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Abstract

This paper investigates pairs of AES-128 cipher keys and plaintexts which result in
being “quiet” in the final round, i.e., whose 128-bit State holds the same bit pattern
before and after Round 10. We show that the number of such quiet plaintexts (resulting
in Hamming distance 0) for any cipher key is at most 5,914,624, and that there exist
exactly 729 cipher keys having such a maximum number. The same holds if “quiet” is
replaced by “noisy” (which means to have Hamming distance 128). Because such quiet
and noisy plaintexts make extreme actions in the final round of the AES encryption,
these AES-128 cipher keys are quite useful for AES hardware designers to efficiently
evaluate the vulnerabilities of their products, for instance, the performance of their
side-channel attack countermeasures.

1 Introduction

Consider the execution of the AES (Advanced Encryption Standard) encryption, for in-
stance, the Cipher specified in AES-128 [13]. Then, a cipher key and a plaintext determine
its entire action, of course, i.e., the 128-bit State deterministically changes in rounds by
transformations (SubBytes, ShiftRows, MixColumns, and AddroundKey) and the key expan-
sion according to the algorithm. For example, if we fix an AES-128 cipher key as

Cipher Key = 07 c2 f0 bb c0 c3 df 42 d4 85 0c 5f 39 9a 0f c6, (1)

then inputting a 128-bit plaintext, say

Input = 4b 32 f8 2e c4 48 7e ed 21 66 32 8b dd 2f 8b 67, (2)

to the State changes it as follows.

before Round 1 4c f0 08 95 04 8b a1 af f5 e3 3e d4 e4 b5 84 a1
after Round 1 2b 18 79 39 c7 6c b8 fc 50 8c 4f 92 b4 1c c1 e7
after Round 2 e0 a0 11 9a d6 11 fb f7 32 76 7b 8e 70 28 b9 8b
after Round 3 65 32 08 3a eb d3 40 41 67 de 49 6c a6 fd ed 19
after Round 4 38 73 ce 47 66 d0 c0 48 94 e2 d3 b9 97 4a 70 85
after Round 5 63 9b 16 45 75 76 f8 93 67 60 f9 9f 15 4c f1 79
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after Round 6 8a 37 df 13 d4 37 58 96 3b 64 55 de a6 8d d2 f7
after Round 7 f4 e3 22 d0 e5 35 9e b7 84 95 58 21 8a a8 4d a6
after Round 8 40 b4 6f e9 f6 27 23 bd d9 c7 b6 f9 39 bc 93 79
after Round 9 17 0a 05 0a 17 b4 05 e0 17 66 63 66 17 e0 63 b4
after Round 10 17 0a 05 0a 17 b4 05 e0 17 66 63 66 17 e0 63 b4

Here, the last two 128-bit sequences are worthy of notice because they are the same; in
other words, their Hamming distance is 0. We say that such a plaintext is quiet (in Round
10) for that cipher key.

Then, are there any other quiet plaintexts for the above cipher key? The answer is
YES, and in fact, it has 5,914,624 quiet plaintexts. So, what about other cipher keys?—does
every cipher key have a quiet plaintext? The answer is NO; 97.37% of 2128 cipher keys
have no quiet plaintext. Thus, in this paper, we investigate the relationship between cipher
keys and their quiet (and “noisy”) plaintexts in detail.

1.1 Our Results for Quiet and Noisy Plaintexts

As mentioned, the above cipher key has 5,914,624 quiet plaintexts, and in fact, this is the
maximum number of quiet plaintexts that any cipher key can have. More specifically, there
are only 729 cipher keys that have this maximum number of quiet plaintexts. We present
further details in Sections 2 to 6.

Similarly, we can easily deal with noisy plaintexts, that mean to have Hamming distance
128. That is, there are also exactly 729 cipher keys that have the maximum number
(5,914,624) of noisy plaintexts. In addition, we investigate cipher keys that have both
quiet and noisy plaintexts (as many as possible) in Section 7.

1.2 Motivation

Undoubtedly, the AES plays an important role in an information-oriented society, and enor-
mous amounts of research and development such as implementation and cryptanalysis have
been devoted to it (e.g., [1, 3, 4, 5, 11]). One of these continuously growing research areas
is the field of side-channel attacks and countermeasures, where breaking and/or protecting
cryptographic devices implementing AES is studied (refer to [10] for a comprehensive sur-
vey). The side-channel attack often utilizes the difference of power consumption depending
on cipher keys and plaintexts (e.g., [2, 8]).

Since quiet and noisy plaintexts make extreme actions in the final round of AES en-
cryption, the cipher keys reported in this paper can be used by AES hardware designers
to evaluate their side-channel attack countermeasures. In fact, choosing plaintexts suitable
for vulnerability evaluation has been considered in some recent research (e.g., [6, 7]). In
this paper, we also discuss the application of quiet and noisy plaintexts to side-channel
vulnerability evaluation in Section 8.
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2 Road Map for Determining Quiet Plaintexts

As mentioned before, this paper focuses on the final round of the AES-128 encryption, i.e.,
it addresses change of the 128-bit State before and after the 10th round. Note that the 10th
round applies SubBytes, ShiftRows, and AddroundKey in this order, and that, contrary to
other rounds, MixColumns is not applied.

We first review Round 10 and describe the necessary notation in Section 2.1. We then
outline our approach to determine quiet plaintexts in Section 2.2.

2.1 Notation

We denote the State just before Round 10 by an array

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

,

that is, si,j is an intermediate (one-byte) value immediately after Round 9 for each 0 ≤
i, j ≤ 3. For a byte s ∈ {0, 1}8, we denote by Sb(s) the output of the S-box (used in
SubBytes) inputting s. Furthermore, we denote the round key used in Round 10 by

w0,0 w0,1 w0,2 w0,3

w1,0 w1,1 w1,2 w1,3

w2,0 w2,1 w2,2 w2,3

w3,0 w3,1 w3,2 w3,3

.

According to the notation above, after applying SubBytes, ShiftRows, and AddroundKey,
i.e., after Round 10 ends, we have the State

Sb(s0,0) ⊕ w0,0 Sb(s0,1) ⊕ w0,1 Sb(s0,2) ⊕ w0,2 Sb(s0,3) ⊕ w0,3

Sb(s1,1) ⊕ w1,0 Sb(s1,2) ⊕ w1,1 Sb(s1,3) ⊕ w1,2 Sb(s1,0) ⊕ w1,3

Sb(s2,2) ⊕ w2,0 Sb(s2,3) ⊕ w2,1 Sb(s2,0) ⊕ w2,2 Sb(s2,1) ⊕ w2,3

Sb(s3,3) ⊕ w3,0 Sb(s3,0) ⊕ w3,1 Sb(s3,1) ⊕ w3,2 Sb(s3,2) ⊕ w3,3

,

which is the resulting ciphertext (because Round 10 is the final one), denoted also by

c0,0 c0,1 c0,2 c0,3

c1,0 c1,1 c1,2 c1,3

c2,0 c2,1 c2,2 c2,3

c3,0 c3,1 c3,2 c3,3

.

Throughout this paper, as above, we use si,j, wi,j, and ci,j for 0 ≤ i, j ≤ 3 to represent
an intermediate value, a part of the round key, and a part of the ciphertext, respectively.
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2.2 Outline of Our Approach

Our approach to determine quiet plaintexts is simple and straightforward: we search for a
pair (si,j, wi,j) such that si,j = ci,j.

Because of the specification of ShiftRows, tactics slightly differ for each row in the State.
For example, computing s ⊕ Sb(s) for every byte s ∈ {0, 1}8 is sufficient to enumerate all
possible such pairs (s0,j, w0,j) for 0 ≤ j ≤ 3, as shown in Section 3 in detail. On the other
hand, with regard to the second and fourth rows, we compute

(s0 ⊕ Sb(s1), s1 ⊕ Sb(s2), s2 ⊕ Sb(s3), s3 ⊕ Sb(s0))

for every quadruple (s0, s1, s2, s3) ∈ ({0, 1}8)4, as shown in Section 4. Thus, the former
needs to search 28 elements, and the latter needs to search 232 elements, both of which are
feasible (within our computational capabilities). We also consider the third row in Section 5.

Merging these observations, we can obtain the results on quiet plaintexts, as presented
in Section 6.

3 Quiet 1-Byte Intermediate Values

In this section, we explore the relationship between 1-byte partial round keys and their quiet
1-byte intermediate values. In fact, Nakasone et al. have already clarified such a relationship
when they calculated the frequency of “clockwise collisions” [12]. Below, we rephrase that
to fit our context, adding a little something not seen before (Table 2).

We start with an example. From the specification for the S-box of the AES, we calculate

17⊕ Sb(17) = 47⊕ Sb(47) = 56⊕ Sb(56) = c2⊕ Sb(c2) = e7.

Therefore, if we set a 1-byte partial round key (applied to the first row of the State) to
w0,j = e7 for every 0 ≤ j ≤ 3, then each intermediate value s0,j ∈ {17, 47, 56, c2} satisfies

s0,j ⊕ c0,j = s0,j ⊕ (Sb(s0,j) ⊕ w0,j) = (s0,j ⊕ Sb(s0,j)) ⊕ e7 = 00,

meaning that the Hamming distance between s0,j and c0,j is 0, namely, all the intermediate
values 17, 47, 56, and c2 are quiet for partial round key e7. Consequently, the 4-byte
partial round key (often called a word) e7e7e7e7 has 44 quiet 4-byte intermediate values

[17|47|56|c2].[17|47|56|c2].[17|47|56|c2].[17|47|56|c2]

where [ · | · | · | · ] indicates that we can choose any one of the four strings (and a period
indicates concatenation throughout this paper).

As listed in Table 2, in addition to e7, there are two 1-byte partial round keys b9 and
8d that have four quiet intermediate values. Including e7, these three 1-byte partial round
keys have the maximum number of quiet intermediate values, as can be seen in Table 3.

Furthermore, the last row in Table 3 implies that there exist 1-byte partial round keys
that have no 1-byte quiet intermediate value; precisely, 93 partial round keys have no quiet
intermediate value (and the remaining 163 of those have at least one). Hence, regarding
(4-byte) words, 1 − (163/256)4 = 83.56% of all 4-byte partial round keys have no quiet
intermediate value.
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s s ⊕ Sb(s)
17, 47, 56, c2 e7
1d, c1, d8, f8 b9
7e, 81, da, e4 8d

Table 2: Four 1-byte intermediate values s that have the same value of s ⊕ Sb(s).

Rank # of quiet values # of keys
1 4 3
2 3 15
3 2 54
4 1 91
5 0 93

Table 3: The ranking of the numbers of 1-byte quiet intermediate values. The same statistics
appeared in [12].

4 Quiet 4-Byte Intermediate Values

While the previous section tackled the first row in the State, this section deals with the
second and fourth rows, addressing 4-byte partial round keys along with their quiet 4-byte
intermediate values, as follows.

First, consider the second row in the State, namely s1,j, w1,j, and c1,j for 0 ≤ j ≤ 3.
For example, if we set a 4-byte intermediate value and a 4-byte partial round key to

s1,0.s1,1.s1,2.s1,3 = 1c88859a

and
w1,0.w1,1.w1,2.w1,3 = d81f3d06,

respectively, then we have

c1,0 = Sb(s1,1) ⊕ w1,0 = Sb(88) ⊕ d8 = c4⊕ d8 = 1c

c1,1 = Sb(s1,2) ⊕ w1,1 = Sb(85) ⊕ 1f = 97⊕ 1f = 88

c1,2 = Sb(s1,3) ⊕ w1,2 = Sb(9a) ⊕ 3d = b8⊕ 3d = 85

c1,3 = Sb(s1,0) ⊕ w1,3 = Sb(1c) ⊕ 06 = 9c⊕ 06 = 9a,

and hence the intermediate value is quiet (in the second row) for the partial round key
(including 1c88859a, there are 12 quiet intermediate values).

Table 4 shows the ranking for the 4-byte quiet intermediate values. Notice that there is
only one partial round key that has the maximum number, namely 19, of quiet intermediate
values; that key is

w1,0.w1,1.w1,2.w1,3 = 87878787,
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Rank # of quiet values # of keys
1 19 1
2 13 3
3 12 7
4 11 54
5 10 555
6 9 4,484
7 8 39,570
8 7 315,317
9 6 2,192,877
10 5 13,165,436
11 4 65,860,301
12 3 263,357,982
13 2 789,948,680
14 1 1,579,999,923
15 0 1,580,082,106

Table 4: The ranking of the numbers of 4-byte quiet intermediate values.

and it has the following 19 quiet intermediate values:

s1,0.s1,1.s1,2.s1,3 =
0ab466e0, b466e00a, 66e00ab4, e00ab466,

0dcfd450, cfd4500d, d4500dcf, 500dcfd4,

2f6fc892, 6fc8922f, c8922f6f, 922f6fc8,

46dd46dd, dd46dd46,

6dbb6dbb, bb6dbb6d,

b9d1b9d1, d1b9d1b9,

cccccccc.

(3)

Note that since the key consists of four bytes of the same value (namely, 87), if an interme-
diate value

s0.s1.s2.s3

is quiet, then s1.s2.s3.s0 (shifted cyclically) is also quiet.
Somewhat surprisingly, the second largest number of quiet intermediate values is 13 as

shown in Table 4. That is, there is no partial round key having 18, 17, 16, 15, or 14 quiet
intermediate values. Table 4 also shows that 36.79% of all 4-byte partial round keys have
no quiet intermediate value.

With respect to the fourth row in the State, we can utilize the above results directly, that
is, it suffices to apply some shift. In contrast, concerning the third row, we need another
computation, as detailed in the next section.
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5 Quiet 2-Byte Intermediate Values

Similarly to the previous two sections, we calculate the ranking for the 2-byte case as shown
in Table 5.

Rank # of quiet values # of keys
1 8 3
2 7 12
3 6 46
4 5 190
5 4 966
6 3 3,984
7 2 12,148
8 1 24,090
9 0 24,097

Table 5: The ranking of the numbers of 2-byte quiet intermediate values.

Thus, the maximum number of quiet intermediate values is eight, and there are three
partial round keys that have such values, as listed in Table 6. Note that the keys fe08 and
08fe along with their intermediate values are “symmetric,” as is the key a6a6 itself.

Intermediate values Round key
0563, 3410, 3a88, b365, d50b, d93d, e0e9, f281 fe08
00c5, 1756, 2e97, 5f69, c500, 5617, 972e, 695f a6a6
6305, 1034, 883a, 65b3, 0bd5, 3dd9, e9e0, 81f2 08fe

Table 6: All 2-byte round keys that have eight quiet intermediate values.

6 Cipher Keys with Quiet Plaintexts

In this section, based on the observations thus far, we discuss 128-bit cipher keys with quiet
plaintexts.

We here explore all cipher keys having the maximum number of quiet plaintexts. To
this end, we summarize the corresponding round keys used in Round 10. As shown in
Section 3, each w0,j in the first row can be one of three candidates: e7, b9, or 8d. As
shown in Section 4, both w1,0.w1,1.w1,2.w1,3 in the second row and w3,0.w3,1.w3,2.w3,3 in the
fourth row can be only 87878787. As seen in Section 5, both w2,0.w2,2 and w2,1.w2,3 in the
third row can be one of three candidates: fe08, a6a6, or 08fe. In other words, we have
determined the desired round keys as

w0,0 w0,1 w0,2 w0,3

87 87 87 87
w2,0 w2,1 w2,2 w2,3

87 87 87 87
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such that

w0,0, w0,1, w0,2, w0,3 ∈ {e7, b9, 8d}
w2,0.w2,2, w2,1.w2,3 ∈ {fe08, a6a6, 08fe}.

Therefore, there are exactly 34×32 = 729 candidate round keys, and hence the same number
of corresponding AES-128 cipher keys exist. Note that, given a round key in Round 10, one
can easily calculate the corresponding AES-128 cipher key following the specification of the
AES-128 round key schedule algorithm.

Let us fix a cipher key that has the maximum number of quiet plaintexts. The first row
then has 44 candidates for intermediate values (as shown in Table 2), the second and fourth
rows have 19 candidates each (as shown in Eq. (3)), and the third rows has 82 candidates (as
shown in Table 6). Therefore, there are exactly 44 × 192 × 82 = 5, 914, 624 quiet plaintexts.
Note that one can easily generate such quiet plaintexts using the intermediate values in
Table 2, Eq. (3), and Table 6.

Furthermore, the rate of cipher keys that have no quiet plaintext can be computed as
follows:

1 −
(

28 − 93
28

)4

×
(

232 − 1580082106
232

)2

×
(

216 − 24097
216

)2

= 97.37%.

7 Considering Noisy Plaintexts

Until now, we have considered only quiet plaintexts, but we can easily deal with noisy
plaintexts (which mean to have Hamming distance 128) as well; in Section 7.1, we enumerate
all of the cipher keys that have the maximum number of noisy plaintexts in a similar manner.
We also consider cipher keys that have both quiet and noisy plaintexts in Section 7.2.

7.1 The 729 Cipher Keys with Noisy Plaintexts

We are able to discuss the ’noisy’ case in the same way as the ‘quiet’ case simply by
negating all bits in the round key. That is, the 729 cipher keys having the maximum
number 5, 914, 624 of noisy plaintexts are characterized by the round keys:

w0,0 w0,1 w0,2 w0,3

78 78 78 78
w2,0 w2,1 w2,2 w2,3

78 78 78 78

where

w0,0, w0,1, w0,2, w0,3 ∈ {18, 46, 72}
w2,0.w2,2, w2,1.w2,3 ∈ {01f7, 5959, f701}.

One can also easily produce such noisy plaintexts using the intermediate values in Table 2,
Eq. (3), and Table 6.
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7.2 Cipher Keys Having Both Quiet and Noisy Plaintexts

Given a cipher key K ∈ {0, 1}128, we denote the number of its quiet plaintexts by quiet(K),
and the number of its noisy ones by noisy(K). Here, we reveal the cipher keys K such that
min{quiet(K), noisy(K)} is maximized. Actually, our calculation has shown that one can
enumerate all such cipher keys (and their quiet/noisy plaintexts) using the following table.

72/8d
quiet/noisy c6, 49

noisy/quiet e4, da, 81, 7e

5959/a6a6
quiet/noisy f61b, a67d, a263, 7da6, 63a2, 4343, 1bf6

noisy/quiet c500, 972e, 695f, 5f69, 5617, 2e97, 1756, 00c5

659a659a/9a659a65
quiet/noisy 7be98fbb, 7e449c69, 8fbb7be9, 9c697e44, 9f14e641, ce0ee711, e6419f14, e711ce0e

noisy/quiet 0ee711ce, 11ce0ee7, 14e6419f, 419f14e6, 449c697e, 697e449c, bb7be98f, e98fbb7b

ab54ab54/54ab54ab
quiet/noisy 4e2a8a7b, 52698b54, 717ac3f7, 85c385c3, 8a7b4e2a, 8b545269, c3f7717a, dfcadfca

noisy/quiet 2a8a7b4e, 5452698b, 698b5452, 7ac3f771, 7b4e2a8a, c385c385, cadfcadf, f7717ac3

afd8afd8/50275027
quiet/noisy 040e4a2a, 06b706b7, 115a115a, 4a2a040e, 4d3b4d3b, 56695669, 5f175f17, 772d772d

noisy/quiet 1eb6ac55, 2b03a6d6, 47874787, a6d62b03, ac551eb6, b0a0eac0, d341d341, eac0b0a0

d8afd8af/27502750
quiet/noisy 0e4a2a04, 175f175f, 2a040e4a, 2d772d77, 3b4d3b4d, 5a115a11, 69566956, b706b706

noisy/quiet 03a6d62b, 41d341d3, 551eb6ac, 87478747, a0eac0b0, b6ac551e, c0b0a0ea, d62b03a6

This table indicates that partial round key 72 has two quiet intermediate values (c6,
49) and four noisy ones (e4, da, 81, 7e), key 8d has two noisy ones (c6, 49) and four quiet
ones (e4, da, 81, 7e), key 5959 has seven quiet ones and eight noisy ones, and so on. For
example, if we set a round key to be

72 72 8d 8d
65 9a 65 9a
59 a6 59 a6
65 9a 65 9a

,

then the corresponding cipher key,

Cipher Key = bb 05 16 0c 54 5a 7a cc a0 8e be 2d 80 8d 49 55, (4)

has (22 × 42) × 8 × (7 × 8) × 8 = 229, 376 quiet plaintexts and the same number of noisy
ones. Thus, there are exactly

(4
2

) × 8× 2 × 8 = 768 cipher keys K that have the maximum
value of min{quiet(K), noisy(K)} = 229, 376.

We would admit that there is no big technical challenge to computing everything men-
tioned in this paper thus far (and hence anyone could have easily obtained the same results
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given the motivation and computing resources). However, we report these results because
quiet/noisy plaintexts can play an important role in designing AES-implemented hardware,
as discussed in the next section.

8 Applications to Side-Channel Vulnerability Evaluation

In this section, we propose applications of quiet/noisy plaintexts to efficient side-channel
vulnerability evaluation; they will be useful when designing secure AES-implemented hard-
ware.

We first explain briefly how quiet and noisy plaintexts can be utilized for efficient side-
channel vulnerability evaluation in Section 8.1. We then demonstrate this efficient evalua-
tion method: we present the theoretical background in Section 8.2 and show the results of
an experiment in Section 8.3.

8.1 Basic Idea

As shown above, the cipher keys found in the previous sections have numerous quiet and
noisy plaintexts. Any one of these cipher keys along with any of its quiet and noisy plain-
texts results in a Hamming distance of 0 and 128, respectively, between the State before
and after the final round during the AES-128 encryption. Furthermore, it is well-known
that fluctuation of the power consumption in the AES-implemented hardware can leak in-
formation about the cipher key stored inside the hardware, and that the amount of power
consumption depends on the Hamming distance (e.g., [10]).

Thus, if a designer with a prototype stores a cipher key chosen from the found keys
and inputs both some quiet plaintexts and some noisy ones, then he/she can generate a
large power consumption fluctuation. Using this idea, we can efficiently evaluate how much
and/or how far the cipher-key information leaks around an AES device by measuring the
voltage drop or probing the electromagnetic field. We could even determine a 3D leakage
map around the prototype hardware. The key point is that we need only a small number of
plaintexts for the evaluation (and can therefore dramatically reduce the measurement time
and computation cost).

8.2 Theoretical Background

To evaluate side-channel vulnerability, we present an efficient method for measuring “Signal-
to-Noise Ratios (SNR)” (in the context of power analysis attack scenarios) [10], that indicate
how much information leakage occurs.

Assume that there is an AES-128-implemented device in which a cipher key is set.
We input a bunch of random plaintexts while measuring the power consumption. Then,
following the notation in [10], the power consumption P can be modeled as

P = Pexp + Pnoise + C

where Pexp is a random variable indicating the exploitable power consumption, Pnoise is a
random variable representing the noise, and C is the constant component. Furthermore,
the SNR is defined as

SNR =
Var(Pexp)
Var(Pnoise)

.
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We suppose that the device obeys the so-called Hamming-distance model, i.e., the ex-
ploitable power consumption can be written as Pexp = dH where d is a constant, and H is
a random variable representing the Hamming distance between the State before and after
the final round. Since the plaintexts are chosen randomly, one may assume that H follows
a binomial distribution B(128, 1/2). Therefore, we have

Var(Pexp) = Var(dH) = d2 · 128 · (1/2)(1 − 1/2) = 32d2.

Regarding the noise component, one may assume that Pnoise follows a normal distribution
N(μ, σ2) for some μ and σ2. Hence, we have

SNR =
32d2

σ2
.

Thus, in order to determine how much cipher key information leaks (at the measuring
position), it is sufficient to learn d and σ2.

To this end, we can utilize quiet and noisy plaintexts as follows. Note that, when the
plaintext is quiet, the power consumption will be Pnoise + C; when the plaintext is noisy,
it will be 128d + Pnoise + C. Now, as designers, we wish to learn d and σ2 of the device
efficiently. First, we choose one of the cipher keys given in Section 7.2 and prepare a number
of quiet and noisy plaintexts for the key. We then measure the power consumption while
inputting these quiet plaintexts; we calculate the average of the power consumption pquiet

and its empirical variance s2. Similarly, we obtain the average of the power consumption
pnoisy by inputting the noisy plaintexts. As can easily be noticed, the difference pnoisy−pquiet

corresponds to an estimation of 128d. Also, σ2 can be estimated just by s2. In this way, we
can easily and efficiently estimate d and σ2 and hence the SNR by the use of quiet/noisy
plaintexts.

8.3 Experiment

Based on the idea mentioned in the previous subsection, we conducted a fundamental ex-
periment using a standard side-channel attack evaluation board, the SASEBO-G [14], in
which the AES-128 encryption is implemented on its FPGA. We set an AES-128 cipher
key as given in Eq. (4). Executing encryption of the 10 quiet plaintexts and the 10 noisy
plaintexts given in Appendix A, we measured the electromagnetic field by a magnetic probe
at five positions on and near the FPGA (namely, 0.0, 0.5, 1.0, 2.0, and 3.0 cm away from
the FPGA). For every position and every plaintext, we obtained 100 waveforms. That is,
we have 1,000 waveforms of quiet plaintexts and 1,000 waveforms of noisy ones in total for
each position.

Figure 1 shows a waveform of a quiet plaintext and a waveform of a noisy one at the
position contacting the FPGA (0.0 cm away). As can be seen in the figure, there is a
significant difference between the two waveforms at 704 ns where the manipulation related
to Round 10 occurred. That is, we can confirm that quiet/noisy plaintexts made extreme
actions in the final round of the AES encryption.

We calculated the averages pquiet, pnoisy, and the empirical variance s2 to estimate the
SNR. Table 8 shows the results, where

ˆSNR =
32

(
(pnoisy − pquiet)/128

)2

s2
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Figure 1: A waveform of a quiet plaintext and a waveform of a noisy one.

is the estimated value.

Position pquiet (mV) pnoisy (mV) s2 (mV2) ˆSNR

0.0 cm 40.9 215.5 29.17 2.041
0.5 cm 17.8 36.2 6.71 0.098
1.0 cm 9.2 12.9 7.13 0.003
2.0 cm 5.0 5.7 6.16 0.000
3.0 cm 3.5 3.6 5.27 0.000

Table 8: The Estimated SNR at various distances from the FPGA.

Thus, even with a small number of waveforms, we can check for cipher-key information
leakage, allowing us to efficiently evaluate side-channel attack vulnerability.

9 Conclusion

In this paper, we investigated pairs of AES-128 cipher keys and plaintexts which result in
being quiet/noisy in the final round. We described some interesting cipher keys that have
quiet and/or noisy plaintexts. Since both the quiet and noisy plaintexts make extreme
actions in the final round of AES encryption, the AES-128 cipher keys described here are
quite useful for evaluating side-channel attack vulnerability, as we demonstrated.

Although we admit the weakness of the technical challenge of the proposed method, we
believe that it is quite useful for cryptographic hardware designers. The straightforwardness
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of our technique is in fact an advantage because our evaluation method is simple and hence
can be easily implemented by almost all designers with little cost and effort.

Note that quiet/noisy plaintexts would be useful for cryptographic hardware designers,
but not for attackers (at least not directly). Actually, some recent research has been adopt-
ing the idea that suitable plaintexts, say those with rather small (but non-zero) Hamming
distances in the final round, are chosen for efficient side-channel attack evaluation (e.g.,
[6, 7]). However, to the best of our knowledge, there has not been any study that uses quiet
plaintexts (i.e., those with exactly-zero-Hamming distance) yet. Therefore, we believe that
our results in this paper will enhance the efficiency of existing methods for side-channel
attack evaluation. It should be noted that there is a gap between the almost-zero-Hamming
distance and exactly-zero-Hamming distance cases because the action for the latter case
tends to be somewhat different from the others (cf., [9, 12]).
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A Quiet and Noisy Plaintexts used in our Experiment

Fix a cipher key:

Cipher Key = bb 05 16 0c 54 5a 7a cc a0 8e be 2d 80 8d 49 55.

The following table lists 10 of its quiet plaintexts.

09 c2 59 35 cb da 4f 6d 6a 66 0e 98 79 06 f3 2a
72 e4 59 81 f5 b9 3a 60 b4 5a 2e 02 6c 1b 93 fb
af 7c 99 f4 03 1e 5a 96 70 35 3e cf 3a 84 5c b6
97 76 a8 ac c9 d8 cb 1b 96 a8 50 91 0d 7d 5f 94
04 d5 29 6a 0c 42 90 85 2d 75 20 26 41 2a 9c 1a
83 2c 67 c7 4a ef f1 82 da 94 d9 a3 11 d5 bf 4a
24 c0 21 0a 0b b6 fe 53 7b 53 e2 1d 39 b6 6d 03
36 52 0a 47 31 42 0d 6e 62 e4 ea 89 69 c5 15 b2
a6 3b 89 ac 3f 1b 95 2d 14 a2 de 20 78 55 7f 23
10 b6 73 ef 7d c0 93 22 be 6c 99 c1 24 99 85 46

The following table lists 10 of its noisy plaintexts.
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46 3c f7 92 98 83 cd e1 a1 04 5a ce b8 bc cf 5e
c6 81 54 1d 15 08 31 e7 72 63 00 ab b8 4e 28 70
8e 47 44 28 81 88 ae 52 db 1f 85 49 7c bc 83 b7
26 22 37 e7 9b 3a 80 de 7a b9 a7 5d ce dc 3e 7c
e5 cd 87 37 2a 28 de af 07 06 de b2 d4 58 3e 07
1b 29 c0 2d 5e dc c7 e7 a2 de aa 6a 60 eb bc 0c
aa f9 db d3 c9 4a a0 1e 4e 56 1c e4 b7 74 ea 37
7c 7e b2 45 ef 7a 07 3b 26 0e ba b6 7f 3d fb d3
39 43 6d 00 92 9d 80 3a 2a 33 55 cc 27 f1 40 01
2d a7 56 e2 6f 9f e8 ca 10 f4 53 9c ec b7 91 4a
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