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Abstract

We propose a new way to obfuscate programs, using composite-order multilinear maps.
Our construction operates directly on straight-line programs (arithmetic circuits), rather than
converting them to matrix branching programs as in other known approaches. This yields
considerable efficiency improvements. For an NC1 circuit of size s and depth d, with n inputs,
we require only O(d2s2 + n2) multilinear map operations to evaluate the obfuscated circuit—as
compared with other known approaches, for which the number of operations is exponential in d.
We prove virtual black-box (VBB) security for our construction in a generic model of multilinear
maps of hidden composite order, extending previous models for the prime-order setting.

Our scheme works either with “noisy” multilinear maps, which can only evaluate expres-
sions of degree λc for pre-specified constant c; or with “clean” multilinear maps, which can
evaluate arbitrary expressions. The “noisy” variant can be instantiated at present with the
Coron-Lepoint-Tibouchi scheme, while the existence of “clean” maps is still unknown. With
known “noisy” maps, our new obfuscator applies only to NC1 circuits, requiring the additional
assumption of FHE in order to bootstrap to P/poly (as in other obfuscation constructions).

From “clean” multilinear maps, on the other hand (whose existence is still open), we present
the first approach that would achieve obfuscation for P/poly directly, without FHE. We also
introduce the concept of succinct obfuscation, in which the obfuscation overhead size depends
only on the length of the input and of the secret part of the circuit. Using our new techniques,
along with the assumption that factoring is hard on average, we show that “clean” multilinear
maps imply succinct obfuscation for P/poly. For the first time, the only remaining obstacle to
implementable obfuscation in practice is the noise growth in known, “noisy” multilinear maps.
Our results demonstrate that the question of “clean” multilinear maps is not a technicality, but
a central open problem.
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1 Introduction

Program obfuscation is the task of making code “unintelligible”, so that the obfuscated code reveals
nothing about the implementation beyond its functionality. Obfuscation has many practical appli-
cations, such as intellectual property protection and software watermarking, as well as applications
to basic cryptographic primitives [DH76, BGI+01].

The theoretical study of obfuscation was initiated by Barak, Goldreich, Impagliazzo, Rudich,
Sahai, Vadhan, and Yang [BGI+01]. In that work, the authors also showed that general-purpose
program obfuscation could not achieve the natural definition of virtual black-box secuity (VBB),
which led many to suspect that a useful general-purpose obfuscator was impossible. This view
changed with the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b], who
proposed a general-purpose obfuscator based on the powerful primitive of multilinear maps [BS03],
as constructed by Garg, Gentry, and Halevi [GGH13a], Coron, Lepoint, and Tibouchi [CLT13], and
Gentry, Gorbunov, and Halevi [GGH14].

For their general-purpose obfuscator, Garg et al. [GGH+13b] proved the weaker notion of indis-
tinguishability obfuscation (iO) [BGI+01] in a generic model of encoded matrices. Subsequently it
has been shown that in a generic model of multilinear maps, general-purpose obfuscation can even
achieve VBB security [BR14, BGK+14], and that iO can be based on a single, instance-independent
security assumption [GLSW14]. Sahai and Waters have also shown that even the weaker notion of
iO has many cryptographic applications, via the technique of “punctured programs” [SW14]. Since
then, obfuscation has become an extremely active area of study, and many other applications and
complexity-theoretic implications have been explored; see [AGIS14] for an overview.

Even with known constructions and applications, however, general-purpose obfuscation is cur-
rently not feasible to implement in practice. The work of Ananth, Gupta, Ishai and Sahai [AGIS14]
investigates the question of optimizing obfuscation, and obtains significant improvements for the
specific case of Boolean formulas, but much work remains to be done. One major source of inef-
ficiency is that in all known constructions, including that of Ananth et al. [AGIS14], obfuscation
requires converting the input circuit to a matrix branching program, which incurs a considerable
cost in performance.

1.1 Our Results

In this work, we propose a new way to construct obfuscation, which operates directly on straight-line
programs (arithmetic circuits, Section 2.3), without converting them to matrix branching programs.
The evaluation of an obfuscated circuit mirrors the structure of the original circuit.

Our construction is based on asymmetric composite-order multilinear maps [BS03, GGH13a,
CLT13, GGH14]. It can operate either with “noisy” multilinear maps (which we know how to
instantiate, via the CLT scheme), or with “clean” maps, whose existence is still open. In the case
of “noisy” multilinear maps, our construction (like others) is limited to NC1, and requires FHE to
bootstrap to P/poly. With “clean” multilinear maps, on the other hand, we show that we would
be able to obfuscate P/poly directly, without the prohibitively expensive bootstrapping step via
FHE. Indeed, if we knew how to construct “clean” multilinear maps, then our results in this work
would immediately yield obfuscation for P/poly, with parameters that could be feasible in practice.

In addition to qualitatively new results, our techniques yield considerable performance improve-
ments even for existing, “noisy” multilinear maps. For instance, for circuits of size s and depth d
with n inputs, we require only O(d2s2+n2) multilinear map elements and operations (Table 1). All
other known approaches require a number exponential in the circuit’s depth, since every sub-circuit
with fanout > 1 must be duplicated before converting the circuit to a matrix branching program.
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Perspective: towards implementable obfuscation. Currently, general-purpose obfuscation
is not feasible to implement in practice. There have been two main obstacles to its implementation.
The first is that, in known (“noisy”) multilinear maps such as the GGH and CLT schemes, the
noise—and hence the parameters—grow with the degree of the polynomial being computed over
encoded elements; this limits us to NC1 circuits, because the degree of a circuit may increase
exponentially with its depth. The second obstacle is that, prior to this work, obfuscation required
converting the input circuit to a matrix branching program, whose size in general is also exponential
in the depth of the original circuit.

This work removes the second obstacle. In our construction, the number of multilinear map
operations is polynomial in the circuit size; it is only the degree of multilinearity (and hence the noise
growth in “noisy” multilinear maps) that restricts our construction to NC1. If we could construct
“clean” multilinear maps, then our results would immediately yield obfuscation for P/poly, with
parameters that could be feasible in practice. In our view, our results indicate that constructing
“clean” multilinear maps is one of the most fundamental open problems in cryptography.

Succinctness and keyed circuits. Our new approach is particularly effective for obfuscating
keyed circuit families (C(·,y))y∈{0,1}m (Section 2.4), in which the circuit’s structure C is public,
and one only needs to hide a short secret key y ∈ {0, 1}m embedded in the circuit—as is common
in many cryptographic applications. For example, for a keyed circuit C : {0, 1}n×{0, 1}m → {0, 1}
of size s and depth d (with n inputs and key length m), our obfuscation consists of only O(m+n2)
ring elements in the multilinear map, and evaluation requires O(s + n2) ring operations, with
multilinearity degree O(2d + n2) (Section 4.3.1).

For keyed circuits, we also define succinct obfuscation (Section 2.10), in which the obfuscation
overhead size depends only on the input length n and the secret key length m, and is independent
of the circuit size. Using our new techniques, along with the assumption that factoring is hard on
average, we show that “clean” multilinear maps would imply succinct obfuscation for all of P/poly.

Of course, we can regard every circuit family as keyed, by viewing the original circuit as the
secret key input to the universal circuit. In this case, succinctness means that the obfuscation
overhead size depends only on the size of the part of the original circuit that the obfuscation needs
to hide (as well as on the input length). However, the keyed model is especially natural, and we
expect that in most applications it will find more use than general-purpose obfuscation.

New design spaces. When the obfuscator converts every circuit C to a matrix branching pro-
gram, as in previously known approaches, it usually does not help to optimize the design of C
itself. The depth of C determines the size of the resulting branching program,1 but apart from
that, every design strategy results in the same procedure to evaluate the obfuscated circuit O(C),
and the same performance—namely, a series of matrix multiplications of encoded elements in the
multilinear map.

By contrast, with our new techniques, the obfuscated program’s evaluation mirrors the structure
of the original arithmetic circuit. If these circuits are naturally keyed, as in most cryptographic
applications, then the performance changes considerably with the design strategy, and we expose
a rich new design space. The execution of any machine—say, a Turing machine or RAM—can be
converted to a circuit with overhead at most polylogarithmic,2 as long as the machine is already
oblivious (Section 2.2)—i.e., its control flow does not depend on its input data. This means that
any tools for designing efficient oblivious algorithms now apply to program obfuscation.

1In some cases, for Boolean formulas, the size of the branching program may depend on the formula’s size [AGIS14].
2For instance, in some models there is overhead involved in decomposing word operations into bits.

3



Degree of
multilinearity

Obfuscation size
(# ring elements)

Evaluation time
(# ring operations)

Via Barrington’s Thm.
[GGH+13b, BR14, BGK+14]

O(4dn+ n2) O(4dn+ n2) O(4dn+ n2)

[AGIS14] O(2dn+ n2) O(8dn+ n2) O(8dn+ n2)

[AGIS14] + [Gie01] O(2(1+ε)dn+ n2) O(2(1+ε)d42/εn+ n2) O(2(1+ε)d42/εn+ n2)

This work O(2dn+ n2) O(d2s2 + n2) O(d2s2 + n2)

Table 1: Performance for circuits of input length n, size s, and depth d. We always have
n, s < O(2d), since the gates have fanin two; and in most applications we have n, s � 2d.
For moderately “narrow” circuits with s < O(dn) and d > 2 lg n, for example, we have
O(d2s2 + n2) = O(d4n2) = o(2dn). We present the cost here in terms of ring elements and
ring operations. The concrete cost in bits and bit operations depends on the performance of
the multilinear map (Section 2.8); for “clean” maps (whose existence is still open), the cost is
just poly(λ), while for the CLT scheme [CLT13], the reader should multiply every obfuscation
size and evaluation time by O(deg2) · poly(λ), where deg is the corresponding multilinearity
degree from the first column.

For example, to specialize our new construction to Boolean formulas, we use an efficient oblivious
stack [HS66, PF79, MZ14] to evaluate the formulas in postfix order, and we rely on the Fast Fourier
Transform (FFT) to reduce the degree of the resulting computation (Section 4.3.3). We believe that
these applications are only the beginning, and we hope that this work will encourage further study
of obfuscating specific, keyed circuit families. This goal is closely related to the design of efficient
oblivious algorithms for specific problems, which is of independent interest in secure multi-party
computation and other areas of cryptography. More broadly, while the existence of general-purpose
obfuscation is an important theoretical result, we believe that its role in applications is actually
quite limited; it is analogous to running all of our programs on a universal Turing machine.

VBB security in the generic model. Since obfuscation is such a powerful primitive, histor-
ically it has been difficult to prove constructions secure based on simple, falsifiable assumptions.
In the first candidate construction [GGH+13b], Garg et al. prove indistinguishability obfusca-
tion (iO) based on a meta-assumption which roughly asserts that the scheme is secure, which
they validate in a generic model of generic (encoded) matrices. Brakerski and Rothblum [BR14]
and Barak et al. [BGK+14] develop these results further, showing how to extend the obfuscation
paradigm of [GGH+13b] to achieve the much stronger definition of virtual black-box (VBB) security
in a very natural generic model of multilinear maps, similar to the generic group model [Sho97].
In this work, we also prove VBB security, in a generic model similar to that of [BR14, BGK+14],
adapted to the setting of (hidden) composite order.

As observed by Brakerski and Rothblum [BR14], it is not clear how we should interpret a proof
of VBB in a generic model, since we know that VBB security in the standard model is impossible
for general circuit families [BGI+01]. However, as far as we know, it may be possible to achieve
VBB obfuscation for many specific classes of circuits, even if not for the pathological examples in
the negative results of [BGI+01]. We also do not know any (unconditional) negative results for
iO, and a proof of VBB in the generic model also implies iO in the generic model. Thus, it is
plausible that our construction achieves iO for all circuits (or some intermediate definition, such as
differing-inputs obfuscation [BGI+01, ABG+13, BCP14]), and a generic-model VBB proof serves
as evidence of this as well.
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More generally, a generic-model VBB proof shows that a scheme resists a wide class of “alge-
braic” attacks, and that any attack that breaks VBB security must exploit some property of the
concrete instantiation of multilinear maps.3 As in the random oracle model, we know that no real
primitive can actually instantiate the generic model in all cases [CGH98], and we view the negative
result for VBB as another example of that paradigm. In this work, as in other works that rely on
generic models [GGH+13b, BR14, BGK+14], we believe that a generic-model proof provides strong
heuristic evidence that the corresponding (meta-)assumptions usually hold in the standard model.
Of course, it would be even better to prove our construction secure based on a single (instance-
independent) falsifiable assumption, as in the work of Gentry et al. [GLW14, GLSW14, GGHZ14].
We leave this as an important open problem for future work.

Extensions. We observe that our techniques can be naturally extended to functional encryp-
tion [O’N10, BSW11] (as well as its generalization, multi-input functional encryption [GGG+14]),
enabling direct constructions that do not require the full machinery of obfuscation and NIZK
proofs, and hence avoid their considerable performance cost. We now outline one approach to this
extension; we defer the full details to an upcoming work. First we note that in our obfuscation con-
struction, we give out an obfuscated keyed circuit, O(C(·,y)), which acts much like the functional
decryption key fC(·,y) in a functional encryption scheme. The evaluator can select arbitrary inputs
x ∈ {0, 1}n of her choice, and use the obfuscated circuit to learn C(x,y). In functional encryption,
however, the evaluator has an additional ability: she can “defer” the evaluation of C(x,y), by
running ctx ← Enc(pk,x); then, roughly speaking, an adversary who obtains the value ctx learns
nothing about x, except those outputs C(x,y) for which the adversary has the corresponding keys
fC(·,y). So, to generalize our obfuscation construction to functional encryption, we need to enable
the evaluator to “defer” an input x in this fashion. Since our construction already represents each
input bit x1, . . . , xn ∈ x as an encoded element in the multilinear map, this amounts to generating
poly(λ) additional encoded elements, of which we can use a subset to “blind” an encoded input x,
constructing the ciphertext for the functional encryption scheme.

Another natural extension of our construction is to obfuscate circuits with multi-bit output,4

C : {0, 1}n × {0, 1}m → {0, 1}` for ` > 1. We describe the details of this extension below, in
Remark 3.18. Intuitively, since our evaluation of an obfuscated circuit follows the structure of the
original circuit, we can also reuse intermediate results for gates with fanout > 1, and we need
not repeat the entire computation for each bit of the output (as we would in approaches based on
Barrington’s theorem). As discussed in Section 4.2, this extension is especially apt for algorithms
such as block ciphers, which maintain and update a small “working state” and read off a (multi-bit)
output from that state at the end.

1.2 Our Techniques

We now give an overview of our techniques, and explain how they relate to other known approaches.
To keep the presentation simple, we describe our techniques in terms of keyed arithmetic circuit
families C : {0, 1}n × {0, 1}m → {0, 1}, as described in Section 2.4. (We note that we can obtain
keyed circuit families from various other machine models, including general Boolean circuits, by
the universal-program transformations of Section 2.4.)

3Indeed, the negative result of [BGI+01] for VBB in the standard model is based on an attack in which an
obfuscated circuit is evaluated on its own bit representation, which of course depends fundamentally on the concrete
instantiation of multilinear maps.

4For simplicity, we restrict our discussion here to keyed circuit families (Section 2.4), as discussed above.
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Known approaches. In general, to construct program obfuscation, the essential task is the
following. The evaluator, using the obfuscated circuit O(C(·,y)), should be able to evaluate C(·,y)
on inputs x ∈ {0, 1}n of his choice in some “hidden” representation, revealing only the result
C(x,y). Fully homomorphic encryption (FHE) gets us halfway there: while we can encrypt the
secret key y, so that the adversary can encrypt an input x and evaluate C(x,y) homomorphically,
the adversary can only learn an encryption of C(x,y), not the output C(x,y) itself. In all known
constructions of general program obfuscation (including this work), this problem is solved via
multilinear maps [BS03, GGH13a, CLT13, GGH14].

Multilinear maps, also known as graded encodings or graded multilinear maps [GGH13a, CLT13,
GGH14], are a generalization of bilinear maps such as pairings over elliptic curves [Mil04, MOV93,
Jou00, BF01]. Roughly speaking, a multilinear map lets us take a scalar x and produce an encoded
version, x̂ = [x]S , where S ⊆ U is a multi-set, called an index set, that indicates the level of
the encoding x̂ in a given hierarchy (namely, the subsets of U ordered by inclusion).5 Elements
can be added within the same index set, [x]S + [y]S = [x + y]S ; and elements can be multiplied,
[x]S · [y]T = [xy]ST , as long as the resulting index set ST is still contained in U . Finally, elements
encoded at U itself can be zero-tested, to determine whether they encode the scalar 0. (For a more
detailed description of multilinear maps we refer the reader to Section 2.5.)

Intuitively, multilinear maps seem like a perfect fit for program obfuscation. If we give out
encoded versions of the secret key input y ∈ {0, 1}m, then the evaluator can encode x ∈ {0, 1}m
himself, use the multilinear map’s arithmetic operations to evaluate C on the encoded elements,
and zero-test the result to determine the output C(x,y) ∈ {0, 1}. Unfortunately, unless we are
extremely careful, the adversary can also evaluate other circuits C ′(x,y) 6= C(x,y) on the en-
coded inputs—such as the circuit C ′ that ignores the input x and leaks a bit of the secret key y.
Previously known approaches [GGH+13b, BR14, BGK+14, AGIS14, GLSW14] solve this problem
by “garbling” the program C(·,y), converting it to a randomized matrix branching program via
Kilian’s protocol [Kil88].

Structure of our scheme. In our construction, we do not convert the circuit C(·,y) to a matrix
branching program. Rather, evaluation of the obfuscated circuit O(C(·,y)) follows the structure
of the original circuit C, perfoming C’s operations on encoded versions of x,y in the multilinear
map (as depicted in Figure 1). To make sure the adversary evaluates the correct circuit, we make
essential use of composite-order multilinear maps such as the CLT scheme [CLT13]. We encode
scalars in ZN for a composite modulus N = NevNchk, and we view ZN as a direct product of the
two rings ZNev ,ZNchk

, defined by the Chinese Remainder Theorem. To emphasize this intuition,
we write [x1, x2]S to refer to an encoding, at index set S (Section 2.5), of the value x ∈ ZN such
that x ≡ x1 (mod Nev) and x ≡ x2 (mod Nchk). Evidently the multilinear map operations (+,×)
operate componentwise on these pairs, and a value encodes zero only if both components are zero.

Now, in our construction, the second component of the direct product (ZNchk
) serves as a kind

of “checksum” for the adversary’s evaluation. When the adversary aims to learn the value of
some other circuit C ′(x1, . . . , xn, y1, . . . , ym), he will be forced to evaluate the same polynomial
in parallel (in the second component), on the uniformly random values α1, . . . , αn, β1, . . . , βm, as
depicted in Figure 1. At the end of this procedure, we also provide a “check” encoding Ĉ∗, whose
ZNchk

component is the precomputed value C(α1, . . . , αn, β1, . . . , βm). The structure of our scheme
ensures (roughly speaking) that the adversary can only perform a zero-test by subtracting off a
multiple of this encoding Ĉ∗. (For more details, we refer the reader to Section 3.1.)

5We describe here the case of asymmetric multilinear maps, since this is the one relevant to our constructions in
this work.
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Eval: O(C)(x1 = 0,x2 = 1, . . . , xn, y1, . . . , ym)

[C(x1, . . . , xn, y1, . . . , ym), C(α1, . . . , αn, β1, . . . , βm)]
Y deg(y)

∏
iX

deg(xi)
i,xi

x̂1,0 = [0, α1]X1,0

û1,0 = [1, 1]X1,0

x̂1,1 = [1, α1]X1,1

û1,1 = [1, 1]X1,1

x̂2,0 = [0, α2]X2,0

û2,0 = [1, 1]X2,0

x̂2,1 = [1, α2]X2,1

û2,1 = [1, 1]X2,1

. . .
ŷ1 = [y1, β1]Y ŷm = [ym, βm]Y

v̂ = [1, 1]Y

. . .

[1, α1 + α2]X1,0X2,1 [y1, α2β1]X2,1Y

.

.

.

O(+):

x̂1,0û2,1 + x̂2,1û1,0

O(×):

x̂2,1 · ŷ1

Figure 1: The first step of our evaluation procedure, for an obfuscated (keyed) arithmetic
circuit. First, we use the bits of the input string x (e.g., x1 = 1, x2 = 0, . . ., xn) to select
the relevant input encodings x̂1,1, x̂2,0, . . . , x̂n. We then run C directly on the encodings
x̂1,1, x̂2,0, . . . , ŷ1, . . . , ŷm, implementing C’s arithmetic operations via the multilinear map,
and multiplying by encodings of 1 to make index sets match. (Here deg(xi) is the degree of
C, as a multivariate polynomial, in the variable xi; and similarly deg(y) is the total degree
of C in the variables y1, . . . , ym.)

This design ensures that the adversary will learn nothing from evaluating the wrong circuit.
Regardless of the inputs x,y, if the adversary evaluates an incorrect expression C ′ 6≡ C, the
result will not match our precomputed value C(α1, . . . , αn, β1, . . . , βm) modulo Nchk, and hence
the final subtraction will produce a nonzero value modulo N = NevNchk (so that the multilinear
map’s zero-test operation always returns “nonzero”). In essence, we have forced the adversary to
run the Schwartz-Zippel identity-testing algorithm on his own chosen expression C ′, in parallel
(componentwise) with its actual evaluation on x1, . . . , xn, y1, . . . , ym.

Enforcing consistency: index sets with multiplicity. In addition to making sure the ad-
versary cannot evaluate the wrong circuit C ′ 6= C, we must also defend against “mix-and-match”
attacks, in which the adversary evaluates the correct circuit C, but uses inconsistent values of
input bits at different points in the evaluation. Since we do not convert every circuit to a branch-
ing program, it is not clear how to solve this problem with the index set constraint techniques
of [BR14, BGK+14]. In our model, the adversary must be allowed plenty of flexibility in construct-
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ing his chosen query (since the honest evaluation follows the structure of the original circuit C,
which is arbitrary), and yet the adversary must be able to complete all (and only) the consistent
evaluations to the top-level index set U .

Instead, we propose the following approach, depicted in Figure 1. We encode each input bit
(x̂1,0, x̂1,1, x̂2,0, . . .) at its own singleton index set (X1,0, X1,1, X2,0, . . .). The adversary can evaluate
whatever expressions he chooses, and the associated index sets will track the degree of the expression

in each variable. Then, we give out “interlocking” elements ẑi,b whose index sets contain X
deg(xi)
i,1−b

for each bit choice b ∈ {0, 1} (where deg(xi) is the degree of the variable xi in the actual circuit C).
By design of the index sets (Section 3), the adversary is forced to incorporate these elements ẑi,b
into any monomial that reaches the top level U ; but their index sets prevent the adversary from
making any input-inconsistent choices within a given monomial. This, in turn, lets us decompose
the adversary’s queries into subqueries each consistent with one input x ∈ {0, 1}n, which suffices
for our purposes in the security proof.

Enforcing sequentiality: straddling sets and commitments. In order to achieve virtual
black-box (VBB) security (in the generic model), our construction must also address the following
subtle issue, raised in [BR14, BGK+14]. Roughly speaking, an efficient simulator in the generic
model must examine the arithmetic expression z that the adversary evaluates via the multilinear
map operations, and determine whether z would evaluate to zero in the real scheme. The simulator
must make this decision based only on the information it receives from its own oracle C(·,y), which
means that if the expression z includes terms from superpolynomially many possible inputs x, then
the simulator cannot necessarily answer the query efficiently.

We solve this problem by adapting an elegant technique of Barak et al. [BGK+14]. In that work,
the authors describe a tool called straddling sets. A straddling set system consists of two partitions
S0,S1 of the set [n], each consisting of O(n) subsets. The subsets are arranged so that once we
choose a set from (say) the partition S0, we have committed to S0, and we cannot complete this set
to form a full partition of [n] except by adding all (and only) the remaining sets in the partition S0.
The construction of [BGK+14] associates a straddling set system to each input bit i ∈ {1, . . . , n},
for a total of O(n2) sets among all n partitions, and the index set of each encoded matrix includes
a set from each of two different straddling set systems, indicating which of the corresponding two
input bits the matrix selects (in the matrix branching program). Our use of straddling sets in this
work is similar to their use in [BGK+14], with some adaptations to restrict which of our terms
induce which straddling-set dependencies. We defer the full details to Construction 3.1.

1.3 Related Work

As discussed above, our work builds on earlier constructions of program obfuscation [GGH+13b,
CV13, BR14, BGK+14, AGIS14, GLSW14], but our new techniques differ in multiple ways—most
notably, we obfuscate circuits directly, without converting them to branching programs.

The work of Gentry et al. [GLSW14] constructs indistinguishability obfuscation (iO) from
composite-order multilinear maps. In that work, extending the techniques of [GLW14], the au-
thors show that iO can be based on a single, falsifiable assumption, independent of the partic-
ular circuit to be obfuscated. Previously it was only known how to prove iO in generic models
of multilinear maps [GGH+13b, BR14, BGK+14], or from meta-assumptions that quantify over
many circuits [PST14]. In [GLSW14], the emphasis is on the new assumption; the main con-
struction is based on the standard paradigm of converting circuits to branching programs, as
in [GGH+13b, BR14, BGK+14]. By contrast, our work proposes a new kind of construction, which
avoids branching programs entirely; while our security proof is given in a generic model similar
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to that of [BGK+14]. Thus, our work is largely orthogonal to that of [GLSW14]. As discussed
above, we believe it may be possible to adapt our construction to base security on a single falsifiable
assumption, as in [GLSW14], and we leave this as an important open problem for future work.

Our work is also complementary to that of Ananth et al. [AGIS14]. In that work, the authors
give an obfuscation construction that is still based on matrix branching programs, as in [GGH+13b,
BR14, BGK+14], but constructs those branching programs much more efficiently when the pro-
grams to be obfuscated are given as Boolean formulas. A key observation in [AGIS14] is that in
order to evaluate a Boolean formula φ efficiently, we can simply test whether two specific vertices
are connected in a directed graph related to φ. As the authors observe, this graph connectivity com-
putation can be written as matrix multiplication, and thus it is well-suited to known approaches
via matrix branching programs. More broadly, however, the graph connectivity computation is
well-suited to program obfuscation in general—because the structure of matrix multiplication is in-
dependent of the input data (Section 2.2), and because it has relatively low degree as an arithmetic
circuit. Indeed, the new obfuscator we develop in this work could also be run on the connectiv-
ity algorithms of [AGIS14]; and, as we will see in Section 4.3.3, for some parameter settings this
would yield even better performance than running our obfuscator on a program that evaluates the
formula φ directly (i.e., without converting it to a graph connectivity problem). The techniques
we develop in this work expose a rich space of design choices for the computations that are input
to the obfuscator, and the connectivity computation of [AGIS14] is an interesting example of one
such design.

2 Preliminaries

2.1 Conventions

For integers n, a, b, we denote by [n] the set {1, . . . , n}, and by [a, b] the set {a, . . . , b}. For a finite set
S, we write Uniform(S) to mean the probability distribution that is uniform over the elements of S.
For integers a, b, we write Primes[a, b] to mean the set of all prime numbers in [a, b], and we overload
this notation to refer to the distribution Uniform(Primes[a, b]). We also assume various conventions
of cryptography. Specifically, we define a variable λ, called the security parameter. We define a
negligible function to be a function ε(λ) that is o(1/λc) for every c > 0, and we write negl(λ) to
denote a negligible function of n. We define an efficient algorithm to be a probabilistic polynomial-
time Turing machine. We say an event occurs with negligible probability if the probability of the
event is negl(λ), and an event occurs with overwhelming probability if its complement occurs with
negligible probability.

2.2 Oblivious Computation and the “Mux” Operation

When we perform any computation on hidden data—not just in obfuscation, where the program is
hidden, but also in settings such as homomorphic encryption and secure multi-party computation—
we can distinguish between two main problems. First, we must ensure that each primitive operation
(such as an addition, multiplication, or Boolean gate) does not leak information about hidden
values, when implemented using the cryptographic scheme of choice. Second, we must ensure that
the identities of the primitive operations performed do not leak information. While the solution
to the first problem varies widely, we generally solve the second problem by transforming the
computation so that the sequence of operations performed is independent of the input data. We
call programs that satisfy this criterion data-oblivious, or oblivious.
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Formally, this criterion has many variants; for a full exposition, we refer the reader to the
work of Mitchell and Zimmerman [MZ14]. In this work, we will consider a program oblivious if
the sequence of primitive operations performed, as well as the identities of their operands (e.g.,
registers or memory locations in a RAM) is a deterministic function solely of the input length,
and does not depend on the input. In the language of [MZ14], this corresponds to the strongest
definition, that of data-independence.

To make a program oblivious, there are many standard techniques. We now describe one such
technique, known as “arithmetization” or “multiplexing” (abbreviated “mux”), which is involved in
various compiler optimizations and static analyses of programs. The idea is very simple: whenever
a program would call for input-dependent control flow, such as “ if x then y ← z; else y ← w; ”,
we remove the conditional, and replace every assignment statement in both branches with an
arithmetized version: “ y ← x · z + (1 − x) · w ”, also denoted “ y ← mux(x, z, w) ”. This ternary
“mux” operation is crucial to removing input-dependent control flow from programs, and we use it
extensively in our applications (Section 4).

2.3 Straight-Line Programs (Arithmetic Circuits)

In our obfuscation construction, we will find it natural to work with the computational model of
straight-line programs over the integers. Formally, we will model these programs as follows.

Definition 2.1 (Straight-Line Program). A straight-line program P : Zn → Z is a sequence of
statements:

input x1, . . . , xn ; v1 ← w1,1 op w1,2 ; . . . ; v` ← w`,1 op w`,2 ; output v`

where v1, . . . , v` are variables (e.g., distinct bit strings), each instance of op is an arithmetic operator
(+ or ×), and each w1,1, w1,2, . . . , w`,1, w`,2 is either a variable in v1, . . . , v`; an input in x1, . . . , xn;
or else a constant in {−1, 1}. For an input tuple x = (x1, . . . , xn) ∈ Zn, we write P (x1, . . . , xn) to
denote the result of substituting the values x1, . . . , xn for the corresponding inputs in P , performing
the arithmetic operation corresponding to each instruction in sequence, and yielding the output v`.

We say a straight-line program P : Zn → Z computes a Boolean function f : {0, 1}n → {0, 1}
if for all x ∈ {0, 1}n, we have f(x) = 1⇔ P (x) 6= 0. When the context is clear, we abuse notation
to write P (x) : {0, 1}n → {0, 1} to denote the Boolean function f that P computes.

The model of straight-line programs is extremely general. The execution of any machine—say,
a Turing machine or RAM—can be expressed as a straight-line program over Z, with overhead at
most polylogarithmic,6 provided that the machine is already oblivious (Section 2.2).

Remark 2.2 (Straight-Line Programs are Arithmetic Circuits). Straight-line programs are nat-
urally identified with arithmetic circuits. Formally, we consider arithmetic circuits with addition
and multiplication gates over Z, with fanin 2 and unbounded fanout. We also assume the circuits
have implicit inputs representing the constants ±1 ∈ Z, and thus they can form arbitrary integer
constants (up to the limitations of circuit size and depth).

In this work, we will refer to straight-line programs and arithmetic circuits interchangeably.

An arithmetic circuit C : {0, 1}n → {0, 1} can also be expressed as a multivariate polynomial
in Z[x1, . . . , xn] (perhaps after duplicating gates to account for fanout), and we identify circuits
with their corresponding polynomials. Although the polynomial for a given circuit C may be of
exponential size, it can still be evaluated efficiently, and we can perform algebraic substitutions

6For instance, in some models there is overhead involved in decomposing word operations into bits.
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on it. We define the degree of an arithmetic circuit C in each input variable as the degree of its
corresponding polynomial in that variable, and similarly for the total degree. By convention, we
always refer to the formal degree, counting monomials whose coefficients are zero. We note that a
circuit of depth d can have degree at most 2d, since each of its gates has fanin two.

Given a Boolean circuit C, evidently we can convert it into an arithmetic circuit C ′ that
computes the same function, with at most a constant factor overhead both in size and in depth.
For instance, we can express C in terms of NAND gates, and replace each NAND gate in C by the
polynomial (r, s) 7→ 1 − rs in the arithmetic circuit C ′. In Section 4, we will also consider more
efficient transformations. From here on, we will assume that programs to be obfuscated can be
written as straight-line programs (i.e., arithmetic circuits), as we have just described.

2.4 Keyed Programs

In many cryptographic applications of obfuscation, we do not depend on hiding the entire structure
of the obfuscated program from the adversary, but rather only need to hide a short secret key
embedded in the program. We can formalize this notion as follows.

Definition 2.3 (Keyed Circuit Family). Let C : {0, 1}n×{0, 1}m → {0, 1} be an arithmetic circuit
of size s and depth d, and for each y ∈ {0, 1}m, define the function fy(x) = C(x,y) for all inputs
x ∈ {0, 1}n. If (Cy)y∈{0,1}m is a family of arithmetic circuits such that each Cy computes fy,
then we say that (Cy)y∈{0,1}m is a keyed circuit family, of size s and depth d, corresponding to the
universal circuit C.

The model of “keyed” programs is especially natural for obfuscation, and we expect that in most
cryptographic applications, it will find more use than general-purpose obfuscation. For theoretical
purposes, however, we would still like to construct general-purpose obfuscation for large classes of
circuits such as NC1 or P/poly, for which the obfuscation must hide everything except the size of
the circuit to be obfuscated.

Thus, we now provide standard transformations from general (unkeyed) circuit families to keyed
circuit families. Intuitively, in these transformations the secret key y ∈ {0, 1}m represents the entire
circuit to be obfuscated, and the keyed circuit C is a universal circuit.

Construction 2.4 (Universal Straight-Line Program). Regard the circuit as an (arithmetic)
straight-line program (Section 2.3) consisting of ` instructions. For each k ∈ [`], replace the kth in-
struction “ vk ← wk,1 op wk,2 ” as follows. First, define new secret key input bits (yk,1,i, yk,2,i)i∈[k−1].
Generate new variables w′k,1 ← 0, w′k,2 ← 0, and generate 2(k − 1) “mux” operations (Section 2.2)
with the outputs of all previous instructions, as follows:

w′k,1 ← mux(yk,1,1, w
′
k,1, vi); . . . ; w′k,1 ← mux(yk,1,k−1, w

′
k,1, vk−1)

w′k,2 ← mux(yk,2,1, w
′
k,2, vi); . . . ; w′k,2 ← mux(yk,2,k−1, w

′
k,2, vk−1)

Generate the following statements for op ∈ {+,−, ∗}:

wk,op ← w′k,1 op w′k,2

Finally, define new secret key input bits yk,−, yk,∗, and use the “mux” operation again to merge the
results as follows:

wk ← wk,+; wk ← mux(yk,−, wk, wk,−); wk ← mux(yk,∗, wk, wk,∗)
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Since Construction 2.4 emits (k − 1) instructions in place of the kth instruction of the origi-
nal program, the size of the resulting program is quadratic in that of the original (disregarding
polylogarithmic factors from writing down names of variables).

Construction 2.4 works best for circuits whose depth is at least polylogarithmic in their size,
since then the additional depth from the mux operations is relatively insignificant. For complete-
ness, we also provide a transformation tailored to low-depth (low-degree) circuits. Notably, this
second transformation results in a circuit whose size is exponential in the depth of the original cir-
cuit (like the transformation via Barrington’s Theorem), and hence applies only to NC1. However,
for these circuits, unlike Construction 2.4, Construction 2.5 preserves the depth up to constant
factors.

Construction 2.5 (Universal Boolean Formula). We give only a sketch here; we defer the details
to Section 4.3.2. Using DeMorgan’s laws, translate the circuit to an equivalent monotone circuit
in its inputs and their negations (i.e., only using binary AND and OR gates). Duplicate gates
as necessary to achieve fanout 1, and add dummy gates to make the circuit balanced, i.e., a full
binary tree of depth O(d). In place of each of the circuit’s input wires, add a tree of “mux”
operations (Section 2.2) to select one of the n original inputs, as determined by secret key input
bits. Finally, convert each Boolean gate to an arithmetic function, hiding the gate’s identity by
deriving some of the function’s inputs from secret key input bits.

We emphasize again that the transformations of this section are mainly for theoretical purposes.
In practice, a much better approach would be to design, for each desired cryptographic application
of obfuscation, a restricted family of circuits (much smaller than P/poly) that is already keyed with
respect to the particular secret that needs to be hidden.

2.5 Composite-Order Multilinear Maps

Multilinear maps [BS03], also known as graded multilinear maps or graded encodings [GGH13a,
CLT13, GGH14], are a generalization of bilinear maps such as pairings over elliptic curves [Mil04,
MOV93, Jou00, BF01]. Intuitively, a multilinear map lets us take scalars x, y and produce corre-
sponding encodings x̂, ŷ at any level of a given hierarchy, so that we can still perform arithmetic
operations (e.g., x+y, xy) on the encoded representations, and yet it is hard to recover the original
scalars x, y from encodings x̂, ŷ. 7 For example, in a symmetric bilinear map e : G × G → GT

(where g generates G, and e(g, g) generates GT ), a scalar x ∈ Z can be encoded in G as gx, or
encoded in GT as e(g, g)x. The levels of the hierarchy here are G and GT , and the hierarchy’s
structure enforces constraints on the arithmetic operations that we can perform. For instance, via
the group operation we can compute gx+y (an encoding of x + y) from gx and gy (encodings of x
and y), but to obtain an encoding of xy, we must increase the level in the hierarchy from G to GT ,
by computing the pairing e(gx, gy) = e(g, g)xy.

In the case of symmetric bilinear maps, this hierarchical structure can be identified with the
integers 0, 1, 2 as indices, where the index 0 represents scalars, 1 represents elements of G, and 2
represents elements of GT . Elements at the same index can be added together, while elements at
arbitrary indices can be multiplied, but their indices add. For asymmetric bilinear maps, the more
natural analogy is that of a subset lattice: specifically, a map e : G1 ×G2 → GT is identified with

7In fact, as we will see below, we usually assume more than this: recovering x from the encoding x̂ corresponds
to solving the discrete-log problem, while intuitively we expect that the adversary cannot do anything useful with
x̂, except apply the permitted arithmetic operations and test the result for equality against other encodings. In
Section 2.6, we will make this intuition more precise.

12



the subset lattice ∅ ⊆ {A},{B} ⊆ {A,B}, where ∅ corresponds to scalars, {A} to G1, {B} to G2,
and {A,B} to GT .

More generally, in the case of asymmetric multilinear maps (which permit more than two
sequential multiplications of encoded elements), it is standard to work with general subset lattices,
where the sets may contain elements with multiplicity. By convention, we will say that these sets
are made up of formal symbols, denoted by capital letters (A,B,C), which serve the same role as
formal variables in polynomials. Formally, we state the following definitions.

Definition 2.6 (Formal Symbol). A formal symbol is a bit string in {0, 1}∗, and distinct variables
denote distinct bit strings. A fresh formal symbol is any bit string in {0, 1}∗ that has not already
been assigned to another formal symbol.

Definition 2.7 (Index Sets). An index set is a multi-set of formal symbols called indices. The
multiplicity of each index is written in binary, and so the degree of an set may be up to exponential in
the size of its representation. By convention, for index sets we use set notation and product notation
interchangeably, so that A3BC2 represents {A,A,A,B,C,C}, and A3BC2 ∪ABC = A4B2C3.

Definition 2.8 (Composite-Order Multilinear Map ([BS03, GGH13a, CLT13, GLW14], adapted)).
A composite-order multilinear map supports the following operations. Each operation (CM.Setup,
CM.Add, CM.Mult, CM.ZeroTest, CM.Encode) is implemented by an efficient randomized algorithm.

• The setup procedure receives as input an index set U (Definition 2.7), which we refer to as
the “top-level index set”, as well as the security parameter λ (in unary), and an integer k
indicating the number of factors to generate for the modulus. It produces public parameters
pp, secret parameters sp, and integers N1, . . . , Nk as follows:

CM.Setup(U , 1λ, k) → (pp, sp, N1, . . . , Nk)

Each integer N1, . . . , Nk is a product of poly(λ) primes, and each of these k · poly(λ) primes
is drawn independently from Primes[2λ, 2λ+1]. We also define N =

∏
i∈[k]Ni, the overall

modulus.8

• For each index set S ⊆ U , and each scalar x ∈ ZN , there is a set of strings [x]S ⊆ {0, 1}∗, i.e.,
the set of all valid encodings of x at index set S. 9 From here on, we will abuse notation to
write [x]S to stand for any element of [x]S (i.e., any valid encoding of x at the index set S).

• Elements at the same index set S ⊆ U can be added, with the result also encoded at S:

CM.Add(pp, [x]S , [y]S) → [x+ y]S

• Elements at two index sets S1,S2 can be multiplied, with the result encoded at the union of
the two sets, as long as their union is still contained in U :

CM.Mult(pp, [x]S1 , [y]S2) →

{
[xy]S1∪S2 if S1 ∪ S2 ⊆ U
⊥ otherwise

8We remark here that our construction does not rely on the individual moduli N1, . . . , Nk being composite, but
we present the model in this full generality since it may be required in the chosen concrete instantiation, such as in
the CLT multilinear map [CLT13].

9To be precise, we define [x]S = {χ ∈ {0, 1}∗ : CM.IsEncoding(pp, χ, x,S)}, where the predicate CM.IsEncoding is
specified by the concrete instantiation of the multilinear map. The predicate CM.IsEncoding need not be efficiently
decidable—and indeed, for the security of the multilinear map, it should not be.
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• Elements at the top level U can be zero-tested:

CM.ZeroTest(pp, [x]S) →

{
“zero” if S = U and x = 0 ∈ ZN
“nonzero” otherwise

• Using the secret parameters, one can generate a representation of a given scalar x ∈ Z at any
index set S ⊆ U :

CM.Encode(sp, x, S) → [x]S

• For the trivial index set S = ∅, we specify that the valid encodings [x]∅ are just the integers
congruent to x modulo N . (So, for instance, we can perform subtraction via CM.Add, by
scalar multiplication with −1.)

By convention (and by analogy to the setting of symmetric multilinear maps), we refer to the
total degree of U as the degree of multilinearity of the map. When the context is clear, we also
abuse notation to write, for encodings â, b̂, the expression â+ b̂ to mean CM.Add(CM.pp, â, b̂); the
expression âb̂ to mean CM.Mult(CM.pp, â, b̂); and likewise for other arithmetic expressions.

Features of composite order. By analogy to composite-order bilinear groups [BGN05], we
would expect that composite-order multilinear maps would be significantly more powerful than
their traditional prime-order analogs. Intuitively, this power is due to the fact that by encoding
integers in ZN for composite N = N1 · · ·Nk, we implicitly encode a direct product, ZN1× . . .×ZNk ,
as defined by the Chinese Remainder Theorem. Each of the k components can be used to store
useful information, on which the ring operations act componentwise, and a value will pass the
multilinear map’s zero-test only if it encodes zero in every component (i.e., modulo every Ni).
Without knowing the factorization, however, the adversary cannot easily eliminate one component
of an encoded value without eliminating them all. To better express this intuitive view, we introduce
the following notation.

Remark 2.9 (Notation for Encodings of Direct Products). We write [x1, x2, . . . , xk]S to refer to
an encoding, at index set S, of the value x ∈ ZN such that x ≡ xi (mod Ni) for each i ∈ [k] (as
determined by the Chinese Remainder Theorem).

2.6 The Generic Multilinear Map Model

To define security for composite-order multilinear maps, we will operate in a generic model of
composite-order multilinear maps, which generalizes existing generic models for the prime-order
case [GGH+13b, BR14, BGK+14]. This model is similar to the generic group model [Sho97]:
intuitively, in the generic model, the only thing an adversary can do with encoded ring elements is
to apply the operations of the multilinear map.

More precisely, we say a scheme that uses multilinear maps is “secure in the generic model”
if, for any concrete adversary breaking the real scheme, there is a generic adversary breaking a
modified scheme in which the encoded ring elements are replaced by “handles” (concretely, fresh
nonces), which the generic-model adversary can supply to a stateful oracleM (which performs the
corresponding ring operations internally). We define the oracle M formally as follows.

Definition 2.10 (Generic Multilinear Map Oracle ([GGH+13b, BR14, BGK+14], adapted)). A
generic multilinear map oracle is a stateful oracle M that responds to queries as follows.
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• On a query CM.Setup(U , 1λ, k), the oracle will generate integers N1, . . . , Nk as in the real setup
procedure (Definition 2.8), generate pp, sp as fresh nonces (i.e., distinct from any previous
choices) uniformly at random from {0, 1}λ, and return (pp, sp, N1, . . . , Nk). It will also store
the inputs and the values generated, initialize an internal table T ← {} (to store “handles”,
as described below), and set internal state so that subsequent CM.Setup queries fail.

• On a query CM.Encode(k, x, S), where k ∈ {0, 1}λ and x ∈ Z, the oracle will check that
k = sp and S ⊆ U (returning ⊥ if the check fails). If the check passes, the oracle will generate
a fresh nonce (“handle”) h← Uniform({0, 1}λ), add the entry h 7→ (x,S) to the table T , and
return h.

• On a query CM.Add(k, h1, h2), where k, h1, h2 ∈ {0, 1}λ, the oracle will check that k = pp,
and that the handles h1, h2 are present in its internal table T , and are mapped to values,
resp., (x1,S1) and (x2,S2) such that S1 = S2 = S ⊆ U (returning ⊥ if the check fails). If
the check passes, the oracle will generate a fresh handle h← Uniform({0, 1}λ), add the entry
h 7→ (x1 + x2,S) to the table T , and return h.

• On a query CM.Mult(k, h1, h2), where k, h1, h2 ∈ {0, 1}λ, the oracle will check that k = pp,
and that the handles h1, h2 are present in its internal table T , and are mapped to values,
resp., (x1,S1) and (x2,S2) such that S1 ∪ S2 ⊆ U (returning ⊥ if the check fails). If the
check passes, the oracle will generate a fresh handle h ← Uniform({0, 1}λ), add the entry
h 7→ (x1x2,S1 ∪ S2) to the table T , and return h.

• On a query CM.ZeroTest(k, h), where k, h ∈ {0, 1}λ, the oracle will check that k = pp, and
that the table T contains an entry h 7→ (x,U) (immediately returning ⊥ if the check fails). If
the check passes, the oracle will return “zero” if x ≡ 0 (mod N = N1 · · ·Nk), and “nonzero”
otherwise.

Remark 2.11 (Oracle Queries Referring to Formal Polynomials). Although the generic multilinear
map oracle is defined formally in terms of “handles” (Definition 2.10), it is usually more intuitive
to regard each oracle query as referring to a formal query polynomial. The formal variables are
specified by the expressions initially supplied to the CM.Encode procedure (as determined by the
details of the construction), and the adversary can construct terms that refer to new polynomials
by making oracle queries for the generic-model ring operations CM.Add, CM.Mult. Rather than
operating on a “handle”, then, each valid CM.ZeroTest query refers to a formal query polynomial10

encoded at the top-level index set U . The result of the query is “zero” precisely if the polynomial
evaluates to zero, when its variables are instantiated with the joint distribution over their values in
ZN , generated as in the real security game. The formal definitions required to justify this language
are quite tedious, and we defer them to Appendix B.

To illustrate the language of Remark 2.11, we take the following example. Suppose that in
some security game, the adversary receives values that were generated as x̂← CM.Encode(sp, 2, S)
and ŷ ← CM.Encode(sp, 3, T ). Then the formal variables of the construction are x̂ and ŷ; and the
adversary could submit a zero-test query that refers to the formal polynomial x̂ŷ (at the index set
U = ST ). The real value of x̂ŷ is 2 · 3 = 6 6= 0 ∈ Z, since this is the value that would be in the
oracle’s table in the real game (if the adversary had made the corresponding query by invoking
CM.Mult on the handles that refer to x̂, ŷ). Thus, the result of the zero-test on the formal query
polynomial x̂ŷ would be “nonzero”.

10To represent a query polynomial concretely, we can use an arithmetic circuit—and thus, for instance, we can still
perform efficient manipulations on query polynomials that have been subjected to repeated squaring.
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Composite order in the generic model. We note that for composite-order multilinear maps
in particular, formulation of the model requires some care. In generic models for groups of
prime order p, the adversary is usually given p, which is reflected in the fact that the adver-
sary’s query polynomials (Remark 2.11) have coefficients over Zp (see, e.g., the prime-order models
of [GGH+13b, BR14, BGK+14]). In the composite-order setting, however, it is vital that the ad-
versary cannot act independently on different components of our direct product encodings in ZN
(Remark 2.9). If the adversary knows the factorization of N , then he can do this easily, since then
he can multiply an encoding by scalars corresponding to one or more of N1, . . . , Nk.

We might hope that in the generic model, we could still give the adversary the overall modulus
N , relying on the hardness of factoring to rule out these projection queries. Unfortunately, given
N , there may be many other ways for the adversary to construct query polynomials with undesired
effects on our encodings in ZN . The only way we know to rule out this possibility is to make N
itself unknown. In other words, we work in a ring of hidden order, which is formally reflected in
the fact that the adversary’s query polynomials (Remark 2.11) have coefficients over Z (rather than
ZN ). In this respect, our generic model for composite-order multilinear maps is similar to generic
models in other composite-order settings [AM09].

2.7 “Noisy” and “Clean” Multilinear Maps

The abstract definition of multilinear maps (Definition 2.8) is very natural, but we still do not
know whether it can be instantiated. The breakthrough work of Garg et al. [GGH13a] showed the
first candidate construction of an approximate or “noisy” variant of multilinear maps, in which the
representation of each encoded ring element includes a random error term. When ring elements are
added or multiplied, the resulting error term increases; eventually, the noise overwhelms the signal,
and the zero-testing procedure no longer recovers the correct answer. Thus, unlike the “clean”
multilinear maps of Definition 2.8, known “noisy” multilinear maps include an a priori restriction
of the number and types of operations that can be performed.

In known multilinear map constructions [GGH13a, CLT13, GGH14], the noise restriction be-
haves as follows. Each encoded ring element carries a noise bound. The result of a fresh encoding
operation (via CM.Encode) has a noise bound of 2f(λ) (for some polynomial f pre-specified at
setup); CM.Add results in a noise bound that grows with the sum of the bounds of its operands;
and CM.Mult results in a noise bound that grows with the product. When the noise bound reaches
2g(λ) (again for a pre-specified polynomial g), the zero-test operation always outputs ⊥.

For our purposes in this work, we will model the noise restriction as stating that the multilinear
map can only compute arithmetic expressions of polynomial degree (for a polynomial fixed at setup
time)—or, equivalently, that the multiplicities of indices in the top-level index set U are presented
in unary.

Definition 2.12 (“Noisy” Composite-Order Multilinear Map). A noisy composite-order multilinear
map is defined as in Definition 2.8, except that the top-level index set U has its multiplicities
presented in unary.

We note that Definition 2.12 considers only the noise growth due to multiplication operations,
and disregards that of addition operations.11 Technically, in order to instantiate this definition with

11More precisely, fix an arithmetic expression C of depth d and total degree r, and suppose we evaluate C on
freshly encoded ring elements. The number of monomials in the expansion of C is at most 2dr, so the noise bound of
the resulting term is at most 2dr · (2f(λ))r, and we will remain under the noise limit as long as (d + f(λ))r < g(λ).
In most cases of interest, we have d � r—in fact, if a constant fraction of the layers of C consist of multiplication
gates, then d = O(lg r)—and thus we can approximate the noise bound simply in terms of the degree.
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the CLT multilinear map [CLT13], we would also need to specify that the ring operations may fail
for computations with many additions and very few multiplications. However, our main theorems
are unaffected by this restriction. In a broader sense, we also find that this simple definition in
terms of multilinearity degree is more natural, and is better suited to other potential approaches
for instantiating multilinear maps (Section 2.8).

2.8 Instantiation of Multilinear Maps

As discussed above, we already know a candidate instantiation of “noisy” composite-order multilin-
ear maps, via the CLT scheme [CLT13]. We now briefly recount the structure of this scheme. Fix a
top-level index set U = Au11 · · ·A

u`
` , where A1, . . . , A` are formal symbols (Definition 2.7). The CLT

scheme generates an “inner” modulus N = p1 . . . ps and an “outer” modulus Nouter = P1 . . . , Ps
(for s = poly (λ,

∑
i ui)), where p1, . . . , ps, P1, . . . , Ps are primes of bit-length poly (λ,

∑
i ui), and

each Pi is much larger than pi.
Now, suppose we want to encode a value m ∈ ZN , and define mi = m mod pi for each i ∈ [s].

Under the CLT scheme, an encoding of m at an index set T = At11 . . . A
t`
` is the value c ∈ ZNouter

such that

c ≡ mi + ripi

zt11 · · · z
t`
`

(mod Pi)

for each Pi, where each ri (the “noise” term) is a fresh random integer much smaller than Pi, and
each of z1, . . . , z` is uniform in ZPi (generated once during CM.Setup, and reused for each encoding).
Addition and multiplication in the multilinear map, under the CLT scheme, now just correspond
to addition and multiplication modulo Nouter. It is easy to verify that for addition of two encoded
values m,m′ ∈ ZN within the same index set T = At11 . . . A

t`
` , we have

mi + ripi

zt11 · · · z
t`
`

+
m′i + r′ipi

zt11 · · · z
t`
`

=
(mi +m′i) + (ri + r′i)pi

zt11 · · · z
t`
`

(mod Pi)

where the new “noise” parameter, ri + r′i, has grown somewhat compared to ri, r
′
i (as described in

Section 2.7), but for a bounded number of operations remains very small relative to Pi. Multipli-
cation between encoded values m,m′ ∈ ZN at different index sets (resp, T = At11 . . . A

t`
` ⊂ U and

W = Aw1
1 . . . Aw`` ⊂ U) operates similarly, with the result

mi + ripi

zt11 · · · z
t`
`

· m
′
i + r′ipi

zw1
1 · · · z

w`
`

=
mim

′
i + (rim

′
i + r′imi + rir

′
ipi)pi

zt1+w1
1 · · · zt`+w``

(mod Pi)

now encoded at the product index set TW = At1+w1
1 . . . At`+w`` ⊂ U , and with noise growth (rim

′
i+

r′imi + rir
′
ipi): faster than that of additions, but still much smaller than Pi for a bounded number

of operations.
In order to enable zero-testing, the CLT scheme also includes elements of the following form in

the public parameters, for random integers hi much smaller than Pi.

pzt =
∑
i∈[s]

(
hi · zu11 · · · z

u`
`

pi
mod Pi

) ∏
j 6=i∈[s]

Pj (mod Nouter)

Suppose we would like to zero-test an encoding c = [m]U ∈ ZNouter , encoded at the top-level
index set U , so that (t1, . . . , t`) = (u1, . . . , u`). Under the CLT scheme, this is done by computing
d = c ·pzt ∈ ZNouter , and returning “zero” if the result is very small relative to Nouter, and “nonzero”
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otherwise.12 Indeed, we can verify that if c encodes zero (i.e., m = 0 ∈ ZN ), then every component
mi = m mod pi is zero in Zpi , and we have

c · pzt =
∑
i∈[s]

(
ripi

zu11 · · · z
u`
`

·
hi · zu11 · · · z

u`
`

pi
mod Pi

)
·
∏
j 6=i

Pj =
∑
i∈[s]

rihi
∏
j 6=i

Pj

and, since each ri, hi is much smaller than Pi, the result c · pzt ∈ ZNouter is very small (as an
integer) relative to Nouter. On the other hand, if c does not encode zero (i.e., c = [m]U for
m 6= 0 ∈ ZNouter), then at least one component mi is nonzero in Zpi ; this introduces the extra
additive term (mihi/pi mod Pi)

∏
j 6=i Pj , which with high probability is not very small relative to

Nouter. Likewise, if T is not the top-level index set U , then this introduces the factor zu1−t11 · · · zu`−t``

modulo every Pi, and this again makes the result (with high probability) not small relative to Nouter.
For more details, we refer the reader to the original work [CLT13].

In order to use the CLT scheme as a composite-order multilinear map with inner modulus
N = N1 · · ·Nk, setting the parameters requires some care, since the scheme must remain secure
even when the adversary sees encodings that are zero in one or more of the subrings (ZN1 , . . . ,ZNk).
Gentry et al. [GLW14] investigate this question, and conclude that if each modulus N1, . . . , Nk is
a product of many (i.e., poly(λ)) of the primes among p1, . . . , ps, then the scheme resists obvious
attacks. This is the parameter setting that we adopt in this work. For the full analysis, we refer
the reader to [GLW14, Appendix B].

Possible approaches for clean maps. While we know how to instantiate “noisy” multilinear
maps via the CLT scheme, instantiation of “clean” multilinear maps remains a central open problem.
Current techniques for “noisy” maps [GGH13a, CLT13, GGH14] depend crucially on the noise to
hide the encoded elements. Even if it is possible to extend these techniques, and thereby reduce
the noise below quadratic in the multilinearity degree, it seems very unlikely that the noise can be
made only polylogarithmic in the degree. However, randomized encodings are not the only possible
route to “clean” multilinear maps. The theory of bilinear maps [Mil04, MOV93, Jou00, BF01] does
not incorporate noise at all, but rather relies on algebraic properties of pairings over elliptic curves.
We believe that the most promising route to constructing clean multilinear maps is via structures
that generalize these properties, such as abelian varieties. Some conditional negative results were
presented by Boneh and Silverberg [BS03], but in general, the problem remains wide open.

2.9 Program Obfuscation

Our definition of VBB obfuscation is similar to the one studied in [BGK+14]. It is stronger than the
original definition [BGI+01], in that we allow the adversary to output a string of arbitrary length,
rather than just a single bit. In addition, the definition is parameterized over an ideal functionality
(represented by a stateful oracle M), to which both the obfuscator and the adversary have access.
If M were the empty oracle, we would recover the usual definition of (strong) VBB obfuscation.
In our setting, however, as in that of [BGK+14], the oracleM corresponds to our generic model of
composite-order multilinear maps (Definition 2.10).

Definition 2.13 (Virtual Black-Box Obfuscation in anM-Idealized Model ([BGI+01, BGK+14])).
Let C = (Cλ)λ∈N be a family of Boolean circuits, and let M be a stateful oracle (possibly random-
ized). We say that a PPT machine O is a virtual black-box obfuscator for C in the M-idealized
model, if the following conditions are satisfied.

12In fact, the CLT scheme uses multiple (polynomially many) such parameters pzt, and the output is “zero” if the
result c · pzt is small with respect to all of them.
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• Correctness: There is a negligible function ε such that for all λ ∈ N, every circuit C ∈ Cλ,
every input x to C, and all possible random coins for M, we have

Pr[(OM(1λ, C))(x) 6= C(x)] < ε(λ) .

• Virtual Black-Box: For every PPT adversary A, there is a PPT simulator S such that for
every PPT distinguisher D, there is a negligible function ε such that for all C ∈ Cλ, we have∣∣∣Pr[D(AM(OM(1λ, C))) = 1]− Pr[D(SC(1λ, 1|C|)) = 1]

∣∣∣ < ε(λ) ,

where the probability is over the coins of D,A,S,O, and M.

We note that since we require the obfuscator O to be efficient, the output of O is also a circuit
of size poly(λ) (and thus the polynomial slowdown property of Barak et al. [BGI+01] is immediate
from the definition). We also extend Definition 2.13 in the standard way to entire circuit classes
such as NC1 and P/poly, as follows.

Definition 2.14 (Virtual Black-Box Obfuscation for P/poly). Suppose that for every polynomial
f , the PPT machine O is a virtual black-box obfuscator for the circuit family (Cλ)λ∈N, where Cλ is
the set of Boolean circuits C : {0, 1}λ → {0, 1} of size at most f(λ). Then O is a virtual black-box
obfuscator for P/poly (in the M-idealized model).

Definition 2.15 (Virtual Black-Box Obfuscation for NC1). Suppose that for every polynomial f
and constant c ∈ N, the PPT machine O is a virtual black-box obfuscator for the circuit family
(Cλ)λ∈N, where Cλ is the set of Boolean circuits C : {0, 1}λ → {0, 1} of size at most f(λ) and depth
at most c lg λ. Then O is a virtual black-box obfuscator for NC1 (in the M-idealized model).

2.10 Keyed and Succinct Obfuscation

As discussed in Section 2.4, the model of “keyed” programs is especially natural for program
obfuscation. We now state a modified definition of VBB obfuscation, suited to this setting.

Definition 2.16 (Keyed Virtual Black-Box Obfuscation). Fix a family of arithmetic circuits C =
(Cλ)λ∈N (Section 2.3). For a stateful oracle M (possibly randomized), we say a pair of PPT
algorithms (O, O.Eval) is a keyed virtual black-box obfuscator for C in the M-idealized model, if
the following conditions are satisfied.

• Correctness: There is a negligible function ε such that the following holds. Fix λ ∈ N and
an arithmetic circuit C ∈ Cλ, where C : {0, 1}n × {0, 1}m → {0, 1}. Then for every input
x ∈ {0, 1}n and key y ∈ {0, 1}m, and all possible random coins for M, we have

Pr[C̃y ← OM(C,y) ; O.EvalM(C̃y, C,x) 6= C(x,y)] < ε(λ) ,

where the probability is over the coins of O.

• Virtual Black-Box: For every PPT adversary A, there is a PPT simulator S such that for all
PPT distinguishers D, and all (C, n,m) ∈ C, we have∣∣∣Pr[D(AM(OM(C,y)) = 1]− Pr[D(SC(·,y)(C)) = 1]

∣∣∣ < negl(|C|) ,

where the probability is over the coins of D,A,S,O, and M.
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Intuitively, the definition of keyed program obfuscation separates the question of the public
(“universal”) circuit parameters from the size of the secret part of the circuit, which is to be
obfuscated. It now makes sense to discuss succinct program obfuscation, in which the obfuscation
size is independent of the public part of the circuit, and depends only on the secret key (and on
the security parameter).

Definition 2.17 (Succinct Virtual Black-Box Obfuscation). The definition is the same as Defini-
tion 2.16, with the following additional requirement.

• Succinctness: There exists a polynomial f such that for all (C, n,m) ∈ C and all y ∈ {0, 1}m,
we have |OM(C,y)| ≤ f(n,m, λ).

We also specialize Definition 2.17 to the classes P/poly and NC1, just as in Definitions 2.14 and
2.15. Since the details are identical, we omit the formal definitions.

2.11 Straddling Sets

Our obfuscator uses the multilinear map’s index sets (Definition 2.7) to enforce constraints on the
adversary’s evaluation. This requires careful design of the indices for each element in the multilinear
map. To simplify the presentation of our design, we now introduce some simple combinatorial
properties that we use in our security proof.

One important building block is the notion of straddling sets, as described by Barak et al.
[BGK+14]. Roughly speaking, an n-straddling set system consists of two partitions S0,S1 of the
set {1, . . . , n}, such that once we choose a set from (say) S0, we have committed to S0, and we
cannot complete this set to form a full partition of {1, . . . , n} except by adding all (and only) the
remaining sets in the partition S0. In fact, we require a slightly stronger property, which we now
formalize.

Definition 2.18 (Partition). For a set S and an integer n, we say (S1, . . . , Sn) is a partition of S
if each Si is a nonempty set, S1 ∪ . . . ∪ Sn = S, and for each i 6= j ∈ [n], we have Si ∩ Sj = ∅.

Definition 2.19 (Straddling Set Systems ([BGK+14], adapted)). For n ∈ N, an n-straddling set
system over a set S consists of two partitions of S:

S0 = (S0,1, . . . , S0,n) , S1 = (S1,1, . . . , S1,n)

with the following property. Fix T ⊆ S, and let T0, T1 be subsequences of S0,1, . . . , S0,n, S1,1, . . . , S1,n
such that each of T0, T1 is a partition of T , and T0 6= T1 (i.e., they are not the same subsequence).
Then each of T0, T1 is one of the original partitions S0,S1, and T = S.

As an immediate corollary, we note that the only partitions of S that can be formed using sets
in S0,S1 are the partitions S0,S1 themselves.

Corollary 2.20. Fix an integer n, a set S, and an n-straddling set system (S0 = (S0,1, . . . , S0,n), S1 =
(S1,1, . . . , S1,n)) over S. Let T be a subsequence of S0,1, . . . , S0,n, S1,1, . . . , S1,n. If T is a partition
of S, then either T = S0 or T = S1.

Proof. Suppose T 6= S1. Then T and S1 each partition S but are not the same subsequence, and
by Definition 2.19 we conclude T = S0.

In fact, the simple construction of straddling sets in [BGK+14] already satisfies our stronger
definition. For completeness, we reproduce their construction and extend the proof to our setting.
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Construction 2.21 (Construction of Straddling Set Systems ([BGK+14], adapted)). Fix an inte-
ger n. We construct an n-straddling set system over the set S = [2n− 1] (and hence over any set
with 2n− 1 elements). Define:

S0 = (S0,1, . . . , S0,n) = ({1}, {2, 3}, {4, 5}, . . . , {2n− 4, 2n− 3}, {2n− 2, 2n− 1})

S1 = (S1,1, . . . , S1,n) = ({1, 2}, {3, 4}, {5, 6}, . . . , {2n− 3, 2n− 2}, {2n− 1})

Lemma 2.22 (Straddling Set Systems ([BGK+14], adapted)). For each integer n, Construc-
tion 2.21 is an n-straddling set system over [2n− 1].

Proof. Let T0, T1 be subsequences of S0,1, . . . , S0,n, S1,1, . . . , S1,n, such that each of T0, T1 is a par-
tition of the same subset T ⊆ [2n − 1]. We proceed by induction on the size of T . Consider any
maximal contiguous interval [a, b] in T (i.e., so that [a, b] ⊆ T but a−1, b+1 /∈ T ). If a is even, then
the only set containing a but not a− 1 is S0,a/2, so this set must be in both T0 and T1; removing it
reduces the size of T by 2 and we invoke the inductive hypothesis. If a is odd but not equal to 1,
then the same argument applies with S1,(a+1)/2; if b is even, the same argument applies with S1,b/2;
and if b is odd but not equal to 2n−1, then the same argument applies with S0,(b+1)/2. So the only
remaining case is a = 1 and b = 2n− 1, and hence T = [2n− 1].

Now, since T0 covers the element a = 1, it must contain either S0,1 or S1,1. Without loss of
generality suppose it contains S0,1. Then since S0 also contains S0,1, we find that T0 \ {S0,1} and
S0\{S0,1} are partitions that cover [2, 2n−1], and by the inductive hypothesis we conclude T0 = S0.
Since the same argument applies to T1, this proves the claim.

3 Construction

We now present our main obfuscation construction (Construction 3.1), which acts on keyed circuits
(Section 2.4) as depicted in Figure 3. (We note that we can obtain keyed circuit families from various
other machine models, including general Boolean circuits, by the transformations of Section 2.4.)

Construction 3.1 (Virtual Black-Box Obfuscation). Let CM = (CM.Setup, CM.Add, CM.Mult,
CM.ZeroTest, CM.Encode) be a composite-order multilinear map (Definition 2.8). Fix an input
(C,y), where y ∈ {0, 1}m, and C : {0, 1}n × {0, 1}m → {0, 1} is an arithmetic circuit (representing
the keyed circuit Cy, as in Section 2.4). Let d be the depth of the circuit C; let deg(y) be the total
degree of C in all of the variables y1, . . . , ym; and for each i ∈ [n] let deg(xi) be the degree of C in
the variable xi. For a security parameter λ ∈ N (represented in unary), the obfuscation procedure
O(1λ, C,y) operates as follows.

O(1λ, C,y):

1. For each i ∈ [n], let (Si,b,1, . . . , Si,b,n)b∈{0,1} be an n-straddling set system (Lemma 2.22)
over a set Si of (2n − 1) fresh formal symbols. For each b ∈ {0, 1} and i ∈ [n], define
BitCommiti,b = Si,b,i. For each b1, b2 ∈ {0, 1} and i1, i2 ∈ [n] such that i1 < i2, define
BitFilli1,i2,b1,b2 = Si1,b1,i2Si2,b2,i1 .

2. Construct the following index set of fresh formal symbols (Definition 2.7) as the top-level
index set:

U = Y deg(y)
∏
i∈[n]

(Xi,0Xi,1)
deg(xi)ZiWiSi

21



x1 x2 x3 . . .
xn

Input: x ∈ {0, 1}n

y1 y2 . . . ym

Key: y ∈ {0, 1}m

+ ×

..

.
..
.

..

.

Output: C(x1, · · · , xn, y1, . . . , ym)

Figure 2: A keyed circuit family, defined by a “universal” arithmetic circuit C : {0, 1}n ×
{0, 1}m → {0, 1}, which can be input to our main obfuscation construction (Construction 3.1).
In Figure 3, below, we illustrate the evaluation procedure O.Eval for this circuit C.

3. Run (CM.pp,CM.sp, Nev, Nchk) ← CM.Setup(U , 1d+λ, 2), indicating a security parameter of
d+λ for the multilinear map, and a modulus that decomposes into two factors N = NevNchk.

4. For each i ∈ [n], generate uniformly random values αi, γi,0, γi,1 ← Z∗Nchk
and δi,0, δi,1 ← Z∗Nev

.
For each j ∈ [m], generate a uniformly random value βj ← Z∗Nchk

.

5. Compute the check value C∗ = C(α1, . . . , αn, β1, . . . , βm) ∈ ZNchk
.

6. Using CM.Encode(CM.sp, ·), for i ∈ [n], j ∈ [m], and b ∈ {0, 1}, generate the following encoded
ring elements (using the notation of Remark 2.9):

x̂i,b = [b, αi]Xi,b ûi,b = [1, 1]Xi,b ŷj = [yj , βj ]Y v̂ = [1, 1]Y

ẑi,b = [δi,b, γi,b]Xdeg(xi)

i,1−b ZiWi BitCommiti,b
ŵi,b = [0, γi,b]Wi BitCommiti,b

Ĉ∗ = [0, C∗]Y deg(y)
∏
i∈[n](Xi,0Xi,1)

deg(xi)Zi

For b1, b2 ∈ {0, 1} and each i1, i2 ∈ [n] such that i1 < i2, generate the following encoded ring
elements (using the notation of Remark 2.9):

ŝi1,i2,b1,b2 = [1, 1]BitFilli1,i2,b1,b2

For notational convenience, for each i2 < i1 ∈ [n], we also define ŝi2,i1,b2,b1 = ŝi1,i2,b1,b2 . We
refer to the elements ûi,b, v̂, ŝi1,i2,b1,b2 as unit encodings, since they each encode 1 ∈ ZN , and
they are incorporated solely for their effect on the index sets.

7. Output the values above, along with the public parameters of the multilinear map:

O(1λ, C,y) =
(

CM.pp, (x̂i,b, ûi,b, ẑi,b, ŵi,b)i∈[n],b∈{0,1}, (ŷj)j∈[m], v̂, Ĉ∗,

(ŝi1,i2,b1,b2)b1,b2∈{0,1},i1<i2∈[n]

)
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To evaluate the obfuscated program C̃y = O(1λ, C,y) on an input x = x1 · · ·xn ∈ {0, 1}n, the
evaluation procedure O.Eval(C̃y, C,x) operates as follows.

O.Eval(C̃y, C,x):

1. Using the procedures CM.Add(CM.pp, ·, ·) and CM.Mult(CM.pp, ·, ·), along with the unit en-
codings (ûi,xi , v̂), evaluate the circuit C on the encoded inputs x̂1,x1 , . . . , x̂n,xn , ŷ1, . . . , ŷm. In
other words, substitute the values x̂1,x1 , . . . , ŷm for the corresponding input wires x1,x1 , . . . , ym;
and, for each gate in the circuit, substitute one of the following operations:

• For a multiplication gate, on operands [a]S , [b]T , output CM.Mult(CM.pp, [a]S , [b]T ) =
[ab]ST .

• For an addition gate, we cannot substitute an invocation of CM.Add (since the index
sets of the encoded operands need not match), so instead we substitute the following
procedure (Figure 3, box “O(+)”). Suppose the input values to the addition gate are
the encoded elements [a]S , [b]T for index sets S, T ⊆ U . Using CM.Mult, multiply each
term [a]S , [b]T by the powers of unit encodings (ûi,xi , v̂) that are minimally necessary to
make the index set S ∪ T for both resulting elements. Then, using CM.Add, output the
sum of the two.

We note that the result of this procedure, for each sub-circuit of C, will be an encoding
whose index set contains factors corresponding to each input variable (Xi,b, Y , resp., for
x̂i,b, ŷj), raised to the power of the degree of the given sub-circuit in those variables. Thus
in particular, at the end of the evaluation, the final term will be encoded at the index set

Y deg(y)
∏
i∈[n]X

deg(xi)
i,xi

. We denote this final term Ĉ as follows:

Ĉ = [C(x1, . . . , xn, y1, . . . , ym), C(α1, . . . , αn, β1, . . . , βm)]
Y deg(y)

∏
i∈[n]X

deg(xi)
i,xi

(We remark that while we present simple algorithms here for clarity, there are many natural
optimizations; for details, we refer the reader to Section 4.)

2. Using the procedures CM.Add, CM.Mult, compute the following unit encoding:

σ̂ =
∏

i1<i2∈[n]

ŝi1,i2,xi1 ,xi2

3. Using the procedures CM.Add, CM.Mult, compute the following encoded element:

z =

Ĉ ∏
i∈[n]

ẑi,xi − Ĉ∗
∏
i∈[n]

ŵi,xi

 · σ̂
4. Run CM.ZeroTest(CM.pp, z). If it outputs “zero”, output 0; if “nonzero”, output 1.

Correctness of the construction. We first show that Construction 3.1 is correct, which is fairly
straightforward from the definitions of the multilinear map operations.

Lemma 3.2 (Correctness of Construction 3.1). Let the procedures O,O.Eval be defined as in
Construction 3.1, and fix an arithmetic circuit C : {0, 1}n × {0, 1}m → {0, 1}, a key y ∈ {0, 1}m,
and an input x ∈ {0, 1}n. If C̃y ← O(C,y), then we have O.Eval(C̃y, C,x) = C(x,y).
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Eval: O(C)(x1 = 0,x2 = 1, . . . , xn, y1, . . . , ym)

Ĉ = [C(x1, . . . , xn, y1, . . . , ym), C∗=C(α1, . . . , αn, β1, . . . , βm)]
Y deg(y)

∏
iX

deg(xi)
i,xi

x̂1,0 = [0, α1]X1,0

û1,0 = [1, 1]X1,0

x̂1,1 = [1, α1]X1,1

û1,1 = [1, 1]X1,1

x̂2,0 = [0, α2]X2,0

û2,0 = [1, 1]X2,0

x̂2,1 = [1, α2]X2,1

û2,1 = [1, 1]X2,1

. . .
ŷ1 = [y1, β1]Y ŷm = [ym, βm]Y

v̂ = [1, 1]Y

. . .

[1, α1 + α2]X1,0X2,1 [y1, α2β1]X2,1Y

.

.

.

O(+):

x̂1,0û2,1 + x̂2,1û1,0

O(×):

x̂2,1 · ŷ1

Figure 3: The first step of the evaluation procedure O.Eval, for an obfuscated version of the
keyed arithmetic circuit C from Figure 2. First, we use the bits of the input string x (e.g.,
x1 = 1, x2 = 0, . . ., xn) to select the relevant input encodings x̂1,1, x̂2,0, . . . , x̂n. We then run
C directly on the encodings x̂1,1, x̂2,0, . . . , ŷ1, . . . , ŷm, substituting multilinear map operations
for the corresponding arithmetic gates, and using the unit encodings ûi,xi , v̂ to raise the index
sets of intermediate encodings as needed so that the operands to addition gates match.

Proof. First, we show that the zero-test query z has the correct index set. As described above, the

result of the evaluation, Ĉ, has the index set Y deg(y)
∏
iX

deg(xi)
i,xi

, while each ẑi,xi has the index set

X
deg(xi)
i,1−xi ZiWiBitCommiti,xi . The variable Ĉ∗ has the index set Y deg(y)

∏
i(Xi,0Xi,1)

deg(xi)Zi, while

each ŵi,xi has the index set WiBitCommiti,xi . Thus, both terms Ĉ
∏
i ẑi,xi and Ĉ∗

∏
i ŵi,xi have the

following index set:

Y deg(y)
∏
i∈[n]

(Xi,0Xi,1)
deg(xi)ZiWiSi,xi,i

Finally, each variable ŝi1,i2,xi1 ,xi2 has the index set BitFilli1,i2,xi1 ,xi2 = Si1,xi1 ,i2Si2,xi2 ,i1 , and thus
the index set of the entire query z is the top-level index set U , as desired.

Now, we consider the value of each zero-test query z, in both components (modulo Nev and
modulo Nchk). Since the unit encodings ŝi1,i2,xi1 ,xi2 take the value 1 ∈ ZN , they do not affect the
real value of z, so we can drop the factor of σ̂, and we need only consider the value of the following
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expression:

z′ = Ĉ
∏
i∈[n]

ẑi,xi − Ĉ∗
∏
i∈[n]

ŵi,xi

The first component of this value z′ will evaluate to C(x,y)·
∏
i δi,xi , and since each δi,xi is invertible

in ZNev , this quantity is zero precisely when C(x,y) = 0. Meanwhile, the second component will
be C(α1, . . . , αn, β1, . . . , βm) ·

∏
i γi,xi − C(α1, . . . , αn, β1, . . . , βm) ·

∏
i γi,xi = 0 always.

Succinctness. In Construction 3.1, we instantiate the multilinear map with a security parameter
of d + λ, rather than λ. As we will see in Section 3.5, this term reflects the bound from the
Schwartz-Zippel identity testing algorithm. This is somewhat unsatisfying, since it prevents us
from constructing succinct obfuscation (Definition 2.17), and intuitively it does not seem necessary
to prove security. Indeed, it turns out that if we assume the hardness of factoring, then we can
eliminate the extra term. We will explore this adaptation and its proof in Section 3.5; for now, we
just state the modified (“succinct”) version of the construction.

Construction 3.3 (Virtual Black-Box Obfuscation (Succinct Version)). Proceed as in Construc-
tion 3.1, except in step 3, provide 1λ as the security parameter to CM.Setup, rather than 1d+λ.

Remark 3.4 (Indistinguishability Obfuscation). Our main results will show that Construction 3.1
achieves VBB obfuscation in the generic model of composite-order multilinear maps. However, we
note that if we only need the weaker notion of indistinguishability obfuscation [BGI+01], then we
can obtain better parameters by eliminating some of the encodings. For continuity, we defer the
details of this modification to Appendix A.

3.1 Main Theorems

We now state our main theorems, which show that our construction achieves VBB obfuscation in
a generic model of composite-order multilinear maps. Our construction works either with “noisy”
multilinear maps, which can be instantiated with the CLT scheme, or with “clean” maps, whose
existence is still open. Since we work with circuits directly, unlike previous approaches which first
convert them to branching programs, there is no inherent reason that our construction cannot be
applied directly to all polynomial-size circuits.

Indeed, assuming “clean” maps (whose existence is still open), we are able to prove VBB
obfuscation for P/poly (in the generic model) directly, without the additional assumption of FHE
as in the work of Garg et al. [GGH+13b]. In fact, under the additional assumption that factoring
integers is hard on average, we are also able to show that our construction (in its succinct variant,
Construction 3.3) achieves succinct VBB obfuscation (Definition 2.17) for P/poly.

Theorem 3.5. Suppose that factoring is hard (Assumption 3.11). Then Construction 3.3 achieves
succinct virtual black-box obfuscation for P/poly in the generic model of clean composite-order
multilinear maps.

For completeness, we also prove the non-succinct version of Theorem 3.5, since there we do not
assume the hardness of factoring.13

13We remark that this distinction is nontrivial: as far as we know, the existence of composite-order multilinear maps
does not necessitate the hardness of factoring, even though the concrete instantiation via the CLT scheme [CLT13]
would be broken if factoring were easy.
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Theorem 3.6. Construction 3.1 (composed with a universal circuit simulation, Construction 2.4)
achieves virtual black-box obfuscation for P/poly in the generic model of clean composite-order
multilinear maps.

Of course, it is still unknown whether “clean” multilinear maps exist, and thus we prove sepa-
rately that we achieve obfuscation for NC1 given only “noisy” maps, which can be instantiated with
the CLT scheme. As usual, we are unable to construct obfuscation for poly-size circuits directly
from “noisy” maps, since the noise growth still increases with the degree (which is potentially ex-
ponential in the circuit depth). Still, we note that our construction is somewhat more general than
the theorem suggests: even with “noisy” maps, our construction also works for arithmetic circuits
whose depth is superlogarithmic but whose degree remains polynomial.

Theorem 3.7. Construction 3.1 (composed with a universal circuit simulation, Construction 2.5)
achieves virtual black-box obfuscation for NC1 in the generic model of noisy composite-order mul-
tilinear maps.

In the “noisy” case, we do not prove the corresponding theorem for succinct obfuscation, since
in our definition (and in all known instantiations), the representation size of a ring element in a
“noisy” multilinear map grows with the degree of multilinearity required. However, we remark that
the analogous theorem would hold in the case of “noisy” multilinear maps whose representation
size was nevertheless independent of the noise bound—the existence of such maps is also unknown.

In order to prove our main theorems (Theorems 3.5, 3.6, and 3.7), we first introduce a number
of key ingredients in the proof.

3.2 Proof Ingredient: The Schwartz-Zippel Algorithm

In our obfuscation construction, the values in the second component of the direct product (ZNchk
)

force the adversary to run the Schwartz-Zippel algorithm implicitly on his chosen query, making
the result useless if he submits the wrong polynomial. In order to use this fact in our security
proof, we first recall the Schwartz-Zippel lemma and the corresponding algorithm for polynomial
identity testing. We adapt the algorithm to our setting, in which we work with polynomials over
the integers, but must test them using finite fields Zp for (independent) random primes p.

Construction 3.8 (Schwartz-Zippel Algorithm ([DL78, Zip79, Sch80], adapted)). We describe an
efficient randomized algorithm SZTest to decide whether a given arithmetic circuit C(x1, . . . , xn)
computes a multivariate polynomial that is identically zero in Z[x1, . . . , xn]. The algorithm takes
as input the circuit C, along with a security parameter λ (written in unary).

SZTest(1λ, C):

1. Choose a prime p← Primes[2λ, 2λ+1], and values α1, . . . , αn ← Uniform(Z∗p).
2. Output “zero” if C(α1, . . . , αn) = 0 (mod p), and output “nonzero” otherwise.

We note that step (2) is polynomial-time by construction, while the prime number theorem, along
with any efficient primality test, implies that step (1) is also polynomial-time. Further, if C ≡ 0
then by definition SZTest outputs “zero”. So the only interesting case is C 6≡ 0, for which we now
state an adaptation of the original Schwartz-Zippel lemma.

Lemma 3.9 (Schwartz-Zippel Lemma ([DL78, Zip79, Sch80], adapted)). Let p be a prime, and
let f ∈ Zp[x1, . . . , xn] be a multivariate polynomial of total degree δ, not identically zero. Then we
have the following bound:

Pr[α1, . . . , αn ← Uniform(Zp) ; f(α1, . . . , αn) = 0 ] < δ/p
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In our main proofs below, we will want to apply the Schwartz-Zippel lemma not just over prime-
order finite fields, but also over the integers. We state the following corollary, which shows that for
polynomials in Z[x1, . . . , xn], an analogous result holds, as long as the coefficient of each monomial
is bounded appropriately (e.g., due to the fact that the polynomial is computed by a small circuit).

Corollary 3.10. For all polynomials r, s, there is a negligible function ε such that the following
holds. For all integers n, λ > 0 and every arithmetic circuit C 6≡ 0 ∈ Z[x1, . . . , xn] of size at most
s = s(λ) and total degree at most 2r = 2r(λ), we have Pr

[
SZTest(1λ+r(λ), C)→ “zero”

]
< ε(λ).

Proof. Fix such an arithmetic circuit C 6≡ 0 ∈ Z[x1, . . . , xn], and consider the formal expansion
of C (as a polynomial over the integers) into monomials in its formal variables x1, . . . , xn, without
collecting like terms. The number of monomials is at most 22

rs, and thus even after collecting like
terms, the maximum magnitude of the coefficient of any monomial is bounded by 22

rs. Since C 6≡ 0,
one such coefficient is nonzero; let Axa11 x

a2
2 · · ·xann be the lexicographically first such monomial, so

that A 6= 0 and |A| < 22
rs. Now, |A| has at most 2rs distinct prime factors, and in particular,

when p← Primes[2r+λ, 2r+λ+1], the probability that p divides A is at most 2rs/Θ(2r+λ/(r+ λ)) =
negl(λ), by the prime number theorem. In other words, with overwhelming probability, the formal
polynomial C is not identically zero when regarded modulo p. Since its degree is at most 2r, the
claim now follows by the Schwartz-Zippel lemma (Lemma 3.9).

3.3 Proof Ingredient: Computational Schwartz-Zippel

The Schwartz-Zippel lemma (along with our adaptation, Corollary 3.10) suffices for our main
security argument, but requires SZTest to be invoked with a security parameter that grows with the
depth of the circuit being tested. Since we are not the ones running SZTest—rather, we are forcing
the adversary to run the algorithm implicitly, in the second component of our ring elements—this
means that the size of the modulus Nchk must grow with the depth of the circuit to be obfuscated.
Even with a “clean” multilinear map, the parameters of the map would depend on each specific
circuit, and we would not be able to construct succinct obfuscation (Definition 2.17), nor would
it make sense to analyze our construction in terms of the number of ring elements and operations
required (Section 4).

To solve this problem, we refer to an elegant idea of Boneh and Lipton [BL97]. In that work
the authors observe that, assuming factoring integers is hard on average, it must be the case that
polynomials f ∈ Z[x] with “too many” roots modulo “too many” primes are difficult to evaluate
(roughly speaking). Indeed, if there were an efficient way to evaluate such f , then one could also
evaluate f modulo a given composite N = pq, and with nonnegligible probability obtain a value
that is zero modulo one of {p, q} but not the other (and hence factor N).

We view the contrapositive of the Boneh-Lipton result as a computational analog of the Schwartz-
Zippel lemma. In other words, even though there are many polynomials f of degree 2d � 2λ for
which SZTest(1λ, f) is often wrong, we conjecture that no such f can be computed by small circuits.
More precisely, we now state our generalization of the Boneh-Lipton result as Lemma 3.12, based
on the hardness of factoring (which we formalize in a standard way).

Assumption 3.11 (Factoring is Hard). For every polynomial s, there is a negligible function ε such
that the following holds. For every family of circuits C = (C1, C2, . . .), where each C` : {0, 1}` →
{0, 1}` is a circuit of size at most s(`), and every r ∈ Z, we have

Pr[ p, q ← Primes[r, 2r] ; C2(lg r+1)(pq) ∈ {p, q} ] < ε(lg r) .
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Lemma 3.12 (Computational Schwartz-Zippel Lemma). Suppose factoring is hard (Assumption 3.11).
Then for every polynomial s, there is a negligible function ε such that for all λ ∈ N and every arith-
metic circuit C 6≡ 0 (over the integers) of size at most s(λ), we have Pr

[
SZTest(1λ, C)→ “zero”

]
<

ε(λ).

Proof. The proof is similar to that of Boneh and Lipton [BL97]. For sake of contradiction, suppose
there is a polynomial s, a constant c > 0, and an increasing sequence of integers (λ1, λ2, . . .), such
that for each λi, there is a circuit Ci of size at most s(λi) for which Pr

[
SZTest(1λ, C)→ “zero”

]
>

1/λc. We now consider the following algorithm for factoring in P/poly.

CompSZFactor(N):

1. For each i such that λi < lgN :

(a) Choose values α1, . . . , αn ← ZN \ {0, 1} uniformly at random. If one of these values αj
is not prime to N , immediately output gcd(αj , N).

(b) Compute z = Ci(α1, . . . , αn) mod N . If z is not prime to N , immediately output
gcd(z,N).

2. Output 1 (indicating failure).

We now bound the probability that CompSZFactor fails to output a proper factor of N , when
N is generated as specified in Assumption 3.11. To do this, we first define the following quantity
(for an arithmetic circuit C ∈ Z[x1, . . . , xn]):

RootDensity(C, r) = Pr
[
p← Primes[r, 2r] ; x1, . . . , xn ← Uniform(Z∗p) ;

C(x1, . . . , xn) ≡ 0 (mod p)
]

Now fix some λ = λi ∈ (λ1, λ2, . . .), and the corresponding circuit C = Ci. By assumption, we have
RootDensity(C, 2λ) > λ−c. On the other hand, we know that RootDensity(C, ·) must eventually
go to zero, by the ordinary Schwartz-Zippel lemma (Corollary 3.10). More precisely, the total
degree of C ∈ Z[x1, . . . , xn] is at most 2s(λ), and hence for r > 2λ·s(λ) we have RootDensity(C, r) <
2s(λ)/2λ·s(λ) = 1/2λ, by Corollary 3.10.

In other words, we know that RootDensity(C, r) is nonnegligible for small r, and becomes neg-
ligible for large r. We now observe that RootDensity(C, r) cannot vary too fast with r. To wit,
since the intervals [r, 2r] and [(r + 1), 2(r + 1)] differ (as sets) by at most a constant number of
primes, the prime number theorem guarantees that for each r > 0, we have |RootDensity(C, r) −
RootDensity(C, r + 1)| < Θ(lg r/r); and, for r > 2λ, this difference is at most Θ(λ/2λ). Since
RootDensity(C, 2λ) > λ−c and RootDensity(C, 2λ·s(λ)) < 1/2λ, we conclude that for sufficiently large
λ, there exists some value r, with 2λ < r < 2λ·s(λ), such that λ−c/3 < RootDensity(C, r) < λ−c/2.
For each λ = λi, let ri be such a value r (chosen arbitrarily).

Finally, to reach a contradiction, we will show that for each i ∈ N, when N is generated
as a product of primes p, q ← Primes[ri, 2ri], the algorithm CompSZFactor(N) succeeds with
probability 1/poly(lg ri). First, since N = pq ≥ r2i and ri > 2λi , we have λi < lgN , so the
loop variable in CompSZFactor will take the value λi during some iteration. At this point, since
λ−c/3 < RootDensity(C, r) < λ−c/2, we know that with probability at least λ−c/3 · (1 − λ−c/2),
the value z will be zero modulo p and not modulo q, and hence gcd(z,N) will be a proper factor
of N . Since λ < lg r < λ · s(λ), the success probability bound λ−c/3 · (1− λ−c/2) is polynomial in
lg r, as desired.
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3.4 Proof Ingredient: Evaluation Constraints via Index Sets

Our main construction (Construction 3.1) uses index sets to enforce constraints on the adversary’s
evaluation. Notably, we aim to prevent the adversary from constructing zero-test queries that
are inconsistent—i.e., use encodings that correspond to contradictory values of a given input bit
xi—as well as queries that correspond to superpolynomially many inputs x, which would make our
simulation procedure inefficient.

In this section, to show that our design of the index sets indeed prevents these undesired queries,
we state and prove a few simple “structure lemmas”, showing that all valid query polynomials have
a certain form. To prove these structure lemmas, our techniques are similar to those of Brakerski
and Rothblum [BR14] and Barak et al. [BGK+14], and we begin by adapting the definition of input
profiles from the latter work. Intuitively, an input profile of a monomial t is a “bit mask” indicating,
for each bit index i ∈ [n], what value the monomial has chosen for the input bit xi, based on its
formal variables (x̂i,0 vs. x̂i,1, ûi,0 vs. ûi,1, and so on).

Definition 3.13 (Input Profiles ([BGK+14], adapted)). Fix a monomial t (with integer coefficient)
over the formal variables of Construction 3.1 (Remark 2.11, Definition B.1). For each i ∈ [n] and
b ∈ {0, 1}, if t contains some formal variable in the list (x̂i,b, ûi,b, ẑi,b, ŵi,b, ŝi,i′,b,b′ , ŝi′,i,b′,b) (for some
i′ ∈ [n], b′ ∈ {0, 1}), then we say t incorporates b as its ith bit.

If for some index i ∈ [n], the monomial t incorporates both b = 0 and b = 1 as its ith bit, then
we define t’s input profile, prof(t), to be ⊥. Otherwise, we define prof(t) to be the string b1 · · · bn,
where, for each i ∈ [n], bi is the bit that t incorporates as its ith bit, if any; and otherwise, bi = ∗.
We say a profile is partial if it contains the symbol ∗ at some position. We say that two input
profiles r1, r2 conflict if for some i we have prof(r1)i 6= prof(r2)i ∈ {0, 1}. For non-conflicting input
profiles prof(r1), prof(r2) we say that their merge is the string whose ith bit matches whichever of
prof(r1)i,prof(r2)i is not ∗, or if both are ∗, then ∗.

We extend this definition to polynomials r as follows. If for some monomial t in the formal
expansion of r (without cancellation), we have prof(t) = ⊥, then we define prof(r) = ⊥. Otherwise,
we define prof(r) to be {prof(t) : t in the expansion of r}.

Lemma 3.14 (Partial Terms Cannot Be Added). Fix monomials t1, t2 (with integer coefficients)
over the formal variables of Construction 3.1 (Remark 2.11, Definition B.1). Suppose that prof(t1) 6=
prof(t2), neither prof(t1) nor prof(t2) is ⊥, and at least one of the two is partial (Definition 3.13).
Then t1 and t2 do not have the same index set.

Proof. Without loss of generality, fix some b ∈ {0, 1} such that prof(t1)i = b and prof(t2)i 6= b. We
note that t2 cannot contain a factor of x̂i,b, ûi,b, ẑi,b, ŵi,b, or ŝi,i′,b,b′ (for i′ ∈ [n], b′ ∈ {0, 1}), since
otherwise either prof(t2)i = b or prof(t2) = ⊥. We consider the following cases.

• Suppose t1 contains a factor of ẑi,b or ŵi,b. Then its index set was formed using BitCommiti,b =
Si,b,i. Since t2 contains neither ẑi,b nor ŵi,b, its index set was not formed using BitCommiti,b =
Si,b,i. By construction of the straddling set system (Definition 2.19), we conclude that if
t1 and t2 have the same index set, then this index set contains every element of Si. For
each i′ ∈ [n], if i′ 6= i, the only encodings that contain Si,b,i′ are (ŝi,i′,b,b′ , ŝi′,i,b′,b) for some
b′ ∈ {0, 1}. This implies that both t1 and t2 contain a factor of ŝi,i′,b,b′ (for some b′ ∈ {0, 1})
for every i′ ∈ [n], contradicting our assumption that one of the two profiles is partial.

• Suppose t1 does not contain a factor of ẑi,b or ŵi,b, but does contain ŝi,i′,b,b′ for some i′ ∈
[n], b′ ∈ {0, 1}. Then its index set was formed using Si,b,i′ , while that of t2 was not; and by the
argument of the previous case, this contradicts our assumption that one of the two profiles is
partial.
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• Suppose t1 does not contain a factor of ẑi,b, ŵi,b, or ŝi,i′,b,b′ . Then t1 must contain one or
more factors of x̂i,b or ûi,b. This implies that the degree of t1’s index set in the variable Xi,b

is nonzero. Since by assumption t2 contains no factors of x̂i,b, ûi,b, the only way for the index

sets to match is if t2 contains Ĉ∗ or ẑi,1−b, and hence the common index set must contain Zi.

By assumption t1 contains neither ẑi,b nor ẑi,1−b, so it must contain Ĉ∗. But this implies that
the degree of Xi,b in t1’s index set exceeds deg(xi), so t1’s index set is not contained in U ,
which is prohibited by definition. So we conclude that the two monomials t1, t2 have different
index sets, as desired.

Lemma 3.15 (Characterization of Input Profiles in Construction 3.1). Fix an efficient adversary A
in the generic model of composite-order multilinear maps (Definition 2.10), and consider a formal
polynomial r produced by A, over the variables of Construction 3.1 (Remark 2.11, Definition B.2).
The input profile prof(r) (Definition 3.13), is either (a) ⊥, (b) a set of strings in {0, 1}n, none of
which is partial; or (c) a singleton set whose one element is partial; and prof(r) can be computed
efficiently by examining r. Further, the union of prof(r) over all formal polynomials r produced by
A is a set of polynomial size.

Proof. By induction on the sequence of formal polynomials r formed by A via oracle queries. For
each query, forming a polynomial r, we consider the following cases.

• Suppose r = r1 + r2, for some formal polynomials r1, r2 already formed. If either prof(r1) or
prof(r2) is ⊥, then evidently prof(r) = ⊥, so we assume that neither prof(r1) nor prof(r2) is
⊥. This leaves two cases.

– Suppose that both prof(r1) and prof(r2) are sets of strings, none of which is partial.
Then prof(r) = prof(r1) ∪ prof(r2), and again none of the elements is partial.

– Suppose that one of the two is a singleton set whose one element is partial (without
loss of generality, suppose this is prof(r1)). Now, if prof(r2) = prof(r1), then evidently
prof(r) = prof(r2) = prof(r1). On the other hand, if prof(r2) 6= prof(r1), then r1
and r2 contain two monomials in their formal expansions, resp., t1 and t2, such that
prof(t1) 6= prof(t2) and prof(t1) is partial, contradicting Lemma 3.14.

• Suppose r = r1r2, for some formal polynomials r1, r2 already formed. If either prof(r1) or
prof(r2) is ⊥, then evidently prof(r) = ⊥, so we assume that neither prof(r1) nor prof(r2) is
⊥. This leaves two cases.

– Suppose that at least one of prof(r1) and prof(r2) is a set of polynomially many strings,
none of which is partial (without loss of generality, suppose prof(r1) satisfies this con-
dition). Then we find that by definition, the profile of the result is either ⊥ (if prof(r2)
is ⊥ or contains any string that conflicts pairwise with one of prof(r2)), or else is just
prof(r1).

– Suppose prof(r1) and prof(r2) are each a singleton set whose one element is partial.
Then we find that by definition, their product is either ⊥ (if the two conflict), or else a
singleton set (merging the two).

• Suppose r = v for a formal variable v. Then prof(r) is a singleton set whose one element is ∗
at every position, except for the bit b at position i if v is one of the variables (x̂i,b, ẑi,b, ŵi,b).

• Suppose r = c for a constant c ∈ Z. Then prof(r) is a singleton set whose one element is ∗ at
every position.
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Finally, to establish the bound on the union over all polynomials produced, we note that the only
case in which a new string appears in an input query is via the second case in a multiplication
query, r = r1r2, in which input profiles are merged. In this case, the merge occurs between two
singleton sets, and so each query introduces at most one new string as an input profile. Since the
adversary can make only polynomially many oracle queries the claim follows.

Lemma 3.16 (Characterization of Zero-Test Polynomials in Construction 3.1). Fix an efficient ad-
versary A in the generic model of composite-order multilinear maps (Definition 2.10), and consider
a formal polynomial z produced by A at the top-level index set U , over the variables of Construc-
tion 3.1 (Remark 2.11, Definition B.2). Any monomial t that occurs in the formal expansion of z
(without cancellation) has one of the following two forms:

1. For some bits x1, . . . , xn ∈ {0, 1}, and constant a ∈ Z, we have:

t = aĈ∗

∏
i∈[n]

ŵi,xi

 ∏
i1<i2∈[n]

ŝi1,i2,xi1 ,xi2


2. For some bits x1, . . . , xn ∈ {0, 1}, and monomial function h, we have:

t = h(x̂1,x1 , . . . , x̂n,xn , û1,x1 , . . . , ûn,xn , (ŷj)j∈[m], v̂)

∏
i∈[n]

ẑi,xi

 ∏
i1<i2∈[n]

ŝi1,i2,xi1 ,xi2


Proof. The claim follows by case analysis on the construction of the top-level index set U as the
index set of the monomial t. Since U contains the index set

∏
i∈[n] Zi, the monomial t must contain

as factors some encodings yielding each Zi, but the only such encodings are Ĉ∗ and the ẑi,b. We
consider two cases.

1. Suppose t contains Ĉ∗ as a factor. Then the only remaining indices in U are the Wi and
Si, which means the monomial t must contain only the variables Ĉ∗ and some subset of
the ŵi,b, ŝi,i′,b,b′ . Further, since each Wi appears exactly once in the top-level index set U ,
the monomial t must contain exactly one of (ŵi,0, ŵi,1) for each i ∈ [n]. We define xi ∈
{0, 1} so that t contains ŵi,xi for each i ∈ [n]. This implies that the index set of t contains
BitCommiti,xi = Si,xi,i. Since the index set of t is U , which contains exactly one copy of
Si ⊃ Si,xi,i, the properties of straddling set systems (Corollary 2.20) imply that for each
i′ 6= i ∈ [n], the monomial t contains exactly one factor whose index set contains Si,xi,i′ .
The only such variables are the ŝi,i′,xi,b′ , ŝi′,i,b′,xi for some b′ ∈ {0, 1}; and by a symmetric
argument, we conclude that for each i < i′ ∈ [n], the value of b′ in the variable ŝi,i′,xi,b′ must
be xi′ , establishing case (1) of the lemma.

2. Suppose t does not contain Ĉ∗ as a factor. Then it must have obtained each index Zi from
some other encoding. The only such encodings are the ẑi,b, and since each Zi appears exactly
once in U , the monomial t must contain exactly one of (ẑi,0, ẑi,1) for each i ∈ [n]. As in the
previous case, define xi ∈ {0, 1} so that t contains ẑi,xi for each i ∈ [n]. Now since the index

set of ẑi,xi contains a factor of X
deg(xi)
i,1−xi , and the top-level index set U contains only deg(xi)

copies of Xi,1−xi , we conclude that for each i ∈ [n], the monomial t does not contain any
factors of x̂i,1−xi , ûi,1−xi . In other words, it can be expressed as a monomial in the remaining
encodings (x̂1,x1 , . . . , x̂n,xn , û1,x1 , . . . , ûn,xn , ŷj , v̂, ŝi,i′,b,b′). Since the index set of t also contains
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BitCommiti,xi = Si,xi,i (via ẑi,xi), by the argument of the previous case we conclude that the
variables ŝi,i′,b,b′ that occur in t are precisely ŝi1,i2,xi1 ,xi2 for i1 < i2, satisfying case (2) of the
lemma.

Lemma 3.17. Fix an efficient adversary A. For every valid zero-test polynomial z produced by
A in the security game for Construction 3.1 (in the generic model of composite-order multilinear
maps), its input profile prof(z) is a set of strings in {0, 1}n, of polynomial size, none of which is
partial. Further, this set can be computed efficiently by examining z.

Proof. Immediate from Lemma 3.15 and Lemma 3.16.

3.5 Main Proof

We are now equipped to prove the security theorems for our main construction (Theorems 3.5, 3.6,
and 3.7). The three proofs are very similar, so we will present them all at once, with case analysis
only when the approaches differ.

Proof of Theorems 3.5, 3.6, and 3.7.

Proof. Correctness follows by Lemma 3.2, while the efficiency of the obfuscator (as well as the
succinctness property, for Theorem 3.5), follow by construction. To prove security, we now show
how to construct an efficient simulator S (Definition 2.13).

Defining the simulator. Fix an efficient adversary A. On input a universal circuit C : {0, 1}n×
{0, 1}m → {0, 1} (along with oracle access to C(·,y)), our simulator S will run internal copies of
the obfuscator O (Construction 3.1) and the generic multilinear map oracleM (Definition 2.10). It
will initialize O with a “dummy” secret input of all-zeroes, OM(1λ, C,y = 0m), forward all of O’s
queries to its internal copy of M, and forward O’s output to A as the obfuscated circuit. Then,
it will run A, letting M answer all of A’s oracle queries to CM.Add,CM.Mult,CM.Encode. On a
CM.ZeroTest query from A on a handle h, however, our simulator S will answer the query itself, as
follows. It will examine the state of its internal copy of M, and determine whether h refers to a
formal polynomial z at some index set S (Remark 2.11, Definition B.2). If it does not, or if S 6= U ,
then the simulator will immediately return ⊥ as the answer to A’s query. Otherwise, it will run
the decision procedure of Figure 4, below, on the formal polynomial z, and answer A accordingly.
Finally, when A terminates, the simulator will forward the output of A to the distinguisher D.

Correctness of the simulator. By construction, for every secret key input y, the obfuscation
of C(·,y) consists of a list of encoded elements in the multilinear map, whose length depends only
on the (public) universal circuit C. Since in the generic model these elements are represented by
handles (independently uniform nonces), the adversary’s initial input is independent of y, and thus
our simulator’s dummy version (with y = 0m) is identical to the real distribution produced when
A interacts directly withM. The same argument applies to the responses to A’s CM.Add,CM.Mult
queries; while the response to a CM.Encode query will be ⊥ in both the real game and in our
simulated version (except for failure events with negligible probability), since the adversary cannot
guess the nonce sp corresponding to the secret parameters of the multilinear map. Finally, we
consider CM.ZeroTest queries on handles h. We call such a query valid if h refers to a formal
polynomial z at the top-level index set U (Remark 2.11, Definition B.2), and we note that for
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On input a formal polynomial z (represented efficiently as an arithmetic circuit):

1. Compute z’s input profile, prof(z) (as specified in Definition 3.13). By Lemma 3.17,
prof(z) is a polynomial-size set of strings in {0, 1}n, and it can be computed efficiently.

2. For each x = x1 · · ·xn ∈ {0, 1}n in prof(z), perform the following substitutions:

(a) Let z′x ∈ Z[x̂1,x1 , . . . , x̂n,xn , ŷ1, . . . , ŷm] denote the original query z with its variables
substituted as follows:

ẑi,xi , ŵi,xi 7→ 1 ẑi,1−xi , ŵi,1−xi 7→ 0

Ĉ∗ 7→ C(x̂1,x1 , . . . , x̂n,xn , ŷ1, . . . , ŷm) ûi,b, v̂, ŝi,b,i′,b′ 7→ 1

Here, the term C(x̂i,x1 , . . . , x̂i,xn , ŷ1, . . . , ŷm) denotes the arithmetic circuit for C, as
an expression in terms of the formal variables x̂i,x1 , . . . , x̂i,xn , ŷ1, . . . , ŷm, “inlined”
as a sub-circuit into the query.

(b) Let z′′x ∈ Z denote the original query z with its variables substituted as follows:14

Ĉ∗, ŵi,xi 7→ 1 ŵi,1−xi 7→ 0 x̂i,0, x̂i,1, ŷi, ẑi,0, ẑi,1 7→ 0 ûi,b, v̂, ŝi,b,i′,b′ 7→ 1

Now, perform the following tests.

• If z′x 6≡ 0, stop and answer “nonzero”.

• If z′x ≡ 0 and z′′x = 0, go back to step 2(a) and continue with the next x ∈ prof(x).

• Otherwise, invoke the simulator’s own oracle to determine whether C(x,y) = 0.

– If C(x,y) 6= 0, stop and answer “nonzero”.

– If C(x,y) = 0, go back to step 2(a) and continue with the next x ∈ prof(z).

3. Upon reaching the end of the iteration, answer “zero”.

Figure 4: The simulator’s decision procedure, to answer a CM.ZeroTest query on a handle
referring to a formal polynomial z at the top-level index set U .

queries that are not valid, the response will be ⊥ by definition, in both our simulation and in the
real game.

Thus, it suffices to show that for each valid CM.ZeroTest query referring to a formal polynomial
z, when the formal variables of z are instantiated with the values from this joint distribution from
the real game (i.e., when z is answered by the actual multilinear map oracle), the answer matches
that of the simulator with overwhelming probability. The result will then follow by a union bound,
since the adversary can make only polynomially many queries.15 We note that this analysis requires

14We note that the integer z′′x is still represented as an arithmetic circuit, even though it has no remaining formal
variables (after the substitutions). Thus, a simple way to test if z′′x = 0 ∈ Z is to run the Schwartz-Zippel identity
testing algorithm, i.e., evaluate the computation that produces z′′x , modulo a random prime. This method works
irrespective of the integer’s bit length.

15Technically, we must also show that the distribution of the values in the oracle’s table, conditioned on each
possible sequence of past oracle query-response pairs (with no failure events), has negligible statistical distance from
its prior distribution from CM.Setup; this follows by a standard conditional probability argument, given that the
probability of each failure event is negligible.

33



some care, since the moduli Nev and Nchk, in addition to the encoded values, are hidden from the
adversary. In particular, when we refer to the real distribution of a value in the oracle’s table, we
implicitly consider the joint distribution in the actual multilinear map oracle’s table, over both the
(hidden) primes composing Nev and Nchk and the value itself (in Z∗N ). (We assume without loss
of generality that Nev and Nchk are relatively prime and that all of the primes composing both
moduli are distinct; by the birthday bound this holds with overwhelming probability over the coins
of CM.Setup.)

Values in the real game. Fix a valid zero-test query polynomial z produced by the adversary
during the game, and consider its formal expansion, after collecting like terms with respect to the
variables ẑi,b, ŵi,b, ŝi1,i2,b1,b2 . By Lemma 3.16, this expansion can be written as z =

∑
x∈prof(z) fx,

where each expression fx has the following form:

fx =

hx(x̂1,x1 , . . . , x̂n,xn , û1,x1 , . . . , ûn,xn , (ŷj)j∈[m], v̂)
∏
i∈[n]

ẑi,xi + axĈ
∗
∏
i∈[n]

ŵi,xi

 ·
 ∏
i1<i2∈[n]

ŝi1,i2,xi1 ,xi2


for some constant ax ∈ Z and multivariate polynomial hx. We now consider the value taken by the
polynomial fx in the real game. To begin with, we note that the encodings ûi,0, ûi,1, v̂, ŝi1,i2,b1,b2 are
irrelevant, since they appear only as scaling factors in fx, and in the real value distribution they
each take the value 1 ∈ Z. To formalize this fact, we define the following simplified expressions, f ′x
and h′x, to be the result of substituting the formal constant 1 for the variables ûi,0, ûi,1, v̂, ŝi,i′,b,b′

in fx (resp., hx), obtaining an expression of the following form:

f ′x = h′x(x̂1,x1 , . . . , x̂n,xn , ŷ1, . . . , ŷm)
∏
i∈[n]

ẑi,xi + axĈ
∗
∏
i∈[n]

ŵi,xi

Since the variables (ûi,b, v̂, ŝi,i′,b,b′) all take the value 1 in both components (ZNev and ZNchk
), the

value of each f ′x is identically distributed to that of fx, and so it suffices to analyze the values of
these simplified terms f ′x.

Now, the first component (mod Nev) of each fx = f ′x takes the following value in the real game:

f ′x = h′x(x1, . . . , xn, y1, . . . , yn)
∏
i∈[n]

δi,xi mod Nev

while the second component (mod Nchk) takes the following value:

f ′x = (h′x + axC) (α1, . . . , αn, β1, . . . , βn)
∏
i∈[n]

γi,xi mod Nchk

Outcomes of the simulator’s decision procedure. By construction, the simulator’s response
to each of the adversary’s zero-test queries z (Figure 4) is a function only of the identity of z as a
formal polynomial (except for failure events of negligible probability, i.e., failures of the ordinary
Schwartz-Zippel algorithm during the decision procedure). We now walk through the simulator’s
substitutions for a valid zero-test query polynomial z, to show how the results depend on the real
value distribution.
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• The simulator’s first substitution (z′x, Figure 4) is as follows:

ẑi,xi , ŵi,xi 7→ 1 ẑi,1−xi , ŵi,1−xi 7→ 0

Ĉ∗ 7→ C(x̂1,x1 , . . . , x̂n,xn , ŷ1, . . . , ŷm) ûi,b, v̂, ŝi,b,i′,b′ 7→ 1

Intuitively, this substitution “zeroes out” most monomials in the expansion of z, preserving
only those whose variables correspond to the input chosen x ∈ prof(z). The result of the
substitution is the formal polynomial z′x ≡ h′x + axC.

• The simulator’s second substitution (z′′x, Figure 4) is as follows:

Ĉ∗, ŵi,xi 7→ 1 ŵi,1−xi 7→ 0 x̂i,0, x̂i,1, ŷi, ẑi,0, ẑi,1 7→ 0 ûi,b, v̂, ŝi,b,i′,b′ 7→ 1

Intuitively, this substitution preserves only the monomials whose variables correspond to the
chosen input x; and, of those, only the ones that correspond to the precomputed check values
(Ĉ∗

∏
i ŵi,xi), not the ones from the adversary’s own polynomial (Ĉ

∏
i x̂i,xi). The result of

the substitution is an expression z′′x whose value is ax ∈ Z.

Case analysis. Finally we consider the following cases, corresponding to the cases in the simu-
lator’s decision procedure (Figure 4), to show that the simulator’s answer matches that of the real
game with overwhelming probability.

• Suppose that for at least one x ∈ prof(z), we have h′x + axC 6≡ 0; and let x∗ be the first such
x, in lexicographic order (so that z′x∗ 6≡ 0, and hence the simulator’s response is “nonzero”).
Then, modulo Nchk, the term f ′x∗ takes the following value:

f ′x∗ = (h′x∗ + ax∗C)(α1, . . . , αn, β1, . . . , βn)
∏
i∈[n]

γi,x∗i mod Nchk

We now claim that, with overwhelming probability, the value (h′x∗+ax∗C)(α1, . . . , αn, β1, . . . , βn)
is invertible in ZNchk

. We consider two cases:

– Suppose factoring is hard. We observe that h′x∗ + ax∗C is not identically zero as a
function of its formal variables x̂1,x1 , . . . , x̂n,xn , ŷ1, . . . , ŷm, and yet can be computed
by an arithmetic circuit of polynomial size (for example, the result of performing the
simulator’s substitution into the original query z). Thus, by the computational Schwartz-
Zippel lemma (Lemma 3.12), along with a union bound over the primes composing Nchk,
we conclude that with overwhelming probability its value is invertible modulo Nchk.

– Suppose factoring is not hard, but this is not the succinct variant of the construction
(i.e., we are proving Theorem 3.6 or 3.7). In this case, we will bound the total degree
of h′x∗ + ax∗C. The total degree of C is at most 2d, while the total degree of h′x∗
is at most that of hx∗ , which in turn is at most

∑
i∈[n] deg(xi) + deg(y) ≤ 2d (since

its index set is a subset of U). Thus h′x∗ + ax∗C has degree at most 2d; it is not
identically zero; and it can be computed by a poly-size arithmetic circuit (as in the
previous subcase). By the Schwartz-Zippel lemma (Corollary 3.10), we conclude that
the probability that it evaluates to zero on its uniformly random inputs over each prime-
order field Zp composing ZNchk

, with p > 2d+λ, is at most 2dn/2d+λ = negl(λ), and again
we conclude that with overwhelming probability its value is invertible modulo Nchk.
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Finally, we consider the expansion of the entire query polynomial z, restricted to the second
component (the ring ZNchk

), when all of its variables except the γi,b are instantiated with
their real value distribution. Since with overwhelming probability the expression (h′x∗ + aC)
takes a value that is invertible modulo Nchk, the coefficient of the monomial

∏
i∈[n] γi,x∗i is

nonzero in Zp for each prime p composing Nchk, and hence the entire query polynomial z is
not identically zero over this prime-order field (as a function of its remaining formal variables
γi,b). Since its total degree in these variables is only n = poly(λ), by the Schwartz-Zippel
lemma we conclude that with overwhelming probability, the entire query z takes a value that
is invertible in ZNchk

, and hence nonzero modulo N = NevNchk with overwhelming probability,
Thus, with overwhelming probability, the simulator’s response of “nonzero” is correct.

• Suppose that for every x ∈ prof(z), we have h′x + axC ≡ 0, but for at least one x ∈ prof(z),
we have C(x,y) 6= 0 and ax 6= 0 ∈ Z. Let x∗ = x∗1 · · ·x∗n ∈ {0, 1}n be the first such
x, in lexicographic order (so that every z′x ≡ 0, but z′′x∗ 6= 0 and C(x∗,y) 6= 0 ∈ Z,
and hence the simulator’s response is “nonzero”). Then since h′x∗ + ax∗C ≡ 0, we have
h′x∗(x

∗,y) = −ax∗C(x∗,y) 6= 0 ∈ Z. We now claim that with overwhelming probability, the
value h(x∗,y) is invertible modulo Nev. Intuitively, since h(x∗,y) is a nonzero integer, it
must be invertible modulo Nev (a product of random primes) with overwhelming probability.
However, technically we must also establish that h(x∗,y) is not too large, and thus does not
have too many prime factors. For simplicity, we just regard the value h(x∗,y) ∈ Z as a formal
polynomial of degree zero, and follow the argument above. We consider the same two cases:

– Suppose factoring is hard. Then h′x∗(x
∗,y) is not identically zero, and yet can be

computed by an arithmetic circuit of polynomial size (e.g., the result of the simulator’s
substitution). Thus, by the computational Schwartz-Zippel lemma (Lemma 3.12), along
with a union bound over the primes composing Nev, we conclude that with overwhelming
probability the value h′x∗(x

∗,y) is invertible modulo Nev.

– Suppose factoring is not hard, but this is not the succinct variant of the construction (i.e.,
we are proving Theorem 3.6 or 3.7). Then h′x∗(x

∗,y) can be computed by an arithmetic
circuit of degree at most 2d (as above). By the Schwartz-Zippel lemma (Corollary 3.10),
we conclude that the probability that its value is zero over each prime-order field Zp
composing ZNev , with p > 2d+λ, is at most 1/2d+λ = negl(λ), and again we conclude
that with overwhelming probability the value h′x∗(x

∗,y) is invertible modulo Nev.

The main result now follows as in the argument above (for the case h′x + axC 6≡ 0), with δi,b
in place of γi,b, and Nev in place of Nchk.

• Suppose that for every x ∈ prof(z), we have h′x + axC ≡ 0 and either ax = 0 or C(x,y) =
0 (so that every z′x ≡ 0 and every z′′x = 0 ∈ Z, and hence the simulator’s response is
“zero”). Then the value of f ′x modulo Nchk is zero, while the value of f ′x modulo Nev is
h′x(x1, . . . , xn, y1, . . . , yn)

∏
i∈[n] δi,xi . Now, since h′x ≡ −axC, we have h′x(x,y) = −axC(x,y).

Since either ax = 0 or C(x,y) = 0, we also have h′x(x,y) = 0, and so the simulator’s response
of “zero” is correct with certainty.

Thus each of the simulator’s responses is correct with overwhelming probability, and we conclude
that the distribution of the adversary’s output is statistically close to that in the real game, as
desired. This concludes the main security proof.
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Remark 3.18 (Multi-Bit Output). To avoid cluttering notation, we have phrased our main con-
struction in terms of circuits C with single-bit output, i.e., C : {0, 1}n×{0, 1}m → {0, 1}. However,
we note that the extension to Boolean circuits multi-bit output is straightforward, and does not
significantly increase the cost of any of the operations, since the values of intermediate wires can
be reused. We now briefly outline this extension.

Consider a circuit with multi-bit output, C : {0, 1}n×{0, 1}m → {0, 1}`. In the single-bit case,
Construction 3.1 (step 6) computes a single check value (and outputs its encoding, as part of the
obfuscated program):

C∗ = C(α1, . . . , αn, β1, . . . , βm) ∈ ZNchk
Ĉ∗ = [0, C∗]Y deg(y)

∏
i∈[n](Xi,0Xi,1)

deg(xi)Zi

For the multi-bit case, we can modify the construction to compute ` such values (and output their
encodings):

C∗1 = C(α1, . . . , αn, β1, . . . , βm)1 ∈ ZNchk
Ĉ∗1 = [0, C∗1 ]Y deg(y)

∏
i∈[n](Xi,0Xi,1)

deg(xi)Zi

. . .

C∗` = C(α1, . . . , αn, β1, . . . , βm)` ∈ ZNchk
Ĉ∗` = [0, C∗` ]Y deg(y)

∏
i∈[n](Xi,0Xi,1)

deg(xi)Zi

The proof of virtual black-box security proceeds as above, except we generalize the simulator’s
substitutions. In place of the C∗ 7→ C(x̂1,x1 , . . . , x̂n,xn , ŷ1, . . . , ŷm), the simulator substitutes C∗k 7→
C(x̂1,x1 , . . . , x̂n,xn , ŷ1, . . . , ŷm)k for every k ∈ [`]; and in place of C∗ 7→ 1, the simulator substitutes
C∗k 7→ C(x,y)k ∈ {0, 1} for every k ∈ [`], using its own oracle to determine C(x,y)k for each
output bit k. In the index set lemmas (Section 3.4), the formal variables C∗k now play the role of
the previous single variable C∗, and we find that a zero-test query may have a monomial in each
of the C∗k (accompanied by factors of ŵi,xi , as before). The analysis of the simulator now follows
that of the main proof.

4 Performance Analysis and Applications

We now analyze the asymptotic efficiency of our main construction (Construction 3.1). Suppose
we are obfuscating the keyed arithmetic circuit family C = (Cy)y∈{0,1}m , where each Cy = C(·,y)
and C : {0, 1}n × {0, 1}m → {0, 1} (the keyed “universal circuit”) has size s and depth d. As in
the construction, let deg(y) be the total degree of C in all of the variables y1, . . . , ym; and for each
i ∈ [n] let deg(xi) be the degree of C in the variable xi. We also define ∆ = deg(y)+

∑
i∈[n] deg(xi),

and note that ∆ < 2d.
In our analysis, for clarity, we measure the obfuscation size in terms of the number of ring

elements, and the evaluation time in terms of the number of ring operations (i.e., encodings and
operations in the multilinear map). In the CLT multilinear map [CLT13], which is currently
the only known instantiation for composite order, the element size grows with the square of the
multilinearity degree required (though this bound could change with further development of the
techniques). Thus, to obtain concrete performance measurements in terms of bits and Boolean
operations using the CLT multilinear map, the reader should multiply every listed obfuscation size
and evaluation time by the square of the degree of multilinearity. (For simplicity, we also drop
factors of poly(λ) arising from the multilinear map implementation.)

4.1 Naive Analysis

Before we delve into the space of possible optimizations (Section 4.2), we present a simple analysis
of our main construction as described above, to give a flavor of the relevant metrics.

37



Degree of multilinearity. The degree of any term (in the formal variables of the obfuscation)
is bounded by the total degree of the top-level index set U . In our case, this degree is ∆ + 2n +
n(2n−1) = O(∆ +n2) = O(2d+n2). (We note, however, that this bound does not incorporate the
optimizations below, and under different optimizations the degree of multilinearity may increase;
we discuss the details below.)

Obfuscation size. We now count the number of ring elements (in the multilinear map) that our
construction requires. In an obfuscated circuit O(Cy), the encodings x̂i,b, ûi,b, ẑi,b, ŵi,b contribute

a total of 8n elements; the encodings ŷj , v̂, Ĉ
∗ contribute m + 2; and the final straddling-set fill

encodings (ŝi1,i2,b1,b2) contribute an additional 4
(
n
2

)
, for a total of 8n+m+2+4

(
n
2

)
= O(m+n2) ring

elements. (We remark that if we only need indistinguishability obfuscation, not virtual black-box,
then we can omit the straddling-set fill encodings. In this case, the size of an obfuscation becomes
O(m+ n) ring elements, and we can also reduce the additive O(n2) terms in the other parameters
below; for details, we refer the reader to Appendix A.)

Evaluation time. To determine the number of ring operations required to evaluate the obfus-
cated program, the accounting is somewhat more involved. In particular, some operations will be
required to “raise” intermediate elements via multiplication by unit encodings, when addition oper-
ations are required between elements with mismatching index sets. For clarity we first neglect these
“raising” operations, and measure the total time required by all other phases of the algorithm. In
this case, to evaluate the arithmetic circuit C on its encoded inputs, we require s ring operations in
the multilinear map, one for each gate in C. We must then multiply the output, Ĉ, by

∏
i∈[n] ẑi,xi ;

multiply the testing term, Ĉ∗, by
∏
i∈[n] ŵi,xi ; and subtract the results. This incurs 2n + 1 ring

operations. We then multiply the entire result by
∏
i1<i2∈[n] ŝi1,i2,xi1 ,xi2 , incurring an additional

(
n
2

)
ring operations, for a total of s+ 2n+ 1 +

(
n
2

)
= O(s+n2) ring operations (excluding the “raising”

operations).
Finally, we account for the “raising” operations (for each of the s addition gates). We observe

that in the naive evaluation algorithm, these operations completely dominate the time complexity.
More precisely, for general circuits C, the two operands of an addition gate can each be encoded at

an arbitrary subset of the index set Y deg(y)
∏
i∈[n]X

deg(xi)
i,xi

. If for each index Xi,xi , Y we fill in the
gap on both sides via repeated squaring, this results in at most (lg deg(y) +

∑
i∈[n] lg deg(xi)) <

(n + 1)d ring operations per gate (plus the same quantity once more to precompute the table
for repeated squaring). This would bring the total time complexity, using the naive algorithm,
to O(dns + n2) = O(dns). To improve on this bound, we now describe a number of natural
optimizations; Table 2 gives an overview of the corresponding efficiency improvements.

4.2 Optimizations

Optimization: cross-multiplication. During evaluation of the circuit (Figure 3), we can main-
tain two encodings for each wire, rather than just one. Specifically, if some intermediate wire takes
the value a and is encoded at the index set S, then we maintain not only [a]S , but also a separate
unit encoding [1]S , and propagate both in parallel. (We note that in the base case, for the circuit’s
inputs, we already have this additional unit encoding, by definition of our construction.)

Now, suppose we have two inputs to an addition gate: ([a]S , [1]S) and ([b]T , [1]T ), for some
index sets S 6= T . Rather than raising each index set to S ∪ T , we can simply “cross-multiply”
(raising the resulting index set to ST instead of S ∪ T ), by computing the two new encodings
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[x]S [1]T + [1]S [y]T = [x + y]ST and [1]S [1]T = [1]ST . Multiplication is still straightforward, of
course, since we can just compute [x]S [y]T = [xy]ST and [1]S [1]T = [1]ST .

We now consider the effect of this optimization on the time complexity and the degree of multi-
linearity required. Perhaps surprisingly, addition gates are now more expensive than multiplication
gates. Each addition gate now requires (at most) four ring operations (three multiplications and
one addition). Thus, in total we require at most 4s+ 2n+ 1 +

(
n
2

)
= O(s+ n2) ring operations.

In order to implement this optimization, we find that the top-level index set must change. In
particular, every gate (addition or multiplication) results in a product of intermediate sets (rather
than a union), whether or not it increases the degree of the corresponding sub-circuit of C. Thus
we can no longer bound the degree of multilinearity in terms of C’s degree, as we did in the
naive approach (Section 4.1). However, since the size of an index set at most doubles when cross-
multiplication is performed on a gate of fanin 2, we can still conclude that the multilinearity degree
is at most O(2d + n2). In other words, our bound is the same in terms of the depth, but not in
terms of the degree. Intuitively, this means that we pay the worst-case cost in multilinearity more
often—under this optimization, every gate acts like a multiplication gate, whereas with the naive
algorithm we could make use of the fact that not every circuit’s degree is exponential in its depth.

Optimization: pre-mixing. In most cases, the “cross-multiplication” optimization above re-
sults in an excellent bound. However, under that optimization the multilinearity degree increases
from O(∆ + n2) to O(2d + n2), which can be significant for circuits with many addition gates.
In some cases—particularly in the setting of “noisy” multilinear maps, which is the only setting
we know how to instantiate so far—minimizing the degree of multilinearity is paramount, even at
the cost of increasing the number of ring operations required for evaluation. To this end, we now
discuss another general-purpose optimization.

In this optimization, our goal is to eliminate the asymmetry in the mismatched index sets at
each addition gate, so that each index set has equal degree in every Xi; this will enable us to run
repeated squaring only twice for each gate (once on powers of all of the X’s together, and once on
the powers of Y ), rather than n+1 times. To accomplish this, at the beginning of the evaluation, we
“pre-mix” the encodings of each input variable x1, . . . , xn. More specifically, for each x̂i,xi , we form
the encoding x̃i,xi = x̂i,xi

∏
i′ 6=i ûi,xi , and use x̃i,xi in place of x̂i,xi during the circuit evaluation. By

construction, each x̃i,xi has the same value as x̂i,xi , but now encoded at the index set
∏
i′∈[n]Xi′,x′i

(independent of i), rather than at the singleton index set Xi,xi .
As for the time complexity, we can perform this “pre-mixing” in only O(n) ring operations,16

using a standard divide-and-conquer approach. First, assuming without loss of generality that
n = 2r is a power of two, we define the aligned intervals to be those of the form Ik,` = [k`+1, (k+1)`]
for some ` ∈ {1, 2, 4, 8, . . . , 2r−1} and k ∈ [n/2`]; and their complements Īk,` = [n] \ Ik,`. We define
each interval’s value to be the product of the corresponding unit encodings, vk,` =

∏
i∈Ik,` ûi,xi

(and likewise v̄k,` for the complements), and we observe that the desired outputs of the pre-mixing
are just the complements’ values, v̄0,1, . . . , v̄n−1,1. Now, to perform the actual pre-mixing, we first
precompute the value of each aligned interval, vk,`, proceeding from the smallest length ` to the
largest. Finally we compute the values of the complements, from the largest ` to the smallest, using
the relations v̄2k,2s = v̄k,2s+1 · v2k+1,2s and v̄2k+1,2s = v̄k,2s+1 · v2k,2s . Thus, the pre-mixing requires
only O(n) ring operations.

16In fact, our algorithm for pre-mixing will not matter in the case of VBB obfuscation, since the overall cost will
anyway be dominated by the O(n2) straddling-set unit encodings. However, in the case of iO (Appendix A), the
difference between the O(n2) brute-force algorithm and the O(n) divide-and-conquer algorithm becomes significant.
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As an aside, we note that in the CLT multilinear map (Section 2.8), we can actually perform the
“pre-mixing” computation in a much simpler way. Specifically, we can compute Û =

∏
i∈[n] ûi,xi ,

and just set x̃i,xi = Û · x̂i,xi/ûi,xi (mod Nouter) for each i ∈ [n]—where Nouter is the CLT outer
modulus, not the modulus N of the ring being represented in the multilinear map. However, this
approach makes use of the concrete structure of ring elements in the CLT construction, and thus
it cannot be performed in the generic model we adopt in this work. Indeed, if in the future we find
a way to construct “clean” multilinear maps, the underlying representation may have a completely
different algebraic structure, and these division operations may not be possible.

Regardless, the “pre-mixing” optimization we have just described enables us to run the repeated-
squaring algorithm only twice for each gate (corresponding once to the powers of the index set∏
iXi,xi and once to those of Y ), rather than n + 1 times as in the naive approach. This brings

the overall time complexity to O(s lg(n
∑

i∈[n] deg(xi)) + s lg deg(y)) +n2) = O(s lg(n∆) +n2) ring
operations. Like the “cross-multiplication” optimization above, this optimization also causes the
multilinearity degree to increase (as compared with the naive algorithm), albeit less dramatically.
Whereas the naive algorithm requires multilinearity degree O(∆ + n2), here we require degree
O(n∆ + n2). (We could also bound the multilinearity degree in terms of d, as O(2dn+ n2), but in
these terms, the cross-multiplication optimization above is strictly better—we emphasize that this
“pre-mixing” optimization is designed for circuits with very low degree, ∆� 2d.)

Degree of
multilinearity

Obfuscation size
(# ring elements)

Evaluation time
(# ring operations)

Naive algorithm O(∆ + n2) O(m+ n2) O(dns)

Optimization: pre-mixing O(n∆ + n2) O(m+ n2) O(s lg(n∆) + n2)

Optimization: cross-mult. O(2d + n2) O(m+ n2) O(s+ n2)

Table 2: Performance of our main construction, both with the naive algorithm (Section 4.1)
and with various optimizations (Section 4.2), for a keyed arithmetic circuit C : {0, 1}n ×
{0, 1}m → {0, 1} of size s, depth d. Here ∆ = deg(y) +

∑
i∈[n] deg(xi), where deg(y) is C’s

total y-degree, and deg(xi) is its degree in xi. We note that n,m,∆ ≤ 2d, and n,m < s.
We present the cost here in terms of ring elements and ring operations. The concrete cost
in bits and bit operations depends on the performance of the multilinear map (Section 2.8);
for “clean” maps (whose existence is still open), the cost is just poly(λ), while for the CLT
scheme [CLT13], the reader should multiply every obfuscation size and evaluation time by
O(deg2) ·poly(λ), where deg is the corresponding multilinearity degree from the first column.

Circuit-specific optimizations. The optimizations we describe above are general-purpose: they
can be applied to any circuit family, regardless of its structure. If we take into account the structure
of specific circuits C, this kind of optimization process can take us much further. For example, in
the “pre-mixing” optimization above, we still require O(lg(n∆)) ring operations for every addition
gate in the circuit, since the index sets of the two inputs may differ by any subset of the index set

Y deg(y)
∏
iX

deg(xi)
i,xi

. Intuitively, this reflects the fact that the circuit may have many “stale” access
instructions, in which a wire feeding into some gate originated much higher in the circuit.

Many circuits of interest do not have this unfortunate property. For instance, suppose the
circuit C represents the execution trace of a parallel RAM program which maintains a memory of
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w items, and performs d sequential steps.17 Further, suppose that each step consists entirely of
either pairwise multiplications, pairwise additons, or “mux” operations (Section 2.2) with secret
key input bits; and without loss of generality, suppose every item is updated at every step (inserting
dummy gates and items as needed).

For such a circuit, using the “pre-mixing” optimization above, we do not need to raise any
intermediate index sets, because all elements of the memory have the same index set at every step.
In this case, rather than O(lg(n∆)), the number of ring operations per gate becomes constant.
(We also remark that this model is well-suited to many cryptographic operations; for example,
block ciphers such as AES are defined as a sequence of simple transformations on a state that is
maintained throughout the execution.)

The observation we have just described is only one example of a circuit-specific optimization.
In a broader sense, we see a rich space of potential optimizations, which are particularly effective
for keyed circuit families in which the structure of the circuit C is known. In most applications,
we believe it does not make sense to use general-purpose obfuscation, throwing away any knowl-
edge of the computation’s structure—just as it usually does not make sense to make a machine’s
computation oblivious by brute-force iteration over its entire memory (Section 2.2).

4.3 Examples

We now specialize our obfuscation construction to several standard computational models, in order
to provide a direct comparison with other approaches.

4.3.1 Example: Keyed Circuits

We begin with the natural setting of general, keyed arithmetic circuits (straight-line programs,
Section 2.3) C : {0, 1}n × {0, 1}m → {0, 1} of size s and depth d, with input length n and key
length m. (We remark that the analysis here also covers the case of Boolean circuits, since it is
straightforward to substitute arithmetic gates for Boolean gates.) Using the “cross-multiplication”
optimization (Section 4.2), we obtain a multilinearity degree of O(2d+n2), obfuscation size O(m+
n2) ring elements, and evaluation time O(s+ n2) ring operations (Table 3).

In our construction, the number of ring elements and ring operations required is polynomial,
while in all other known approaches, it is exponential in d. This new bound reemphasizes the
importance of the open question of “clean” multilinear maps (Section 2.7). Currently, with “noisy”
maps, the size of a ring element itself grows with the degree of multilinearity. If we could con-
struct clean maps, then the element size—and hence the cost of the entire obfuscation—would be
independent of the degree, and thus polynomial in the size of the original circuit, even for P/poly.

Motivation: obfuscation for PRFs. One of the most compelling applications of obfuscation—
and, in particular, for the setting of keyed circuits—is to obfuscate a PRF. By the work of
Garg et al. [GGH+13b], obfuscation for a log-depth PRF, along with fully homomorphic encryption
(FHE), suffices to bootstrap NC1 obfuscation to obfuscation for P/poly. From a more practical
perspective, a VBB-obfuscated PRF is a noninteractive analog of a trusted third party capable
of performing cryptographic operations, which makes it a very useful primitive. Indeed, one of
the most striking applications is that of short signatures—namely, λ-bit signatures with ≈λ-bit
security—by the following construction (adapted from a result of Sahai and Waters [SW14]):

pk = O[ (m,σ) 7→ PRF(sk,m)
?
= σ ]

17We also require that its execution is oblivious in the strong sense of Section 2.2.
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Degree of
multilinearity

Obfuscation size
(# ring elements)

Evaluation time
(# ring operations)

Via Barrington’s Thm.
[GGH+13b, BR14, BGK+14]

O(4dn+ n2) O(4dn+ n2) O(4dn+ n2)

[AGIS14] O(2d + n2) O(8d + n2) O(8d + n2)

[AGIS14] + [Gie01] O(2(1+ε)d + n2) O(2(1+ε)d42/ε + n2) O(2(1+ε)d42/ε + n2)

This work O(2d + n2) O(m+ n2) O(s+ n2)

Table 3: Performance for (keyed) circuits of input length n, key length m, size s, and depth
d. For most applications of interest, we have n, s � 2d; and we always have n, s < O(2d),
since the gates have fanin two. For this table we refer to the version of our construction with
the “cross-multiplication” optimization (Section 4.2). We present the cost here in terms of
ring elements and ring operations. The concrete cost in bits and bit operations depends on
the performance of the multilinear map (Section 2.8); for “clean” maps (whose existence is
still open), the cost is just poly(λ), while for the CLT scheme [CLT13], the reader should
multiply every obfuscation size and evaluation time by O(deg2) · poly(λ), where deg is the
corresponding multilinearity degree from the first column.

We do not prove formally that this construction yields an (adaptively) secure signature scheme,
since technically even the virtual black-box property is not enough to argue this directly; we would
need an interactive analog of VBB in theM-idealized model, similar to the signature security game
itself. We leave formalizing such definitions for future work; here, we only consider the construction
as a motivating example, assuming a notion of obfuscation that is “strong enough”.

Dream example: obfuscating AES. Suppose that our goal is to construct an obfuscated PRF
that is implementable in practice. With previous approaches, based on branching programs, this
would immediately rule out the choice of the AES block cipher as the PRF, since its depth is on
the order of hundreds (including, among other features, 10 rounds of the AES S-box), and thus
the branching program size, ∼ 4dn, would be astronomical. With our new approach, however
(Table 3), the number of ring elements and operations is polynomial in the size of the original
circuit, regardless of its depth (as shown in Section 4.3.1). Thus, for the first time, the only
remaining obstacle to implementable obfuscation for AES (and other moderately-deep circuits of
interest) is the noise growth in known multilinear maps.

Suppose for the moment that we had “clean” multilinear maps, so that the noise growth, and
hence the degree of multilinearity, were irrelevant. In this case, the analysis for obfuscated AES
would proceed as follows. For simplicity, we will actually obfuscate the keyed Boolean function
VAES((x,σ),K) which is 1 if AES-128(K,x) = σ, and 0 otherwise (as might be desired in other
cryptographic applications).18 Using the “cross-multiplication” optimization of Section 4.2, the
parameters are as follows.

Obfuscating the function VAES((x,σ),K) := (AES-128(K,x)
?
= σ):

• Input length: n = 256 bits (x,σ ∈ {0, 1}128).

• Key length: m = 128 bits (K ∈ {0, 1}128).
18 We remark that while we could also obfuscate AES itself, we would run into technical difficulties due to the fact

that its output is 128 bits, rather than a single bit. While it would be straightforward to modify our construction to
permit this (Remark 3.18), we use a single-bit example here to avoid cluttering the analysis.
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• Obfuscation size: 132738 ring elements (or 2178 for iO; see Appendix A).

– We require 8n + m + 2 + 4
(
n
2

)
= 132738 ring elements. We note for the weaker notion

of indistinguishability obfuscation, we can omit the 4
(
n
2

)
straddling-set unit encodings;

see Appendix A. In this case, we only require 8n+m+ 2 = 2178 ring elements.

• Evaluation time: 280255 ring operations (or 247615 for iO; see Appendix A).

– The work of Kreuter, shelat, and Shen [KSS12] shows that AES-128 can be implemented
with a Boolean circuit consisting of 30728 gates. To this circuit, we append a “check”
subcircuit that tests whether the output of AES equals the second input σ ∈ {0, 1}128.
This can be done with 128 XNOR gates, followed by a tree of 127 AND gates.

– Using the “cross-multiplication” optimization (Section 4.2), an AND gate can be imple-
mented using 2 ring operations, and no Boolean gate requires more than 8 ring opera-
tions.19 Thus, the main body of the evaluation requires at most 8 · 30728 = 245824 ring
operations, while the “check” subcircuit at the end requires 8 · 128 + 2 · 127 = 1278 ring
operations. Finally, computation of the resulting element Ĉ

∏
i∈[n] ẑi,xi − Ĉ∗

∏
i∈[n] ŵi,xi

requires an additional 2n+ 1 = 513 ring operations, while multiplication by the correct
straddling-set unit encodings ŝi1,i2,xi1 ,xi2 requires

(
n
2

)
= 32640 ring operations, for a total

of 245824 + 1278 + 513 + 32640 = 280255 ring operations.

Of course, even though the obfuscation size and evaluation time here are relatively tractable (in
terms of ring elements and ring operations), the degree of multilinearity is still proportional to
2d+8 where d is the depth of AES—i.e., still astronomical. We reemphasize that even with our new
techniques, it remains infeasible to obfuscate AES, but now only because we do not know how to
construct clean multilinear maps. The results of this section provide further motivation for this
important open question.

4.3.2 Example: NC1 Circuits (Unkeyed, Balanced Boolean Formulas)

We now treat the class of (unkeyed) NC1 circuits: i.e., Boolean circuit families C : {0, 1}n → {0, 1}
of size nc and depth d = k lg n for constants c, k > 0, over the basis {AND,OR,NOT} (with fanin
2 and unbounded fanout). This class coincides with the class of polynomial-size balanced Boolean
formulas, i.e., formulas whose abstract syntax forms a balanced binary tree. This is also the setting
of other constructions [GGH+13b, BR14, BGK+14] that construct obfuscation via Barrington’s
theorem [Bar86].

To adapt our construction to this setting, given an unkeyed family of log-depth circuits, we will
need to convert it to a keyed family. To do this, we first duplicate gates in the Boolean circuit as
necessary to make the fanout 1 (as in the transformation to a balanced formula); we note that the
number of inputs of the resulting circuit is at most 2d, and thus its size is at most

∑
`∈[d] 2

` = O(2d).
By DeMorgan’s laws, we re-express the circuit in terms of only AND and OR gates in its inputs
and their negations (this requires O(2d) additional steps at the beginning of evaluation to compute
the negation of each variable). Now, to convert each Boolean gate (a AND b or a OR b) to a keyed

19To see this, let f : {0, 1} × {0, 1} → {0, 1} be a Boolean function, and consider |f−1(1)|, i.e., the number of
inputs that map to 1 under f . If |f−1(1)| ∈ {0, 4}, then f is a constant function and requires no ring operations.
If |f−1(1)| ∈ {1, 3}, then f requires up to two negations (of the inputs), followed by an AND, perhaps followed by
another negation, for a total of at most 5 ring operations. Finally, if |f−1(1)| = 2, then either f is independent of
one of the input bits (and hence requires no ring operations), or else either f ∈ {XOR,XNOR}. If f = XOR, then
f(a, b) = a + b − 2ab, and we require 4 ring operations to produce the new encodings of 1, a, b, ab, followed by 3
operations to produce the sum, for a total of 7. If f = XNOR, then f(a, b) = (1− a) XOR b, for a total of 8.
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arithmetic gate, we replace it by the arithmetic expression (y1−a)(y2−b)y3+y4, where y1, y2, y3, y4
are new secret key input bits in y. For an AND gate, these inputs are (0, 0, 1, 0), while for an OR
gate, they are (1, 1,−1, 1). This results in 4 · 2d+1 = O(2d) secret key input bits.

Further, since we must also hide the identity of each input to the circuit among x1, . . . , xn,
we preface the main circuit with a “pre-muxing”, similar to our “pre-mixing” step from above.
More specifically, for each k ∈ [2d], we introduce secret key input bits yk,1, . . . , yk,n, of which all
are 0 except one which is 1 (determining which of the n input variables x1, . . . , xn should actually
feed into the kth input to the Boolean circuit). In other words, the kth Boolean input is now
written as the arithmetic circuit

∑
i∈[n] yk,ixi, as in the “mux” operation of Section 2.2, and we

have introduced an additional O(2dn) key inputs. We also require O(2dn) ring operations here to
compute these sums, including raising operations by unit encodings to make the index sets match
(as described in the “pre-mixing” optimization, Section 4.2).

We also note that the raising operations required to compute the “mux” sums,
∑

i∈[n] yk,ixi,
have already accomplished the effect of the “pre-mixing” optimization—namely, every resulting
input to the Boolean circuit has the same index set, Y

∏
i∈[n]Xi,xi . Since the main body of the

Boolean circuit is balanced, it will continue to be the case that within each layer of the circuit, every
encoding has the same index set, and that index set has equal degree in every Xi,xi . Now, the only
remaining addition operations are in the affine functions (y1 − a)(y2 − b)y3 + y4 for wires a, b, for
which there is an index set discrepancy between y1, y2, y4, at index set Y ; and a, b, (y1−a)(y2−b)y3,
each at index set Y r(

∏
i∈[n]Xi,xi)

s for some r, s. Since these values r, s are purely a function of
the depth of the current layer, we can resolve the discrepancy by maintaining only a constant
number of unit encodings in parallel with the circuit’s evaluation (as in the “cross-multiplication”
optimization, Section 4.2) to resolve the discrepancy. Thus, the time complexity is dominated by
the O(2dn) operations in the initial pre-muxing.

The degree of the resulting arithmetic circuit in each key input in y is 1 (since each is only
multiplied into the main circuit once, and our main computation has fanout 1), and thus its total
y-degree is deg(y) = O(2dn). Its degree in each input in x is precisely 2d, and thus its total x-degree
is O(2dn). Overall, the resulting scheme requires multilinearity degree O(2dn+n2), the obfuscation
size is O(2dn+ n2) ring elements, and the evaluation time is O(2dn+ n2) ring operations.20

4.3.3 Example: Unbalanced Boolean Formulas

In the previous section, we considered the case of balanced Boolean formulas, which correspond
directly to NC1 circuits. Most Boolean formulas of interest are not balanced, however, but rather
have depth comparable to their size. In this section, we study the performance of our construction
in the setting of arbitrary Boolean formulas. (By convention, we call these formulas unbalanced,
although we do not exclude formulas that happen to be balanced.)

While it is known how to balance Boolean formulas [PM76], transforming an arbitrary Boolean
formula of size s to a balanced formula of depth O(lg s) (at which point the results above suffice),
Ananth et al. [AGIS14] show that there are much more efficient ways to obfuscate arbitrary Boolean
formulas. However, even the constructions of [AGIS14] still pay the overhead of converting these
formulas to matrix branching programs, in order to randomize those programs via Kilian’s protocol.
In this section, we describe a more direct approach, making use of the properties of our new
construction.

20We remark that we could optimize the obfuscation size further, reducing the O(2dn) to O(2d lgn) by representing
each input’s identity in binary during the pre-muxing step, but we describe the unary case here to keep the presentation
simple.
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Degree of
multilinearity

Obfuscation size
(# ring elements)

Evaluation time
(# ring operations)

Via Barrington’s Thm.
[GGH+13b, BR14, BGK+14]

O(4dn+ n2) O(4dn+ n2) O(4dn+ n2)

[AGIS14] O(2dn+ n2) O(8dn+ n2) O(8dn+ n2)

[AGIS14] + [Gie01] O(2(1+ε)dn+ n2) O(2(1+ε)d42/εn+n2) O(2(1+ε)d42/εn+n2)

This work O(2dn+ n2) O(2dn+ n2) O(2dn+ n2)

Figure 5: Performance for balanced Boolean formulas (unkeyed NC1 circuits, Section 4.3.2),
of depth d and hence size O(2d), with n ≤ 2d input variables. We present the cost here
in terms of ring elements and ring operations. The concrete cost in bits and bit operations
depends on the performance of the multilinear map (Section 2.8); for “clean” maps (whose
existence is still open), the cost is just poly(λ), while for the CLT scheme [CLT13], the reader
should multiply every obfuscation size and evaluation time by O(deg2) · poly(λ), where deg
is the corresponding multilinearity degree from the first column.

Keyed, unbalanced formulas. First, we consider the case of keyed formulas, in which the for-
mula itself is public, but some of its variables are secret key inputs. Fix a keyed Boolean formula
of size s. We evaluate the formula directly (regarding it as a circuit with fanout 1, and converting
Boolean gates to the corresponding arithmetic gates), and we use the “cross-multiplication” opti-
mization (Section 4.2) to implement the raising operations. With this solution, the degree of each
subformula’s index set (counting multiplicity) remains proportional to the size of the subformula,
and thus the required multilinearity degree is O(s + n2). By the analysis above, the obfuscation
size is also O(s+ n2) ring elements, and evaluation requires O(s+ n2) ring operations.

Degree of
multilinearity

Obfuscation size
(# ring elements)

Evaluation time
(# ring operations)

[AGIS14] O(s+ n2) O(s3) O(s3)

[AGIS14] + [Gie01] O(s1+ε + n2) O(s1+ε42/ε + n2) O(s1+ε42/ε + n2)

This work O(s+ n2) O(s+ n2) O(s+ n2)

Table 4: Performance for keyed, unbalanced Boolean formulas (Section 4.3.3) of size s, with
n input variables (where n < s). We present the cost here in terms of ring elements and ring
operations. The concrete cost in bits and bit operations depends on the performance of the
multilinear map (Section 2.8); for “clean” maps (whose existence is still open), the cost is
just poly(λ), while for the CLT scheme [CLT13], the reader should multiply every obfuscation
size and evaluation time by O(deg2) · poly(λ), where deg is the corresponding multilinearity
degree from the first column.

Unkeyed, unbalanced formulas: solution 1. The case of general (unkeyed) Boolean formulas
is particularly interesting, because in order to make the computation keyed (and thus suitable for our
techniques), we need to design an oblivious algorithm (Section 2.2) for evaluating these formulas.
To do this, we proceed as follows.

Suppose we have an input Boolean formula φ of size s. First, we consider the formula in postfix
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order, so that, e.g., the formula φ = (x∧y)∨z becomes the string “x y ∧ z ∨ ”. Second, we describe
a standard stack-based evaluation algorithm: maintain a stack of size s, and execute a series of s
steps, one for each token in the (postfix) formula. Upon encountering a variable, push its value
onto the stack; upon encountering an operator, pop the top two elements and push the operator’s
result.

In this algorithm, it is easy to make everything oblivious except the action of the stack. Specif-
ically, for each of s steps, our algorithm performs each possible action in parallel (i.e., fetch the
value of each input variable; evaluate OR; evaluate AND). Then, we introduce new secret key in-
put bits indicating which operation should actually be performed, according to the formula being
obfuscated, and “mux” the results (Section 2.2). As for the action of the stack, evidently we could
make it oblivious by brute force: maintain an array of size O(s), and at each step, perform the
push and pop operations in parallel at each of the O(s) possible positions of the top of the stack;
introduce new secret key input bits, corresponding to the actual position of the top of the stack at
each step; and “mux” the results accordingly (Section 2.2). This would require O(s) operations at
each of the O(s) steps, bringing the time complexity of all of the stack operations to O(s2).

To improve on this solution, we will replace the brute-force implementation of an oblivious stack
with a recursive construction, which yields an oblivious stack of capacity s whose amortized com-
plexity is only O(lg s) physical operations per logical operation (push or pop). Such a construction
follows from the classic Turing machine simulation paradigm of Hennie and Stearns [HS66] and
Pippenger and Fischer [PF79], as adapted by Mitchell and Zimmerman to the setting of general-
purpose data structures [MZ14]. In more detail, the oblivious stack construction of [MZ14] consists
of a series of “mux” operations on the blocks of memory that store the stack items. To implement
a total of t logical operations (push or pop), the number of block-wise “mux” operations required is
O(t), and the number of individual bit muxes (totalling over all block-wise operations) is O(t lg s).
Using this efficient oblivious stack implementation, we find that the s required push/pop opera-
tions require only O(s lg s) steps. Further, since the algorithm is oblivious (Section 2.2), it can be
translated directly to a (keyed) straight-line program over Z.

We now come to the question of how to implement the “raising” operations (Sections 4.1, 4.2),
which will decide the overall optimization strategy. Since every operation except the AND/OR
gates is a mux (which has degree 1 in each operand, and degree 2 overall), we might expect that
the overall degree would be polynomial, and therefore we should use the “pre-mixing” optimiza-
tion (Section 4.2), to keep the multilinearity degree low. Unfortunately, the AND/OR gates pose
a problem, since they require multiplications not between the algorithm’s state and the secret key
input bits, but rather among values within the algorithm’s state itself (as in repeated squaring).
This means that regardless of which optimization we use (“pre-mixing” or “cross-multiplication”),
the multilinearity degree becomes exponential in s. This would not a problem for “clean” mul-
tilinear maps, but it limits the solution’s applicability for the “noisy” maps that are known at
present. For simplicity, however, we first analyze this solution as-is, tolerating the degree blowup
(as would make sense for “clean” maps). Below we will consider alternative approaches to reduce
the multilinearity degree.

For our analysis here, however, we use the simple “cross-multiplication” optimization (Sec-
tion 4.2). The computation depth d is is O(s), since the oblivious stack of [MZ14] requires only
O(1) (multi-bit) muxes, amortized, for each of the O(s) steps of the algorithm. So the required
degree of multilinearity is 2O(s)—making this solution suited mainly to “clean” multilinear maps,
as discussed above. To bound m, the number of secret key input bits, we note that for each of
the O(s) evaluation steps we require O(1) key bits, amortized, to decide the outcomes of the O(1)
muxes (some of which are multi-bit); plus O(lg n) for the initial “pre-muxing” (Section 4.3.2) to
load the value of the correct input in x1, . . . , xn, representing the input’s identity in binary. This
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is a total of m = O(s lg n) input bits, and so the obfuscation size is O(m + n2) = O(s lg n + n2)
ring elements. As for the evaluation time, for each of the O(s) steps we require O(n) operations to
pre-mux the input variables, while the operations of the oblivious stack require O(lg s) operations
(amortized) per step, for a total evaluation time of O(ns+ s lg s) ring operations.

Unkeyed, unbalanced formulas: solution 2. The exponential degree of the previous solution
is not coincidental. Since our evaluation algorithm is oblivious, it does not know the arithmetic
degree of each subformula at the time of evaluation. It only knows that, for each of s steps, it is
drawing two values from the stack, performing a pairwise multiplication (to evaluate an AND/OR
gate), and potentially writing the result back into the stack. In other words, as far as the algorithm
knows, it could be multiplying the same operands over and over, effectively performing repeated
squaring, and thereby computing a function of degree 2s. Of course, we know the input formula
cannot really act this way: for a formula of size s, the actual degree of every subformula is at most s.
What is reflected in the index sets, however, is this conservative approximation (or “static analysis”)
of the program’s operation, which results in the required multilinearity degree of 2O(s).

Since we know the actual degree of every term is at most s, we can consider the following
alternative approach based on dynamic programming. In the previous solution, throughout the
execution, every value in memory had equal degree in each input xi (but, of course, this degree
increased exponentially with the time step). Now, in this modified solution, we replace every value
v in memory with an s-tuple of values, (v1, . . . , vs), where for each k ∈ [s], the index set of the
value vk has degree k in every Xi,xi . During the execution, each s-tuple (v1, . . . , vs) may store the
value v taken by some subformula of degree δ < s; in this case, we specify that vδ holds the actual
value of v (0 or 1), and every other vδ′ holds the value 0 (for δ′ 6= δ ∈ [s]). With this modification,
each AND/OR operation on values popped from the stack is no longer a scalar operation, but
rather becomes a convolution between two s-tuples of ring elements. For example, to execute the
operation z ← v AND w on the corresponding s-tuples (z1, . . . , zs), (v1, . . . , vs), (w1, . . . , ws), we
would need to set zi =

∑
j∈[i−1] vjwi−j , to capture all possible degrees (j, i− j) of the subformulas

corresponding to the values v, w.
To analyze this solution, first suppose that we perform these convolutions by brute force, in

O(s2) multiplications each. We use the “pre-mixing” optimization (Section 4.2), and we also pre-
compute tables of unit encodings at index sets (

∏
iXi,xi)

1, . . . , (
∏
iXi,xi)

deg(xi) and Y 1, . . . , Y deg(y),
so that each addition then requires only O(1) ring operations to raise the operands’ index sets. The
resulting evaluation time is O(ns) ring operations to pre-mux the n inputs for the O(s) steps (Sec-
tion 4.3.2);21 plus O(s3) for the O(s) brute-force convolutions; plus O(s2 lg s) for the O(s) stack
operations (now on s-tuples instead of scalars); plus the final O(n2), as always, for the straddling-set
fill elements. Since n < s, the cost of the brute-force convolution dominates, and the overall evalua-
tion time is O(s3) ring operations. The obfuscation size is O(m+n2) = O(s lg n+s+n2) = Õ(s+n2)
ring elements (since we represent the identity of each input in [n] in binary, requiring a total of
s lg n secret key input bits; plus O(s) additional bits to decide each of the multi-bit muxes of the
oblivious stack). Finally, to bound the multilinearity degree, we argue that at the end of time step
t, taking the maximum over all s-tuples in memory, for each k ∈ [s] the index set of the kth compo-
nent of any tuple has degree O(k(t+ n)). Indeed, during each time step t, muxing with the input
bits never increases the resulting degree above O(n); the O(1) multi-bit muxes for the oblivious
stack only contribute O(1) factors of Y to each index set; and the convolution preserves the desired

21Even though we now represent the input bits’ identities in [n] in binary, we can still perform the pre-muxing
in O(n) ring operations, via a standard divide-and-conquer approach like the one described in Section 4.2 for the
“pre-mixing” optimization.
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dependence on the index k ∈ [s]. Thus, the overall multilinearity degree is O(s(s+ n)) = O(s2).

Unkeyed, unbalanced formulas: solution 3. At this point, it seems natural to improve the
evaluation time of solution 2, by replacing the brute-force O(s2) convolution algorithm with an
O(s lg s) solution based on the Fast Fourier Transform (FFT). This turns out to be problematic.
For example, in the Fourier transform of (v1, . . . , vs), the first component is the value v1+ . . .+vs—
where each vk is supplied to us via an element whose index set has degree k in every index Xi,xi . It
is not clear how to obtain the sum, except by first raising all of the elements v1, . . . , vs to a common
index set, which would have degree at least s (in every Xi,xi). Yet, from the Fourier transform we
would like to extract the elements of the convolution, somehow obtaining for each k ∈ [s] the kth

result at an index set whose degree (in every Xi,xi) is only k < s.
However, if we are willing to work outside the generic model, using the properties of the concrete

CLT instantiation, we can make this idea work. Since the CLT ring elements are represented con-
cretely as integers, with the ring operations corresponding to addition and multiplication modulo
Nouter (Section 2.8), we can use any efficient FFT-based algorithm on the representations them-
selves, over the integers, and reduce each result modulo Nouter at the end. For each of the O(s)
steps of the formula evaluation, this amounts to a fast multiplication of two O(s lg(sNouter

2))-bit
integers, followed by s reductions modulo Nouter. Since lgNouter grows with the multilinearity
degree in the CLT scheme, we have lgNouter = Ω(s), and so the cost of the modular reductions
dominates that of the FFT. Thus the total asymptotic cost for the convolutions, summing over all
s steps of the formula evaluation, is at most the cost of O(s2) ring operations, reducing the overall
evaluation time to that of O(ns+ s2 lg s+ s2 + n2) = O(s2 lg s) ring operations.

Degree of
multilinearity

Obfuscation size
(# ring elements)

Evaluation time
(# ring operations)

[AGIS14] O(ns) O(ns3) O(ns3)

[AGIS14] + [Gie01] O(ns1+ε) O(ns1+ε42/ε) O(ns1+ε42/ε)

This work (sol.1) 2O(s) Õ(s+ n2) Õ(ns)

This work (sol.2) O(s2) Õ(s+ n2) O(s3)

This work (sol.3)
(concrete + [CLT13])

O(s2) Õ(s+ n2) Õ(s2)

Table 5: Performance for unkeyed, unbalanced Boolean formulas (Section 4.3.3), of size s,
with n input variables (where n < s). Our first two solutions work for any instantiation
of multilinear maps, while our last solution achieves better performance by making use of
the concrete representations in the CLT construction. We present the cost here in terms of
ring elements and ring operations. The concrete cost in bits and bit operations depends on
the performance of the multilinear map (Section 2.8); for “clean” maps (whose existence is
still open), the cost is just poly(λ), while for the CLT scheme [CLT13], the reader should
multiply every obfuscation size and evaluation time by O(deg2) · poly(λ), where deg is the
corresponding multilinearity degree from the first column.
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5 Conclusions and Open Problems

We have proposed a new way to obfuscate programs, using composite-order multilinear maps.
Our construction operates directly on straight-line programs (arithmetic circuits), rather than
converting them to matrix branching programs, and thereby achieves considerable improvements
in efficiency, as well as exposing a rich new design space of oblivious algorithms to serve as input
to the obfuscator. Our results also yield the first known obfuscator (for keyed circuit families) in
which the number of ring elements depends only on the lengths of the input and of the secret key.

Our results in this work highlight a number of open problems for further study. For one, our
construction relies on the fact that the multilinear map has (hidden) composite order, in order
to implement encodings of direct products via the Chinese Remainder Theorem. It is natural
to wonder whether this property can be emulated using standard prime-order multilinear maps,
via composite-to-prime-order transformations. While such transformations are known in some
settings [GLW14, HHH+14], we are not aware of any transformations for asymmetric multilinear
maps, in which we use index sets from arbitrary subset lattices with multiplicity (Section 2.5). We
leave this as an interesting open problem for future work.

Another compelling line of research concerns the security assumptions and the applicability of
the generic model. As Brakerski and Rothblum observe [BR14], no multilinear map can possibly
instantiate the generic model perfectly, since we are able to use the generic model to construct
VBB obfuscation, which we know is impossible for general circuit families [BGI+01]. Moreover,
our results in this work highlight the fact that there are simple concrete examples of differences
between the generic model and its instantiation via the CLT scheme—for instance, in Solution 3
of Section 4.3.3, based on the Fast Fourier Transform, our computation is valid for CLT encodings
but cannot be implemented in the generic model. While this particular difference is fortuitous, we
are led to consider whether there are other algebraic properties that hold in the CLT scheme—
and may, in fact, be compatible with concrete security assumptions, such as that of [GLW14]—
yet which may indicate fundamental weaknesses in the generic model as it is used here and in
[GGH+13b, BR14, BGK+14]. We do not know of any such weaknesses at present, but further
cryptanalysis is needed. On the positive side, it would also be useful to avoid relying on the generic
model entirely, instead proving iO for our construction based on concrete, instance-independent
assumptions [GLW14, GLSW14]. We leave this as another important problem for future work.

The central open problem: “clean” multilinear maps. This work eliminates a key obstacle
to implementing obfuscation in practice. Since we no longer depend on converting circuits to
branching programs, our construction would extend immediately to obfuscation for P/poly, with
reasonable parameters—except for the noise growth in known, “noisy” multilinear maps. Our
results demonstrate that the question of “clean” multilinear maps is not a technicality, but a
fundamental open problem.
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A Indistinguishability Obfuscation

In addition to the original definition of virtual black-box obfuscation [BGI+01], Barak et al. intro-
duce a weaker notion called indistinguishability obfuscation (iO), for which the (standard-model)
negative results do not apply. In this appendix, we show that our main construction (Construc-
tion 3.1) can be modified to achieve better parameters, if we only need iO rather than VBB (in
the generic model of multilinear maps).

We now present the formal definition of iO, due to Barak et al. [BGI+01]. Intuitively, iO says
that an obfuscated version of a circuit C leaks no more information than any circuit, of the same
size as C, that computes the same function. (For a more precise formulation of this analogy, we
refer the reader to the work of Goldwasser and Rothblum [GR07].)

Definition A.1 (Indistinguishability Obfuscation in anM-Idealized Model ([BGI+01], adapted)).
Let C = (Cλ)λ∈N be a family of Boolean circuits, and let M be a stateful oracle (possibly random-
ized). We say that a PPT machine O is an indistinguishability obfuscator for C in the M-idealized
model, if the following conditions are satisfied.

• Correctness: There is a negligible function ε such that for all λ ∈ N, every circuit C ∈ Cλ,
every input x to C, and all possible random coins for M, we have

Pr[(OM(1λ, C))(x) 6= C(x)] < ε(λ) ,

where the probability is over the coins of O.
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• Indistinguishability: For every PPT adversary A, there is a negligible function ε such that
for every C0, C1 ∈ Cλ such that C0 and C1 compute the same function and |C0| = |C1|, we
have ∣∣∣Pr[AM(OM(1λ, C0))) = 1]− Pr[AM(OM(1λ, C1))) = 1]

∣∣∣ < ε(λ) ,

where the probability is over the coins of A,O, and M.

We also specialize Definition A.1 to the classes P/poly and NC1, just as in Definitions 2.14 and
2.15. Since the details are identical, we omit the formal definitions.

We now show that if we omit the “straddling-set” elements from our main construction (Con-
struction 3.1), we can obtain significantly better parameters, while still satisfying the weaker notion
of iO. For completeness, we now state the modified construction.

Construction A.2 (Indistinguishability Obfuscation for Keyed Circuits). Let CM = (CM.Setup,
CM.Add, CM.Mult, CM.ZeroTest, CM.Encode) be a composite-order multilinear map (Definition 2.8).
Fix an input (C,y), where y ∈ {0, 1}m, and C : {0, 1}n × {0, 1}m → {0, 1} is an arithmetic circuit
(representing the keyed circuit Cy, as in Section 2.4). (We note that we can obtain keyed circuit
families from various other machine models, including general Boolean circuits, by the transforma-
tions of Section 2.4.)

As in Construction 3.1, let d be the depth of the circuit C; let deg(y) be the total degree of C
in all of the variables y1, . . . , ym; and for each i ∈ [n] let deg(xi) be the degree of C in the variable
xi. For a security parameter λ ∈ N (represented in unary), the obfuscation procedure O(1λ, C,y)
operates as follows.

O(1λ, C,y):

1. Construct the following index set of fresh formal symbols (Definition 2.7) as the top-level
index set:

U = Y deg(y)
∏
i∈[n]

(Xi,0Xi,1)
deg(xi)ZiWi

2. Run (CM.pp,CM.sp, Nev, Nchk)← CM.Setup(U , 1λ, 2).

3. For each i ∈ [n], generate uniformly random values αi, γi,0, γi,1 ← Z∗Nchk
and δi,0, δi,1 ← Z∗Nev

.
For each j ∈ [m], generate a uniformly random value βj ← Z∗Nchk

.

4. Compute the value C∗ = C(α1, . . . , αn, β1, . . . , βm) ∈ ZNchk
.

5. Using CM.Encode(CM.sp, ·), for i ∈ [n], j ∈ [m], and b ∈ {0, 1}, generate the following encoded
ring elements (using the notation of Remark 2.9):

x̂i,b = [b, αi]Xi,b ûi,b = [1, 1]Xi,b ŷj = [yj , βj ]Y v̂ = [1, 1]Y

ẑi,b = [δi,b, γi,b]Xdeg(xi)

i,1−b ZiWi
ŵi,b = [0, γi,b]Wi

Ĉ∗ = [0, C∗]Y deg(y)
∏
i∈[n](Xi,0Xi,1)

deg(xi)Zi

We refer to the elements ûi,b, v̂ as unit encodings, since they each encode 1 ∈ ZN , and they
are incorporated solely for their effect on the index sets.

6. Output the values above, along with the public parameters of the multilinear map:

O(1λ, C,y) =
(

CM.pp, (x̂i,b, ûi,b, ẑi,b, ŵi,b)i∈[n],b∈{0,1}, (ŷj)j∈[m], v̂, Ĉ∗
)
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To evaluate the obfuscated program C̃y = O(1λ, C,y) on an input x = x1 · · ·xn ∈ {0, 1}n, the
evaluation procedure O.Eval(C̃y, C,x) operates exactly as in Construction 3.1, except we omit the
final unit encoding σ̂ (as well as the computation to produce it).

To simplify the presentation, for iO we only state the result for succinct obfuscation from “clean”
multilinear maps. To adapt the construction to “noisy” maps, or to eliminate the assumption that
factoring is hard, we would modify the proof in the same way as in the case of VBB (Section 3.5).

Theorem A.3. Suppose that factoring is hard (Assumption 3.11). Then Construction A.2 achieves
succinct indistinguishability obfuscation for P/poly in the generic model of clean composite-order
multilinear maps.

To prove Theorem A.3, we will still need “structure lemmas” as in Section 3.4, in which we show
that the index sets of terms in the construction force all of the adversary’s valid zero-test queries
to take a certain form. For iO, our proofs of these lemmas will be much simpler, since we need not
deal with the “straddling-set” commitment encodings ŝi1,i2,b1,b2 ; but the results of the lemmas will
be correspondingly weaker, and in particular we can no longer conclude that each query’s input
profile, prof(z) ⊂ {0, 1}n, contains only polynomially many inputs. As we will see, if our goal is
only to prove iO and not VBB, then these weaker lemmas suffice.

Lemma A.4 (Characterization of Zero-Test Polynomials in Construction A.2). Fix an efficient ad-
versary A in the generic model of composite-order multilinear maps (Definition 2.10), and consider
a formal polynomial z produced by A at the top-level index set U , over the variables of Construc-
tion A.2 (Remark 2.11, Definition B.2). Any monomial t that occurs in the formal expansion of z
(without cancellation) has one of the following two forms:

1. For some bits x1, . . . , xn ∈ {0, 1}, and constant a ∈ Z, we have:

t = aĈ∗

∏
i∈[n]

ŵi,xi


2. For some bits x1, . . . , xn ∈ {0, 1}, and monomial function h, we have:

t = h(x̂1,x1 , . . . , x̂n,xn , û1,x1 , . . . , ûn,xn , (ŷj)j∈[m], v̂)

∏
i∈[n]

ẑi,xi


Proof. The proof follows that of Lemma 3.16, without the encodings x̂i,i′,b,b′ . We proceed by case
analysis on the construction of the top-level index set U as the index set of the monomial t. Since
U contains

∏
i∈[n] Zi, the monomial t must contain as factors some encodings yielding each Zi, but

the only such encodings are Ĉ∗ and the ẑi,b. We consider two cases.

1. Suppose t contains Ĉ∗ as a factor. Then the only remaining indices in U are the Wi. which
means the monomial tmust contain only the variables Ĉ∗ and some subset of the ŵi,b. Further,
since each Wi appears exactly once in the top-level index set U , the monomial t must contain
exactly one of (ŵi,0, ŵi,1) for each i ∈ [n]. We define xi ∈ {0, 1} so that t contains ŵi,xi for
each i ∈ [n], establishing case (1) of the lemma.
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2. Suppose t does not contain Ĉ∗ as a factor. Then it must have obtained each index Zi from
some other encoding. The only such encodings are the ẑi,b, and since each Zi appears exactly
once in U , the monomial t must contain exactly one of (ẑi,0, ẑi,1) for each i ∈ [n]. As in the
previous case, define xi ∈ {0, 1} so that t contains ẑi,xi for each i ∈ [n]. Now since the index

set of ẑi,xi contains a factor of X
deg(xi)
i,1−xi , and the top-level index set U contains only deg(xi)

copies of Xi,1−xi , we conclude that for each i ∈ [n], the monomial t does not contain any
factors of x̂i,1−xi , ûi,1−xi . In other words, it can be expressed as a monomial in the remaining
encodings (x̂1,x1 , . . . , x̂n,xn , û1,x1 , . . . , ûn,xn , ŷj , v̂), satisfying case (2) of the lemma.

Lemma A.5. Fix an efficient adversary A. For every valid zero-test polynomial z produced by
A in the security game for Construction A.2 (in the generic model of composite-order multilinear
maps), its input profile prof(z) is a set of strings in {0, 1}n, none of which is partial. Further, this
set can be computed (albeit inefficiently) by examining z.

Proof. The first part of the claim is immediate from Lemma A.4. To compute prof(z) (ineffi-
ciently), we can simply expand prof(z) into a sum of monomials and apply the definition of input
profiles (Definition 3.13).

Finally, we are ready to prove iO for Construction A.2.

Proof of Theorem A.3. As observed by Brakerski and Rothblum [BR14], iO is equivalent to a
modified version of VBB (Definition 2.13) in which the simulator S is computationally unbounded.
We will adopt this variant here, defining the simulator S exactly as in our proof of Theorem 3.5
(Section 3.5)—except that here, we invoke Lemma A.5 instead of Lemma 3.17, and thus our iteration
over x ∈ prof(z) may take up to exponential time. The rest of the proof follows the argument of
Section 3.5.

Performance analysis for iO. Construction A.2 omits the O(n2) straddling-set elements nec-
essary to achieve VBB (rather than iO), and thus it improves on the parameters of the main
construction (Construction 3.1). Specifically, using the “cross-multiplication” optimization (Sec-
tion 4.2), the degree of multlinearity becomes O(2d + n), rather than O(2d + n2); the obfuscation
size becomes O(m + n) ring elements, rather than O(m + n2); and the evaluation time becomes
O(s+ n) = O(s), rather than O(s+ n2). It is straightforward to adapt the other optimizations of
Section 4.2 to the abridged Construction A.2, and in each case the O(n2) overhead is reduced to lin-
ear. Of course, the tradeoff is that by eliminating the extra elements, we only achieve iO rather than
VBB. Constructing succinct (generic-model) VBB obfuscation with only linear overhead remains
an interesting open problem.

B Formal Polynomials in the Generic Model

To prove security of our main construction (Construction 3.1), we use a more intuitive character-
ization of the generic multilinear map oracle: rather than queries in terms of “handles” (nonces),
as defined formally in Definition 2.10, we consider zero-test queries that refer to formal polynomi-
als (Remark 2.11), whose formal variables are substituted with their joint value distribution from
the real game. The following definitions make this language precise.

Definition B.1 (Formal Variables of Construction 3.1). For a given (keyed) arithmetic circuit
C : {0, 1}n × {0, 1}m → {0, 1}, the formal variables of Construction 3.1 are the following variables:

(x̂i,b, ûi,b, ẑi,b, ŵi,b)i∈[n],b∈{0,1}(ŷj)j∈[m], v̂, Ĉ
∗, (ŝi1,i2,b1,b2)b1,b2∈{0,1},i1<i2∈[n] .
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Definition B.2 (Formal Polynomials for Handles). Fix an adversary A, and consider the state of
the generic multilinear map oracle (Definition 2.10) in the virtual black-box security game (Defini-
tion 2.13), when played with the obfuscator O corresponding to our main construction (Construc-
tion 3.1) for a given (keyed) arithmetic circuit C : {0, 1}n × {0, 1}m → {0, 1}. In the first phase of
this game, the oracle answers queries from O, while in the second phase it answers queries from A.
Here, as in the construction, we write the modulus of the composite-order map as N = NevNchk.
We also abuse notation here to write CM.Encode(sp, [a, b]S) to mean CM.Encode(sp, v, S) for the
value v that is congruent to a modulo ZNev and b modulo ZNchk

(as determined by the Chinese
Remainder Theorem).

Let p be a formal polynomial (with integer coefficients) over the variables of Construction 3.1 (Def-
inition B.1). During either phase of the game, we say that a value h (either a handle or an integer)
refers to p (at index set S) if either:

• For some b ∈ {0, 1}, i ∈ [n], the handle h is the result of running CM.Encode(sp, [b, αi]Xi,b)
during step 6 of the obfuscator (resp., CM.Encode(sp, [1, 1]Xi,b), CM.Encode(sp, [yj , βj ]Y ),
etc.), and p is the formal variable x̂i,b (resp., ûi,b, ŷj , etc.).

• The handle h is the result of a query CM.Add(h1, h2) and p is the polynomial p1 + p2, where
h1 refers to p1 (at S) and h2 refers to p2 (at S) at the time of the query.

• The handle h is the result of a query CM.Mult(h1, h2) and p is the polynomial p1p2, where
h1 refers to p1 (at S1) and h2 refers to p2 (at S2) at the time of the query; S1 ∩ S2 = ∅; and
S = S1 ∪ S2.
• The value h is an integer c ∈ Z; p is the constant polynomial c; and S = ∅.

Definition B.3 (Real Values for Formal Polynomials). Fix an adversary A, and consider the state
of the generic multilinear map oracle during the security game (as formalized in Definition B.2).

Let p be a formal polynomial (with integer coefficients) over the variables of Construction 3.1 (Def-
inition B.1). During either phase of the game, for distributions r, r1, r2 over ZN (implicitly condi-
tioning on N), we say that the real value of p is r if either:

• For some b ∈ {0, 1}, i ∈ [n], the polynomial p is the formal variable x̂i,b (resp., ûi,b, ŷj , etc.),
and r is the distribution of the value of [b, αi]Xi,b generated in step 6 of the obfuscator (resp.,
[1, 1]Xi,b , [yj , βj ]Y , etc.).

• The polynomial p is formally written as p1 + p2 for some p1, p2; the real value of p1 is r1;
the real value of p2 is r2; and r = r1 + r2.

• The polynomial p is formally written as p1p2 for some p1, p2; the real value of p1 is r1; the
real value of p2 is r2; and r = r1r2.

• The polynomial p is formally written as c for a constant c ∈ Z, and r = c.

Definition B.4 (Index Sets for Formal Polynomials). Fix an adversary A, and consider the state
of the generic multilinear map oracle during the security game (as formalized in Definition B.2).

Let p be a formal polynomial (with integer coefficients) over the variables of Construction 3.1 (Def-
inition B.1). We say that the index set of p is S ⊂ U if either:

• The polynomial p is the formal variable x̂i,b (resp., ûi,b, ŷj, etc.), and S is Xi,b (resp., Xi,b,
Y , etc.).

• The polynomial p is formally written as p1 +p2 for some p1, p2; the index set of p1 is S; and
the index set of p2 is S.
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• The polynomial p is formally written as p1p2 for some p1, p2; the index set of p1 is S1; the
index set of p2 is S2; S1 ∪ S2 ⊆ U ; and S = S1 ∪ S2.

• The polynomial p is formally written as c for a constant c ∈ Z, and S = ∅.

As an immediate consequence of these definitions, we note the following intuitive properties:

Lemma B.5 (Uniqueness of Real Values). Fix formal polynomials p1, p2 (with integer coefficients)
in the variables of Construction 3.1 (Definition B.1). During the security game (as formalized in
Definition B.2), if the polynomials p1 and p2 are identically equal and the real value (Def. B.3) of
p1 is r, then the real value of p2 is r.

Proof. Since p1 ≡ p2, they are identical when expanded into a sum of monomials. Thus it suffices
to prove the claim for a single distributive step. If the real value of (p1 + p2)p3 is r, then by
case analysis we conclude that that the real values of p1, p2, p3 are, resp., some r1, r2, r3 such that
(r1 + r2)r3 = r. Hence the real value of p1p3 + p2p3 is r1r3 + r2r3 as desired.

Lemma B.6 (Uniqueness of Index Sets). Fix formal polynomials p1, p2 (with integer coefficients)
in the variables of Construction 3.1 (Definition B.1). If the polynomials p1 and p2 are identically
equal and the index set (Def. B.4) of p1 is r, then the index set of p2 is r.

Proof. Since p1 ≡ p2, they are identical when expanded into a sum of monomials. Thus it suffices
to prove the claim for a single distributive step. If the index set of (p1 + p2)p3 is S, then by case
analysis we conclude that that the index sets of p1, p2, p3 are, resp., S1, S1, and S3, for some sets
S1, S3 such that S1 ∪ S3 = S. Hence the index set of both p1p3 and p2p3 is S1 ∪ S3 = S, and thus
so is that of their formal sum p1p3 + p2p3, as desired.

Lemma B.7 (Evaluation Commutes With Substutition). During the security game (as formalized
in Definition B.2), in the generic graded encoding model, suppose a handle h is mapped, at index
set S, to a value in the oracle’s table whose (prior) distribution is r. Then h refers (Def. B.2) to
a formal polynomial p whose index set (Def. B.4) is S and whose real value (Def. B.3) is r.

Proof. By structural induction on the sequence of CM.Add, CM.Mult queries by which the mapping
was formed.

In our main proofs in Section 3, we make use of Lemmas B.5, B.6, B.7 implicitly. We also make
implicit use of the fact that it is easy to compute the formal polynomial (and index set) that a
handle refers to, given the sequence of queries and responses between the oracle and the machines
O,A, simply by following the inductive definition (Definition B.2).
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