversary controls less than 1/3 and 1/2 of the computational power, respectively.

The connection between Bitcoin and probabilistic BA was also considered by Miller and LaViola
in [ML14] where they take a different approach compared to ours, by not formalizing how Bitcoin
works, but rather only focusing on Nakamoto’s suggestion for BA [Nak08b] as a standalone protocol.
As we observe here, and also recognized in [ML14], Nakamoto’s protocol does not quite solve BA
since it does not satisfy Validity with overwhelming probability. The exact repercussions of this
fact are left open in [ML14], while with our analysis, we provide explicit answers regarding the
transaction ledger’s actual properties and the level of security that the backbone realization can
offer.

Finally, related to the anonymous setting, the feasibility of secure computation without authenti-
cated links was considered by Barak et al. in [BCL+11] in a more extreme model where all messages
sent by the parties are controlled by the adversary and can be tampered with and modified (i.e., not
only source addresses can be “spoofed,” but also messages’ contents can be altered and messages
may not be delivered). It is shown in [BCL+11] that it is possible to limit the adversary so that all
he can do is to partition the network into disjoint sets, where in each set the computation is secure,
and also independent of the computation in the other sets. Evidently, in such model one cannot
hope to build a global transaction ledger.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we present
our model within which we formally express the Bitcoin backbone protocol and prove its basic
properties. The backbone protocol builds “blockchains” based on a cryptographic hash function;
we introduce notation for this data structure as well as the backbone protocol itself in Section 3,
followed by its analysis in Section 4. Sections 5 and 6 are dedicated to the applications built on
top of the backbone protocol — (simple) BA protocols and robust transaction ledger, respectively.
Specifically, Section 5 covers Nakamoto’s (insufficient) suggestion for BA as well as our solution
for 1/3 adversarial power, while in Section 6 we present our treatment of a robust public ledger
formalizing the properties of Persistence and Liveness and how they apply to Bitcoin. Finally, we
also include in this section our BA protocol for 1/2 adversarial power. Some directions for future
research are offered in Section 7.

6Hence, BA in this setting shares a similar profile with BA in the asynchronous setting [FLP85].
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2 Model and Definitions

We describe our protocols in a standard multiparty synchronous communication setting (e.g.,
Canetti’s formulation of “real world” execution [Can00]) with the relaxation that the underlying com-
munication graph is not fully connected and messages are delivered through a “diffusion” mechanism
that reflects Bitcoin’s peer-to-peer structure. Our adversarial model in the network is “adaptive”,
meaning that the adversary is allowed to take control of parties on the fly, and “rushing”, meaning
that in any given round the adversary gets to see all honest players’ messages before deciding his
strategy, and, furthermore, also allows the adversary to change the source information on every
message. Note that the adversary cannot change the contents of the messages nor prevent them
from being delivered. Effectively, this parallels communication over TCP/IP in the Internet where
messages between parties are delivered reliably, but nevertheless malicious parties may “spoof” the
source of a message they transmit and make it appear as originating from an arbitrary party (in-
cluding another honest party) in the view of the receiver. This aspect of the communication model,
where processors cannot correlate messages to their sources, even across arounds, was considered by
Okun [Oku05a], who classified it as “anonymous model without port awareness.” In this setting we
use Broadcast as the message transmission command that captures the “send-to-all” functionality
allowed by our communication model. Note that an adversarial sender may abuse Broadcast and
attempt to confuse honest parties by sending and delivering inconsistent messages to them.

The parties’ inputs are provided by the environment Z which also receives the parties’ outputs.
Parties that receive no input from the environment remain inactive, in the sense that they will not
act when their turn comes in each round. The environment may provide input to a party at any
round and may also modify that input from round to round. We denote by Input() the input tape
of each party.

In each round, parties are able to read their input tape Input() and communication tape
Receive(), perform some computation that will be suitably restricted (see below) and issue7 a
Broadcast message that is guaranteed to be delivered to all parties in the beginning of the next
round. As stated above the adversary can do multiple broadcasts per round and in fact deliver to
each honest party a different message or even multiple messages.

The term {viewP
Π,A,Z(κ, z)}κ∈N,z∈{0,1}∗ denotes the random variable ensemble describing the

view of party P after the completion of an execution with environment Z, running protocol Π,
and adversary A, on auxiliary input z ∈ {0, 1}∗. We often drop the parameters κ and z and
simply refer to the ensemble by viewP

Π,A,Z if the meaning is clear from the context. If n parties
P1, . . . , Pn execute Π, the concatenation of the view of all parties 〈viewPi

Π,A,Z〉i=1,...,n is denoted
by viewΠ,A,Z . With foresight, we note that, in contrast to the standard setting where parties are
aware of the number of parties executing the protocol, we are interested in protocols Π that do not
make explicit use of the number of parties n or their identities. Further, note that because of the
unauthenticated nature of the communication model the parties may never be certain about the
number of participants in a protocol execution.

In order to capture the parties’ limited ability to produce POWs, we assume that all parties
may have access to an oracle H(·) and allowed to perform a number of queries q per round, where q
is a function of the security parameter κ; we refer to such parties as q-bounded. Note that this is a
“flat-model” interpretation of the parties’ computation power, where all parties are assumed equal.
In the real world, different honest parties may have different “hashing power;” nevertheless, our flat-
model does not sacrifice generality since one can imagine that real honest parties are simply clusters

7For simplicity, we assume that the broadcast operation is atomic and hence the corruption of a party may not
happen while the operation is taking place (cf. [HZ10, GKKZ11]).
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of some arbitrary number of honest flat-model parties. The adversary A is allowed to perform t · q
queries per round, where t ≤ n is the number of corrupted parties. The environment Z, on the
other hand, is not permitted any queries to H(·). The rationale for this is that we would like to
bound the “CPU power” [Nak08a] of the adversary to be proportionate to the number of parties it
controls while making it infeasible for them to be aided by external sources or by transferring the
hashing power potentially invested in concurrent or previous protocol executions. It follows that in
our analysis we will focus on the “standalone” setting, where a single protocol instance is executed
in isolation.

We refer to the above restrictions on the environment, the parties and the adversary as the
q-bounded synchronous setting. The view of the parties participating in the protocol will be denoted
by viewP,H(·)

Π,A,Z(κ, q, z) and the concatenation of all parties’ views by viewH(·)
Π,A,Z(κ, q, z).

In our theorems we will be concerned with properties of protocols Π in the q-bounded synchronous
setting. Such properties will be defined as predicates over the random variable viewH(·)

Π,A,Z(κ, q, z)
by quantifying over all possible adversaries A and environments Z. Note that all our protocols will
only satisfy properties with a small probability of error in κ as well as in a parameter k that can be
freely selected in {1, . . . , κ}. The probability space is determined by the oracle H(·) as well as any
random choices made by the protocol itself (if any). Further details about the model are given in
Appendix A.

Byzantine agreement. As a simple illustration of the formulation above we define the properties
of a Byzantine agreement (BA) protocol.

Definition 1. A protocol Π solves BA in the q-bounded synchronous setting provided it satisfies
the following two properties:

Agreement. There is a round after which all honest parties return the same output if queried
by the environment.
Validity. The output returned by an honest party P equals the input of some party P ′ that is
honest at the round P ’s output is produced.

We note that in our protocols, the participants are capable of detecting agreement and fur-
thermore they can also detect whether other parties detect agreement, thus termination can be
easily achieved by all honest parties. The formulation of Validity above is intended to capture se-
curity/correctness against adaptive adversaries. The notion (specifically, the requirement that the
output value be one of the honest parties’ inputs) has also been called “Strong Validity” [Nei94],
but the distinction is only important in the case of non-binary inputs. In either case, it is known
that in the synchronous cryptographic setting the problem has a solution if and only if n > |V |t,
where V is the input/decision domain [FG03]. Our POW-based protocols work for both versions of
the problem.

3 The Bitcoin Backbone Protocol

We start by introducing blockchain notation. Let G(·), H(·) be cryptographic hash functions with
output in {0, 1}κ. A block is any triple of the form B = 〈s, x, ctr〉 where s ∈ {0, 1}κ, x ∈ {0, 1}∗, ctr ∈
N are such that satisfy predicate validblockDq (B) defined as

(H(ctr,G(s, x)) ≤ D) ∧ (ctr ≤ q).

The parameter D ∈ N is also called the block’s difficulty level. The parameter q ∈ N is a bound
that in the Bitcoin implementation determines the size of the register ctr; in our treatment we allow
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this to be arbitrary, and use it to denote the maximum allowed number of hash queries in a round.
We do this for convenience and our analysis applies in a straightforward manner to the case that
ctr is restricted to the range 0 ≤ ctr < 232 and q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block is the head of
the chain, denoted head(C). Note that the empty string ε is also a chain; by convention we set
head(ε) = ε. A chain C with head(C) = 〈s′, x′, r′〉 can be extended to a longer chain by appending
a valid block B = 〈s, x, r〉 that satisfies s = H(r′, G(s′, x′)). In case C = ε, by convention any valid
block of the form 〈s, x, r〉 may extend it. In either case we have an extended chain Cnew = CB that
satisfies head(Cnew) = B.

The length of a chain len(C) is its number of blocks. Consider a chain C of length m and any
nonnegative integer k. We denote by Cdk the chain resulting from the “pruning” the k rightmost
blocks. Note that for k ≥ len(C), Cdk = ε. If C1 is a prefix of C2 we write C1 � C2.

We note that Bitcoin uses chains of variable difficulty, i.e., the value D may change across
different blocks within the same chain according to some rule that uses the x values stored in the
chain. This does not affect our analysis, and hence we will only consider chains of fixed difficulty
D (i.e., we do not consider the dynamic setting). We are now ready to describe the protocol.

3.1 The backbone protocol

The Bitcoin backbone protocol is executed by an arbitrary number of parties over an unauthenti-
cated network. For concreteness, we assume that the number of parties running the protocol is n;
however, parties need not be aware of this number when they execute the protocol. As mentioned
in Section 2, communication over the network is achieved by utilizing a send-to-all Broadcast
functionality that is available to all parties (and maybe abused by the adversary in the sense of
delivering different messages to different parties). Each party maintains a blockchain, as defined
above. Each party’s chain may be different, but, as we will prove, under certain well-defined con-
ditions, the chains of honest parties will share a large common prefix. (Figure 2 depicts the local
view of each party as well as the shared portion of their chains.)

In the protocol description we intentionally avoid specifying the type of values that parties try
to insert in the chain, the type of chain validation they perform (beyond checking for its structural
properties with respect to the hash functions G(·), H(·)), and the way they interpret the chain.
These functions are handled by the external functions V (·), I(·), R(·) which are specified by the
application that runs “on top” of the backbone protocol.

The Bitcoin backbone protocol is specified as Algorithm 4. Before describing it in detail we first
introduce the protocol’s three supporting algorithms.

Chain validation. The first algorithm, called validate performs a validation of the structural
properties of a given chain C. It is given as input the values q and D, as well as a hash function
H(·). It is parameterized by a predicate V (·), called the input validation predicate. For each block
of the chain, the algorithm checks that the proof of work is properly solved and that the counter
ctr does not exceed q. It further collects all the inputs from the chain’s blocks and assembles them
into a vector xC . If all blocks verify and V (xC) is true then the chain is deemed valid; otherwise it
is rejected. Note that we purposely leave the predicate V (·) undetermined.
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Figure 2: Overview of the basic operation of the Bitcoin backbone protocol. Miner M1 receives
from the environment a Read instruction that results in the application of the R(·) function on
the contents of its chain which are equal to the vector 〈x1, x2, x3, x4, x5〉. Miner M2 receives from
the environment an Insert instruction and uses the function I(·) to determine the value y5 that it
subsequently successfully inserts in its local block chain by solving a proof of work; this results in
a broadcast of the newly extended chain. Finally miner M3 receives the newly extended chain and
validates it both structurally as well as using the input validation predicate V (·). M3 will adopt
this chain if M3 deems it better than its local chain as specified by the backbone protocol. Note
that the joint view of M1,M2,M3 is inconsistent but there is agreement on the prefix 〈x1, x2, x3〉.

Algorithm 1 The chain validation predicate, parameterized by q,D, the hash function H(·), and
the input validation predicate V (·). The input is chain C.

1: function validate(C)
2: b← True
3: xC ← 〈ε〉
4: while C 6= ε do
5: 〈s, x, ctr〉 ← head(C)
6: if validblockDq (〈s, x, ctr〉) then
7: C ← Cd1 . Remove the head from C
8: xC ← append(xC , x) . extend xC with x
9: else

10: b← False
11: end if
12: end while
13: return (b ∧ V (xC))
14: end function
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Chain comparison. The objective of the second algorithm, called maxvalid, is to find the “best
possible” chain when given a set of chains. The algorithm is straightforward and is parameterized
by a max(·) function that applies some ordering in the space of chains. The most important
aspect is the chains’ length, in which case max(C1, C2) will return the longest of the two. In case
len(C1) = len(C2), some other characteristic can be used to break the tie. In our case, max(·, ·) will
always return the first operand8; alternatively, other options exist, such as lexicographic order or
picking a chain at random. The analysis we will perform will essentially be independent of the
tie-breaking rule9.

Algorithm 2 The function that finds the “best” chain, parameterized by function max(·). The
input is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp← ε
3: for i = 1 to k do
4: if validate(Ci) then
5: temp← max(C, temp)
6: end if
7: end for
8: return temp
9: end function

Proof of work. The third algorithm, called pow, is the main “workhorse” of the backbone protocol.
It takes as input a chain and attempts to extend it via solving a proof of work. This algorithm is
parameterized by two hash functions H(·), G(·) (which in our analysis will be modeled as random
oracles)10, as well as two positive integers q,D; q represents the number of times the algorithm is
going to attempt to brute-force the hash function inequality that determines the POW instance,
and D determines the “difficulty” of the POW. The algorithm works as follows. Given a chain C
and a value x to be inserted in the chain, it hashes these values to obtain h and initializes a counter
ctr. Subsequently, it increments ctr and checks to see whether H(ctr, h) ≤ D; if a suitable ctr is
found then the algorithm succeeds in solving the POW and extends chain C by one block inserting
x as well as ctr (which serves as the POW). If no suitable ctr is found, the algorithm simply returns
the chain unaltered.

8Note that the way we deploy maxvalid, amounts to parties always giving preference to their local chain as opposed
to any incoming chain. This is consistent with current Bitcoin operation; however, some debate about alternate tie-
breaking rules has ensued in Bitcoin forums, e.g., see [Cun13].

9It is worth to point out that the behavior of maxvalid(·) is associated with some stability aspects of the backbone
protocol and currently there are proposals to modify it (e.g., by randomizing it — cf. [ES14]). It is an interesting
question whether any improvement in our results can be achieved by randomizing the maxvalid operation.

10In reality the same hash function (SHA-256) instantiates both G and H; however, it is notationally more conve-
nient to consider them as distinct.
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Algorithm 3 The proof of work function, parameterized by q, D and hash functions H(·), G(·).
The input is (x, C).

1: function pow(x, C)
2: ctr ← 1
3: if C = ε then . Determine proof of work instance.
4: s̃← 0
5: else
6: 〈s̃, x̃, r̃〉 ← head(C)
7: end if
8: h← G(s̃, x)
9: while (ctr ≤ q) do

10: if (H(ctr, h) ≤ D) then . Proof of work succeeded.
11: B ← 〈s̃, x, ctr〉
12: C ← CB
13: break
14: end if
15: ctr ← ctr + 1
16: end while
17: return C
18: end function

The backbone protocol. Given the three algorithms above, we are now ready to describe the
Bitcoin backbone protocol. This is the protocol that is executed by the miners and which is assumed
to run “indefinitely” (in our security analysis will apply when the total running time is polynomial in
κ). It is parameterized by two functions, the input contribution function I(·) and the chain reading
function R(·), which is applied to the values stored in the chain.

Each miner maintains a local chain C, attempting to extend it by invoking the POW algo-
rithm pow described above. Prior to updating the chain, the miner checks its communication tape
Receive() to see whether a “better” chain has been received. This is done using the maxvalid
function, depending on which the local chain is substituted.

The value that the miner attempts to insert in the chain is determined by function I(·). The
input to I(·) is the state st, the current chain C, the contents of the miner’s input tape Input() (recall
that they can be written by the environment Z at the beginning of any round) and communication
tape Receive(), as well as the current round number round. The protocol expects two types of
entries in the input tape, Read and (Insert, value); other inputs are ignored.

We purposely leave the functions I(·), R(·) undetermined in the description of the backbone
protocol, as their specifics will vary according to the application. One may choose, for example,
I(·) to be as simple as copying the contents of the Insert input symbols from Input() into x and
keeping st = ε, or performing a complex operation parsing C and maintaining old inputs in st.
We provide explicit examples of I(·) and R(·) in Section 5. When the input x is determined, the
protocol attempts to insert it into the chain C by invoking pow. In case the local chain C is modified
during the above steps, the protocol transmits (“broadcasts”) the new chain to the other parties.
Finally, in case a Read symbol is present in the communication tape, the protocol applies function
R(·) to its current chain and writes the result onto the output tape Output(). This way, the round
ends and a new round begins, continuing indefinitely.
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Algorithm 4 The Bitcoin backbone protocol, parameterized by the input contribution function I(·)
and the chain reading function R(·).

1: C ← ε
2: st← ε
3: round← 0
4: while True do
5: C̃ ← maxvalid(C, any chain C′ found in Receive())
6: 〈st, x〉 ← I(st, C̃, round, Input(),Receive())
7: Cnew ← pow(x, C̃)
8: if C 6= Cnew then
9: C ← Cnew

10: Broadcast(C)
11: end if
12: round← round+ 1
13: if Input() contains Read then
14: write R(xC) to Output()
15: end if
16: end while

3.2 (Desired) Properties of the backbone protocol

We next define the two main properties of the backbone protocol that we will prove. The first
property is called the common prefix property and is parameterized by a value k ∈ N. It considers
an arbitrary environment and adversary in the q-bounded setting, and it holds as long as any two
honest parties’ chains are different only in its most recent k blocks.

Definition 2 (Common Prefix Property). The common prefix property Qcp with parameter k ∈ N
states that for any pair of honest players P1, P2 maintaining the chains C1, C2 in viewH(·)

Π,A,Z(κ, q, z),
it holds that

Cdk1 � C2 and Cdk2 � C1.

The second property, which we call the chain quality property, aims at expressing the number
of honest-player contributions that are contained in a sufficiently long and continuous part of an
honest player’s chain. Specifically, for parameters k ∈ N and µ ∈ (0, 1), the rate of adversarial input
contributions in a continuous part of an honest party’s chain is bounded by µ. This is intended to
capture that at any moment that an honest player looks at a sufficiently long part of its blockchain,
that part will be of sufficient “quality,” i.e., the number of adversarial blocks present in that portion
of the chain will be suitably bounded.

Definition 3 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R
and ` ∈ N states that for any honest party P with chain C in viewH(·)

Π,A,Z(κ, q, z), it holds that for
any ` consecutive blocks of C the ratio of adversarial blocks is at most µ.

It is easy to see that any set of, say, h honest parties, obtain as many blocks as their proportion
of the total hashing power, i.e., h/n. We say that a protocol Π satisfies ideal chain quality if this is
the case for adversarial parties as well, i.e., µ = t/n with respect to those parties. The ideal chain
quality is not achieved by the Bitcoin backbone protocol, cf. Remark 3.
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4 Analysis of the Bitcoin Backbone

We now proceed to the analysis of the protocol presented in the previous section. Let {0, 1}κ be the
range of H(·). Each party tries to provide a POW by issuing queries to H(·), which succeed with
probability p = D/2κ, where D is the difficulty level. By the properties of the random oracle H(·),
any collection of queries will be treated as a collection of independent Bernoulli trials with success
probability p. In order to support this we will assume that the function I(·) (which determines the
input of the players that is to be inserted in the blockchain) ensures (at least with overwhelming
probability) that the inputs are unique. There are two simple ways to enforce this: either have
I(·) add a sufficiently long random nonce to x, or, in case parties have unique identities, it may be
parameterized by it and introduce it as part of x. In either case, this value will be ignored by the
other functions V (·), R(·) as it need not be useful in the application. It is easy to see that if a κ-long
nonce is used the output will be unique except for probability at most q2 · 2−κ where q is the total
number of queries submitted to the random oracle; we will ignore this small term in our analysis.

4.1 Definitions and preliminary lemmas

Recall that n is the number of parties, t of which can be corrupted by the adversary. We introduce
the following parameters for notational convenience:

α = pq(n− t), β = pqt, γ = α− α2, f = α+ β.

The first parameter, α, reflects the hashing power of the honest parties. It is an upper bound on
the expected number of solutions that the honest parties compute in one round. Similarly, β, is
the expected number of solutions that the corrupted parties compute in one round. Notice the
asymmetry that while the honest parties will not compute more than one solution per round, a
corrupted party may use all its q queries and potentially compute more than one solution. The
parameter γ will serve as a lower bound on the following two probabilities. The first one is that at
least one honest party computes a solution in a round:

1− (1− p)q(n−t) ≥ 1− e−α ≥ γ;

we will call such round a successful round. The second one is the probability that exactly one honest
party does so; we will call such round a uniquely successful round. We lower bound the probability
of such a round by the probability that out of q(n − t) coin tosses exactly one comes up heads.
Thus, the probability is at least:

(n− t)qp(1− p)q(n−t)−1 ≥ α(1− α+ p) ≥ γ.

The ratio α/β = (n− t)/t will be of interest for the analysis. When α is small (as it will be when
f is small), then γ ≈ α and we will be justified to concentrate on the ratio γ/β. To understand how
well γ estimates the probability of a uniquely successful round, call it γ′, we observe the following
upper bound:

γ′ = (n− t)(1− (1− p)q)(1− p)q(n−t−1) ≤ (n− t)pqe−α+pq

≤ α(1− α+ pq + (α− pq)2/2) = α− α2(1− 1
n−t) + α3

2 (1− 1
n−t)

2,

where we use Facts 1 and 2 (see Appendix B). From this it follows that γ′ ≤ α − α2 + α3/2 +
O(1/(n− t)).

The following definition will be crucial in the analysis of the common-prefix property.
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Definition 4 (Uniform rounds). We call a round uniform if, at that round, every honest party
invokes the pow(·) algorithm with a chain of the same length (i.e., len(C̃) at line 7 of Algorithm 4
is the same for all honest parties).

We will call a query of a party successful if it submits a pair (ctr, h) such that H(ctr, h) ≤ D.
Without loss of generality, let P1, . . . , Pt be the set of corrupted parties (knowledge of this set will
not be used in any argument). For each round i, j ∈ [q], and k ∈ [t], we define Boolean random
variables Xi and Zijk ∈ {0, 1} as follows. If at round i an honest party obtains a POW, then Xi = 1,
otherwise Xi = 0. Regarding the adversary, if at round i, the j-th query of the k-th corrupted party
is successful, then Zijk = 1, otherwise Zijk = 0. Further, if Xi = 1, we call i a successful round. If a
round is uniform (Def. 4) and uniquely successful, we say it is a uniquely successful uniform round.

Next, we will prove two preliminary lemmas that will be helpful in our analysis. The first one
states that, at any round, the length of any honest party’s chain will be at least as large as the
number of successful rounds. As a consequence, the chain of honest parties will grow at least at the
rate of successful rounds. The second lemma is a simple application of Chernoff bounds and states
that, with high probability, the honest parties will have, at any round, at least λ as many successful
rounds as the adversary has. The usefulness of this lemma will be in showing that honest parties
will be building a blockchain at a rate the adversary will find it hard to overcome.

Lemma 5. Suppose that at round r the chain of an honest party is of length `. Then, after round
s ≥ r, the chain of any honest party will have length at least `+

∑s
i=rXi.

Proof. By induction on s − r ≥ 0. For the basis, observe that at the round at which the honest
party’s chain reaches length ` (round r or earlier), he broadcasts it. Therefore, after round r every
honest party would have a chain of length at least `. For the inductive step, if it is the case Xs = 0,
then the inductive hypothesis suffices. Otherwise (Xs = 1), observe that by hypothesis every honest
party has a chain of length at least `′ = `+

∑s−1
i=1 Xi. Therefore, at least one honest party broadcasts

at round s a chain of length at least `′+ 1. Since `′+ 1 = `+
∑s

i=1Xi, this completes the proof.

Lemma 6. Assume γ ≥ (1 + δ)λβ for some δ ∈ (0, 1) and λ ≥ 1. The probability that during s
rounds the number of successful rounds exceeds by a factor (1+ δ

2)λ the number of solutions computed
by the adversary is at least 1− e−Ω(δ2s).

Proof. Without loss of generality we assume the s rounds start at round 1. Let X =
∑s

i=1Xi and
Z =

∑s
i=1

∑
j∈[q]

∑
k∈[t] Zijk. By an application of Chernoff bounds (Appendix B) we obtain

Pr[X ≤ (1− δ
4)γs] ≤ e−Ω(δ2s) and Pr[Z ≥ (1 + δ

5)βs] ≤ e−Ω(δ2s).

It follows that the union of these events has a measure exponentially small in s. However, if none
of them hold, then

X > (1− δ
4)γs ≥ (1− δ

4)(1 + δ)λβs > (1 + δ
2)(1 + δ

5)λβs > (1 + δ
2)λZ.

We are now ready for the treatment of the protocol’s properties outlined in Section 3.2.
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4.2 The common-prefix property

This property is established in Theorem 9, whose main argument is in turn given in Lemma 8. We
start with a lemma leading to that argument. The lemma will be used to argue that uniform rounds
favor the honest parties. Informally, the idea is that a uniquely successful uniform round forces an
adversary trying to make honest parties’ chains “diverge” to produce POWs. In the second lemma
we take advantage of this, to show that if the adversary has appropriately bounded computational
power, then there will be enough uniquely successful uniform rounds to prevent him from mounting
a successful attack on the common-prefix property.

Lemma 7. Consider a uniquely successful uniform round where the honest parties have chains of
length `− 1. Then, in any subsequent round, there can be at most one chain C where the `-th block
was contributed by an honest party.

Proof. Let r be a uniquely-successful uniform round and C, with len(C) = `, be the chain computed
by the party that solves the proof of work and extends its local chain of length `− 1 to `. At round
r + 1 every honest party will receive C and will either adopt it or adopt another chain sent by the
adversary. In any case, every honest party will have a chain of length at least `, and will never
query the pow(·) function with a chain of length ` − 1 again. The statement of the lemma thus
follows.

Note that in order for the common-prefix property to be violated at round r, at least two honest
parties should have chains C1 and C2 such that Cdk1 � C2 or Cdk2 � C1. Therefore, the existence of
many blocks computed at uniform rounds forces the adversary to provide as many blocks of its own.
We need to show that, with high probability the adversary will fail to collect as many solutions by
round r.

We say that two chains diverge at a given round, if the last block of their common prefix was
computed before that round.

Our main lemma below asserts the following. Suppose the protocol is halted at round r and
two honest parties have distinct chains C1 and C2. Then, for s large enough, the probability that
C1 and C2 diverge at round r − s is negligible. The idea of the proof is to upper bound the number
of (valid) broadcasts that the adversary can perform during these last s rounds. Note that they
are in the order of βs in expectation. The crucial observation here is that if at a given round the
adversary is silent, then a uniform round follows. Therefore we expect about (1 − β)s uniform
rounds, and consequently γ(1 − β)s uniquely-successful uniform rounds. Recalling Lemma 7, the
adversary needs to collect γ(1− β)s POWs. Thus, in the lemma’s condition we choose the relation
between β and γ suitably so that the adversary is incapable of accomplishing this task, except with
probability exponentially decreasing in s.

Lemma 8. Assume f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1 such that
λ2 − fλ− 1 ≥ 0. Suppose C1 and C2 are the chains of two honest parties at round r. Then, for any
s ≤ r, the probability that C1 and C2 diverge at round r − s is at most e−Ω(δ3s).

Proof. We define three bad events, A, B and C, which we show to hold with probability exponen-
tially small in s. We conclude the proof by showing that if none of these bad events happens, then
there cannot exist C1 and C2 diverging at round r − s.

The bad event A occurs if, at some round r′ ≥ r − s, the adversary broadcasts a chain C with
the following properties. (1) C is returned by the function maxvalid of an honest party; (2) the block
head(C) was computed by the adversary before round r − (1 + δ

8)s.
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We now give an upper bound on the probability that event A occurs. Let r∗ ≤ r−(1+ δ
8)s be the

latest round at which a block of C was computed by an honest party (if none exists, then r∗ = 0),
and let ` denote the length of the chain up to that block. If any other block computed by an honest
party exists among the blocks from length ` up to len(C), then such block was computed in rounds
r − (1 + δ

8)s up to r′, and it follows that the probability that the adversary’s block can extend it
at round r′ is negligible in (κ− logD). Therefore, we infer that with overwhelming probability the
adversary has computed all the blocks from length ` to len(C), and done so during the rounds r∗ to
r′. Let Z denote the total number of solutions the adversary obtained in r′ − r∗ rounds. Let also
X denote the total number of successful rounds for the honest parties in r′ − r∗ rounds. We have

Z ≥ len(C)− ` ≥ X.

The first inequality was argued above and the second one follows from Lemma 5. Finally, note that,
by Lemma 6, the event Z ≥ X has measure exponentially small in the number of rounds r′ − r∗.
Since that number satisfies r′ − r∗ ≥ δs/8, we conclude that Pr[A] ≤ e−Ω(δ3s).

The second bad event occurs if the adversary has obtained a large number of solutions during
(1 + δ

8)s rounds. Specifically, let Z denote the number of successful calls to the oracle by the
adversary, for a total of (1 + δ

8)s rounds. Define B to be the event Z ≥ (1 + δ
9)(1 + δ

8)βs. An
application of Chernoff bounds gives

Pr[Z ≥ (1 + δ
9)(1 + δ

8)βs] ≤ e−Ω(βδ2s).

The third bad event occurs when the honest parties do not obtain enough solutions from the
oracle during uniform rounds. Consider any number, say, s′ of rounds (not necessarily consecutive),
and denote by X the number of them that were uniquely successful. We have

Pr[X ≤ (1− δ
4)γs′] ≤ e−Ω(γδ2s′).

From now on we assume that none of the events A, B and C occurs. It is easy to see that if at any
round the adversary does not broadcast a (new) POW, then the next round will be uniform. Using
this observation for a given s consecutive rounds, we will calculate a lower bound on the number of
rounds that will be uniform. The adversary may prevent a round among the s consecutive rounds
from being uniform by broadcasting a solution that was found during the s consecutive rounds as
well as in the past for an extended period of (1 + δ

8)s rounds. Note that, since A does not occur, he
may not use even older solutions with probability at least 1− e−Ω(δ3s).

The negation of the second bad event bounds the number of solutions the adversary can obtain.
This implies that at least

s′ = s− (1 + δ
9)(1 + δ

8)βs ≥ s− (1 + δ
4)βs = (1− β)s− δ

4βs

rounds among the s rounds will be uniform.
Given the negation of the third bad event, there were X > (1− δ

4)γs′ uniquely successful uniform
rounds during the s rounds of the protocol. By Lemma 7, it is necessary for the adversary, in order
to maintain the concurrent existence of C1 and C2, to obtain at least X solutions. Thus, for the
adversary to succeed, it should hold that Z ≥ X. Substituting in this inequality the bounds on
Z ≤ (1 + δ

4)βs and X > (1− δ
4)γs′ given by ¬B and ¬C, respectively, and rearranging we obtain

(1 + δ
2)β ≥ (1− δ

4)γ(1− β). (1)
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Recall that β+ γ < f . Since γ ≥ (1 + δ)λβ, this implies 1−β > (1 +λ− f)/(1 +λ). Using the last
two inequalities to simplify (1), this implies

λ2 − fλ− 1 < 0,

contradicting the choice of λ in the statement of the lemma. We conclude that if A ∪ B ∪ C does
not occur, then C1 and C2 cannot diverge at round r− s. Finally, an application of the union bound
on A ∪B ∪C implies that the adversary can successfully maintain such C1 and C2 with probability
at most exponentially small in s and the statement of the lemma follows.

The above lemma is almost what we need, except that it refers to number of rounds instead
of number of blocks. In order to obtain the common-prefix property we should use the properties
of the blockchains of the parties themselves as the sole measure of divergence. The next theorem
establishes the connection.

Theorem 9. Assume f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1 such that
λ2−fλ−1 ≥ 0. Let S be the set of the chains of the honest parties at a given round of the backbone
protocol. Then the probability that S does not satisfy the common-prefix property with parameter k
is at most e−Ω(δ3k).

Remark 1. Observe that as f → 0, λ→ 1. On the other hand, if f → 1 then λ→ φ, where φ is the
golden ratio (1+

√
5

2 ).

Proof. If there is only one chain in S then the property is satisfied trivially. Consider two chains C1

and C2 in S and the least integer k∗ such that

Cdk
∗

1 � C2 and Cdk
∗

2 � C1. (2)

We need to show that the event k∗ ≥ k happens with probability exponentially small in k.
Let r be the current round and let r − s be the round at which the last common block of C1

and C2 was computed. The length of the chains cannot be greater than the number of solutions Y
obtained from the oracle in s rounds. By the Chernoff bound,

Pr[Y ≥ (1 + δ)fs] ≤ e−δ2fs/3.

It follows that, with probability 1−e−δ2fs/3, s > k∗/((1+δ)f). Thus, if k∗ ≥ k, we have a sequence
of s = Ω(k) consecutive rounds with chains C1 and C2 diverging, and the theorem follows from
Lemma 8.

Remark 2. Recall that in our analysis we are interested in the relationship between α and β.
In particular, the ratio α/β reflects the power the honest parties have against the power of the
adversary. α ≤ β implies that the adversary can, with constant probability, preclude the honest
parties that follow the protocol from doing anything useful. This is simply because such an adversary
has enough power to build a chain that will often be longer than the chain the honest parties are
building. Therefore, it is to be expected that the statements are meaningful only when α/β is
bounded away from 1 by a constant δ. In case the network is synchronized (f → 0), the value of
α gets very close to the value of γ = α − α2, and hence our result is tight. In case of a larger
f , our analysis shows that the upper bound on the adversarial hashing power devolves and in fact
approaches 0 as f → 1 — in other words, in a network were a POW becomes relatively easy
compared to network synchronization time, Theorem 9 provides no security guarantee whatsoever.
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Figure 3: The degradation of the adversarial bound of Theorem 9 as f ranges in (0, 1) in the x-axis
(lower curve). When ties are broken following lexicographic order the analysis can be improved
(upper curve).

In practice, this underscores the importance of calibrating the difficulty of the proof of work to
maintain a small value of f (such calibration takes place in the Bitcoin system every 2016 blocks). It
is an interesting question to further explore the behavior of the backbone protocol in desynchronized
networks. We remark that with our analysis we can prove a much better behavior for f → 1 for a
modified backbone protocol that has a deterministic tie-breaking rule (e.g., chooses a chain that is
the lexicographically smallest from those received11). In this case we can prove, for example, that our
analysis enables the common prefix property to hold when f = 1 assuming the adversary controls
less than about 29% of the hashing power. In Figure 3 we show how the bound of Theorem 9
degenerates when the parameter f ranges in the (0, 1) range as well as the improvement in the
analysis that can be achieved by lexicographic tie-breaking (we omit the details of this analysis).

4.3 The chain-quality property

We now turn to the chain-quality property (Definition 3), which the theorem below establishes for
a suitable bound on the number of blocks introduced by the adversary.

Theorem 10. Assume f < 1 and γ ≥ (1+δ)λβ for some δ ∈ (0, 1). Suppose C belongs to an honest
party and consider any ` consecutive blocks of C. The probability that the adversary has contributed
more than (1− δ

3) 1
λ` of these blocks is less than e−Ω(δ2`).

From the above theorem, it follows immediately that the chain quality is satisfied with parameter
µ = 1

λ for any segment length ` and probability that drops exponentially in `.

Proof. Let us denote the i-th block of C by Bi so that C = B1 . . . Blen(C) and consider the ` consec-
utive blocks Bu, . . . , Bv that correspond to some suffix of Cdk that has length at least k. We let L
denote the least number of consecutive blocks Bu′ , . . . , Bv′ that include the ` given ones (i.e., u′ ≤ u
and v ≤ v′) and have the properties (1) that the block Bu′ was computed by an honest party or is
B1, in case such block does not exist, and (2) that there exists a round at which an honest party
was trying to extend the chain ending at block Bv′ . Observe that number L is well defined since
Blen(C) is at the head of a chain that an honest party is trying to extend.

11This has in fact been debated in an number of occasions; see, e.g., [Cun13].
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Now let x denote the number of inputs from honest parties that are included in the ` blocks
and, towards a contradiction, asume that

x ≤
(

1− (1− δ
3) 1
λ

)
` ≤

(
1− (1− δ

3) 1
λ

)
L.

Let s be the number of rounds during which the L blocks were incorporated to the chain. Given
that f is bounded away from 1 by a constant, the Chernoff bound implies that in s rounds the total
number of solutions is greater than s with probability at most e−Ω(s). It follows that s ≥ L with
high probability. Observe that the adversary computed L− x of these blocks.

Let Z be the random variable that corresponds to the POWs obtained by the adversary during
these s rounds and X the successful rounds of the honest players in the same sequence of rounds.
The probability that the adversary guesses the hash of block Bu′ and is able to extend it using
solutions from previous rounds is negligible in (κ− logD) and we ignore it. We now have:

Z ≥ L− x ≥ (1− δ
3) 1
λL ≥ (1− δ

3) 1
λX ≥

1

(1+
δ
2)λ

X

where the penultimate inequality follows from Lemma 5. By Lemma 6 this has measure e−Ω(δ2`).

Remark 3. We are able to argue that Theorem 10 is tight under the simplification that ties between
blockchains of equal length always favor the adversary. In particular, we assume that the function
maxvalid at line 5 of Algorithm 4, in case of chains of equal length, will always return the suggestion
of the adversary if there is one. This simplification is made without loss of generality in our model
since the adversary is rushing and hence in case two chains are transmitted in a single round the
adversary can always arrange it so that its own solution arrives first12. Furthermore, if the number
of honest parties is large, when an honest party discovers a solution in a round, all other honest
parties will prefer the one transmitted by the adversary and thus the effect of a single honest party
opting for its own block will be negligible.

The attack below is a type of “selfish mining” attack (variation of the one in [ES14]) that
accomplishes the stated bound. The attack is as follows. Initially, the adversary works on the same
chain as every honest party. However, whenever it finds a solution it keeps it private and keeps on
extending a private chain. Whenever an honest party finds a solution, the rushing adversary releases
one block from the private chain; if the private chain is depleted the adversary returns to the public
chain. We now argue that this strategy exploits the conditions stated above and maximizes the
adversarial blocks in the blockchain up to the upper bound of Theorem 10.

Consider s rounds of the protocol. With high probability, the adversary will obtain more than
(1 − ε)βs solutions for some small ε > 0. With each one of them it will try to block the blocks
that are broadcast by honest parties. At the end of the s rounds, there may be a few “unused”
blocks but these will be, with high probability, at most εβs. This is because during the rounds that
the adversary acquired the blocks that it did not broadcast, none of the honest players obtained a
solution; this is a low probability event. Now, the honest parties will have—with high probability—
at most (1+ε)γs successful rounds. It follows that, for a small constant δ, the quality of the chain is
1− 1−δ

λ . Note that the Chernoff bound can be used to make the argument more formal and replace
the expression “with high probability” with 1 − eΩ(s). From this it follows that in order to obtain
better chain quality one should consider mechanisms that result in more favorable (for the honest
parties) behavior in the function maxvalid.

12In fact, this rushing capability was argued to be realistic in [ES14] through the dispersion of sybil nodes in the
Bitcoin peer-to-peer network that echo the adversary’s messages.
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5 Simple POW-based Byzantine Agreement Protocols

We now turn to applications of the Bitcoin backbone protocol, showing how it can be used as a
basis to solve other problems. We start in this section by analyzing Nakamoto’s suggestion for
solving BA, observing that it falls short of satisfying Definition 1; we then present our simple
instantiation which solves BA. This protocol, however, only tolerates an adversarial hashing power
less than 1/3, which takes us to the next section, where we present Bitcoin’s essential task, namely,
distributively maintaining a public transaction ledger, as well as a more elaborate BA protocol
tolerating an adversarial power strictly less than 1/2. An overview of our applications and the way
their properties depend on those of the backbone protocol was already presented in Figure 1.

5.1 Nakamoto’s suggestion for Byzantine agreement

As our first illustration of how the Bitcoin backbone can be used we present Nakamoto’s suggestion
for solving BA, as presented in a forum post [Nak08b]13. We describe his solution (call it Πnak

BA ) via
the backbone protocol by specifying the functions V (·), I(·), R(·) in a suitable way (see Figure 4).
The input validation predicate V (·) will be defined to require that all valid chains contain the same
input value. The chain reading function R(·) simply returns this value in case the chain has length at
least k (which is the security parameter); otherwise it is undefined. The input contribution function
I(·) examines the contents of the current chain C and the contents of the input tape Input(). In case
C = ε the input contribution for the next block is taken verbatim from the input tape; otherwise,
the input contribution is determined as the (unique) value that is already present in the C (and in
this case the input is ignored). Note that we will only consider environments Z that provide an
input symbol to all parties.

It follows that initially the protocol builds various chains all containing the same value. The
intuition is that Agreement will follow from the fact that the honest players will eventually agree on
a single chain, as long as the majority of the hashing power lies with the honest parties. While this
is true, as we will demonstrate, the second necessary property does not hold: this protocol cannot
provide Validity (with high probability).

Input validation predi-
cate V (·)

V (〈x1, . . . , xn〉) is true if and only if x1 = . . . = xn.

Chain reading function
R(·) (parameterized by
k)

If V (xC) = True and len(C) ≥ k, the value of R(xC) is the (unique)
value that is present in each block of C, while it is undefined if V (xC) =
False or len(C) < k.

Input contribution func-
tion I(·)

If C = ∅, I(st, C, round, Input()) is equal to v if the input tape con-
tains (Insert, v); otherwise (C 6= ∅), it is equal to the x value present
in C. The state st always remains ε.

Figure 4: Expressing Nakamoto’s BA protocol Πnak
BA over the Bitcoin backbone protocol via the

specification of V (·), R(·), I(·).

As we now show, Agreement follows easily from the common-prefix property. Indeed, as long as
there is a common prefix (irrespective of its length), it is ensured that when R(·) becomes defined
all honest parties will produce the same output. Note however that a small tweak would be needed
to ensure “work independence”: the parties need to introduce a fresh random κ-bit nonce at each
block (cf. the beginning of Sec. 4). With this tweak we cane easily derive the following.

13Note that Nakamoto’s description is quite informal. We make the most plausible interpretation of it in our formal
framework.
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Lemma 11 (Agreement). Suppose f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1
such that λ2 − fλ − 1 ≥ 0. Protocol Πnak

BA from Fig. 4 satisfies Agreement (cf. Definition 1) with
probability at least 1− e−Ω(δ3k).

Proof. Observe that chains contain unique values, therefore a disagreement between honest parties
implies that two parties have completely disjoint chains (essentially, this is equivalent to a fork that
happens at the onset). It follows from the common prefix property (Theorem 9) that the event of
any two chains of length at least k that are completely disjoint happens with probability at most
e−Ω(δ3k).

On the other hand, it is easy to see that Validity cannot be guaranteed with overwhelming
probability unless the hashing power of the adversary is negligible compared to the honest players,
i.e., t/n is negligible. This is because in case the adversary finds a solution first, then every honest
player will extend the adversary’s solution and switch to the adversarial input hence abandoning
the original input. While one can still show that Validity can be ensured with non-zero probability
(and thus the protocol fails gracefully assuming honest majority), Πnak

BA falls short from providing
a solution to BA. Interestingly, by appropriately modifying the way the backbone protocol is used,
we show in the next section how a solution can be derived.

5.2 A Byzantine agreement protocol for (1/3)-bounded adversaries

We now show that the Bitcoin backbone can actually be used to satisfy BA’s properties with an
error that decreases exponentially in the length of the chain, assuming however that the adversary’s
hashing power is less than 1/3. There are two important differences with respect to the approach
in the previous section: (i) parties never abandon their original input but instead they do insist
in inserting it into the blockchain, and (ii) when the chain becomes of length 2k, they output
the majority of a length-k prefix (note that here we consider binary BA). The protocol (i.e., the
specification of the functions) is presented in Figure 5.

Input validation predi-
cate V (·)

V (〈x1, . . . , xn〉) is true if and only if v1, . . . , vn ∈ {0, 1}, ρ1, . . . , ρn ∈
{0, 1}κ where vi, ρi are the values from the pair 〈vi, ρi〉 = xi.

Chain reading function
R(·) (parameterized by
k)

If V (〈x1, . . . , xn〉) = True and n ≥ 2k, the value R(xC) is the majority
bit of v1, . . . , vk where xi = 〈vi, ρi〉; otherwise (V (〈x1, . . . , xn〉) = False
or n < 2k) the output value is undefined.

Input contribution func-
tion I(·)

I(st, C, round, Input()) is equal to 〈v, ρ〉 if the input tape contains
(Insert, v); ρ is a random κ-bit string. The state st remains always
ε.

Figure 5: Protocol Π
1/3
BA over the Bitcoin backbone via the specification of V (·), R(·), I(·).

Lemma 12 (Agreement). Suppose f < 1 and γ ≥ 2(1 + δ)β, for some real δ ∈ (0, 1). Protocol Π
1/3
BA

of Fig. 5 satisfies Agreement in O(k) rounds with probability at least 1− e−Ω(δ3k).

Proof. In order for agreement to be violated, at least two honest players should have upon termina-
tion chains C1 and C2 such that Cdk1 6= C

dk
2 . In particular, the set {C1, C2} should be a set of chains

that belong to honest parties and does not satisfy the common-prefix property. Thus, the statement
of the lemma follows directly from Theorem 8.
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We now turn to the Validity property. In order to prove it we need to show that, upon termi-
nation of the protocol, the chain of any honest party will contain among the first k inputs more
inputs from honest players than provided by the adversary. As we will see, this is a consequence of
the chain-quality property.

Lemma 13 (Validity). Suppose f < 1 and γ ≥ 2(1 + δ)β, for some real δ ∈ (0, 1). Protocol Π
1/3
BA

satisfies Validity in O(k) rounds with probability at least 1− e−Ω(δ2k).

Proof. For the property to be satisfied we only need to ensure that in Cdk the majority of the inputs
was computed by the honest parties. As in protocol Π

1/3
BA we have len(Cdk) = k, Theorem 10 with

λ = 2 provides exactly what we want.

Note that Π
1/3
BA solves BA only in case the adversary’s hashing power is bounded by 1/3. In

case adversarial blocks win all head-to-head races within a round, the result is tight, as argued in
Remark 3. In the next section we show a more elaborate construction based on a transaction ledger
which tolerates less than 1/2.

Remark 4. As mentioned in Section 2, “Strong Validity” refers to the requirement that the output
value be one of the honest parties’ inputs, and the distinction is relevant in the case of non-binary
inputs, i.e., coming from an arbitrary set V , |V | > 2. It is easy to modify the above algorithm to
also satisfy this property by making the chain reading function the element with highest plurality in
the chain (ties broken favoring the lexicographically smallest element in V ), as opposed to majority,
and by imposing a more stringent bound on the adversary, namely, that γ ≥ |V |(1 + δ)β. This
ensures that the expected number of blocks in the blockchain that are controlled by the adversary
is less than 1

|V | , and maintains validity even in the worst case that the honest parties’ inputs are
equally split among all possible values but one (i.e., there are |V | − 1 inputs equally proportioned
among the honest parties). Agreement is ensured in the same way as before via the common-prefix
property. The bound is in-line with the known bounds for the standard (computational) setting,
n > |V |t, cf. [FG03].

6 Public Transaction Ledgers

We now come to the application which the Bitcoin backbone was designed to solve: maintaining a
public transaction ledger. We first formally introduce this object — a “book” where transactions
are recorded — and its properties, and then we show how it can be used to implement the Bitcoin
ledger and BA in the honest majority setting by properly instantiating the notion of a transaction.

6.1 Robust public transaction ledgers

A public transaction ledger is defined with respect to a set of valid ledgers L and a set of valid
transactions T , each one possessing an efficient membership test. A ledger x ∈ L is a vector of
sequences of transactions tx ∈ T . Each transaction tx may be associated with one or more accounts,
denoted a1, a2, . . .

The backbone protocol parties, called miners in the context of this section, process sequences of
transactions of the form x = tx1 . . . txe that are supposed to be incorporated into their local chain
C. The input inserted at each block of the chain C is the sequence x of transactions. Thus, a ledger
is a vector of transaction sequences 〈x1, . . . , xm〉, and a chain C of length m contains the ledger
xC = 〈x1, . . . , xm〉 if the input of the j-th block in C is xj .
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The description and properties of the ledger protocol will be expressed relative to an oracle Txgen
which will control a set of accounts by creating them and issuing transactions on their behalf. In
an execution of the backbone protocol, the environment Z as well as the miners will have access
to Txgen. Specifically, Txgen is a stateful oracle that responds to two types of queries (which we
purposely only describe at a high level):

GenAccount(1κ): It generates an account a.
IssueTrans(1κ, t̃x): It returns a transaction tx provided that t̃x is some suitably formed string,
or ⊥.
We also consider a symmetric relation on T , denoted by C(·, ·), which indicates when two trans-

actions tx1, tx2 are conflicting. Valid ledgers x ∈ L can never contain two conflicting transactions.
We call oracle Txgen unambiguous if it holds that for all PPT A, the probability that ATxgen

produces a transaction tx′ such that C(tx′, tx) = 1, for tx issued by Txgen, is negligible in κ.
Finally, a transaction tx is called neutral if C(tx, tx′) = 0 for any other transaction tx′. The

presence of neutral transactions in the ledger can be helpful for a variety of purposes, as we will see
next and in the BA protocol that we build on top of the ledger. For convenience we will assume that
a single random nonce ρ ∈ {0, 1}κ is also a valid transaction. Nonces will be neutral transactions
and may be included in the ledger for the sole purpose of ensuring independence between the POW
instances solved by the honest parties.

Next, we determine the three functions V (·), I(·), R(·) that will turn the backbone protocol into
ΠPL, a protocol realizing a public transaction ledger.

Input validation predi-
cate V (·)

V (〈x1, . . . , xm〉) is true if and only if the vector 〈x1, . . . , xm〉 is a valid
ledger, i.e., 〈x1, . . . , xm〉 ∈ L.

Chain reading function
R(·)

If V (〈x1, . . . , xm〉) = True, the value R(xC) is equal to 〈x1, . . . , xm〉;
undefined otherwise.

Input contribution func-
tion I(·)

I(st, C, round, Input()) operates as follows: if the input tape contains
(Insert, v), it parses v as a sequence of transactions and retains the
largest subsequence x′ � v that is valid with respect to xC (and whose
transactions are not already included in xC). Finally, x = tx0x

′ where
tx0 is a neutral random nonce transaction.

Figure 6: The public transaction ledger protocol ΠPL, built on the Bitcoin backbone.

We now introduce two essential properties for a protocol maintaning a public transaction ledger:
(i) Persistence and (ii) Liveness. In a nutshell, Persistence states that once an honest player reports
a transaction “deep enough” in the ledger, then all other honest players will report it indefinitely
whenever they are asked, and at exactly the same position in the ledger (essentially, this means
that all honest players agree on all the transactions that took place and in what order). In a more
concrete Bitcoin-like setting (cf. Appendix 6.2), Persistence is essential to ensure that credits are
final and that they happened at a certain “time” in the system’s timeline (which is implicitly defined
by the ledger itself).

Note that Persistence is useful but not enough to ensure that the ledger makes progress, i.e.,
that transactions are eventually inserted in a chain. This is captured by the Liveness property,
which states that as long as a transaction comes from an honest account holder and is provided
by the environment to all honest players, then it will be inserted into the honest players’ ledgers,
assuming the environment keeps providing it as an input for a sufficient number of rounds14.

14Observe that here we take the view that new transactions are available to all honest players and the way they
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Definition 14. A protocol Π implements a robust public transaction ledger in the q-bounded syn-
chronous setting if it satisfies the following two properties:

Persistence: Parameterized by k ∈ N (the “depth” parameter), if in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away from
the end of the ledger, then tx will always be reported in the same position in the ledger by any
honest player from this round on.
Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds, then there exists an honest party who will report
this transaction at a block more than k blocks from the end of the ledger.

We prove the two properties separately, starting with Persistence. The proof is based on the
common prefix property of the backbone protocol (recall Definition 2 and Theorem 9).

Lemma 15 (Persistence). Suppose f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1
such that λ2 − fλ− 1 ≥ 0. Protocol ΠPL satisfies Persistence with probability 1− e−Ω(δ3k), where k
is the depth parameter.

Proof. Let C be the chain of some honest player. We show that if a transaction tx is included in
Cdk then this transaction will be always included in every honest player’s chain with probability at
least 1− e−Ω(δ2k).

Theorem 9 implies that, with high probability, Cdk is a common prefix of every honest party’s
chain. Thus, tx is included in C′dk, for any C′ that belongs to an honest party. Now, let r be the
current round and consider the first round r′ > r at which an honest party with chain C1 accepts an
alternative chain C2, such that Cdk2 does not include tx. Suppose tx was inserted in C1 at round r∗.
Then, C1 and C2 diverge at round r∗. By Lemma 8, this occurs with probability e−Ω(δ3(r′−r∗)). The
claim then follows by a union bound over all r∗ ≤ r. Letting s = r − r∗ and ε be an appropriate
constant, the probability that Persistence is violated is at most

∑
s′≥s e

−εδ3s′ = e−Ω(δ3s). Finally,
as in the proof Theorem 9 we can argue that s = Ω(k).

We next prove Liveness, which is based on the chain-quality property (recall Definition 3 and
Theorem 10).

Lemma 16 (Liveness). Assume f < 1 and γ ≥ (1 + δ)λβ, for some δ ∈ (0, 1), λ ∈ [1,∞) and let
k ∈ N. Further, assume oracle Txgen is unambiguous. Then protocol ΠPL satisfies Liveness with
wait time u = 2k/(1− δ)γ and depth parameter k with probability at least 1− e−Ω(δ2k).

Proof. We prove that assuming all honest players receive as input the transaction tx for at least
u = 2k/[(1− δ)γ] rounds, there exists an honest party with chain C such that tx is included in Cdk.

Indeed, after u rounds the Chernoff bound implies that the honest parties had at least 2k
successful rounds with probability at least 1 − e−Ω(δ2k). Invoking Lemma 5, we infer that the
chain’s length of any honest party has increased by at least 2k blocks. Finally, the chain-quality
property (Theorem 10) implies that at least one of the blocks in the length-k suffix of Cdk was
computed by an honest party. Such a block would include tx since it is infeasible for adversarial
Z,A to produce a conflicting transaction tx′ (which would be the only event making an honest
player drop tx from the sequence of transactions x that it attempts to insert in the blockchain).
Thus, the lemma follows.

are propagated is handled by the environment that feeds the backbone protocol. While this makes sense in the
honest/malicious cryptographic model, it has been challenged in a model where all players are rational [BDOZ12].
Analysis of the backbone protocol in a setting where transaction propagation is governed by rational players is beyond
the scope of our paper.
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6.2 Bitcoin-like transactions and ledger

Next, we show how to instantiate the public transaction ledger for Bitcoin, by defining the sets of
transactions and valid ledgers.

Transactions and accounts are defined with respect to a digital signature scheme that is com-
prised of three algorithms 〈KeyGen,Sign,Verify〉. An account will be a pair a = (vk,G(vk)) where
G(·) is a hash function and G(vk) is the “address” corresponding to the account.

A transaction tx is of the form “{a1, a2, . . . , ai} → (σ, {(a′1, b′1), . . . , (a′o, b
′
o)}),” where a1, . . . , ai

are the accounts to be debited, a′1, . . . , a′o are the addresses of the accounts15 to be credited with
funds b′1, . . . , b′o, respectively, and σ is a vector of verification keys and digital signatures issued under
them 〈(vk1, σ1), . . . , (vki, σi)〉 on the same message {(a′1, b′1), . . . , (a′o, b

′
o)}. (We note that Bitcoin

transactions can be more expressive but the above description is sufficient for the purpose of our
analysis).

Next, we specify the Txgen oracle:
GenAccount(1κ): It generates an account a by running KeyGen and computing the hash G(·) on
the verification key. The account is the pair (vk,G(vk)), where G(vk) is the account’s address.
The corresponding secret key, sk, is kept in the state of Txgen.
IssueTrans(1κ, t̃x): It returns a transaction tx provided that t̃x is a transaction that is only miss-
ing the signatures by accounts that are maintained by Txgen. (Recall the format of transactions
above.) Each account is only allowed a single transaction.
Note that the above restriction on IssueTrans is without loss of generality, as in Bitcoin, entities

typically maintain a number of accounts and are allowed (although not forced) to move their balances
forward to a new account as they make new transactions. The conflict relation C(·, ·) over T satisfies
that C(tx1, tx2) = 1 if and only if tx1 6= tx2 and tx1, tx2 have an overlapping input account16. Thus,
we can easily prove the unambiguity of the Txgen oracle based on the unforgeability of the underlying
digital signature.

Lemma 17. Assume that 〈KeyGen,Sign,Verify〉 is an existentially unforgeable signature scheme.
Then oracle Txgen is unambiguous.

In order to define the set of valid Bitcoin ledgers we first need to determine in what sense a
transaction may be valid with respect to a ledger. Then we will define the set of valid ledgers
recursively as the maximal set of vectors of sequences of transactions that satisfy this condition. So
here it goes.

A transaction tx is valid with respect to a Bitcoin ledger x = 〈x1, . . . , xm〉 provided that all
digital signatures verify and

∑i
j=1 bj ≥

∑o
j=1 b

′
j , where bj is the balance that was credited to

account aj in the latest transaction involving aj in x. In case e =
∑i

j=1 bj −
∑o

j=1 b
′
j > 0, then e

is a transaction fee that may be claimed separately in a special transaction of the form “∅ → . . .,”
called a coinbase transaction. In more detail, a coinbase transaction has no inputs and its purpose
is to enable miners to be rewarded for maintaining the legder. The transaction is of the form
“∅ → {(a1, b1), . . . , (ao, bo)},” and

∑o
j=1 bj is determined based on the other transactions that are

“bundled” in the block as well as a flat reward fee, as explain below.
A sequence of transactions x = 〈∅ → {(a1, b1), . . . , (ao, bo)}, tx1, . . . , txl〉 is said to be valid with

respect to a ledger x = 〈x1, . . . , xm〉, if each transaction txj is valid with respect to the ledger x

15In bitcoin terminology every account has an address that is used to uniquely identify it. Payments directed to an
account require only this “bitcoin address.” The actual verification key corresponding to the account will be revealed
only when the account makes a payment.

16The conflict relation is more permissive in the actual Bitcoin ledger. We adopt the more simplified version given
above as it does not change the gist of the analysis.
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extended by the transactions tx1, . . . , txj−1. I.e., for all j = 1, . . . , l the transaction txj should be
valid with respect to ledger

〈x1, . . . , xm, tx1 . . . txj−1〉,

and furthermore, the total fee e =
∑o

j=1 bj collected in the transaction ∅ → {(a1, b1), . . . , (ao, bo)}
does not exceed rm +

∑m
j=1 ej , which includes all the individual fees corresponding to transactions

tx1, . . . , txe, plus a value rm that is the flat reward given for extending a ledger of length m to a
ledger of length m+ 1.17

The set of valid ledgers L with respect to a reward progression {rj}j∈N contains ε (the empty
ledger), and any ledger x which extends a ledger in L by a valid sequence of transactions. Note
that the first transaction sequence of any ledger x ∈ L contains a single transaction of the form
∅ → {(a1, b1), . . . , (ao, bo)} that satisfies

∑o
j=1 bj = r0, where r0 is the initial flat reward. This first

transaction “distributes an initial amount of money” to the ledger’s initiator(s)18. It is easy to see
that L has an efficient membership test.

Given the existence of coinbase transactions in this application we can do away with random
nonces as standalone transactions and the description of the input contribution function I in Fig. 6,
is modified to include their generation each time an input sequence of transactions is determined
to be inserted in the ledger. Specifically, I(·) will form a coinbase transaction ∅ → {(a, b)}, where
b = rlen(C) +

∑m
j=1 ej and ej is the fee corresponding to x’s j-th transaction. Account a is a

freshly created account that is obtained via running KeyGen. I(·) will append account a and the
corresponding (vk, sk) to its private state st.

We will refer to the modified ΠPL protocol by the moniker ΠBTC. ΠBTC inherits from ΠPL the
properties of Persistence and Liveness which will ensure the following with overwhelming probability
in k.

Apart from its latest k blocks, the transaction ledger is fixed and immutable for all honest
miners.
If a majority of miners19 receive an honest transaction and attempt to insert it following the
protocol for a sufficient number of rounds (equal to parameter u, the “wait time”), it will become
a permanent entry in the ledger (no matter the adversarial strategy of the remaining miners).

6.3 Byzantine agreement for honest majority

We now use the public transaction ledger formulation to achieve POW-based BA for an honest
majority by properly instantiating the notion of a transaction, thus improving on the simple BA
protocol tolerating a (1/3)-bounded adversary presented in Section 5.

Here we consider a set of valid ledgers L that contain sequences of transactions of the form
(ctr, nonce, v), and satisfy the predicate:

(H1(ctr,G(nonce, v)) ≤ D) ∧ (ctr ≤ q), (3)
where H1(·), G(·) are two hash functions as in the definition of the backbone protocol, and v ∈ {0, 1}
is a party’s input. (Recall that D is the difficulty level and q determines how many calls to H1(·) a
party is allowed to make per round.) To distinguish the oracles, in this section we will use H0(·) to
refer to the oracle used in the backbone protocol.

17Currently, the flat reward for extending the Bitcoin chain is 25BTC. The sequence r0, r1, . . . for Bitcoin follows
a geometric progression with large constant intervals.

18In the case of Bitcoin, it was supposedly Nakamoto himself who collected this first reward of 50BTC.
19Recall that we assume a flat model w.r.t. hashing power; a majority of miners corresponds to a set of parties

controlling the majority of the hashing power.
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Algorithm 5 The POW-based transaction production protocol Πtx, parameterized by q, D and
hash functions H1(·), G(·).

1: v ← Input()
2: ctr ← 1
3: tx← ε
4: h← G(nonce, v) . nonce is a random κ-bit string
5: while (ctr ≤ q) do
6: if (H1(ctr, h) ≤ D) then . Proof of work succeeded
7: tx← 〈ctr, nonce, v〉
8: break
9: end if

10: ctr ← ctr + 1
11: end while
12: Broadcast(tx)

Figure 7: The transaction production protocol Πtx.

For the ledger we consider in this section, there will be no accounts and all transactions will be
neutral — i.e., the conflict predicate C(·, ·) will be false for all pairs of transactions.

We first provide a high level description of the BA protocol assuming parties have q queries per
round to each oracle H0(·), H1(·). We then show how to use a single oracle H(·) to achieve the
combined functionality of both of them while only using q queries per round.

At a high level, the protocol, Π
1/2
BA, works as follows:

Operation: In each round, parties run two protocols in parallel. The first protocol is protocol
ΠPL (Fig. 6), which maintains the transaction ledger and requires q queries to the oracle H0(·).
The second process is the “transaction production” protocol Πtx, (Fig. 7), which continuously
generates transactions satisfying predicate (3). The protocol makes q queries to the H1(·) oracle.
Termination: When the ledger reaches 2k blocks, a party prunes the last k blocks, collects all
the unique POW transactions that are present in the ledger and returns the majority bit from
the bits occuring in these transactions.

As described, protocol Π
1/2
BA does not conform to the q-bounded setting since parties require

q queries to oracle H0(·) and q queries to oracle H1(·) to perform the computation of a single
round (the setting imposes a bound of q queries to a single oracle for all parties). Note that a
naïve simulation of H0(·), H1(·) by a single oracle H(·) in the (2q)-bounded setting (e.g., by setting
Hb(x) = H(b, x)) would violate the restriction imposed on each oracle individually, since nothing
would prevent the adversary, for example, from querying H0(·) 2q times. Next, we show how we can
combine the two protocols into a single protocol that utilizes at most q queries to a single random
oracle in a way that the adversary will remain q-bounded for each oracle. This transformation,
explained below, completes the description of Π

1/2
BA.

2-for-1 POWs. We now tackle the problem of how to turn a protocol operation that uses two
separate POW subprocedures involving two distinct and independent oracles H0(·), H1(·) into a
protocol that utilizes a single oracle H(·) for a total number of q queries per round. Our transfor-
mation is general and works for any pair of protocols that utilize H0(·), H1(·), provided that certain
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Algorithm 6 POW-based protocol fragment of
Πb, b ∈ {0, 1} parameterized by q, D and hash
functions Hb(·), G(·), b ∈ {0, 1}. The value wb
is determined from the protocol’s context.
1: . . . . Value wb is determined
2: ctr ← 1
3: B ← ε
4: hb ← G(wb)
5: while (ctr ≤ q) do
6: if (H(ctr, hb) < D) then
7: Bb ← 〈ctr, wb〉
8: break
9: end if
10: ctr ← ctr + 1
11: end while
12: . . . . The POW B is exploited here

Algorithm 7 The double proof of work func-
tion, parameterized by q, D and hash func-
tions H(·), G(·) that substitutes steps 2-11 of
two POW-based protocols.

1: function double-pow(w0, w1)
2: B0, B1 ← ε
3: ctr ← 1
4: while (ctr ≤ q) do
5: h← H(ctr,G(w0), G(w1))
6: if (h < D) then
7: B0 ← 〈ctr, w0, G(w1)〉
8: break
9: end if
10: if ([h]R < D) then
11: B1 ← 〈ctr, w1, G(w0)〉
12: break
13: end if
14: ctr ← ctr + 1
15: end while
16: return 〈B0, B1〉
17: end function

Figure 8: The 2-for-1 POW transformation.

conditions are met (which are satisfied by protocol Π
1/2
BA above). In more detail, we consider two

protocols Π0,Π1 that utilize a POW step as shown in Algorithm 6 in Figure 8.
In order to achieve composition of the two protocols Π0,Π1 in the q-bounded setting with access

to a single oracle H(·), we will substitute steps 2-11 in both protocols with a call to a new function,
double-pow, defined below. First, observe that in Πb, b ∈ {0, 1}, the POW steps 4-11 operate with
input wb and produce output in Bb if the POW succeeds. The probability of obtaining a solution
is D · 2−κ.

The modification consists in changing the structure of the POWs from pairs of the form (ctr, w)
to triples of the form (ctr, w, label), where label is a κ-bit string. This will further require the
modification of the verification step for POWs in both protocols Π0,Π1 in the following manner.

Any verification step in Π0 of a POW (ctr, w0) which is of the form H(ctr,G(w0)) < D, will
now operate with a POW of the form (ctr, w0, label) and will verify the relation

H(ctr,G(w0), label) < D.

Any verification step in Π1 of a POW (ctr, w1) which is of the form H(ctr,G(w1)) < D, will
now operate with a POW of the form (ctr, w1, label) and will verify the relation

[H(ctr, label, G(w1))]R < D,

where [a]R denotes the reverse of the bitstring a.
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This parallel composition strategy in the form of function double-pow is shown in Algorithm 7.
Either or both the solutions it returns, B0, B1, may be empty if no solution is found.

Protocol Π
1/2
BA will employ double-pow, which will substitute the individual POW operation of

the two underlying protocols Π0,Π1 as defined in lines 2-10 of Algorithm 6. The correctness of the
above composition strategy follows from the following simple observation.

Lemma 18. Consider a uniform random variable U over the integers in [0, 2κ) and an integer D
such that D = 2t for some positive integer t < κ/2. Then, the events (U < D) and ([U ]R < D) are
independent and they both occur with probability D · 2−κ.

Proof. It is easy to see that each event happens with probability D · 2−κ. The conjunction of the
two events involves the choice of an integer U which satisfies U < D and [U ]R < D. Observe that
because D = 2t, it follows that the conditioning on U < D leaves the t least significant bits of U
uniformly random while fixing the remaining κ − t bits. It follows that the t most significant bits
of [U ]R are uniformly random in the conditional space U < D. The event [U ]R < D has probability
(D/2κ−t)/D = D2−κ and thus the two events are independent.

Theorem 19. Assume f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1 such that
λ2 − fλ− 1 ≥ 0. Protocol Π

1/2
BA solves BA in O(k) rounds with probability at least 1− e−Ω(δ3k).

Proof. First observe that due to Lemma 18, the success probability for all parties to solve a proof
of work of either kind in each round is q ·D2−κ and the events are independent with each other.

Regarding Agreement, observe that it follows directly from Theorem 9 (common prefix) that all
parties will return the majority of the same set with probability at least 1− e−Ω(δ3k).

To show Validity, let C be the chain of an honest party upon termination of the protocol. Let
r denote the greatest round on which a block of Cdk was computed by an honest party. We argue
that the rest of the blocks in Cdk, that must have been inserted by the adversary, were computed
by round (1 + δ

2)r. Assume the contrary and let r′ > (1 + δ
2)r denote the least round on which

an honest player adopted the chain C (after round (1 + δ
2)r). Let X denote the successful rounds

from round r to round r′ and Z the number of POWs the adversary obtained in these rounds.
Lemma 5 implies that the chain of every honest player advanced in length by X blocks at least. By
the definition of r′, the adversary inserted all the blocks of C computed in these s = r′ − r rounds.
It follows that Z ≥ X. By Lemma 6 this occurs with probability at most e−Ω(δ2s). To finish the
proof, recall that each block contains the aggregation of all broadcast transactions up to the round
it was computed. Thus, Cdk contains POWs computed by honest parties during r rounds and, with
high probability, POWs computed by the adversary during at most (1 + δ

2)r rounds. By Lemma 6,
the honest parties have computed the majority of the blocks with probability at least 1− e−Ω(δ2s)

and Validity is satisfied. Since s > δr/2, we need to argue that r = Ω(k). To see this, note that in
(1 + δ

2)r rounds the parties created a chain of length len(Cdk) = k. An application of the Chernoff
bound shows that r = Ω(k) with probability at least 1−e−Ω(δk). Finally note that it is easy to infer
from Lemma 5 that the length of chain of all honest parties will reach 2k blocks in O(k) rounds
with probability 1− e−Ω(δk).

Remark 5. Regarding strong validity in the multivalued BA setting, i.e., where the input domain is
V and has a constant cardinality strictly larger than 2 we can adapt the above protocol to return the
plurality from the values stored in the transactions that are found in the ledger. In order to ensure
strong validity by this modification we restrict the hashing power of the adversary to (1 − δ)/|V |
since this will ensure that the adversary’s number of transactions cannot overturn the plurality
value as defined by the honest parties’ inputs (even if those are evenly distributed amongst them).
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7 Summary and Directions for Future Work

In this paper we presented a formal treatment of the Bitcoin backbone, the protocol used at the core
of Bitcoin’s transaction ledger. We expressed and proved two properties of the backbone protocol
— “common prefix” and “chain quality” — and showed how they can be used as foundations for
designing Byzantine agreement and robust public transaction ledger protocols. Our results show
that an honest majority among the participants suffices, assuming the network synchronizes much
faster than the proof of work rate (f → 0 in our notation) and the proper inputs (e.g., transactions)
are available to the honest majority20, while the bound on the adversary for honest parties to reach
agreement degenerates as f gets larger.

While these are encouraging results, we have demonstrated deviations that are of concern for
the proper operation of Bitcoin. Importantly, we show that as the network ceases to synchronize
fast enough compared to the proof-of-work rate (i.e., the worst-case time that takes honest players
to “hear” each other becomes substantial compared to the time it takes to solve a proof of work),
the honest majority property ceases to hold and the bound offered by our analysis that is required
to obtain a robust transaction ledger approaches 0 as f approaches 1. Note that the effects of bad
synchronization is in the maintenance of the common prefix property, which is the critical property
for showing agreement.

A second important concern is regarding the chain quality property, where our results show that
if an adversary controls a hashing power corresponding to β then the ratio of the blocks it can
contribute to the blockchain while bounded can be strictly bigger than β. When β gets close to
1/2, our bounds show that the honest players’ contributions approach 0 in our security model.

The above caveats in the two basic properties of the backbone have repercussions on the Per-
sistence and Liveness properties of the Bitcoin ledger. Firstly, they illustrate that fast information
propagation amongst honest players is essential for transaction persistence. Secondly, they show
that transaction liveness becomes more fragile as the adversarial power gets close to 1/2. Note
that we achieve Liveness for any adversarial bound less than 1/2 but we do not assume any upper
bound on the number of transactions that may be inserted in a block21; it is obvious that the fewer
blocks the honest miners get into the blockchain the harder may be for a transaction to get through.
Furthermore, the fact that chain quality demonstrably fails to preserve a one-to-one correspondence
between a party’s hashing power and the ratio of its contributions to the ledger point to the fact
that Bitcoin’s rewarding mechanism is not incentive compatible (cf. [ES14]). Assuming the hashing
power of the honest parties γ exceeds the adversary’s hashing power β by a factor λ, we show that
the adversary’s contributions to the ledger are bounded by 1/λ— and this is tight due to the selfish
mining strategy we present. In this way our results flesh out the incentive compatibility problems of
the Bitcoin backbone, but (on a more positive note) they also point to the fact that honest hashing
power majority is sufficient to maintain the public ledger (under favorable network conditions), and
hence suggest that Bitcoin can work as long as the majority of the miners want it to work (without
taking into account the rationality of their decision).

Interesting open questions include the analysis of the Bitcoin backbone protocol in a rational
setting as opposed to honest/malicious, its analysis with respect to concurrent/universal compo-
sition as opposed to standalone and the development of backbone modifications that improve its
characteristics in terms of common prefix and chain quality. In terms of the ledger application,
transaction processing times (i.e., reducing the wait time parameter u in the Liveness property) is

20Our formalization is a way to formally express what perhaps was Nakamoto’s intuition when he wrote about
Bitcoin that “it takes advantage of the nature of information being easy to spread but hard to stifle” [Nak09].

21In the current Bitcoin implementation there is an upper bound of 1MB for blocks, hence the number transactions
per block is limited.
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also an interesting question with implications to practice (since real world payment systems benefit
greatly from fast transaction confirmation and verification). In all these cases, our work offers a
formal foundation that allows analyzing the security properties of “tweaks” on the backbone proto-
col (such as the randomization rule of [ES14] or the “GHOST” rule in [SZ13] used in ethereum22)
towards meeting the above goals.

Another set of interesting directions include the development of other applications that may be
built on top of the backbone protocol such as secure multiparty computation with properties such
as fairness and guaranteed output delivery (current works in this direction, e.g., [ADMM14, BK14a,
BK14b], assume an idealized version of the Bitcoin system).
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A Model (cont’d)

All entities involved in a protocol execution are described by interactive Turing machines (ITMs);
an instance of an execution is described by a collection of instances of these ITM instances or ITI s.
The set of all polynomial-time ITMs is denoted by ITM. We specify our protocols Π in a way similar
to Canetti’s synchronous model for “real-world” execution [Can00].

The entities involved in an execution are the set of parties P = {P1, . . . , Pn} running the protocol
Π, the adversary denoted byA and the environment denoted by Z that provides inputs to the parties
and receives outputs from them. The communication of ITIs is defined in [Can00] as having the
sending ITI write directly to a communication input tape of the receiving ITI; the set of potential
receivers is not fixed when an ITI is instantiated. This means that we have to include the messages
generated by an ITI in its view explicitly. We denote by Receive() the communication input tape
of each party. The communication between parties running the protocol Π will be non-authenticated
but reliable23. We capture this by allowing the adversary A to modify the sender information in any
message that is written to the communication input tape of an ITI. The adversary A is allowed to
corrupt parties P1, . . . , Pn by writing a special message in their input communication tape. When
that happens the adversary has complete control of the ITI of the corrupted party. We bound the
number of corruptions by t ≤ n.

Following [Can00] we assume a synchronous mode of interaction between parties. In particular,
the protocol execution will be divided in rounds, and in each round all parties will be given the
opportunity to act. The order of party activation is controlled by the adversary A which is adaptive
and rushing.

The term {viewP
Π,A,Z(κ, z)}κ∈N,z∈{0,1}∗ denotes the random variable ensemble describing the

view of party P after the completion of an execution with environment Z, running protocol Π, and
adversary A, on auxiliary input z ∈ {0, 1}∗. We often drop the parameters κ and z and simply refer
to the ensemble by viewP

Π,A,Z if the meaning is clear from the context. The concatenation of the
view of all parties 〈viewPi

Π,A,Z(κ, z)〉i=1,...,n. is denoted by viewΠ,A,Z .
The parties’ inputs are provided by the environment Z which also receives the parties’ outputs.

Parties that receive no input from the environment remain inactive, in the sense that they will not
act when their turn comes in each round. The environment may provide input to a party at any

23This parallels communication over TCP/IP in the Internet where, assuming all intermediate nodes in a communi-
cation path are honest and functioning, messages between honest parties are delivered reliably, nevertheless malicious
parties may “spoof” the source of a message they transmit and make it appear as originating from an arbitrary party
(including an honest party) in the view of the receiver.
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round and may also modify that input from round to round. We denote by Input() the input tape
of each party.

We will consider ITM’s that may have access to an oracle H(·) and perform a number of queries
q per round where q is a function of the security parameter κ; we refer to such parties as q-bounded.
The adversary A is allowed to perform t ·q queries per round where t ≤ n is the number of corrupted
parties. The environment Z is not permitted any queries to H(·). The rationale for this is that we
would like to bound the “CPU power” [Nak08a] of the adversary to be proportionate to the number
of parties it controls while making it infeasible for the adversary be aided by external sources in
the environment. We express this restriction on the environment, the parties and the adversary
as the q-bounded setting. The view of the parties participating in the protocol will be denoted by
viewP,H(·)

Π,A,Z(κ, q, z) and the concatenation of all parties’ views by viewH(·)
Π,A,Z(κ, q, z).

We now define formally a property of an execution which is expressed as a predicate over the
view of all parties in P.

Definition 20. Given a predicate Q and a bound q, we say that the protocol Π satisfies property
Q in the q-bounded setting provided that for all polynomial-time Z,A and strings z the probability
that Q(viewH(·)

Π,A,Z(κ, q, z)) is false is negligible in κ.

Note that we will only consider properties that are polynomial-time computable predicates.

B Useful Inequalities

We will require the following inequalities.

Fact 1 (Bernoulli’s inequality). For q ≥ 1 and 0 ≤ p ≤ 1, (1− p)q ≥ 1− pq.

Fact 2. For any real α > 0, 1− α < e−α < 1− α+ α2

2 .

Theorem 21 (Chernoff bounds). Suppose {Xi : i ∈ [n]} are mutually independent Boolean random
variables, with Pr[Xi = 1] = p, for all i ∈ [n]. Let X =

∑n
i=1Xi and µ = pn. Then, for any

δ ∈ (0, 1],
Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3.
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