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Abstract

Bitcoin is the first and most popular decentralized cryptocurrency to date. In this work, we
extract and analyze the core of the Bitcoin protocol, which we term the Bitcoin backbone, and
prove two of its fundamental properties which we call common prefix and chain quality in the
static setting where the number of players remains fixed. Our proofs hinge on appropriate and
novel assumptions on the “hashing power” of the adversary relative to network synchronicity;
we show our results to be tight under high synchronization.

Next, we propose and analyze applications that can be built “on top” of the backbone pro-
tocol, specifically focusing on Byzantine agreement (BA) and on the notion of a public trans-
action ledger. Regarding BA, we observe that Nakamoto’s suggestion falls short of solving it,
and present a simple alternative which works assuming that the adversary’s hashing power is
bounded by 1/3. The public transaction ledger captures the essence of Bitcoin’s operation as
a cryptocurrency, in the sense that it guarantees the liveness and persistence of committed
transactions. Based on this notion we describe and analyze the Bitcoin system as well as a
more elaborate BA protocol, proving them secure assuming high network synchronicity and
that the adversary’s hashing power is strictly less than 1/2, while the adversarial bound needed
for security decreases as the network desynchronizes.

1 Introduction

Bitcoin, introduced in [Nak08a], is a decentralized payment system that is based on maintaining
a public transaction ledger in a distributed manner. The ledger is maintained by anonymous par-
ticipants (“players”) called miners, executing a protocol that maintains and extends a distributed
data structure called the blockchain. The protocol requires from miners to solve a “proof of work”
(POW, aka “cryptographic puzzle” — see, e.g., [DN92, RSW96, Bac97, JB99]), which essentially
amounts to brute-forcing a hash inequality based on SHA-256, in order to generate new blocks
for the blockchain. The blocks that comprise the blockchain contain sets of transactions that are
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generated at will by owners of bitcoins, who issue transactions that credit any entity of their choice
who accepts payments in bitcoin. Payers broadcast transactions and miners include the transactions
they receive into the blocks they generate. Miners are rewarded for maintaining the blockchain by
receiving bitcoins; it is in this manner bitcoins are created and distributed among the miners who
are the first recipients of newly minted bitcoins.

An important concern in Bitcoin (or any e-payment system for that matter) is the prevention of
double-spending attacks. Specifically, in the context of Bitcoin, a double-spending attack can occur
when the attacker initially credits an account, receives service or goods by the account holder, but
then manages to reorganize the transaction ledger so that the transaction that credits the account
holder is reverted. In this way, the attacker keeps her bitcoin while receiving services and thus she
is able to spend it again somewhere else.

In [Nak08a], Nakamoto provides an initial set of arguments of why the Bitcoin system will
prevent double-spending attacks. Specifically, he argues that if a payee waits for the transaction
that gives her credit to advance into the blockchain a number of k blocks, then the probability
that an attacker can build an alternative blockchain that “reorganizes” the public blockchain (which
contains the credit transaction) drops exponentially with k. Nakamoto argues this by modeling the
attacker and the set of honest players as two competing actors performing a random walk moving
toward a single direction with probabilistic steps. He demonstrates that the k blocks the payee
waits are enough to ensure a negligible (in k) probability of the attacker catching up with the
honest players.

Nevertheless, the above analysis can be easily seen to be oversimplified: in particular, it does not
account for the fact that in Bitcoin’s decentralized setting the attacker may attempt to introduce
disagreement between the honest miners, thus splitting their hashing power on different POW
instances. Nakamoto himself appeared to recognize the relevance of agreement in the context of
Bitcoin, arguing in a forum post [Nak08b] that actually “Bitcoin’s basic concept” of building and
exchanging a blockchain is capable of solving Byzantine agreement (BA) [PSL80, LSP82] in the
presence of an actively malicious adversary.1 However a thorough analysis establishing the exact
security properties of the Bitcoin system has yet to appear.

Our results. In this paper we extract, formally describe, and analyze the core of the Bitcoin
protocol. We call this protocol the Bitcoin backbone, as we describe it in a way that is versatile and
extensible and can be used to solve other problems as well — not just the problem of maintaining
a public transaction ledger. The Bitcoin backbone protocol is executed by players that build a
blockchain following the Bitcoin source code [Nak09] and allows a set of players to maintain a
blockchain in a distributed fashion. The protocol is parameterized by three external functions
V (·), I(·), R(·) which we call the content validation predicate, the input contribution function, and
the chain reading function, respectively. At a high level, V (·) determines the proper structure of the
information that is stored into the blockchain, I(·) specifies how the contents of the blocks are formed
by the players, and R(·) determines how a blockchain is supposed to be interpreted in the context
of the application. Note that the structure, contents, and interpretation of the blockchain are not
important for the description of the backbone protocol and are left to be specified by the three
external functions above, which are application-specific (we provide examples of these functions in
Section 5).

1In [Nak08b], Nakamoto refers to the problem as “Byzantine Generals,” which is often used to refer to the single-
source version of the problem. Note that since more than one general may propose a time to attack this in fact is
the case where every party has an input value, i.e., Byzantine agreement. In fact, in an anonymous setting such as
Bitcoin’s, the single-source version is nonsensical. Note that in the traditional cryptographic setting, with trusted
setup, the two problems are not equivalent in terms of the number of tolerated misbehaving parties t (t < n vs.
t < n/2, respectively).
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We analyze the Bitcoin backbone protocol in a static setting when the participants operate in
a synchronous communication network (more details below and in Section 2) in the presence of
an adversary that controls a subset of the players. We assume that the protocol is executed by a
fixed number n of players; note, however, that this number is not necessarily known to the protocol
participants. The players themselves cannot authenticate each other and therefore there is no way
to know the source of a message; we capture this by allowing the adversary to “spoof” the source
address of any message that is delivered. We assume that messages are eventually delivered and all
parties in the network are able to synchronize in the course of a “round.” The notion of round is
not important for the description of the backbone protocol (which can also be executed in a loose
and asynchronous fashion in the same way that Bitcoin works), however, it is important in terms
of Bitcoin’s inherent computational assumption regarding the players’ ability to produce POWs.

Specifically, we assume that in a single round, all parties involved are allowed the same number
of queries to a cryptographic hash function, as well as to communicate with the other participants.
The hash function is modeled as a random oracle [BR93]. For simplicity we assume a “flat model,”
where all parties have the same quota of hashing queries per round, say q; the non-flat model where
parties have differing hashing power capabilities can be easily captured by clustering the flat-model
parties into larger virtual entities that are comprised by more than one flat-model player. In fact
“mining pools” in Bitcoin can be thought of such aggregations of flat-model players. The adversary
itself represents such pool as it controls t < n players; for this reason, the adversary’s quota per
round is t · q hashing queries. Note that in this setting, the fact t < n/2 directly corresponds
to the adversary controlling strictly less than half of the system’s total “hashing power” that all
players collectively harness, thus, we will use terms such as “honest majority” and “(1/2)-bounded
adversary” interchangeably.

In our analysis of the Bitcoin backbone protocol we formalize and prove two fundamental prop-
erties it possesses. The properties are quantified by three parameters γ, β and f ; γ and β roughly
correspond to the collective hashing power per round of the honest players and the adversary, re-
spectively, while f represents the expected number of POWs that may be found per round by the
Bitcoin network participants as a whole.

The common prefix property. We prove that if γ > λβ for some λ ∈ [1,∞) that satisfies
λ2 − fλ + 1 ≥ 0, then the blockchains maintained by the honest players will possess a large
common prefix. More specifically, if two honest parties “prune” (i.e., cut off) k blocks from the
end of their local chains, the probability that the resulting pruned chains will not be mutual
prefixes of each other drops exponentially in k (see Definition 3 for the precise formulation).
Provided that f is very close to 0 this enables us to choose λ very close to 1 and thus establish
the common prefix property as long as an honest majority of participants in the flat-model
setting is guaranteed (equivalently, when the adversary controls strictly less than 50% of the
hashing power). On the other hand, when the network “desynchronizes” and f gets closer to 1,
achieving a common prefix requires λ→ φ, where φ is the golden ratio, which in turn suggests
much stricter bounds on the adversarial behavior (in fact, the upper bound on the adversary
for our analysis approaches 0).
The chain-quality property. We prove that if γ > λβ, for some λ ∈ [1,∞), then the ratio
of blocks in the chain of any honest player that are contributed by honest players is at least
(1− 1

λ). Again observe that if λ is close to 1, we obtain that the blockchain maintained by honest
players is guaranteed to have few, but still some, blocks contributed by honest players; a higher
λ would be necessary to guarantee bigger percentages of blocks contributed by honest players
in the blockchain. We also observe that this result is basically tight, i.e., that the adversary is
capable of following a strategy (that deviates from the strategy of honest players) that enables
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Figure 1: An overview of the backbone protocol’s applications: Nakamoto’s BA protocol Πnak
BA , our

BA protocols Π
1/3
BA and Π

1/2
BA, and the public ledger protocol ΠPL. All properties must be satisfied

with overwhelming probability. In each box we state the name of the property as well as the
maximum ratio of the adversarial hashing power that we can prove the protocol withstands (based
on the corresponding backbone property). The value ε stands for a negligible quantity.

the introduction of that many blocks in the blockchain, under a favorable (for the adversary)
assumption on the propagation of adversarial blocks in the network.

While the above two security properties may seem rather abstract since they refer to properties
of the data structure that is maintained distributedly by the parties, we demonstrate that they
are in fact quite powerful and show that the Bitcoin backbone protocol armed with the above
properties can be used as a basis for solving other problems, including the problem of distributively
maintaining a “robust” public transaction ledger. In Figure 1 we show how the two properties relate
to the properties of the applications that are explained below and is provided in order to assist the
reader in conceptualizing the logic behind the security proofs of the applications.

Byzantine agreement for (1/3)-bounded adversaries. As a first application, we show how a ran-
domized BA protocol can be built on top of the Bitcoin backbone protocol more or less directly,
and based solely on the POW assumption. We instantiate the V (·), I(·), R(·) functions so that
parties form blockchains and act according to the following rules: each party i attempts to insert
its own input vi ∈ {0, 1} into the blockchain; a blockchain is valid only if blocks contain elements
in {0, 1}; the protocol terminates when the blockchain has reached a sufficient length; and, the
blockchain is read by the honest parties by pruning k elements from its end and returning the ma-
jority bit appearing in the resulting blockchain’s prefix. We show how the common prefix property
and the chain-quality property of the backbone protocol ensure Agreement and Validity (BA’s basic
properties; see Section 2) with high probability, thus turning the Bitcoin backbone protocol into a
probabilistic BA protocol.

Observe that for the above protocol to work the chain-quality property should ensure that a
majority of blocks in the blockchain originate from the honest players (otherwise Validity is lost).
Our chain quality property enables this with overwhelming probability assuming the adversarial
power is bounded by 1/3. This approach is different from Nakamoto’s proposal [Nak08b] for BA,
which, as we also show, only guarantees Validity with overwhelming probability if the adversary
has a negligible amount of hashing power. On the positive side, we stress that Nakamoto’s protocol
fails gracefully when the adversarial power gets close to 50% as Validity can be shown with constant
probability (but not overwhelming).
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Public transaction ledgers and BA for honest majority. Next, we focus on how a “robust public
transaction ledger” can be built on top of the Bitcoin backbone. We instantiate the V (·), I(·), R(·)
functions so that parties form blockchains and act according to the following rules: each party
(which in this context is called a “miner”) receives a set S of transactions on its input tape and
attempts to insert those in its blockchain, omitting any transactions in S that are already included
in it. (A Bitcoin transaction is, for example, a statement of the type “account A credits account
B a z number of bitcoins,” which is signed using the secret key that corresponds to account A’s
Bitcoin address; each account has a unique Bitcoin address.) Reading a blockchain, on the other
hand, amounts to returning the total sequence of transactions that is contained in the blockchain
of the miner (and note that miners may disagree about the chain they report).

We show how the common prefix property and the chain-quality property ensure two properties
needed by the ledger, which we call Persistence and Liveness, assuming an honest majority and
arbitrary adversarial behavior. Persistence states that once a transaction goes more than k blocks
“deep” into the blockchain of one honest player, then it will be included in every honest player’s
blockchain with overwhelming probability, and it will be assigned a permanent position in the ledger.
On the other hand, Liveness says that all transactions originating from honest account holders will
eventually end up at a depth more than k blocks in an honest player’s blockchain, and hence the
adversary cannot perform a selective denial of service attack against honest account holders. For
both properties to hold we require an honest majority (i.e., that the adversary’s hashing power
is strictly less than 50%) assuming high network synchronicity (i.e., that the expected number of
POW solutions per round satisfies2 f → 0). If this is violated, Persistence requires stricter bounds
on adversarial hashing power in order to be preserved following the bounds of the common prefix
property.

In the context of Bitcoin, our analysis implies that the Bitcoin backbone provides an operational
transaction ledger under the assumptions: (i) the adversary controls less than half of the total
hashing power, and (ii) the network synchronizes much faster relative to the POW solution rate,
(iii) digital signatures cannot be forged. On the other hand, when the network desynchronizes our
results cannot support that the ledger is maintained by assuming an honest majority. This negative
result is consistent with the experimental analysis provided by Decker and Wattenhoffer [DW13],
who predicted a drop below 50% in the required adversarial bound for any setting when information
propagation is problematic. Our result also provides some justification for the “slow” rate of 10-
minute increments used in Bitcoin block generation. Specifically, information propagation in the
Bitcoin network is on the order of seconds3 so the ratio (essentially f) of this time window over
the average 10-minute period is reasonably close to “small” and thus transaction persistence can
be shown for roughly an honest majority. On the other hand, cryptocurrencies including Litecoin,
Primecoin and others, reacting to the demand to offer faster transaction processing, opted for a
faster response rate (some as small as 1 minute), which results in more precarious situations, e.g.,
f > 0.1, which is far from being “negligible” and thus cannot support our analysis that a common
prefix would be guaranteed by merely assuming an honest majority. We finally note that the
Persistence and Liveness properties we put forth and prove should not be interpreted as proofs
that all Bitcoin’s objectives are met. In particular, they do not guarantee that miners are properly
incentivized to carry out the backbone protocol, and they can only offer guarantees in a setting of
an honest majority amongst a fixed number of players as opposed to a setting where there is an
ever changing population of parties acting rationally; see related work below as well as Section 7
for further discussion.

2Note that we use the notation f → 0 to mean that “f is close to 0” since f will be a constant in our analysis.
3See, for example, http://bitcoinstats.com/network/propagation/.
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Finally, we present a BA protocol assuming an honest majority, by suitably exploiting the
properties of the robust transaction ledger above. The protocol substitutes Bitcoin’s transactions
with a type of transactions that are themselves based on POWs, and hence uses POWs in two
distinct ways: for the maintenance of the ledger and for the generation of the transactions. We
show that the ledger’s Persistence implies Agreement, and that Liveness implies Validity, because
assuming the ledger is maintained for long enough, a majority of transactions originating from
the honest parties will be included (despite the fact that honest parties may control a minority of
blocks in the blockchain). The protocol requires special care in the way it employs POWs since the
adversary should be incapable of “shifting” work between the two POW tasks that it faces in each
round. To solve this problem, we introduce a special strategy for POW-based protocol composition
which we call “2-for-1 POWs.”

Related work. Realizing a digital currency with a centralized entity but while achieving strong
privacy was proposed early on by Chaum in [Cha82]. A number of other works improved various
aspects of this concept, however the approach remained centralized. Nakamoto [Nak08a] proposed
the first decentralized currency system based on POWs while relaxing the anonymity property of
the payment system to mere pseudonymity. This work was followed by a multitude of other related
proposals including Litecoin4, Primecoin [Kin13], and Zerocash [BSCG+14], to mention a few. Our
analysis of the Bitcoin backbone covers all these works as well, since they are based on exactly the
same protocol.

It is interesting to juxtapose our positive results to the results of Eyal and Sirer [ES14], who
introduce an attack strategy called “selfish mining” that shows how the number of blocks contributed
to the blockchain by an adversary can exceed the percentage of the hashing power the adversary
possesses. Their results are consistent and complementary to ours. The crux of the issue is (in
our terminology) in terms of the chain-quality property, as its formulation is quite permissive: in
particular we show that if the adversary controls a suitably bounded amount of hashing power,
then it is also suitably bounded in terms of the number of blocks it has managed to insert in
the blockchain that honest players maintain. Specifically, recall that we prove that if the hashing
power of the adversary satisfies β < 1

λγ (where γ roughly corresponds to the hashing power of the
honest players), then the adversary may control at most a 1

λ percentage of the blocks in the chain.
For instance, if the adversary controls up to 1/3 of the hashing power (i.e., λ = 2), then it will
provably control less than 50% of the blocks in the honest players’ blockchain. As it can be easily
seen, this does not guarantee that the rate of a party’s hashing power translates to an equal rate
of rewards (recall that in Bitcoin the rewards are linearly proportional to the number of blocks
that a party contributes in the chain). We define as ideal chain quality the property that for any
coalition of parties (following any mining strategy) the percentage of blocks in the blockchain is
exactly proportional to their collective hashing power. The chain quality property that we prove is
not ideal and the results of [ES14] show that in fact there is a strategy that magnifies the percentage
of a malicious coalition. Still, their mining attack does much worse than our bound. To close the
gap, we sketch (cf. Remark 6) a simple selfish mining strategy that matches our upper bound and
hence our chain quality result is tight in our model5 assuming the number of honest parties is large.

Byzantine agreement (BA, aka distributed consensus) [PSL80, LSP82] considers a set of n parties
connected by reliable and authenticated pair-wise communication links and with possible conflicting
initial inputs that wish to agree on a common output in the presence of the disruptive (even
malicious) behavior of some of them. The problem has received a considerable amount of attention

4http://www.litecoin.com.
5Our model allows the unfavorable event of adversarial messages winning all head-to-head races in terms of delivery

with honestly generated messages in any given round.
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under various models. In this paper we are interested in randomized solutions to the problem (e.g.,
[BO83, Rab83, BG93, FM97, FG03, KK09])6 as in the particular setting we are in, deterministic BA
algorithms are not possible. In more detail, we consider BA in the anonymous synchronous setting,
i.e., when processors do not have identifiers and cannot correlate messages to their sources, even
across rounds, and, further, there is no trusted setup. This model for BA was considered by Okun,
who classified it as “anonymous model without port awareness,” and proved the aforementioned
impossibility result, that deterministic algorithms are impossible for even a single failure [Oku05b,
Oku05a]. In addition, Okun showed that probabilistic BA is feasible by suitably adapting Ben-Or’s
protocol [BO83] for the standard, non-anonymous setting (cf. [Oku05b])7; the protocol, however,
takes exponentially many rounds. It turns out that by additionally assuming that the parties are
“port-aware” (i.e., they can correlate messages to sources across rounds), deterministic protocols are
possible and some more efficient solutions were proposed in [OB08].

The anonymous synchronous setting was also considered by Aspnes et al. [AJK05] who pointed
to the potential usefulness of proofs of work (e.g., [DN92, RSW96, Bac97, JB99]) as an identity
assignment tool, in such a way that the number of identities assigned to the honest and adversarial
parties can be made proportional to their aggregate computational power, respectively. For example,
by assuming that the adversary’s computational power is less than 50%, one of the algorithms
in [AJK05] results in a number of adversarial identities less than half of that obtained by the honest
parties. By running this procedure in a pre-processing stage, it is then suggested that a standard
authenticated BA protocol could be run. Such protocols, however, would require the establishment
of a consistent PKI (as well as of digital signatures), details of which are not laid out in [AJK05].

In contrast, and as mentioned above, building on our analysis of the Bitcoin backbone protocol,
we propose two BA protocols solely based on POWs that operate in O(k) rounds with error prob-
ability e−Ω(k). The protocols solve BA with overwhelming probability under the assumption that
the adversary controls less than 1/3 and 1/2 of the computational power, respectively.

The connection between Bitcoin and probabilistic BA was also considered by Miller and LaViola
in [ML14] where they take a different approach compared to ours, by not formalizing how Bitcoin
works, but rather only focusing on Nakamoto’s suggestion for BA [Nak08b] as a standalone protocol.
As we observe here, and also recognized in [ML14], Nakamoto’s protocol does not quite solve BA
since it does not satisfy Validity with overwhelming probability. The exact repercussions of this
fact are left open in [ML14], while with our analysis, we provide explicit answers regarding the
transaction ledger’s actual properties and the level of security that the backbone realization can
offer.

Finally, related to the anonymous setting, the feasibility of secure computation without authenti-
cated links was considered by Barak et al. in [BCL+11] in a more extreme model where all messages
sent by the parties are controlled by the adversary and can be tampered with and modified (i.e., not
only source addresses can be “spoofed,” but also messages’ contents can be altered and messages
may not be delivered). It is shown in [BCL+11] that it is possible to limit the adversary so that all
he can do is to partition the network into disjoint sets, where in each set the computation is secure,
and also independent of the computation in the other sets. Evidently, in such system, one cannot
hope to build a global ledger.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we present
our model within which we formally express the Bitcoin backbone protocol and prove its basic

6We remark that, in contrast to the approach used in typical randomized solutions to the problem, where achieving
BA is reduced to (the construction of) a shared random coin, the probabilistic aspect here stems from the parties’ like-
lihood of being able to provide proofs of work. In addition, as our analysis relies on the random oracle model [BR93],
we are interested in computational/cryptographic solutions to the problem.

7Hence, BA in this setting shares a similar profile with BA in the asynchronous setting [FLP85].
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properties. The backbone protocol builds “blockchains” based on a cryptographic hash function;
we introduce notation for this data structure as well as the backbone protocol itself in Section 3,
followed by its analysis in Section 4. Sections 5 and 6 are dedicated to the applications built on
top of the backbone protocol — (simple) BA protocols and robust transaction ledger, respectively.
Specifically, Section 5 covers Nakamoto’s (insufficient) suggestion for BA as well as our solution
for 1/3 adversarial power, while in Section 6 we present our treatment of a robust public ledger
formalizing the properties of Persistence and Liveness and how they apply to Bitcoin. Finally, we
also include in this section our BA protocol for 1/2 adversarial power. Some directions for future
research are offered in Section 7.

2 Model and Definitions

In this section we define our notion of protocol execution and provide a definition of Byzantine agree-
ment in our model. We will describe and analyze our protocols in a multiparty setting that employs
elements from previous formulations of secure multiparty computation (specifically, Canetti’s for-
mulation of “real world” execution as in [Can00a] and [Can00b, Can01]). We adopt the notation and
definitions of [Can00b, Can01] while we also employ ideas regarding the formulation of synchronous,
proceeding in rounds, multiparty computation from [KMTZ13].

Programs involved in a protocol execution. The execution of a protocol Π is driven by an
“environment” program Z that may spawn multiple instances running the protocol Π. The programs
in question can be thought of as “interactive Turing machines” (ITM) that have communication,
input and output tapes. An instance of an ITM running a certain program will be referred to as
an interactive Turing machine instance or ITI. The spawning of new ITI’s by an existing ITI as
well as the interaction between them is at the discretion of a control program which is also an ITM
and is denoted by C. The pair (Z, C) is called a system of ITM’s, cf. [Can00b]. As in this latter
paper we will be restricting our exposition to “locally polynomial-bounded” systems of ITM’s which
ensures a polynomial-time execution overall [Can00b, Proposition 3]. Moreover, we will be using a
more stringent control program C that will be forcing the environment to perform a “round-robin”
participant execution sequence for a fixed set of parties.

Specifically, the execution driven by Z is defined with respect to a protocol Π, an adversary A
(also an ITM) and a set of parties P1, . . . , Pn; these are hardcoded in the control program C. The
protocol Π is defined in a “hybrid” setting and has access to two “ideal functionalities,” which are
two other ITM’s to be defined below, called the random oracle and the diffusion channel. They are
used as subroutines by the programs involved in the execution (the ITI’s of Π and A) and they are
accessible by all parties once they are spawned.

Initially, the environment Z is restricted by C to spawn the adversary A. Each time the
adversary is activated, it may send one or more messages of the form (Corrupt, Pi) to C. The control
program C will register party Pi as corrupted, only provided that the environment has previously
given an input of the form (Corrupt, Pi) to A and that the number of corrupted parties is less or
equal t, a bound that is also hardcoded in C. The first ITI party to be spawned running protocol
Π is restricted by C to be party P1. After a party Pi is activated, the environment is restricted to
activate party Pi+1, except when Pn is activated in which case the next ITI to be activated is always
the adversary A. Note that when a corrupted party Pi is activated the adversary A is activated
instead.

Communication and “hashing power.” We describe next the two functionalities that are ac-
cessible to the parties. These functionalities will reflect the parties’ ability (i) to communicate with
each other and (ii) to calculate values of a hash function H(·) : {0, 1}∗ → {0, 1}κ concurrently. We
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note that they share a state and thus they can be viewed as a single functionality, nevertheless it is
convenient to describe them as separate entities.

• The random oracle (RO) functionality. When queried by honest party Pi with a value
x marked for “calculation” for the function H(·), assuming x has not been queried before, it
returns a value y which is selected at random from {0, 1}κ; furthermore, it stores the pair
(x, y) in the table of H(·). Each honest party Pi is allowed to ask q queries in each round as
determined by the “diffuse” functionality (see below). On the other hand, each honest party is
given unlimited queries for “verification” for the function H(·). In a similar vein, the adversary
A is given t′ · q queries in each round as determined by the diffuse functionality where t′ is
the number of corrupted parties. No verification queries are provided to A. Note that q is a
function of κ, the security parameter. We note that the functionality may maintain tables for
functions other than H(·) as well (for instance, in our protocol descriptions, we will utilise a
function G(·)), but, by convention the functionality will impose query quotas to function H(·)
only.

• The diffuse functionality. Initially, the functionality sets a variable round to be 1. It also
maintains a Receive() string defined for each party Pi. A party is allowed at any moment to
fetch the contents of its personal Receive() string. Moreover, when the functionality receives
an instruction to diffuse a message m from party Pi it marks the party as complete for the
current round; note that m is allowed to be empty. At any moment, the adversary A is
allowed to receive the contents of all messages for the round and specify the contents of the
Receive() string for each party Pi. The adversary has to specify when it is complete for the
current round. When all parties are complete for the current round, the functionality inspects
the contents of all Receive() strings and includes any messages m that were diffused by the
parties in the current round but not contributed by the adversary to the Receive() tapes.
The variable round is then incremented.

We note that by adopting the resource bounded computation modeling of systems of ITM’s by
[Can00b, Can01] we obviate the need of imposing a strict upper bound on the number of messages
that may be transmitted by the adversary in each activation. In our setting, honest parties, at
the discretion of the environment, are given sufficient time to process all messages delivered via the
diffuse functionality including all messages that are injected by the adversary. This is also facilitated
by the fact that the q bound that is imposed on queries to H(·) is not imposed for hash verification
(with foresight, the q-bound will be only imposed for hash computations during the proof of work
stage of the protocol).

Note that the above formulation also reflects the fact that the communication graph is not fully
connected and messages are delivered through “diffusion”, a communication means that reflects
Bitcoin’s peer-to-peer structure. As evidenced by the above, our adversarial model in the network
is “adaptive,” meaning that the adversary is allowed to take control of parties on the fly, and
“rushing,” meaning that in any given round the adversary gets to see all honest players’ messages
before deciding his strategy, and, furthermore, there is no definite source information that can be
guaranteed for each delivered message. Note that the adversary cannot change the contents of the
messages sent by honest parties nor prevent them from being delivered as restricted by the diffuse
functionality. Effectively, this parallels communication over TCP/IP in the Internet where messages
between parties are delivered reliably, but nevertheless malicious parties may “spoof” the source of a
message they transmit and make it appear as originating from an arbitrary party (including another
honest party) in the view of the receiver. Note that the adversary is permitted to abuse the diffusion
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mechanism and attempt to confuse honest parties by sending and delivering inconsistent messages
to them (thus diffuse does not constitute a reliable broadcast).8

The parties’ inputs are provided by the environment Z which also receives the parties’ outputs.
Parties that receive no input from the environment remain inactive, in the sense that they will
not act when their turn comes in each round. The environment activates parties in each round by
writing to their input tape. Note that C forces the environment to give all parties an activation in
round-robin fashion. In our exposition we will denote by Input() the input tape of each party.

The q-bounded synchronous setting. Based on the above, we can now use the notation
{exect,nΠ,A,Z(z)}z∈{0,1}∗ to denote the random variable ensemble that determines the output of the
environment Z on input z for a protocol Π that uses the two functionalities of random oracle
and diffuse (we will only be concerned with such protocols). Moreover, we will use the notation
{viewP,t,n

Π,A,Z(z)}z∈{0,1}∗ to denote the random variable ensemble describing the view of party P af-
ter the completion of an execution with environment Z, running protocol Π, and adversary A, on
auxiliary input z ∈ {0, 1}∗.

In our exposition we are concerned with a “stand-alone” execution of Π and thus we will consider
z to be fixed to 1κ for κ ∈ N. For this reason we will simply refer to the ensemble by viewP,t,n

Π,A,Z .
If n parties P1, . . . , Pn execute Π, the concatenation of the view of all parties 〈viewPi,t,n

Π,A,Z〉i=1,...,n

is denoted by viewt,n
Π,A,Z . With foresight, we note that, in contrast to the standard setting where

parties are aware of the number of parties executing the protocol, we are interested in protocols
Π that do not make explicit use of the number of parties n or their identities. Further, note
that because of the unauthenticated nature of the communication model the parties may never be
certain about the number of participants in a protocol execution. Nonetheless note that the number
of parties is fixed during the course of the protocol execution, as this is hardcoded in the control
program C.

The parties’ limited ability to produce POWs is reflected in the limit imposed to all parties in
their access of the functionH(·). Parties are allowed to perform a number of queries q per round. We
remark that this is a “flat-model” interpretation of the parties’ computation power, where all parties
are assumed equal. In the real world, different honest parties may have different “hashing power;”
nevertheless, our flat-model does not sacrifice generality since one can imagine that real honest
parties are simply clusters of some arbitrary number of honest flat-model parties. The adversary
A is allowed to perform t′ · q queries per round, where t′ ≤ t is the number of corrupted parties.
The environment Z, on the other hand, is not permitted any queries to H(·). The rationale for
this, is that we would like to bound the “CPU power” [Nak08a] of the adversary to be proportionate
to the number of parties it controls while making it infeasible for them to be aided by external
sources or by transferring the hashing power potentially invested in concurrent or previous protocol
executions. This underscores the fact that in our analysis is the standalone setting, where a single
protocol instance is executed in isolation.

We will refer to all the above restrictions on the environment, the parties and the adversary as
the q-bounded synchronous setting.

Properties of protocols. In our theorems we will be concerned with properties of protocols
Π in the q-bounded synchronous setting. Such properties will be defined as predicates over the
random variable viewt,n

Π,A,Z by quantifying over all possible adversaries A and environments Z
that are polynomially bounded. Note that all our protocols will only satisfy properties with a

8In the conference version of this paper [GKL15] we used the term Broadcast instead of Diffuse to mean the
same thing. Given that this leads to some misunderstanding we changed the terminology to employ the term “Diffuse”
instead of “Broadcast.” As in the conference version, note that “Diffuse” remains an atomic operation and hence the
corruption of a party may not happen while the operation is taking place (cf. [HZ10, GKKZ11]).
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small probability of error in κ as well as in potentially other parameters. The probability space is
determined by the random choices of the random oracle functionality as well as the private coins of
all ITI’s.

Definition 1. Given a predicate Q and a bound q, t, n ∈ N with t < n, we say that the protocol
Π satisfies property Q in the q-bounded setting for n parties assuming the number of corruptions
is bounded by t, provided that for all polynomial-time Z,A, the probability that Q(viewt,n

Π,A,Z) is
false is negligible in κ.

Note that we will only consider properties that are polynomial-time computable predicates.

Byzantine agreement. As a simple illustration of the formulation above we define the properties
of a Byzantine agreement (BA) protocol.

Definition 2. A protocol Π solves BA in the q-bounded synchronous setting provided it satisfies
the following two properties:

Agreement. There is a round after which all honest parties return the same output if queried
by the environment.
Validity. The output returned by an honest party P equals the input of some party P ′ that is
honest at the round P ’s output is produced.

We note that in our protocols, the participants are capable of detecting agreement and further-
more they can also detect whether other parties detect agreement, thus termination can be easily
achieved by all honest parties. In the traditional cryptographic setting with no trusted setup, it
is known that the problem does not have a solution if t ≥ n

3 [Bor96]. Interestingly, one of our
POW-based BA protocols works for t < n

2 , assuming only a simultaneous start without a PKI, the
same bound that is achievable when a PKI is available.

The formulation of Validity above is intended to capture security/correctness against adaptive
adversaries. The notion (specifically, the requirement that the output value be one of the honest
parties’ inputs) has also been called “Strong Validity” [Nei94], but the distinction is only important
in the case of non-binary inputs. In either case, it is known that in the synchronous cryptographic
setting with trusted setup the problem has a solution if and only if n > |V |t, where V is the
input/decision domain [FG03]. Our POW-based protocol also achieves this bound.

Remark 1. One may consider a model where a certain percentage of the honest parties is not
always able to receive all messages broadcast on the network. We point out that such a situation is
subsumed by our adversarial model: simply we let the adversary control these players and simulate
them honestly while dropping messages from their incoming tape arbitrarily. Of course, to apply
the theorems we prove, one should adjust the total power of the adversary accordingly and add
these parties to the adversarial ones.

3 The Bitcoin Backbone Protocol

We start by introducing blockchain notation. Let G(·), H(·) be cryptographic hash functions with
output in {0, 1}κ. A block is any triple of the form B = 〈s, x, ctr〉 where s ∈ {0, 1}κ, x ∈ {0, 1}∗, ctr ∈
N are such that satisfy predicate validblockDq (B) defined as

(H(ctr,G(s, x)) < D) ∧ (ctr ≤ q).

The parameter D ∈ N is also called the block’s difficulty level. The parameter q ∈ N is a bound
that in the Bitcoin implementation determines the size of the register ctr; in our treatment we allow

11



this to be arbitrary, and use it to denote the maximum allowed number of hash queries in a round.
We do this for convenience and our analysis applies in a straightforward manner to the case that
ctr is restricted to the range 0 ≤ ctr < 232 and q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block is the head of
the chain, denoted head(C). Note that the empty string ε is also a chain; by convention we set
head(ε) = ε. A chain C with head(C) = 〈s′, x′, ctr′〉 can be extended to a longer chain by appending
a valid block B = 〈s, x, ctr〉 that satisfies s = H(ctr′, G(s′, x′)). In case C = ε, by convention any
valid block of the form 〈s, x, ctr〉 may extend it. In either case we have an extended chain Cnew = CB
that satisfies head(Cnew) = B.

The length of a chain len(C) is its number of blocks. Given a chain C that has length len(C) =
n > 0 we can define a vector xC = 〈x1, . . . , xn〉 that contains all the x-values that are stored in the
chain such that xi is the value of the i-th block.

Consider a chain C of length m and any nonnegative integer k. We denote by Cdk the chain
resulting from the “pruning” the k rightmost blocks. Note that for k ≥ len(C), Cdk = ε. If C1 is a
prefix of C2 we write C1 � C2.

We note that Bitcoin uses chains of variable difficulty, i.e., the value D may change across
different blocks within the same chain according to some rule that is determined by the x values
stored in the chain9. This is done to account for the fact that the number of parties (and hence
the total hashing power of the system) is variable from round to round (as opposed to the unknown
but fixed number of parties n we assume). See Section 7 for further discussion. We are now ready
to describe the protocol.

3.1 The backbone protocol

The Bitcoin backbone protocol is executed by an arbitrary number of parties over an unauthenti-
cated network. For concreteness, we assume that the number of parties running the protocol is n;
however, parties need not be aware of this number when they execute the protocol. As mentioned
in Section 2, communication over the network is achieved by utilizing a send-to-all Broadcast
functionality that is available to all parties (and maybe abused by the adversary in the sense of
delivering different messages to different parties). Each party maintains a blockchain, as defined
above, starting from the empty chain and mining a block that contains the value s = 0 (by con-
vention this is the “genesis block”)10. Each party’s chain may be different, but, as we will prove,
under certain well-defined conditions, the chains of honest parties will share a large common prefix.
(Figure 2 depicts the local view of each party as well as the shared portion of their chains.)

In the protocol description we intentionally avoid specifying the type of values that parties try
to insert in the chain, the type of chain validation they perform (beyond checking for its structural
properties with respect to the hash functionsG(·), H(·)), and the way they interpret the chain. In our
description, these actions are abstracted by the external functions V (·), I(·), R(·) which are specified
by the application that runs “on top” of the backbone protocol. We will purposely leave these
functions undetermined in our description assuming they conform to the following specifications.
We will provide explicit instantiations of them in Section 5. Briefly, they are described as follows:

• Content validation predicate V (·). The content validation predicate receives as input the
content of a chain C, denoted by xC , and will return 1 if and only if the contents are consistent

9In Bitcoin every 2016 blocks the difficulty is recalibrated according to the time-stamps stored in the blocks so
that the block generation rate remains at approximately 10 minutes per block.

10Alternatively, s can point to an actual block that contains some trusted setup information (in the case of Bitcoin
the genesis block contains the string “The Times 03/Jan/2009 Chancellor on brink of second bailout for banks”). Our
analysis however is in the standalone setting and thus we choose the simplest possible genesis block.
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Figure 2: Overview of the basic operation of the Bitcoin backbone protocol. Miner M1 receives
from the environment a Read instruction that results in the application of the R(·) function on
the contents of its chain which are equal to the vector 〈x1, x2, x3, x4, x5〉. Miner M2 receives from
the environment an Insert instruction and uses the function I(·) to determine the value y5 that it
subsequently successfully inserts in its local block chain by solving a proof of work; this results in
a broadcast of the newly extended chain. Finally miner M3 receives the newly extended chain and
validates it both structurally as well as using the content validation predicate V (·). M3 will adopt
this chain if M3 deems it better than its local chain as specified by the backbone protocol. Note
that the joint view of M1,M2,M3 is inconsistent but there is agreement on the prefix 〈x1, x2, x3〉.

with the intended application implemented on top of the chain. In its simplest form, V (·) can
ensure that the elements of xC are of the proper type.

• Input contribution function I(·). It receives as input a tuple, (st, C, round, Input(),Receive()),
that stands respectively for state data st, current chain C, current round round, contents of
input tape Input() and contents of network tape Receive(). Given these, it will produce
an updated state st′ as well as an input x that should be the next input to be inserted in a
block. For instance, I(·) can be as simple as copying the contents of the input tape into x
and keeping st = ε, or performing a more complex operation that involves parsing C or even
maintaining old input values that have not yet been processed as part of the state st.

• Chain reading function R(·). It receives as input a chain C and provides an interpretation of
it. In the simplest case it can be just returning xC and leaving it to the callee to process the
contents of the chain.

In general our treatment will be independent of the exact operation of V, I,R apart from requir-
ing the following minimal set of conditions.

1. Input Validity. The input contribution function should produce values that are deemed ac-
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Algorithm 1 The chain validation predicate, parameterized by q,D, the hash functions G(·), H(·),
and the content validation predicate V (·). The input is C.

1: function validate(C)
2: b← V (xC)
3: if b ∧ (C 6= ε) then . The chain is non-empty and meaningful w.r.t. V (·)
4: 〈s, x, ctr〉 ← head(C)
5: s′ ← H(ctr,G(s, x))
6: repeat
7: 〈s, x, ctr〉 ← head(C)
8: if validblockDq (〈s, x, ctr〉) ∧ (H(ctr,G(s, x)) = s′) then
9: s′ ← s . Retain hash value

10: C ← Cd1 . Remove the head from C
11: else
12: b← False
13: end if
14: until (C = ε) ∨ (b = False)
15: end if
16: return (b)
17: end function

ceptable by the content validation predicate. Formally, for any chain C with xC = 〈x1, . . . , xn〉,
the value x produced by an invocation of I(·, C, ·, ·) should satisfy V (〈x1, . . . , xn, x〉) = 1. By
convention, V (ε) = 1.

2. Input Entropy. The probability of the event that two independent invocations of I(st, C, v, w)
where st, C, v, w are arbitrary values consistent with the input of I(·), result in the same value
x is negligible in κ.

The Bitcoin backbone protocol is specified as Algorithm 4. Before describing it in detail we first
introduce the protocol’s three supporting algorithms.

Chain validation. The first algorithm, called validate performs a validation of the structural
properties of a given chain C, cf. Algorithm 1. It is given as input the values q and D, as well as a
hash function H(·). It is parameterized by the content validation predicate V (·). For each block of
the chain, the algorithm checks that the proof of work is properly solved, that the counter ctr does
not exceed q and that the hash of the previous block is properly included in the block. It further
collects all the inputs from the chain’s blocks and assembles them into a vector xC . If all blocks
verify and V (xC) is true then the chain is valid; otherwise it is rejected. As mentioned we purposely
leave the predicate V (·) undetermined.

Chain comparison. The objective of the second algorithm, called maxvalid, is to find the “best
possible” chain when given a set of chains, cf. Algorithm 2. The algorithm is straightforward
and is parameterized by a max(·) function that applies some ordering in the space of chains. The
most important aspect is the chains’ length, in which case max(C1, C2) will return the longest of
the two. In case len(C1) = len(C2), some other characteristic can be used to break the tie. In
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Algorithm 2 The function that finds the “best” chain, parameterized by function max(·). The
input is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp← ε
3: for i = 1 to k do
4: if validate(Ci) then
5: temp← max(Ci, temp)
6: end if
7: end for
8: return temp
9: end function

our case, max(·, ·) will always return the first operand11; alternatively, other options exist, such as
lexicographic order or picking a chain at random. The analysis we will perform will essentially be
independent of the tie-breaking rule12.

Proof of work. The third algorithm, called pow, is the main “workhorse” of the backbone protocol,
cf. Algorithm 3. It takes as input a chain and attempts to extend it via solving a proof of work.
This algorithm is parameterized by two hash functions H(·), G(·) (which in our analysis will be
modeled as random oracles),13 as well as two positive integers q,D; q represents the number of
times the algorithm is going to attempt to brute-force the hash function inequality that determines
the POW instance, and D determines the “difficulty” of the POW. The algorithm works as follows.
Given a chain C and a value x to be inserted in the chain, it hashes these values to obtain h and
initializes a counter ctr. Subsequently, it increments ctr and checks to see whether H(ctr, h) < D;
this is the only invocation of H(·) that is subject to the bound q. If a suitable ctr is found then
the algorithm succeeds in solving the POW and extends chain C by one block inserting x as well as
ctr (which serves as the POW). If no suitable ctr is found, the algorithm simply returns the chain
unaltered. (See Algorithm 3.)

The backbone protocol. Given the three algorithms above, we are now ready to describe the
Bitcoin backbone protocol, cf. Algorithm 4. This is the protocol that is executed by the miners
and which is assumed to run “indefinitely” (our security analysis will apply when the total running
time is polynomial in κ). It is parameterized by two functions, the input contribution function I(·)
and the chain reading function R(·), which is applied to the values stored in the chain.

Each miner starts a round with a local chain C (we say that the miner has chain C at this round)
and checks its communication tape Receive() to see whether a “better” chain has been received
and in such case it adopts it resulting in chain C̃ (we say that the miner adopts chain C̃ at this
round). Choosing the chain C̃ is done using the maxvalid function; note that it could be that C = C̃.
Then, the miner attempts to extend C̃ by running the POW algorithm pow described above.

11Note that the way we deploy maxvalid, amounts to parties always giving preference to their local chain as opposed
to any incoming chain. This is consistent with current Bitcoin operation; however, some debate about alternate tie-
breaking rules has ensued in Bitcoin forums, e.g., see [Cun13].

12It is worth to point out that the behavior of maxvalid(·) is associated with some stability aspects of the backbone
protocol and currently there are proposals to modify it (e.g., by randomizing it — cf. [ES14]). It is an interesting
question whether any improvement in our results can be achieved by randomizing the maxvalid operation.

13In reality the same hash function (SHA-256) instantiates both G and H; however, it is notationally more conve-
nient to consider them as distinct.
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Algorithm 3 The proof of work function, parameterized by q, D and hash functions H(·), G(·).
The input is (x, C).

1: function pow(x, C)
2: if C = ε then . Determine proof of work instance
3: s← 0
4: else
5: 〈s′, x′, ctr′〉 ← head(C)
6: s← H(ctr′, G(s′, x′))
7: end if
8: ctr ← 1
9: B ← ε

10: h← G(s, x)
11: while (ctr ≤ q) do
12: if (H(ctr, h) < D) then . This H(·) invocation subject to the q-bound
13: B ← 〈s, x, ctr〉
14: break
15: end if
16: ctr ← ctr + 1
17: end while
18: C ← CB . Extend chain
19: return C
20: end function

The value that the miner attempts to insert in the chain is determined by function I(·). The
input to I(·) is the state st, the current chain C, the contents of the miner’s input tape Input() (recall
that they can be written by the environment Z at the beginning of any round) and communication
tape Receive(), as well as the current round number round. The protocol expects two types of
entries in the input tape, Read and (Insert, value); other inputs are ignored.

As mentioned, we purposely leave the functions I(·), R(·) undetermined in the description of
the backbone protocol, as their specifics will vary according to the application. When the input x
is determined by I(·), the protocol attempts to insert it into the chain C by invoking pow. In case
the local chain C is modified during the above steps, the protocol transmits (“broadcasts”) the new
chain to the other parties. Finally, in case a Read symbol is present in the communication tape,
the protocol applies function R(·) to its current chain and writes the result onto the output tape
Output(). The round ends when the algorithm diffuses a message (⊥ in case no message is to be
diffused).

3.2 (Desired) Properties of the backbone protocol

We next define the two main properties of the backbone protocol that we will prove. The first
property is called the common prefix property and is parameterized by a value k ∈ N. It considers
an arbitrary environment and adversary in the q-bounded setting, and it holds as long as any two
honest parties’ chains are different only in its most recent k blocks.

Definition 3 (Common Prefix Property). The common prefix property Qcp with parameter k ∈ N
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Algorithm 4 The Bitcoin backbone protocol, parameterized by the input contribution function I(·)
and the chain reading function R(·).

1: C ← ε
2: st← ε
3: round← 1
4: while True do
5: if Input() contains Read then
6: write R(C) to Output() . Produce necessary output before the POW stage.
7: end if
8: C̃ ← maxvalid(C, any chain C′ found in Receive())
9: 〈st, x〉 ← I(st, C̃, round, Input(),Receive()) . Determine the x-value.

10: Cnew ← pow(x, C̃)
11: if C 6= Cnew then
12: C ← Cnew
13: Diffuse(C) . Broadcast the chain in case of adoption/extension.
14: else
15: Diffuse(⊥) . Signals the end of the round to the diffuse functionality.
16: end if
17: round← round+ 1
18: end while

states that for any pair of honest players P1, P2 maintaining the chains C1, C2 in viewt,n
Π,A,Z , it holds

that
Cdk1 � C2 and Cdk2 � C1.

The second property, which we call the chain quality property, aims at expressing the number
of honest-player contributions that are contained in a sufficiently long and continuous part of an
honest player’s chain. Specifically, for parameters k ∈ N and µ ∈ (0, 1), the rate of adversarial input
contributions in a continuous part of an honest party’s chain is bounded by µ. This is intended to
capture that at any moment that an honest player looks at a sufficiently long part of its blockchain,
that part will be of sufficient “quality,” i.e., the number of adversarial blocks present in that portion
of the chain will be suitably bounded.

Definition 4 (Chain Quality Property). The chain quality property Qcq with parameters µ ∈ R
and ` ∈ N states that for any honest party P with chain C in viewt,n

Π,A,Z , it holds that for any `
consecutive blocks of C the ratio of adversarial blocks is at most µ.

It is easy to see that any set of, say, h honest parties, obtain as many blocks as their proportion
of the total hashing power, i.e., h/n. We say that a protocol Π satisfies ideal chain quality if this is
the case for adversarial parties as well, i.e., µ = t/n with respect to those parties. The ideal chain
quality is not achieved by the Bitcoin backbone protocol, cf. Remark 6.
Remark 2. Observe that in the description of the bitcoin backbone protocol, we have a parameter D
that determines the “difficulty” of the proof of work. Our theorems regarding the properties above
will hold provided that the values n (the number of parties), t (the bound on corruptions), q (the
number of queries allowed per round per player) and D satisfy a certain condition. With foresight
we can state here that this condition will be that t

n−t is bounded from above by 1− (n− t)Dq2κ .
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Remark 3. A number of additional and enhanced versions of the above properties were suggested
by follow up works to ours, see Section 7 for more details on these properties.

4 Analysis of the Bitcoin Backbone

We now proceed to the analysis of the protocol presented in the previous section. Let {0, 1}κ be the
range of H(·). Each party tries to provide a POW by issuing queries to H(·), which succeed with
probability p = D/2κ, where D is the difficulty level.14 We will assume that logD, as a function
of κ, is linearly related to κ. By the properties of the random oracle H(·), any collection of queries
will be treated as a collection of independent Bernoulli trials with success probability p. We observe
that this follows from the input entropy condition of the input contribution function I(·). There is
a simple way to enforce this: I(·) will add a sufficiently long random nonce as part of x that will be
ignored by the other functions V (·), R(·) as it need not be useful in the blockchain application. It
is easy to see that if a κ-long nonce is used, the output will be unique except with probability less
than q2

tot · 2−κ where qtot is the total number of queries submitted to the random oracle throughout
the execution. Our analysis would be conditioned on this event. Furthermore, there are two bad
events in the executions that we consider: First, the event that the adversary guesses in advance
the output of a fresh hash query performed by an honest party, and second, the event that the
adversary finds a collision on the hash function restricted on values smaller than D. We will assume
that both of these events will happen with negligible probability in the security parameters that we
employ in our theorems.

4.1 Definitions and preliminary lemmas

Recall that n is the number of parties, t of which can be corrupted by the adversary. We introduce
the following parameters for notational convenience:

α = pq(n− t), β = pqt, γ = α− α2, f = α+ β.

The first parameter, α, reflects the hashing power of the honest parties. It is an upper bound on
the expected number of solutions that the honest parties compute in one round. Similarly, β, is
the expected number of solutions that the corrupted parties compute in one round. Notice the
asymmetry that while the honest parties will not compute more than one solution per round, a
corrupted party may use all its q queries and potentially compute more than one solution. The
parameter γ will serve as a lower bound on the following two probabilities. The first one is that at
least one honest party computes a solution in a round:

1− (1− p)q(n−t) ≥ 1− e−α ≥ γ;

we will call such round a successful round. The second one is the probability that exactly one honest
party does so; we will call such round a uniquely successful round. We lower bound the probability
of such a round by the probability that out of q(n − t) coin tosses exactly one comes up heads.
Thus, the probability is at least:

(n− t)qp(1− p)q(n−t)−1 ≥ α(1− α+ p) ≥ γ.

The ratio α/β = (n− t)/t will be of interest for the analysis. When α is small (as it will be when
f is small), then γ ≈ α and we will be justified to concentrate on the ratio γ/β. To understand how

14At the time of this writing, Bitcoin difficulty is about 265 which means that logD ≈ 191.
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well γ estimates the probability of a uniquely successful round, call it γ′, we observe the following
upper bound:

γ′ = (n− t)(1− (1− p)q)(1− p)q(n−t−1) ≤ (n− t)pqe−α+pq

≤ α(1− α+ pq + (α− pq)2/2) = α− α2(1− 1
n−t) + α3

2 (1− 1
n−t)

2,

where we use Facts 1 and 2 (see Appendix A). From this it follows that γ′ ≤ α − α2 + α3/2 +
O(1/(n− t)).

The following definition will be crucial in the analysis of the common-prefix property.

Definition 5 (Uniform rounds). We call a round uniform if, at that round, every honest party
invokes the pow(·) algorithm with a chain of the same length (i.e., len(C̃) at line 7 of Algorithm 4
is the same for all honest parties).

We will call a query of a party successful if it submits a pair (ctr, h) such that H(ctr, h) ≤ D.
Without loss of generality, let P1, . . . , Pt be the set of corrupted parties (knowledge of this set will
not be used in any argument). For each round i, j ∈ [q], and k ∈ [t], we define Boolean random
variables Xi and Zijk ∈ {0, 1} as follows. If at round i an honest party obtains a POW, then Xi = 1,
otherwise Xi = 0. Regarding the adversary, if at round i, the j-th query of the k-th corrupted party
is successful, then Zijk = 1, otherwise Zijk = 0. Further, if Xi = 1, we call i a successful round. If a
round is uniform (Def. 5) and uniquely successful, we say it is a uniquely successful uniform round.

Next, we will prove two preliminary lemmas that will be helpful in our analysis. The first one
states that, at any round, the length of any honest party’s chain will be at least as large as the
number of successful rounds. As a consequence, the chain of honest parties will grow at least at the
rate of successful rounds. The second lemma is a simple application of Chernoff bounds and states
that, with high probability, the honest parties will have, at any round, at least λ as many successful
rounds as the adversary has. The usefulness of this lemma will be in showing that honest parties
will be building a blockchain at a rate the adversary will find it hard to overcome.

Lemma 6. Suppose that at round r, an honest party has a chain of length `. Then, by round s ≥ r,
every honest party has adopted a chain of length at least `+

∑s−1
i=r Xi.

Proof. By induction on s− r ≥ 0. For the basis (s = r), observe that if at round r an honest party
has a chain C of length `, then that party broadcast C at a round earlier than r. It follows that
every honest party will receive C by round r.

For the inductive step, note that by the inductive hypothesis every honest party has received a
chain of length at least `′ = ` +

∑s−2
i=1 Xi by round s − 1. When Xs−1 = 0 the statement follows

directly, so assume Xs−1 = 1. Observe that every honest party queried the oracle with a chain of
length at least `′ at round s−1. If follows that all honest parties successful at round s−1 broadcast
a chain of length at least `′ + 1. Since `′ + 1 = `+

∑s−1
i=1 Xi, this completes the proof.

Lemma 7. Assume γ ≥ (1 + δ)λβ for some δ ∈ (0, 1) and λ ≥ 1. The probability that during s
rounds the number of successful rounds exceeds by a factor (1+ δ

2)λ the number of solutions computed
by the adversary is at least 1− e−Ω(δ2s).

Proof. Without loss of generality we assume the s rounds start at round 1. Let X =
∑s

i=1Xi and
Z =

∑s
i=1

∑
j∈[q]

∑
k∈[t] Zijk. By an application of Chernoff bounds (Appendix A) we obtain

Pr[X ≤ (1− δ
4)γs] ≤ e−Ω(δ2s) and Pr[Z ≥ (1 + δ

5)βs] ≤ e−Ω(δ2s).
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It follows that the union of these events has a measure exponentially small in s. However, if none
of them hold, then

X > (1− δ
4)γs ≥ (1− δ

4)(1 + δ)λβs > (1 + δ
2)(1 + δ

5)λβs > (1 + δ
2)λZ.

We are now ready for the treatment of the protocol’s properties outlined in Section 3.2.
This property is established in Theorem 10, whose main argument is in turn given in Lemma 9.

We start with a lemma leading to that argument. The lemma will be used to argue that uniform
rounds favor the honest parties. Informally, the idea is that a uniquely successful uniform round
forces an adversary trying to make honest parties’ chains “diverge” to produce POWs. In the
second lemma we take advantage of this, to show that if the adversary has appropriately bounded
computational power, then there will be enough uniquely successful uniform rounds to prevent him
from mounting a successful attack on the common-prefix property.

Lemma 8. Consider a uniquely successful uniform round where the honest parties have chains of
length `− 1. Then, in any subsequent round, there can be at most one chain C where the `-th block
was contributed by an honest party or a collision in H(·) occurs.

Proof. Let r be a uniquely-successful uniform round and C, with len(C) = `, be the chain computed
by the party that solves the proof of work and extends its local chain of length `− 1 to `. At round
r + 1 every honest party will receive C and will either adopt it or adopt another chain sent by the
adversary. In any case, every honest party will have a chain of length at least `, and will never
query the pow(·) function with a chain of length `− 1 again. The statement of the lemma follows,
since if there is another chain C′ with a different honest block in the `-th position, this would mean
that such block was copied. This implies a collision.

Note that in order for the common-prefix property to be violated at round r, at least two honest
parties should have chains C1 and C2 such that Cdk1 � C2 or Cdk2 � C1. Therefore, the existence of
many blocks computed at uniform rounds forces the adversary to provide as many blocks of its own.
We need to show that, with high probability the adversary will fail to collect as many solutions by
round r.

We say that two distinct chains diverge at a given round, if the last block of their common prefix
was computed before that round.

Our main lemma below asserts the following. Suppose the protocol is halted at round r and
two honest parties have distinct chains C1 and C2. Then, for s large enough, the probability that
C1 and C2 diverge at round r − s is negligible. The idea of the proof is to upper bound the number
of (valid) broadcasts that the adversary can perform during these last s rounds. Note that they
are in the order of βs in expectation. The crucial observation here is that if at a given round the
adversary is silent, then a uniform round follows. Therefore we expect about (1 − β)s uniform
rounds, and consequently γ(1 − β)s uniquely-successful uniform rounds. Recalling Lemma 8, the
adversary needs to collect γ(1− β)s POWs. Thus, in the lemma’s condition we choose the relation
between β and γ suitably so that the adversary is incapable of accomplishing this task, except with
probability exponentially decreasing in s.

Lemma 9. Assume f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1 such that
λ2 − fλ − 1 ≥ 0. Suppose C1 is the chain of an honest party at round r and C2 some other chain
of length at least len(C1) at round r. Then, for any s ≤ r, the probability that C1 and C2 diverge at
round r − s is at most e−Ω(δ3s).
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Proof. We define three bad events, A, B and C, which we show to hold with probability exponen-
tially small in s. We conclude the proof by showing that if none of these bad events happens, then
there cannot exist C1 and C2 diverging at round r − s.

The bad event A occurs if, at some round r′ ≥ r − s, the adversary broadcasts a chain C with
the following properties. (1) C is returned by the function maxvalid of an honest party; (2) the block
head(C) was computed by the adversary before round r − (1 + δ

8)s.
We now give an upper bound on the probability that event A occurs. Let r∗ ≤ r − (1 + δ

8)s
be the latest round at which a block of C was computed by an honest party (if none exists, then
r∗ = 0), and let ` denote the length of the chain up to that block. If any other block computed by
an honest party exists among the blocks from length ` up to len(C), then such block was computed
in rounds r − (1 + δ

8)s up to r′, and it follows that the probability that the adversary’s block can
extend it at round r′ is negligible in κ. Therefore, we infer that with overwhelming probability the
adversary has computed all the blocks from length ` to len(C), and done so during the rounds r∗ to
r′. Let Z denote the total number of solutions the adversary obtained in r′ − r∗ rounds. Let also
X denote the total number of successful rounds for the honest parties in r′ − r∗ rounds. We have

Z ≥ len(C)− ` ≥ X.

The first inequality was argued above and the second one follows from Lemma 6. Finally, note that,
by Lemma 7, the event Z ≥ X has measure exponentially small in the number of rounds r′ − r∗.
Since that number satisfies r′ − r∗ ≥ δs/8, we conclude that Pr[A] ≤ e−Ω(δ3s).

The second bad event occurs if the adversary has obtained a large number of solutions during
(1 + δ

8)s rounds. Specifically, let Z denote the number of successful calls to the oracle by the
adversary, for a total of (1 + δ

8)s rounds. Define B to be the event Z ≥ (1 + δ
9)(1 + δ

8)βs. An
application of Chernoff bounds gives

Pr[Z ≥ (1 + δ
9)(1 + δ

8)βs] ≤ e−Ω(βδ2s).

The third bad event occurs when the honest parties do not obtain enough solutions from the
oracle during uniform rounds. Consider any number, say, s′ of rounds (not necessarily consecutive),
and denote by X the number of them that were uniquely successful. We have

Pr[X ≤ (1− δ
4)γs′] ≤ e−Ω(γδ2s′).

From now on we assume that none of the events A, B and C occurs. It is easy to see that if at any
round the adversary does not broadcast a (new) POW, then the next round will be uniform. Using
this observation for a given s consecutive rounds, we will calculate a lower bound on the number of
rounds that will be uniform. The adversary may prevent a round among the s consecutive rounds
from being uniform by broadcasting a solution that was found during the s consecutive rounds as
well as in the past for an extended period of (1 + δ

8)s rounds. Note that, since A does not occur, he
may not use even older solutions with probability at least 1− e−Ω(δ3s).

The negation of the second bad event bounds the number of solutions the adversary can obtain.
This implies that at least

s′ = s− (1 + δ
9)(1 + δ

8)βs ≥ s− (1 + δ
4)βs = (1− β)s− δ

4βs

rounds among the s rounds will be uniform.
Given the negation of the third bad event, there were X > (1− δ

4)γs′ uniquely successful uniform
rounds during the s rounds of the protocol. By Lemma 8, it is necessary for the adversary, in order
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to maintain the concurrent existence of C1 and C2, to obtain at least X solutions. Thus, for the
adversary to succeed, it should hold that Z ≥ X. Substituting in this inequality the bounds on
Z ≤ (1 + δ

4)βs and X > (1− δ
4)γs′ given by ¬B and ¬C, respectively, and rearranging we obtain

(1 + δ
2)β ≥ (1− δ

4)γ(1− β). (1)

Recall that β+ γ < f . Since γ ≥ (1 + δ)λβ, this implies 1−β > (1 +λ− f)/(1 +λ). Using the last
two inequalities to simplify (1), this implies

λ2 − fλ− 1 < 0,

contradicting the choice of λ in the statement of the lemma. We conclude that if A ∪ B ∪ C does
not occur, then C1 and C2 cannot diverge at round r− s. Finally, an application of the union bound
on A ∪B ∪C implies that the adversary can successfully maintain such C1 and C2 with probability
at most exponentially small in s and the statement of the lemma follows.

The above lemma is almost what we need, except that it refers to number of rounds instead
of number of blocks. In order to obtain the common-prefix property we should use the properties
of the blockchains of the parties themselves as the sole measure of divergence. The next theorem
establishes the connection.

Theorem 10. Assume f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1 such that
λ2−fλ−1 ≥ 0. Let S be the set of the chains of the honest parties at a given round of the backbone
protocol. Then the probability that S does not satisfy the common-prefix property with parameter k
is at most e−Ω(δ3k).

Remark 4. Observe that as f → 0, λ→ 1. On the other hand, if f → 1 then λ→ φ, where φ is the
golden ratio (1+

√
5

2 ).

Proof. If there is only one chain in S then the property is satisfied trivially. Consider two chains C1

and C2 in S and the least integer k∗ such that

Cdk
∗

1 � C2 and Cdk
∗

2 � C1. (2)

We need to show that the event k∗ ≥ k happens with probability exponentially small in k.
Let r be the current round and let r − s be the round at which the last common block of C1

and C2 was computed. The length of the chains cannot be greater than the number of solutions Y
obtained from the oracle in s rounds. By the Chernoff bound,

Pr[Y ≥ (1 + δ)fs] ≤ e−δ2fs/3.

It follows that, with probability 1−e−δ2fs/3, s > k∗/((1+δ)f). Thus, if k∗ ≥ k, we have a sequence
of s = Ω(k) consecutive rounds with chains C1 and C2 diverging, and the theorem follows from
Lemma 9.

Remark 5. Recall that in our analysis we are interested in the relationship between α and β. In
particular, the ratio β/α = t/(n− t) reflects the power of the adversary as a fraction of the power
of the honest parties. The case α ≤ β implies that the adversary can, with constant probability,
preclude the honest parties that follow the protocol from doing anything useful. This is simply
because such an adversary has enough power to build a chain that will often be longer than the
chain the honest parties are building. Therefore, it is to be expected that the statements are
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Figure 3: The degradation of the adversarial bound of Theorem 10 as f ranges in (0, 1) in the x-axis
(lower curve). When ties are broken following lexicographic order the analysis can be improved
(upper curve).

meaningful only when β/α is bounded below 1 by a suitable constant. In case in practice the
network is highly synchronized (which would effectively mean that f → 0), the value of α gets very
close to the value of γ = α − α2, and hence our result is tight. In case of a larger f , our analysis
shows that the upper bound on the adversarial hashing power devolves and in fact approaches 0
as f → 1; in other words, in a network were a POW becomes relatively easy compared to network
synchronization time, Theorem 10 provides no security guarantee whatsoever.

In practice, this underscores the importance of calibrating the difficulty of the proof of work to
maintain a small value of f (such calibration takes place in the Bitcoin system every 2016 blocks). It
is an interesting question to further explore the behavior of the backbone protocol in desynchronized
networks. We remark that with our analysis we can prove a much better behavior for f → 1 for a
modified backbone protocol that has a deterministic tie-breaking rule (e.g., chooses a chain that is
the lexicographically smallest from those received15). In this case we can prove, for example, that
our analysis enables the common prefix property to hold when f = 1 assuming the adversary controls
less than about 29% of the hashing power. In Figure 3 we show how the bound of Theorem 10
degenerates when the parameter f ranges in the (0, 1) range as well as the improvement in the
analysis that can be achieved by lexicographic tie-breaking (we omit the details of this analysis).

4.2 The chain-quality property

We now turn to the chain-quality property (Definition 4), which the theorem below establishes for
a suitable bound on the number of blocks introduced by the adversary.

Theorem 11. Assume f < 1 and γ ≥ (1+δ)λβ for some δ ∈ (0, 1). Suppose C belongs to an honest
party and consider any ` consecutive blocks of C. The probability that the adversary has contributed
more than (1− δ

3) 1
λ` of these blocks is less than e−Ω(δ2`).

From the above theorem, it follows immediately that the chain quality is satisfied with parameter
µ = 1

λ for any segment length ` and probability that drops exponentially in `.

Proof. Let us denote by Bi the i-th block of the chain C of an honest party P at some round r so
that C = B1 . . . Blen(C) and consider some ` consecutive blocks Bu, . . . , Bv.

15This has in fact been debated in an number of occasions; see, e.g., [Cun13].
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Define L as the least number of consecutive blocks Bu′ , . . . , Bv′ that include the ` given ones
(i.e., u′ ≤ u and v ≤ v′) and have the properties (1) that the block Bu′ was computed by an honest
party or is B1 in case such block does not exist, and (2) that there exists a round at which an honest
party was trying to extend the chain ending at block Bv′ . Observe that number L is well defined
since Blen(C) is at the head of a chain that an honest party is trying to extend. Define also r1 as the
round that Bu′ was created (r1 = 1 if Bu′ is the genesis block), r2 as the first round that an honest
party attempts to extend Bv′ , and let S = {r : r1 ≤ r ≤ r2}.

Now let x denote the number of blocks from honest parties that are included in the ` blocks
and, towards a contradiction, assume that

x ≤
[
1−

(
1− δ

3

) 1

λ

]
` ≤

[
1−

(
1− δ

3

) 1

λ

]
L.

Let Z be the random variable that corresponds to the POWs obtained by the adversary during
the rounds in S and X the successful rounds of the honest players in the same sequence of rounds.

Suppose first that all the L blocks {Bj : u′ ≤ j ≤ v′} have been computed during the rounds in
the set S. Then

Z ≥ L− x ≥
(

1− δ

3

) 1

λ
L ≥

(
1− δ

3

) 1

λ
X ≥ 1

(1 + δ
2)λ

X.

The first inequality comes from the fact that the adversary computed L − x of the L blocks. The
second one comes from the postulated relation between x and L. The penultimate inequality follows
from Lemma 6 and the properties (1) and (2) of the L blocks. Specifically, X ≤ L, because round
r1 is a round that an honest party has produced block Bu′ and thus all honest party at the next
round will have a chain of at least the length that Bu′ . Furthermore, at round r2, an honest party
attempts to extend block Bv′ thus all honest parties should be at a chain of at least that length.
Finally, the last inequality comes from a simple numerical calculation.

To obtain the stated bound, note that if |S| < (1 − δ)L, then since f is bounded away from 1
by a constant, the Chernoff bound implies that in |S| rounds the total number of solutions is at
least L with probability at most e−Ω(L) = e−Ω(`). Otherwise we have |S| ≥ (1− δ)L and the bound
follows from Lemma 7 since the series of inequalities implies that (1 + δ

2)λZ ≥ X.
To finish the proof we need to consider the case in which these L blocks contain blocks that

the adversary computed in rounds outside S. To manage this for a block it computed before round
r1 implies that it guessed the hash of a block in {Bj : u′ ≤ j ≤ v′}; this occurs with probability
negligible in κ. To inject among these blocks one it computed after round r2 implies a collision. To
see this, suppose the adversary injects a block B∗(s∗, x∗, c∗) among two existing blocs B = (s, x, c)
and B′ = (s′, x′, c′). Then, with g = G(s, x) and since both B∗ and B′ extend B, it should hold
that s∗ = s′ = H(c, g) and we obtain the collision H(c∗, g) = H(c′, g).

Remark 6. We are able to argue that Theorem 11 is tight under the simplification that ties between
blockchains of equal length always favor the adversary. In particular, we assume that the function
maxvalid at line 5 of Algorithm 4, in case of chains of equal length, will always return the suggestion
of the adversary if there is one. This simplification is made without loss of generality in our model
since the adversary is rushing and hence in case two chains are transmitted in a single round the
adversary can always arrange it so that its own solution arrives first16. Furthermore, if the number
of honest parties is large, when an honest party discovers a solution in a round, all other honest

16In fact, this rushing capability was argued to be realistic in [ES14] through the dispersion of sybil nodes in the
Bitcoin peer-to-peer network that echo the adversary’s messages.
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parties will prefer the one transmitted by the adversary and thus the effect of a single honest party
opting for its own block will be negligible.

The attack below is a type of “selfish mining” attack (it is a variation of the one in [ES14] and
appears to be folklore in bitcoin circles) that accomplishes the stated bound. The attack is as
follows. Initially, the adversary works on the same chain as every honest party. However, whenever
it finds a solution it keeps it private and keeps on extending a private chain. Whenever an honest
party finds a solution, the (rushing) adversary releases one block from the private chain; if the
private chain is depleted the adversary returns to the public chain. We now argue that this strategy
exploits the conditions stated above and maximizes the adversarial blocks in the blockchain up to
the upper bound of Theorem 11.

Consider s rounds of the protocol. With high probability, the adversary will obtain more than
(1 − ε)βs solutions for some small ε > 0. With each one of them it will try to block the blocks
that are broadcast by honest parties. At the end of the s rounds, there may be a few “unused”
blocks but these will be, with high probability, at most εβs. This is because during the rounds that
the adversary acquired the blocks that it did not broadcast, none of the honest players obtained a
solution; this is a low probability event. Now, the honest parties will have—with high probability—
at most (1+ε)γs successful rounds. It follows that, for a small constant δ, the quality of the chain is
1− 1−δ

λ . Note that the Chernoff bound can be used to make the argument more formal and replace
the expression “with high probability” with 1 − eΩ(s). From this it follows that in order to obtain
better chain quality one should consider mechanisms that result in more favorable (for the honest
parties) behavior in the function maxvalid.

5 Simple POW-based Byzantine Agreement Protocols

We now turn to applications of the Bitcoin backbone protocol, showing how it can be used as a
basis to solve other problems. We start in this section by analyzing Nakamoto’s suggestion for
solving BA, observing that it falls short of satisfying Definition 2; we then present our simple
instantiation which solves BA. This protocol, however, only tolerates an adversarial hashing power
less than 1/3, which takes us to the next section, where we present Bitcoin’s essential task, namely,
distributively maintaining a public transaction ledger, as well as a more elaborate BA protocol
tolerating an adversarial power strictly less than 1/2. An overview of our applications and the way
their properties depend on those of the backbone protocol was already presented in Figure 1.

5.1 Nakamoto’s suggestion for Byzantine agreement

As our first illustration of how the Bitcoin backbone can be used we present Nakamoto’s suggestion
for solving BA, as presented in a forum post [Nak08b].17 We describe his solution (call it Πnak

BA ) via
the backbone protocol by specifying the functions V (·), I(·), R(·) in a suitable way (see Figure 4).
The content validation predicate V (·) will be defined to require that all valid chains contain the
same input value together with a nonce. The chain reading function R(·) simply returns this value
(ignoring the nonce) in case the chain has length at least k (which is the security parameter);
otherwise it is undefined. The input contribution function I(·) examines the contents of the current
chain C and the contents of the input tape Input(). In case C = ε the input contribution for the
next block is taken verbatim from the input tape; otherwise, the input contribution is determined as
the (unique) value that is already present in the C (and in this case the local input is ignored). Note

17Note that Nakamoto’s description is quite informal. We make the most plausible interpretation of it in our formal
framework.
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that we will only consider environments Z that provide an input symbol to all parties. Note that
the nonce is added to ensure “work independence”: the parties need to introduce a fresh random
κ-bit nonce at each block (cf. the beginning of Sec. 4).

It follows that initially the protocol builds various chains all containing the same value. The
intuition is that Agreement will follow from the fact that the honest players will eventually agree on
a single chain, as long as the majority of the hashing power lies with the honest parties. While this
is true, as we will demonstrate, the second necessary property does not hold: this protocol cannot
provide Validity (with high probability).

Content validation pred-
icate V (·)

V (〈x1, . . . , xn〉) is true if and only if it holds that v1 = . . . = vn ∈
{0, 1}, ρ1, . . . , ρn ∈ {0, 1}κ where xi = 〈vi, ρi〉, or n = 0.

Chain reading function
R(·) (parameterized by
k)

If V (xC) = True and len(C) ≥ k, the value of R(C) is the (unique)
value v that is present in each block of C, while it is undefined if
V (xC) = False or len(C) < k.

Input contribution func-
tion I(·)

If C = ∅ and (Insert, v) is in the input tape then
I(st, C, round, Input()) is equal to 〈v, ρ〉 where ρ ∈ {0, 1}κ is a ran-
dom value; otherwise (i.e., the case C 6= ∅), it is equal to 〈v, ρ〉 where
v is the unique v ∈ {0, 1} value that is present in C and ρ ∈ {0, 1}κ is
a random value. The state st always remains ε.

Figure 4: Expressing Nakamoto’s BA protocol Πnak
BA over the Bitcoin backbone protocol via the

specification of V (·), R(·), I(·).

As we now show, Agreement follows easily from the common-prefix property. Indeed, as long as
there is a common prefix (irrespective of its length), it is ensured that when R(·) becomes defined
and all honest parties will produce the same output.

Lemma 12 (Agreement). Suppose f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1
such that λ2 − fλ − 1 ≥ 0. Protocol Πnak

BA from Fig. 4 satisfies Agreement (cf. Definition 2) with
probability at least 1− e−Ω(δ3k).

Proof. Observe that chains contain unique values (ignoring the nonces), therefore a disagreement
between honest parties implies that two parties have disjoint chains (essentially, this is equivalent
to a fork that happens at the onset). It follows from the common prefix property (Theorem 10)
that the event of any two chains of length at least k that are completely disjoint happens with
probability at most e−Ω(δ3k).

On the other hand, it is easy to see that Validity cannot be guaranteed with overwhelming
probability unless the hashing power of the adversary is negligible compared to the honest players,
i.e., t/n is negligible. This is because in case the adversary finds a solution first, then every honest
player will extend the adversary’s solution and switch to the adversarial input hence abandoning
the original input. While one can still show that Validity can be ensured with non-zero probability
(and thus the protocol fails gracefully assuming honest majority), Πnak

BA falls short from providing
a solution to BA. Interestingly, by appropriately modifying the way the backbone protocol is used,
we show in the next section how a solution can be derived.

5.2 A Byzantine agreement protocol for (1/3)-bounded adversaries

We now show that the Bitcoin backbone can be directly used to satisfy BA’s properties with an
error that decreases exponentially in the length of the chain, assuming however that the adversary’s
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hashing power is less than 1/3. There are two important differences with respect to the approach
in the previous section: (i) parties never abandon their original input but instead they do insist
in inserting it into the blockchain, and (ii) when the chain becomes of length 2k, they output the
majority of their local length-k prefix (note that here we consider binary BA). The protocol (i.e.,
the specification of the functions V (·), I(·), R(·)) is presented in Figure 5.

Content validation pred-
icate V (·)

V (〈x1, . . . , xn〉) is true if and only if v1, . . . , vn ∈ {0, 1}, ρ1, . . . , ρn ∈
{0, 1}κ where vi, ρi are the values from the pair xi = 〈vi, ρi〉, or n = 0.

Chain reading function
R(·) (parameterized by
k)

If V (〈x1, . . . , xn〉) = True and n ≥ 2k, the value R(C) is the ma-
jority bit of v1, . . . , vk where xi = 〈vi, ρi〉; otherwise (i.e., the case
V (〈x1, . . . , xn〉) = False or n < 2k) the output value is undefined.

Input contribution func-
tion I(·)

I(st, C, round, Input()) is equal to 〈v, ρ〉 if the input tape contains
(Insert, v); ρ is a random κ-bit string. The state st remains always
ε.

Figure 5: Protocol Π
1/3
BA over the Bitcoin backbone via the specification of V (·), R(·), I(·).

Lemma 13 (Agreement). Suppose f < 1 and γ ≥ 2(1 + δ)β, for some real δ ∈ (0, 1). Protocol Π
1/3
BA

of Fig. 5 satisfies Agreement in O(k) rounds with probability at least 1− e−Ω(δ3k).

Proof. In order for agreement to be violated, at least two honest players should have upon termina-
tion chains C1 and C2 such that Cdk1 6= C

dk
2 . In particular, the set {C1, C2} should be a set of chains

that belong to honest parties and does not satisfy the common-prefix property. Thus, the statement
of the lemma follows directly from Theorem 9.

We now turn to the Validity property. In order to prove it we need to show that, upon termi-
nation of the protocol, the chain of any honest party will contain among the first k inputs more
inputs from honest players than provided by the adversary. As we will see, this is a consequence of
the chain-quality property.

Lemma 14 (Validity). Suppose f < 1 and γ ≥ 2(1 + δ)β, for some real δ ∈ (0, 1). Protocol Π
1/3
BA

satisfies Validity in O(k) rounds with probability at least 1− e−Ω(δ2k).

Proof. For the property to be satisfied we only need to ensure that in Cdk the majority of the inputs
was computed by the honest parties. As in protocol Π

1/3
BA we have len(Cdk) = k, Theorem 11 with

λ = 2 provides exactly what we want.

Note that Π
1/3
BA solves BA only in case the adversary’s hashing power is bounded by 1/3. In

case adversarial blocks win all head-to-head races within a round (as it is the case with a rushing
adversary), the result is tight, as argued in Remark 6. In the next section we show a more elaborate
construction based on a transaction ledger which tolerates can tolerate an adversary with hashing
power bounded by 1/2.

Remark 7. As mentioned in Section 2, “Strong Validity” refers to the requirement that the output
value be one of the honest parties’ inputs, and the distinction is relevant in the case of non-binary
inputs, i.e., coming from an arbitrary set V , |V | > 2. It is easy to modify the above algorithm to
also satisfy this property by making the chain reading function the element with highest plurality in
the chain (ties broken favoring the lexicographically smallest element in V ), as opposed to majority,
and by imposing a more stringent bound on the adversary, namely, that γ ≥ |V |(1 + δ)β. This

27



ensures that the expected number of blocks in the blockchain that are controlled by the adversary
is less than 1

|V | , and maintains validity even in the worst case that the honest parties’ inputs are
equally split among all possible values but one (i.e., there are |V | − 1 inputs equally proportioned
among the honest parties). Agreement is ensured in the same way as before via the common-prefix
property. The bound is in-line with the known bounds for the computational setting with trusted
setup, n > |V |t, cf. [FG03].

6 Public Transaction Ledgers

We now come to the application which the Bitcoin backbone was designed to solve: maintaining a
public transaction ledger. We first formally introduce this object — a “book” where transactions
are recorded — and its properties, and then we show how it can be used to implement the Bitcoin
ledger and BA in the honest majority setting by properly instantiating the notion of a transaction.

6.1 Robust public transaction ledgers

A public transaction ledger is defined with respect to a set of valid ledgers L and a set of valid
transactions T , each one possessing an efficient membership test. A ledger x ∈ L is a vector of
sequences of transactions tx ∈ T . Each transaction tx may be associated with one or more accounts,
denoted a1, a2, . . . etc.

The backbone protocol parties, called miners in the context of this section, process sequences of
transactions of the form x = tx1 . . . txe that are supposed to be incorporated into their local chain
C. The input inserted at each block of the chain C is the sequence x of transactions. Thus, a ledger
is a vector of transaction sequences 〈x1, . . . , xm〉, and a chain C of length m contains the ledger
xC = 〈x1, . . . , xm〉 if the input of the j-th block in C is xj .

The description and properties of the ledger protocol will be expressed relative to an oracle Txgen
which will control a set of accounts by creating them and issuing transactions on their behalf. In
an execution of the backbone protocol, the environment Z as well as the miners will have access
to Txgen. Specifically, Txgen is a stateful oracle that responds to two types of queries (which we
purposely only describe at a high level):

GenAccount(1κ): It generates an account a.
IssueTrans(1κ, t̃x): It returns a transaction tx provided that t̃x is some suitably formed string,
or ⊥.
We also consider a symmetric relation on T , denoted by C(·, ·), which indicates when two trans-

actions tx1, tx2 are conflicting. Valid ledgers x ∈ L can never contain two conflicting transactions.
We call oracle Txgen unambiguous if it holds that for all PPT A, the probability that ATxgen

produces a transaction tx′ such that C(tx′, tx) = 1, for tx issued by Txgen, is negligible in κ.
Finally, a transaction tx is called neutral if C(tx, tx′) = 0 for any other transaction tx′. The

presence of neutral transactions in the ledger can be helpful for a variety of purposes, as we will see
next and in the BA protocol that we build on top of the ledger. For convenience we will assume that
a single random nonce ρ ∈ {0, 1}κ is also a valid transaction. Nonces will be neutral transactions
and may be included in the ledger for the sole purpose of ensuring independence between the POW
instances solved by the honest parties.

Next, we determine the three functions V (·), I(·), R(·) that will turn the backbone protocol into
ΠPL, a protocol realizing a public transaction ledger. See Figure 6.

We now introduce two essential properties for a protocol maintaning a public transaction ledger:
(i) Persistence and (ii) Liveness. In a nutshell, Persistence states that once an honest player reports
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Content validation pred-
icate V (·)

V (〈x1, . . . , xm〉) is true if and only if the vector 〈x1, . . . , xm〉 is a valid
ledger, i.e., 〈x1, . . . , xm〉 ∈ L.

Chain reading function
R(·)

If V (〈x1, . . . , xm〉) = True, the value R(C) is equal to 〈x1, . . . , xm〉;
undefined otherwise.

Input contribution func-
tion I(·)

I(st, C, round, Input()) operates as follows: if the input tape contains
(Insert, v), it parses v as a sequence of transactions and retains the
largest subsequence x′ � v that is valid with respect to xC (and whose
transactions are not already included in xC). Finally, x = tx0x

′ where
tx0 is a neutral random nonce transaction.

Figure 6: The public transaction ledger protocol ΠPL, built on the Bitcoin backbone.

a transaction “deep enough” in the ledger, then all other honest players will report it indefinitely
whenever they are asked, and at exactly the same position in the ledger (essentially, this means
that all honest players agree on all the transactions that took place and in what order). In a more
concrete Bitcoin-like setting, Persistence is essential to ensure that credits are final and that they
happened at a certain “time” in the system’s timeline (which is implicitly defined by the ledger
itself).

Note that Persistence is useful but not enough to ensure that the ledger makes progress, i.e.,
that transactions are eventually inserted in a chain. This is captured by the Liveness property,
which states that as long as a transaction comes from an honest account holder and is provided
by the environment to all honest players, then it will be inserted into the honest players’ ledgers,
assuming the environment keeps providing it as an input for a sufficient number of rounds.18

We define the two properties below.19

Definition 15. A protocol Π implements a robust public transaction ledger in the q-bounded syn-
chronous setting if it organizes the ledger as a hashchain of blocks of transactions and it satisfies
the following two properties:

Persistence: Parameterized by k ∈ N (the “depth” parameter), if in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away from
the end of the ledger (such transaction will be called “stable”), then tx will always be reported
as stable, in the same position in the ledger, by any honest player from the next round on.
Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parameters, resp.), provided
that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all honest
players continuously for u consecutive rounds, then there exists an honest party who will report
this transaction at a block more than k blocks from the end of the ledger, i.e., the transaction
will be reported as stable.

We prove the two properties separately, starting with Persistence. We note first that it is essential
18Observe that here we take the view that new transactions are available to all honest players and the way they

are propagated is handled by the environment that feeds the backbone protocol. While this makes sense in the
honest/malicious cryptographic model, it has been challenged in a model where all players are rational [BDOZ12].
Analysis of the backbone protocol in a setting where transaction propagation is governed by rational players is beyond
the scope of our paper. Still, it is straightforward to use our results to argue about liveness even when some players
do not receive all transactions by applying the same reasoning as in Remark 1.

19We note that we provide a slightly stronger definition for persistence compared to our original formulation
[GKL15]. In particular we require that once some party reports a transaction as stable then from the next round on,
all honest parties will report it as stable. In the original formulation the wording stated that parties may report it in
the same position which seemingly is logically equivalent to our present formulation under the assumption of chain
growth (a property that follows easily from Lemma 6).
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to require that the stability of the transaction is reported from the “next round on” from the time
that an honest party reports it as stable. Indeed, it is not guaranteed that parties simultaneously
report a transaction as stable: the adversary may advance the chain of a certain player at a specific
round and thus make the transaction appear as stable when the environment checks it; nevertheless
at that round other honest parties may still have chains that have not advanced sufficiently enough
and thus report the transaction as not stable. This is akin to the lack of simultaneous termination
in early stopping consensus protocols, cf. [DRS90].

The proof is essentially based on the common prefix property of the backbone protocol (recall
Definition 3 and Theorem 10); in fact it relies on the stronger formulation of common prefix as
expressed in Lemma 9.

Lemma 16 (Persistence). Suppose f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1
such that λ2 − fλ− 1 ≥ 0. Protocol ΠPL satisfies Persistence with probability 1− e−Ω(δ3k), where k
is the depth parameter.

Proof. Let C1 be the chain of some honest player P1 at round r1. We show that if a transaction
tx is included in Cdk1 at round r1, i.e., it is stable, then this transaction will be always included in
every honest player’s chain with probability at least 1− e−Ω(δ3k) and their chain will be at least as
long from the next round on, thus the transaction tx will be also stable for them.

For every r2 > r1, let B(r2) be the event that an honest party P2 has a chain C2 at round r2,
such that Cdk2 does not include tx. Suppose tx was inserted in C1 at round r∗ < r1. It follows that
C1 and C2 diverge at round r∗.

If it holds that at round r2 player P1 possesses a continuation of chain C1, then by Lemma 9 this
occurs with probability e−Ω(δ3(r2−r∗)). If not, then this means that P1 abandoned C1 at some round
following r1 and prior to r2 for a chain not containing tx. It follows that C1 and this other chain
coexist at the round that P1 switches and by Lemma 9 this occurs with probability e−Ω(δ3(r1−r∗)).
So in either case we conclude that the probability of event B(r2) is e−Ω(δ3(r1−r∗)).

The claim then follows by a union bound over all rounds r > r1. Letting s = r1 − r∗ and ε be
an appropriate constant, the probability that there is an r > r1 such that B(r) occurs (i.e., that
Persistence is violated at round r) is

Pr[∪r>r1B(r)] ≤
∑
s′≥s

Pr[B(r∗ + s′)] ≤
∑
s′≥s

e−εδ
3s′ = e−Ω(δ3s).

Finally, as in the proof Theorem 10 we can argue that s = Ω(k). The above suggest that all honest
parties will report the transaction tx in the same position in their chains and thus because of the fact
that from any round after r1 all chains will be at least as long as C1, it follows that the transaction
tx will be also stable.

We next prove Liveness, which is based on the chain-quality property (recall Definition 4 and
Theorem 11) and the fact that the chain of honest parties grows at least as fast as the number of
blocks they produce proven in Lemma 6.

Lemma 17 (Liveness). Assume f < 1 and γ ≥ (1 + δ)λβ, for some δ ∈ (0, 1), λ ∈ [1,∞) and let
k ∈ N. Further, assume oracle Txgen is unambiguous. Then protocol ΠPL satisfies Liveness with
wait time u = 2k/(1− δ)γ and depth parameter k with probability at least 1− e−Ω(δ2k).

Proof. We prove that assuming all honest players receive as input the transaction tx for at least
u = 2k/[(1− δ)γ] rounds, there exists an honest party with chain C such that tx is included in Cdk.
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Indeed, after u rounds the Chernoff bound implies that the honest parties had at least 2k
successful rounds with probability at least 1 − e−Ω(δ2k). Invoking Lemma 6, we infer that the
chain’s length of any honest party has increased by at least 2k blocks. Finally, the chain-quality
property (Theorem 11) implies that at least one of the blocks in the length-k suffix of Cdk was
computed by an honest party. Such a block would include tx since it is infeasible for adversarial
Z,A to produce a conflicting transaction tx′ (which would be the only event making an honest
player drop tx from the sequence of transactions x that it attempts to insert in the blockchain).
Thus, the lemma follows.

6.2 Bitcoin-like transactions and ledger

Next, we show how to instantiate the public transaction ledger for Bitcoin, by defining the sets of
transactions and valid ledgers.

Transactions and accounts are defined with respect to a digital signature scheme that is com-
prised of three algorithms 〈KeyGen,Sign,Verify〉. An account will be a pair a = (vk,G(vk)) where
G(·) is a hash function and G(vk) is the “address” corresponding to the account.

A transaction tx is of the form “{a1, a2, . . . , ai} → (σ, {(a′1, b′1), . . . , (a′o, b
′
o)}),” where a1, . . . , ai

are the accounts to be debited, a′1, . . . , a′o are the addresses of the accounts20 to be credited with
funds b′1, . . . , b′o, respectively, and σ is a vector 〈(vk1, σ1), . . . , (vki, σi)〉 of verification keys and
digital signatures issued under them, on the same message {(a′1, b′1), . . . , (a′o, b

′
o)}. (We note that

Bitcoin transactions can be more expressive but the above description is sufficient for the purpose
of our analysis).

Next, we specify the Txgen oracle:

GenAccount(1κ): It generates an account a by running KeyGen and computing the hash G(·) on
the verification key. The account is the pair (vk,G(vk)), where G(vk) is the account’s address.
The corresponding secret key, sk, is kept in the state of Txgen.
IssueTrans(1κ, t̃x): It returns a transaction tx provided that t̃x is a transaction that is only miss-
ing the signatures by accounts that are maintained by Txgen. (Recall the format of transactions
above.) Each account is only allowed a single transaction.

Note that the above restriction on IssueTrans is without loss of generality, as in Bitcoin, entities
typically maintain a number of accounts and are allowed (although not forced) to move their balances
forward to a new account as they make new transactions. The conflict relation C(·, ·) over T satisfies
that C(tx1, tx2) = 1 if and only if tx1 6= tx2 and tx1, tx2 have an input account in common21. Thus,
we can easily prove the unambiguity of the Txgen oracle based on the unforgeability of the underlying
digital signature.

Lemma 18. Assume that 〈KeyGen,Sign,Verify〉 is an existentially unforgeable signature scheme.
Then oracle Txgen is unambiguous.

In order to define the set of valid Bitcoin ledgers we first need to determine in what sense a
transaction may be valid with respect to a ledger. Then we will define the set of valid ledgers
recursively as the maximal set of vectors of sequences of transactions that satisfy this condition. So
here it goes.

20In bitcoin terminology every account has an address that is used to uniquely identify it. Payments directed to an
account require only this “bitcoin address.” The actual verification key corresponding to the account will be revealed
only when the account makes a payment.

21The conflict relation is more permissive in the actual Bitcoin ledger. We adopt the more simplified version given
above as it does not change the gist of the analysis.
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A transaction tx is valid with respect to a Bitcoin ledger x = 〈x1, . . . , xm〉 provided that all
digital signatures verify and

∑i
j=1 bj ≥

∑o
j=1 b

′
j , where bj is the balance that was credited to

account aj in the latest transaction involving aj in x. In case e =
∑i

j=1 bj −
∑o

j=1 b
′
j > 0, then e

is a transaction fee that may be claimed separately in a special transaction of the form “∅ → . . .,”
called a coinbase transaction. In more detail, a coinbase transaction has no inputs and its purpose
is to enable miners to be rewarded for maintaining the legder. The transaction is of the form
“∅ → {(a1, b1), . . . , (ao, bo)},” and

∑o
j=1 bj is determined based on the other transactions that are

“bundled” in the block as well as a flat reward fee, as explain below.
A sequence of transactions x = 〈∅ → {(a1, b1), . . . , (ao, bo)}, tx1, . . . , txl〉 is said to be valid with

respect to a ledger x = 〈x1, . . . , xm〉, if each transaction txj is valid with respect to the ledger x
extended by the transactions tx1, . . . , txj−1. I.e., for all j = 1, . . . , l the transaction txj should be
valid with respect to ledger

〈x1, . . . , xm, tx1 . . . txj−1〉,

and furthermore, the total fee e =
∑o

j=1 bj collected in the transaction ∅ → {(a1, b1), . . . , (ao, bo)}
does not exceed rm +

∑m
j=1 ej , which includes all the individual fees corresponding to transactions

tx1, . . . , txe, plus a value rm that is the flat reward given for extending a ledger of length m to a
ledger of length m+ 1.22

The set of valid ledgers L with respect to a reward progression {rj}j∈N contains ε (the empty
ledger), and any ledger x which extends a ledger in L by a valid sequence of transactions. Note
that the first transaction sequence of any ledger x ∈ L contains a single transaction of the form
∅ → {(a1, b1), . . . , (ao, bo)} that satisfies

∑o
j=1 bj = r0, where r0 is the initial flat reward. This first

transaction “distributes an initial amount of money” to the ledger’s initiator(s).23 It is easy to see
that L has an efficient membership test.

Given the existence of coinbase transactions in this application we can do away with random
nonces as standalone transactions and the description of the input contribution function I in Fig. 6,
is modified to include their generation each time an input sequence of transactions is determined
to be inserted in the ledger. Specifically, I(·) will form a coinbase transaction ∅ → {(a, b)}, where
b = rlen(C) +

∑m
j=1 ej and ej is the fee corresponding to x’s j-th transaction. Account a is a

freshly created account that is obtained via running KeyGen. I(·) will append account a and the
corresponding (vk, sk) to its private state st.

We will refer to the modified ΠPL protocol by the moniker ΠBTC. ΠBTC inherits from ΠPL the
properties of Persistence and Liveness which will ensure the following with overwhelming probability
in k.

Apart from its latest k blocks, the transaction ledger is fixed and immutable for all honest
miners.
If a majority of miners24 receive an honest transaction and attempt to insert it following the
protocol for a sufficient number of rounds (equal to parameter u, the “wait time”), it will become
a permanent entry in the ledger (no matter the adversarial strategy of the remaining miners).

22Currently, the flat reward for extending the Bitcoin chain is 25BTC. The sequence r0, r1, . . . for Bitcoin follows
a geometric progression with large constant intervals.

23In the case of Bitcoin, it was supposedly Nakamoto himself who collected this first reward of 50BTC.
24Recall that we assume a flat model w.r.t. hashing power; a majority of miners corresponds to a set of parties

controlling the majority of the hashing power.

32



Algorithm 5 The POW-based transaction production protocol Πtx, parameterized by q, D and
hash functions H1(·), G(·).

1: v ← Input()
2: ctr ← 1
3: tx← ε
4: h← G(nonce, v) . nonce is a random κ-bit string
5: while (ctr ≤ q) do
6: if (H1(ctr, h) < D) then . Proof of work succeeded
7: tx← 〈nonce, v, ctr〉
8: break
9: end if

10: ctr ← ctr + 1
11: end while
12: Broadcast(tx)

Figure 7: The transaction production protocol Πtx.

6.3 Byzantine agreement for honest majority

We now use the public transaction ledger formulation to achieve POW-based BA for an honest
majority by properly instantiating the notion of a transaction, thus improving on the simple BA
protocol tolerating a (1/3)-bounded adversary presented in Section 5.

Here we consider a set of valid ledgers L that contain sequences of transactions of the form
〈nonce, v, ctr〉, and satisfy the predicate:

(H1(ctr,G(nonce, v)) < D) ∧ (ctr ≤ q), (3)
where H1(·), G(·) are two hash functions as in the definition of the backbone protocol, and v ∈ {0, 1}
is a party’s input. (Recall that D is the difficulty level and q determines how many calls to H1(·) a
party is allowed to make per round.) To distinguish the oracles, in this section we will use H0(·) to
refer to the oracle used in the backbone protocol.

For the ledger we consider in this section, there will be no accounts and all transactions will be
neutral — i.e., the conflict predicate C(·, ·) will be false for all pairs of transactions.

We first provide a high level description of the BA protocol assuming parties have q queries per
round to each oracle H0(·), H1(·). We then show how to use a single oracle H(·) to achieve the
combined functionality of both of them while only using q queries per round.

At a high level, the protocol, Π
1/2
BA, works as follows:

Operation: In each round, parties run two protocols in parallel. The first protocol is protocol ΠPL

(Fig. 6), which maintains the transaction ledger and requires q queries to the oracle H0(·). The
second process is a “transaction production” protocol Πtx (Fig. 7), which continuously generates
transactions satisfying predicate (3). The protocol makes q queries to the H1(·) oracle.
Termination: When the ledger reaches 2k blocks, a party prunes the last k blocks, collects
all the unique POW transactions that are present in the ledger and returns the majority bit
from the bits occuring in these transactions (note that uniqueness takes also the nonce of each
transaction into account).
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As described, protocol Π
1/2
BA does not conform to the q-bounded setting since parties require

q queries to oracle H0(·) and q queries to oracle H1(·) to perform the computation of a single
round (the setting imposes a bound of q queries to a single oracle for all parties). Note that a
naïve simulation of H0(·), H1(·) by a single oracle H(·) in the (2q)-bounded setting (e.g., by setting
Hb(x) = H(b, x)) would violate the restriction imposed on each oracle individually, since nothing
would prevent the adversary, for example, from querying H0(·) 2q times. Next, we show how we can
combine the two protocols into a single protocol that utilizes at most q queries to a single random
oracle in a way that the adversary will remain q-bounded for each oracle. This transformation,
explained below, completes the description of Π

1/2
BA.

2-for-1 POWs. We now tackle the problem of how to turn a protocol operation that uses two
separate POW subprocedures involving two distinct and independent oracles H0(·), H1(·) into a
protocol that utilizes a single oracle H(·) for a total number of q queries per round. Our transfor-
mation is general and works for any pair of protocols that utilize H0(·), H1(·), provided that certain
conditions are met (which are satisfied by protocol Π

1/2
BA above). In more detail, we consider two

protocols Π0,Π1 that utilize a POW step as shown in Algorithm 6 in Figure 8.

Algorithm 6 POW-based protocol fragment of
Πb, b ∈ {0, 1} parameterized by q, D and hash
functions Hb(·), G(·), b ∈ {0, 1}. The value wb is
determined from the protocol’s context.
1: . . . . Value wb is determined
2: ctr ← 1
3: B ← ε
4: hb ← G(wb)
5: while (ctr ≤ q) do
6: if (H(ctr, hb) < D) then
7: Bb ← 〈wb, ctr〉
8: break
9: end if
10: ctr ← ctr + 1
11: end while
12: . . . . The POW B is exploited here

Algorithm 7 The double proof of work func-
tion, parameterized by q, D and hash func-
tions H(·), G(·) that substitutes steps 2-11 of two
POW-based protocols.

1: function double-pow(w0, w1)
2: B0, B1 ← ε
3: ctr ← 1
4: h← 〈G(w0), G(w1)〉
5: while (ctr ≤ q) do
6: u← H(ctr, h)
7: if (u < D) ∧ (B0 = ε) then
8: B0 ← 〈w0, ctr,G(w1)〉
9: end if

10: if ([u]R < D) ∧ (B1 = ε) then
11: B1 ← 〈w1, ctr,G(w0)〉
12: end if
13: ctr ← ctr + 1
14: end while
15: return 〈B0, B1〉
16: end function

Figure 8: The 2-for-1 POW transformation.

In order to achieve composition of the two protocols Π0,Π1 in the q-bounded setting with access
to a single oracle H(·), we will substitute steps 2-11 in both protocols with a call to a new function,
double-pow, defined below. First, observe that in Πb, b ∈ {0, 1}, the POW steps 2-11 operate with
input wb and produce output in Bb if the POW succeeds. The probability of obtaining a solution
is D · 2−κ.

The modification consists in changing the structure of the POWs from pairs of the form (w, ctr)
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to triples of the form (w, ctr, label), where label is a κ-bit string that is neutral from the point of
view of the proof. This will further require the modification of the verification step for POWs in
both protocols Π0,Π1 in the following manner.

Any verification step in Π0 of a POW 〈w0, ctr〉 which is of the form H(ctr,G(w0)) < D, will
now operate with a POW of the form 〈w0, ctr, label〉 and will verify the relation

H(ctr, 〈G(w0), label〉) < D.

Any verification step in Π1 of a POW 〈w1, ctr〉 which is of the form H(ctr,G(w1)) < D, will
now operate with a POW of the form 〈w1, ctr, label〉 and will verify the relation

[H(ctr, 〈label, G(w1)〉)]R < D,

where [a]R denotes the reverse of the bitstring a.

This parallel composition strategy in the form of function double-pow is shown in Algorithm 7.
Either or both the solutions it returns, B0, B1, may be empty if no solution is found.

Protocol Π
1/2
BA will employ double-pow, which will substitute the individual POW operation of

the two underlying protocols Π0,Π1 as defined in lines 2-11 of Algorithm 6. The correctness of the
above composition strategy follows from the following simple observation.

Lemma 19. Consider a uniform random variable U over the integers in [0, 2κ) and an integer D
such that D = 2t for some positive integer t < κ/2. Then, the events (U < D) and ([U ]R < D) are
independent and they both occur with probability D · 2−κ.

Proof. It is easy to see that each event happens with probability D · 2−κ. The conjunction of the
two events involves the choice of an integer U which satisfies U < D and [U ]R < D. Observe that
because D = 2t, it follows that the conditioning on U < D leaves the t least significant bits of U
uniformly random while fixing the remaining κ − t bits. It follows that the t most significant bits
of [U ]R are uniformly random in the conditional space U < D. The event [U ]R < D has probability
(D/2κ−t)/D = D2−κ and thus the two events are independent.

Theorem 20. Assume f < 1 and γ ≥ (1 + δ)λβ, for some real δ ∈ (0, 1) and λ ≥ 1 such that
λ2 − fλ− 1 ≥ 0. Protocol Π

1/2
BA solves BA in O(k) rounds with probability at least 1− e−Ω(δ3k).

Proof. First observe that due to Lemma 19, the success probability for all parties to solve a proof
of work of either kind in each round is q ·D2−κ and the events are independent with each other.

Regarding Agreement, observe that it follows directly from Theorem 10 (common prefix) that
all parties will return the majority of the same set with probability at least 1− e−Ω(δ3k).

To show Validity, let C be the chain of an honest party upon termination of the protocol. Let
r denote the greatest round on which a block of Cdk was computed by an honest party. We argue
that the rest of the blocks in Cdk, that must have been inserted by the adversary, were computed
by round (1 + δ

2)r. Assume the contrary and let r′ > (1 + δ
2)r denote the least round on which

an honest player adopted the chain C (after round (1 + δ
2)r). Let X denote the successful rounds

from round r to round r′ and Z the number of POWs the adversary obtained in these rounds.
Lemma 6 implies that the chain of every honest player advanced in length by X blocks at least. By
the definition of r′, the adversary inserted all the blocks of C computed in these s = r′ − r rounds.
It follows that Z ≥ X. By Lemma 7 this occurs with probability at most e−Ω(δ2s). To finish the
proof, recall that each block contains the aggregation of all broadcast transactions up to the round
it was computed. Thus, Cdk contains POWs computed by honest parties during r rounds and, with
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high probability, POWs computed by the adversary during at most (1 + δ
2)r rounds. By Lemma 7,

the honest parties have computed the majority of the blocks with probability at least 1− e−Ω(δ2s)

and Validity is satisfied. Since s > δr/2, we need to argue that r = Ω(k). To see this, note that in
(1 + δ

2)r rounds the parties created a chain of length len(Cdk) = k. An application of the Chernoff
bound shows that r = Ω(k) with probability at least 1−e−Ω(δk). Finally note that it is easy to infer
from Lemma 6 that the length of chain of all honest parties will reach 2k blocks in O(k) rounds
with probability 1− e−Ω(δk).

Remark 8. Regarding strong validity in the multivalued BA setting, i.e., where the input domain is
V and has a constant cardinality strictly larger than 2 we can adapt the above protocol to return the
plurality from the values stored in the transactions that are found in the ledger. In order to ensure
strong validity by this modification we restrict the hashing power of the adversary to (1 − δ)/|V |
since this will ensure that the adversary’s number of transactions cannot overturn the plurality
value as defined by the honest parties’ inputs (even if those are evenly distributed amongst them).

7 Summary and Directions for Future Work

In this paper we presented a formal treatment of the Bitcoin backbone, the protocol used at the core
of Bitcoin’s transaction ledger. We expressed and proved two properties of the backbone protocol
— “common prefix” and “chain quality” — and showed how they can be used as foundations for
designing Byzantine agreement and robust public transaction ledger protocols. Our results show
that an honest majority among the (equally equipped) participants suffices, assuming the network
synchronizes much faster than the proof of work rate (f → 0 in our notation) and the proper inputs
(e.g., transactions) are available to the honest majority25, while the bound on the adversary for
honest parties to reach agreement degenerates as f gets larger.

While these are encouraging results, we have demonstrated deviations that are of concern for
the proper operation of Bitcoin. Importantly, we show that as the network ceases to synchronize
fast enough compared to the proof-of-work rate (i.e., the worst-case time that takes honest players
to “hear” each other becomes substantial compared to the time it takes to solve a proof of work),
the honest majority property ceases to hold and the bound offered by our analysis that is required
to obtain a robust transaction ledger approaches 0 as f approaches 1. Note that the effects of bad
synchronization is in the maintenance of the common prefix property, which is the critical property
for showing agreement.

A second important concern is regarding the chain quality property, where our results show that
if an adversary controls a hashing power corresponding to β then the ratio of the blocks it can
contribute to the blockchain is bounded but can be strictly bigger than β. When β gets close to
1/2, our bounds show that the honest players’ contributions approach 0 in our security model.

The above caveats in the two basic properties of the backbone have repercussions on the Per-
sistence and Liveness properties of the Bitcoin ledger. Firstly, they illustrate that fast information
propagation amongst honest players is essential for transaction persistence. Secondly, they show
that transaction liveness becomes more fragile as the adversarial power gets close to 1/2. Note
that we achieve Liveness for any adversarial bound less than 1/2 but we do not assume any upper
bound on the number of transactions that may be inserted in a block26; it is obvious that the fewer

25Our formalization is a way to formally express what perhaps was Nakamoto’s intuition when he wrote about
Bitcoin that “it takes advantage of the nature of information being easy to spread but hard to stifle” [Nak09].

26In the current Bitcoin implementation there is an upper bound of 1MB for blocks, hence the number transactions
per block is limited.
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blocks the honest miners get into the blockchain the harder may be for a transaction to get through.
Furthermore, the fact that chain quality demonstrably fails to preserve a one-to-one correspondence
between a party’s hashing power and the ratio of its contributions to the ledger point to the fact
that Bitcoin’s rewarding mechanism is not incentive compatible (cf. [ES14]). Assuming the hashing
power of the honest parties γ exceeds the adversary’s hashing power β by a factor λ, we show
that the adversary’s contributions to the ledger are bounded by 1/λ — a result we show to be
tight in our rushing adversary model. In this way our results flesh out the incentive compatibility
problems of the Bitcoin backbone, but (on a more positive note) they also point to the fact that
honest hashing-power majority is sufficient to maintain the public ledger (under favorable network
conditions), and hence suggest that the Bitcoin protocol can work as long as the majority of the
miners want it to work (without taking into account the rationality of their decision).

The above observations apply to the setting where the number of participants is fixed. In the
dynamic setting (where the number of parties running the protocol may change from round to
round), given the flat model that we consider, the difficulty D of the blockchain may be calibrated
according to the number of players n that are active in the system. If D is set by an omniscient
trusted party then the analysis carries in a straightforward way but otherwise, if D is somehow
calculated by the parties themselves, the adversary can try to exploit its calculation. Note that in
this case the maxvalid function would need to take the difficulty’s variability into account and thus
choose the “most difficult” chain (as opposed to the longest). Comparing chains based on difficulty
is simply done by computing the length of a chain by counting blocks proportionally to how difficult
they are (for example, a block whose difficulty is two times larger than a given difficulty value would
contribute twice as much in “length”).

Interesting open questions include the security analysis of the Bitcoin backbone protocol in a
rational setting as opposed to honest/malicious, in the dynamic setting where the parties themselves
attempt to recalibrate the difficulty based on some metric (e.g., the time that has passed during
the generation of a certain number of blocks), and in a concurrent/universal composition setting
as opposed to standalone. Furthermore, the substitution of the random oracle assumption with
a suitable computational assumption, as well as the development of backbone modifications that
improve its characteristics in terms of common prefix and chain quality. In terms of the ledger
application, transaction processing times (i.e., reducing the wait time parameter u in the Liveness
property) is also an interesting question with implications to practice (since real world payment
systems benefit greatly from fast transaction confirmation and verification). In all these cases, our
work offers a formal foundation that allows analyzing the security properties of “tweaks” on the
backbone protocol (such as the randomization rule of [ES14] or the “GHOST” rule in [SZ13] used
in Ethereum27) towards meeting the above goals.

We remark that follow-up work to the present paper has examined additional backbone protocol
properties, protocols and model extensions. For instance, the chain growth property, introduced
in [KP15], enables one to abstract the blockchain feature of being able to grow unhindered by the
adversary. While this is a quite simple property to prove for the Bitcoin backbone (and thus it
was not given a special treatment in the present work), it becomes far more complex in alternative
blockchain protocols such as those using the GHOST rule [SZ13]; see [KP16] for an analysis of such
protocols. In [PSS16], Pass et al. put forth a property called self-consistence, which refers to the
inability of the adversary to make honest parties disagree with themselves as the protocol advances.
Chain growth and self-consistence are useful if one wants to do a black-box reduction of Persistence
and Liveness of the ledger to the underlying properties of the blockchain. [PSS16] also studies the
robustness of transaction ledger in the partially synchronous setting [DLS88], where messages may

27https://www.ethereum.org/
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not be delivered at the end of a round, but there is still a certain bound within which all messages
are eventually delivered.

Another set of interesting directions include the development of other applications that may be
built on top of the backbone protocol such as secure multiparty computation with properties such
as fairness and guaranteed output delivery (current works in this direction, e.g., [ADMM14, BK14a,
BK14b], assume an idealized version of the Bitcoin system).
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A Useful Inequalities

We will require the following inequalities.

Fact 1 (Bernoulli’s inequality). For q ≥ 1 and 0 ≤ p ≤ 1, (1− p)q ≥ 1− pq.

Fact 2. For any real α > 0, 1− α < e−α < 1− α+ α2

2 .
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Theorem 21 (Chernoff bounds). Suppose {Xi : i ∈ [n]} are mutually independent Boolean random
variables, with Pr[Xi = 1] = p, for all i ∈ [n]. Let X =

∑n
i=1Xi and µ = pn. Then, for any

δ ∈ (0, 1],
Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3.
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