
(Batch) Fully Homomorphic Encryption over Integers for

Non-Binary Message Spaces

Koji Nuida∗† Kaoru Kurosawa§

∗ National Institute of Advanced Industrial Science and Technology (AIST),
Japan, k.nuida@aist.go.jp

† JST, PRESTO
§ Ibaraki University, Japan, kurosawa@mx.ibaraki.ac.jp

Abstract

In this paper, we construct a fully homomorphic encryption (FHE) scheme
over integers with the message space ZQ for any prime Q. Even for the binary
case Q = 2, our decryption circuit has a smaller degree than that of the previous
scheme; the multiplicative degree is reduced from O(λ(log λ)2) to O(λ), where λ is
the security parameter. We also extend our FHE scheme to a batch FHE scheme.

Keywords: Fully homomorphic encryption, non-binary message

1 Introduction

Fully homomorphic encryption (FHE) enables computation of any function on the
encrypted data. Many FHE schemes appeared recently after the first construction
of Gentry [9]. In [9], the following general framework for constructing FHE schemes
was also presented. (1) Construct a somewhat homomorphic encryption (SHE) scheme
which can evaluate a limited class of functions homomorphically. (2) Transform (or
squash) the SHE scheme into a bootstrappable scheme whose decryption circuit has a
low enough multiplicative degree. (3) Apply Gentry’s transformation to get an FHE
scheme from the bootstrappable scheme.

At Eurocrypt 2010, van Dijk et al. [8] constructed an “FHE scheme over the inte-
gers”. At Eurocrypt 2013, Cheon et al. [3] extended it to a batch FHE scheme, where
the message space is extended from Z2 to (Z2)

k. In [3], they also presented a batch SHE
scheme for the message space ZQ1 × · · · × ZQk

. However, FHE has not been achieved
for the case of primes Qi > 2, even for the non-batch case k = 1.

1

1.1 What Is the Problem?

Let λ be the security parameter, and letM denote the message space. In the scheme of
van Dijk et al. [8],M = Z2 and the ciphertext c of a plaintextm ∈M is c = pq+2r+m,
where p is a secret prime and r is a small noise. In their SHE scheme, the decryption
is given by m = (c mod p) mod 2 = c − p · ⌊c/p⌉ mod 2 = c − ⌊c/p⌉ mod 2. In the
bootstrappable scheme, the (squashed) decryption algorithm works as

m← (c mod 2)⊕

(⌊
Θ∑
i=1

sizi

⌉
mod 2

)
. (1)

Here (s1, . . . , sΘ) ∈ {0, 1}Θ is the secret key with Hamming weight λ and each zi =
(zi,0.zi,1 . . . zi,L)2 is a real number with L = ⌈log2 λ⌉+3 bits of precision after the binary

point, satisfying
∑Θ

i=1 sizi ≈ c/p.1 They constructed a low multiplicative degree circuit

computing (⌊
∑Θ

i=1 sizi⌉ mod 2) in (1) by two steps [8]:

1. The first circuit computes Wj =
∑Θ

i=1 sizi,j for j = 0, 1, . . . , L. Hence

Θ∑
i=1

sizi = W0 + 2−1W1 + . . .+ 2−LWL .

2. By applying the three-for-two trick repeatedly, the second circuit computes a and
b satisfying

W0 + 2−1W1 + . . .+ 2−LWL = a+ b mod 2 .

Now to compute Wj , we have at least to homomorphically compute a half adder;
it needs a pair of polynomials, one for the sum and the other for the carry. However,
such a polynomial computing the carry is not known for non-binary cases.2 This is the
main reason why it is hard to extend the circuit above to non-binary message spaces.

On the other hand, the multiplicative degree of the first circuit is λ since Wj ≤ λ,
and it is O((log λ)2) for the second circuit. Hence, the total degree of the decryption
circuit is O(λ(log λ)2).

1.2 Our Contributions

In this paper, we solve the problem above; for M = ZQ where Q is any (constant)
prime, we construct an FHE scheme over integers based on a new design principle. We
also extend it to a batch FHE scheme with M = ZQ1 × · · · × ZQk

, where Q1, . . . , Qk

may be different. Our main advantages are as follows:
1See [8] for how to compute zi from c and the public key.
2In fact, they exploited the fact that the binary expression of Wj is given by elementary symmetric

polynomials in (s1z1,j), . . . , (sΘzΘ,j) [1]. However, such an expression is unknown for non-binary cases.

2

1. The FHE scheme for Q > 2 was not achieved in [3, 8].

2. Our decryption circuit has multiplicative degree O(λ) for any Q; even for Q = 2,
it is significantly improved from O(λ(log λ)2) of [3, 8].

For M = ZQ, the encryption is given by c = pq + Qr + m. The decryption of
the SHE scheme is given by m = (c mod p) mod Q = c − p · ⌊c/p⌉ mod Q. Then our
squashed decryption algorithm works as

m← c− p ·

⌊
Θ∑
i=1

sizi

⌉
mod Q .3

Here, zi = (zi,0.zi,1 . . . zi,L)Q is a real number with L = ⌈logQ λ⌉+ 2 digits of precision

after the Q-ary point satisfying
∑Θ

i=1 sizi ≈ c/p.
Now we first determine a polynomial f(x, y) computing the carry of a half adder

for any prime Q. Namely, when x, y ∈ ZQ and x+ y = β ·Q+ α ∈ Z, our polynomial
f computes β = f(x, y) mod Q. It has degree Q which is proven to be the lowest. See
Sec. 3. Then we compute

∑Θ
i=1 sizi = (w0.w1 . . . wL)Q mod Q as follows.4

• First, we compute the sum of the last digits as shown in Fig. 1 (where each box
is a half adder) so that we obtain wL and the Θ− 1 carries β1, . . . , βΘ−1 with

s1z1,L + · · ·+ sΘzΘ,L = wL +Q · (β1 + . . .+ βΘ−1) .

• Secondly, we compute (s1z1,L−1+ · · ·+ sΘzΘ,L−1)+ (β1+ . . .+βΘ−1) similarly so
that we obtain wL−1 and the 2(Θ− 1) carries.

• Iterating this process, we obtain (w0.w1 . . . wL)Q.
5

The circuit computing each step has multiplicative degree Q (= deg f). Hence, the
multiplicative degree D of our decryption circuit is QL+1 = O(λ), which is significantly
lower than O(λ(log λ)2) of [3, 8].

Finally, in the same way as [3, 8], we make our scheme bootstrappable by letting
the bit length of p be ρ · Θ(D), where ρ is the size of noise r in a fresh ciphertext c.
Since the degree D of the decryption circuit has been decreased in comparison to [3, 8],
the size of p is also reduced, therefore the size of our ciphertexts is much smaller than
that of [3, 8] even for the previously known case Q = 2. See Table 1.

Moreover, we emphasize that we also give a concrete, not just asymptotic, condition
for the parameters of our scheme to make the scheme bootstrappable; see (13).

3In Sec. 6.1, the information of p is involved in an element X and is reflected by public key compo-
nents uℓ, therefore the decryption does not need p itself.

4For the sake of our analysis in Sec. 7, our algorithm in Sec. 4 is described in a different, but
essentially equivalent manner.

5We choose the parameters to guarantee that w1 ∈ {0, Q− 1}; consequently ⌊
∑Θ

i=1 sizi⌉ ≡ w0 −w1

(mod Q).

3

Table 1: Bootstrappable Bit Lengths of Secret Prime p

binary message non-binary message

DGHV’10 [8], CCK+’13 [3] ρ ·Θ(λ(log λ)2) —

Our result ρ ·Θ(λ) ρ ·Θ(λ)

1.3 Organization of the Paper

In Sec. 2, we summarize some definitions and notations used in this paper. In Sec. 3,
we study the polynomial expression of the carry function in the addition of two Q-ary
digits for any prime Q. Based on the result, in Sec. 4, we construct an algorithm for
addition of Q-ary integers which is composed of polynomial evaluations modulo Q.
Then, in Sec. 5, we recall the previous SHE; and in Sec. 6, we describe our proposed
bootstrapping algorithm based on the result in Sec. 4. Finally, in Sec. 7, we analyze
our proposed method to verify that the bootstrapping is indeed achieved.

2 Preliminaries

In this paper, we naturally identify the integer residue ring Zn := Z/nZ modulo an
integer n > 0 with the set {0, 1, . . . , n − 1}. For real numbers x, y, we write x ≡ y
(mod n) if (x − y)/n ∈ Z. On the other hand, we consider the following two kinds of
remainder operations; we define x mod n to be the unique y ∈ Zn with y ≡ x (mod n),
and xModn to be the unique integer y in (−n/2, n/2] with y ≡ x (mod n).

For a Q-ary representation A = (a0.a1, a2, . . .)Q (with aj ∈ ZQ) of a real number A
and an integer L ≥ 0, we define

(A)L := (a0.a1, a2, . . . , aL)Q .

For a prime Q, an integer a and an integer b ∈ ZQ, we define(
a

b

)
Q

:= a(a− 1) · · · (a− b+ 1) · InvQ(b!) (2)

which is a polynomial in a of degree b ≤ Q − 1, where InvQ(x) (for x ∈ Z coprime to
Q) denotes the unique integer y ∈ ZQ with xy ≡ 1 (mod Q). Then we have(

a

b

)
Q

≡
(
a

b

)
(mod Q) (3)

(the right-hand side is the usual binomial coefficient).

4

3 Q-ary Half Adder

Let Q be a prime. For x, y ∈ ZQ, let

x+ y = (c, s)Q = c ·Q+ s .

It is clear that s = x + y mod Q. In this section, we construct the lowest degree
polynomial fcarry,Q(x, y) yielding the carry c, as follows:

Theorem 1. We define a polynomial fcarry,Q(x, y) over the field ZQ by

fcarry,Q(x, y) :=

Q−1∑
i=1

(
x

i

)
Q

(
y

Q− i

)
Q

,

having total degree deg fcarry,Q = Q (see (2) for the notations). Then for any x, y ∈ ZQ,
we have

c = fcarry,Q(x, y) mod Q .

Theorem 2. The total degree of fcarry,Q is lowest among all polynomials g(x, y) over
ZQ satisfying that c = g(x, y) mod Q for any x, y ∈ ZQ.

From now, we prove these two theorems.

Theorem 1. We first show that, for any x, y ∈ ZQ,

c =

(
x+ y

Q

)
mod Q . (4)

If 0 ≤ x+ y < Q, then we have c = 0, while we have
(
x+y
Q

)
= 0 by the definition of the

binomial coefficient. For the other case Q ≤ x+ y < 2Q, we have c = 1, while we have(
x+ y

Q

)
=

(
x+ y

x+ y −Q

)
≡ (x+ y)(x+ y − 1) · · · (Q+ 1) · InvQ((x+ y −Q) · · · 1)
≡ (x+ y −Q)(x+ y −Q− 1) · · · 1 · InvQ((x+ y −Q) · · · 1)
≡ 1 (mod Q)

(see Sec. 2 for the definition of InvQ). Therefore (4) holds.
Next, from the meaning of

(
x+y
Q

)
, it is easy to see that(

x+ y

Q

)
=

(
x

0

)(
y

Q

)
+

(
x

1

)(
y

Q− 1

)
+ · · ·+

(
x

Q

)(
y

0

)
.

Now we have 0 ≤ x < Q and 0 ≤ y < Q since x ∈ ZQ and y ∈ ZQ, therefore(
x
Q

)
=
(
y
Q

)
= 0. Hence, by (3), Theorem 1 holds.

5

We use the following property in the proof of Theorem 2:

Lemma 1. Let f ′(x, y) be a polynomial over ZQ of degree at most Q− 1 with respect
to each of x and y. If f ′(x, y) = fcarry,Q(x, y) for every x, y ∈ ZQ, then f ′ coincides
with fcarry,Q as polynomials.

Proof. Assume that f ′ ̸= fcarry,Q as polynomials. Set g := fcarry,Q − f ′, which is now

a non-zero polynomial. Write g(x, y) =
∑Q−1

i=0 gi(y)x
i, where each gi(y) is a polynomial

of degree at most Q − 1. Then gi is a non-zero polynomial for at least one index i.
By the polynomial remainder theorem, we have gi(b) = 0 for at most Q − 1 elements
b ∈ ZQ; therefore gi(b) ̸= 0 for some b ∈ ZQ. Now g(x, b) is a non-zero polynomial in x
of degree at most Q− 1, therefore g(a, b) ̸= 0 for some a ∈ ZQ by the same reason. On
the other hand, we must have g(x, y) = fcarry,Q(x, y)− f ′(x, y) = 0 for any x, y ∈ ZQ;
this is a contradiction. Hence Lemma 1 holds.

Theorem 2. If such a polynomial g(x, y) has degree at least Q with respect to x (respec-
tively, y), then deg g(x, y) can be decreased without changing the values g(x, y) mod Q
by using the relation xQ ≡ x (mod Q) (respectively, yQ ≡ y (mod Q)) derived from
Fermat’s Little Theorem. Iterating the process, we obtain a polynomial g∗(x, y) of
degree at most Q − 1 with respect to each of x and y, satisfying that deg g∗ ≤ deg g
and g∗(x, y) ≡ g(x, y) ≡ fcarry,Q(x, y) (mod Q) for any x, y ∈ ZQ. Then Lemma 1 im-
plies that g∗ = fcarry,Q as polynomials. Hence we have deg fcarry,Q = deg g∗ ≤ deg g.
Therefore Theorem 2 holds.

4 Low-Degree Circuit for Sum of Integers

For i = 1, . . . ,m, let ai = (ai,1, . . . , ai,n)Q. In this section, we give a circuit of low
(multiplicative) degree which computes

a1 + . . .+ am mod Qn. (5)

We call the m× n matrix A = (ai,j)i,j the matrix representation of (a1, . . . , am).
First we define an algorithm StreamAddQ(x1, . . . , xm) for x1, . . . , xm ∈ ZQ (see also

Fig. 1).

StreamAddQ(x1, . . . , xm)� �
s2 ← x1 + x2 mod Q
c2 ← fcarry,Q(x1, x2) mod Q %(c2, s2)Q = x1 + x2

For i = 3, . . . ,m,
si ← si−1 + xi mod Q
ci ← fcarry,Q(si−1, xi) mod Q %(ci, si)Q = si−1 + xi

Return (sm, (c2, . . . , cm))� �
6

Figure 1: StreamAddQ(x1, . . . , x4)

For (sm, (c2, . . . , cm))← StreamAdd(x1, . . . , xm), it is easy to see that

x1 + · · ·+ xm = sm +Q× (c2 + . . .+ cm) . (6)

We next define an algorithm MatrixAddQ(A), where A = (ai,j)i,j is an m×n matrix
as above.

MatrixAddQ(A)� �
For j = 1, . . . , n,

(αj , (β2,j , . . . , βm,j))← StreamAddQ(a1,j , . . . , am,j)
% Apply StreamAddQ to the jth column of A.

For j = 1, . . . , n− 1,
(b1,j , . . . , bm,j)← (αj , β2,j+1, . . . , βm,j+1)

% Shift (β2,j+1, . . . , βm,j+1)
T to the left.

Return B = (bi,j) and αn, where B is an m× (n− 1) matrix� �
Visually, it can be expressed as

B =


. . . , αn−1

. . . , β2,n
...

...

. . . , βm,n

 , αn ← (StreamAddQ) ←


. . . , a1,n
...

...
. . . , am,n

 = A

Given (B = (bi,j), αn)← MatrixAddQ(A), let bi = (bi,1, . . . , bi,n−1, 0)Q for i = 1, . . . ,m.
Then from (6), we can see that

a1 + . . .+ am ≡ (b1 + . . .+ bm) + αn (mod Qn) .

We finally define an algorithm FinalAddQ(A), where A = (ai,j) is an m× n matrix.

7

FinalAddQ(A)� �
Let A(0) ← A
For j = 1, . . . , n,

(A(j), dn−j+1)← MatrixAddQ(A
(j−1)),

where A(j) is an m× (n− j) matrix
Return (d1, . . . , dn)� �
Suppose that A is the matrix representation of (a1, . . . , am). Let

(d1, . . . , dn)← MatrixAddQ(A) .

Then it is easy to see that the followings hold (since deg fcarry,Q = Q):

Theorem 3. We have (d1, . . . , dn)Q = a1 + . . .+ am mod Qn.

Theorem 4. For i = 1, . . . , n, there is a polynomial fQ,i(x1,1, . . . , xm,n) over ZQ sat-
isfying deg fQ,i = Qn−i and di = fQ,i(a1,1, . . . , am,n) mod Q.

5 Batch SHE Scheme over Integers

In this section, we describe an SHE scheme over integers with message space M =
(ZQ1)

h1 × · · · × (ZQk
)hk , where k ≥ 1, hj ≥ 1 and Q1, . . . , Qk are distinct primes.

This scheme is essentially the one proposed in [3] which is semantically secure under
the (ρ, η, γ)-decisional approximate GCD assumption (see [3] for details), with slight
notational modifications.6 7 To simplify the notations, set

I := {(i, j) | i, j ∈ Z, 1 ≤ i ≤ k, 1 ≤ j ≤ hi} .

The choices of other parameters ρ, γ, η, τ are discussed later.

• Key generation KeyGen(1λ): Choose η-bit primes pi,j for (i, j) ∈ I uniformly at
random in a way that all pi,j and Qi′ are different. Choose

q0
$←
[
1, 2γ/

∏
(i,j)∈I

pi,j

)
∩ ROUGH(2λ

2
)

6In fact, our proposed bootstrapping method is directly extendable to the variant of their scheme
in [3] based on the error-free approximate GCD assumption.

7We note that the components of the message space is changed from (−Q/2, Q/2] ∩ Z as in [3]
to {0, 1, . . . , Q − 1}, but it does not affect the security of the scheme. Indeed, by the map c 7→
c+

∑
(i,j)∈I⌊(Qi − 1)/2⌋x′

i,j we can convert any ciphertext with the former message space to that with
the latter message space, and vice versa.

8

in a way that q0 is coprime to all pi,j and all Qi′ , where ROUGH(2
λ2
) denotes the

set of integers having no prime factors less than 2λ
2
. Set

N := q0
∏

(i,j)∈I

pi,j .

Choose eξ;0 and eξ;i,j for ξ ∈ {1, . . . , τ} and (i, j) ∈ I by

eξ;0
$← [0, q0) ∩ Z , eξ;i,j

$← (−2ρ, 2ρ) ∩ Z .

Then let xξ be the unique integer in (−N/2, N/2] satisfying

xξ ≡ eξ;0 (mod q0) , xξ ≡ eξ;i,jQi (mod pi,j) for (i, j) ∈ I .

Similarly, for (i, j), (i′, j′) ∈ I, choose e′i,j;0 and ei,j;i′,j′ by

e′i,j;0
$← [0, q0) ∩ Z , ei,j;i′,j′

$← (−2ρ, 2ρ) ∩ Z ,

and let x′i,j be the unique integer in (−N/2, N/2] satisfying

x′i,j ≡ e′i,j;0 (mod q0) ,

x′i,j ≡ e′i,j;i′,j′Qi′ + δ(i,j),(i′,j′) (mod pi′,j′) for (i
′, j′) ∈ I ,

where δ∗,∗ are Kronecker delta. Then output a public key pk consisting of all N ,
xξ and x′i,j , and a secret key sk consisting of all pi,j .

• Encryption Enc(pk, m⃗): Given a plaintext m⃗ = (mi,j)(i,j)∈I ∈ M, output a ci-
phertext c defined by

c :=
∑

(i,j)∈I

mi,jx
′
i,j +

∑
ξ∈T

xξ ModN ∈ (−N/2, N/2] ∩ Z ,

where T is a uniformly random subset of {1, 2, . . . , τ}.

• Decryption Dec(sk, c): Given a ciphertext c, output m⃗ ∈M given by

m⃗ := ((cMod pi,j) mod Qi)(i,j)∈I .

• Evaluation Eval(pk, f, c1, . . . , cn): Given a polynomial f with integer coefficients
and ciphertexts c1, . . . , cn, output c

∗ given by

c∗ := f(c1, . . . , cn)ModN .

9

Following the arguments in [3], we let the parameters ρ, γ, η and τ satisfy the
following conditions (see Sec. 6.3 for further details):

• ρ = ω(λ), to resist the attack by Chen and Nguyen [4] for the approximate GCD
assumption.

• γ > η2/ρ, to resist Howgrave-Graham’s attack [11] for the approximate GCD
assumption.

• η = Ω(λ2) and γ = (
∑k

i=1 hi) ·η+Ω(λ2), to resist Lenstra’s elliptic curve method
[13] for factoring the integer N (the latter is to make the (approximate) bit length
γ − (

∑k
i=1 hi) · η of q0 sufficiently large).

• γ = η2ω(log λ), to resist the attack by Cohn and Heninger [5] and the attack using
Lagarias algorithm [12] on the approximate GCD assumption. (This implies the
condition γ = Ω(λ3) arisen from the general number field sieve [2] for factoring
N .)

• τ = γ + ω(log λ), in order to use the Leftover Hash Lemma in the security proof
(see [3] for the details).

6 Our FHE Scheme: Bootstrapping for Large Plaintexts

We now describe our bootstraping algorithm for the SHE scheme in Sec. 5 with non-
binary plaintexts, based on our results in Sec. 4.

6.1 Squashed Scheme

In this subsection, we squash the decryption algorithm of the SHE scheme in Sec. 5,
i.e., we modify the scheme in such a way that the multiplicative degree of the resulting
decryption circuit is low enough to make the bootstrapping possible. It is a natural
generalization of the squashing method in [8] to the large message space. The choices of
additional parameters κi, θi, Θi and Li for i ∈ {1, . . . , k} will be discussed in Sec. 6.3.
Set

Θmax := max{Θ1, . . . ,Θk} .

From now, we describe the squashed scheme.

• Key Generation KeyGen∗(1λ): First, generate (pk, sk)← KeyGen(1λ) as in Sec. 5.
Then choose a subset Π of the product of symmetric groups Sh1 × · · · × Shk

satisfying that Π contains the identity permutation id and Π generates the group
Sh1×· · ·×Shk

. Secondly, for each (i, j) ∈ I, choose uniformly at random a Θi-bit
vector

(si,j;1, . . . , si,j;Θi) ∈ {0, 1}Θi

10

with Hamming weight θi, and set

Xi,j := ⌊Qi
κi · (pi,j ModQi)/pi,j⌉ .

For 1 ≤ i ≤ k and 1 ≤ ℓ ≤ Θi, choose

ui,ℓ
$← [0, Qi

κi+1) ∩ Z

in such a way that

Θi∑
ℓ=1

si,j;ℓui,ℓ ≡ Xi,j (mod Qi
κi+1) for 1 ≤ j ≤ hi .

Moreover, for each σ = (σ1, . . . , σk) ∈ Π, generate

vσℓ ← Enc(pk, m⃗σ
ℓ) for 1 ≤ ℓ ≤ Θmax ,

where m⃗σ
ℓ = (mσ

ℓ;i,j)(i,j)∈I ∈M is defined by

mσ
ℓ;i,j = si,σi(j);ℓ if ℓ ≤ Θi , m

σ
ℓ;i,j = 0 otherwise.

Then output a public key pk∗ consisting of all pk, Π, ui,ℓ and vσℓ , and secret key
sk∗ consisting of all si,j;ℓ.

• Encryption Enc∗(pk∗, m⃗) and evaluation Eval∗(pk∗, f, c1, . . . , cn): These are the
same as the scheme in Sec. 5 (with public key pk).

• Decryption Dec∗(sk∗, c): Given a ciphertext c, for 1 ≤ i ≤ k and 1 ≤ ℓ ≤ Θi,
compute

zi,ℓ := (c · ui,ℓ/Qi
κi mod Qi)Li .

Then output m⃗ = (mi,j)(i,j)∈I defined by

mi,j := c−

⌊
Θi∑
ℓ=1

si,j;ℓzi,ℓ

⌉
mod Qi for each (i, j) ∈ I .

We note that, the possible difference of the security of this scheme from the one
in Sec. 5 comes from the components ui,ℓ involved in the new public key, which are
dependent on the secret values si,j;ℓ. The situation is the same as the previous FHE
schemes [3, 8]. In [8], it was observed that revealing the secret by using the “hints” ui,ℓ
is related to the sparse subset sum problem and the low-weight knapsack problem. They
proposed the following choices of parameters θi and Θi to avoid the known attacks:

• Θi is ω(log λ) times the bit lengths (κi + 1) log2Qi of ui,ℓ.

• θi is large enough to resist brute-force attacks; e.g., θi := λ as in [8].

11

6.2 Our Bootstrapping Procedure

In this subsection, we describe our proposed bootstrapping algorithm based on the
results in Sec. 4. More precisely, in the same manner as the previous FHE scheme
with modulo-two plaintexts [3], we construct “permuted bootstrapping” algorithm
Bootstrap(pk∗, c, σ) for a ciphertext c for plaintext (mi,j)(i,j)∈I and a permutation
σ ∈ Π, which generates a ciphertext for permuted plaintext (mi,σi(j))(i,j)∈I with re-
duced noise (the case σ = id yields the usual bootstrapping).

Let StreamAdd′Q be a variant of the algorithm StreamAddQ defined in Sec. 4, ob-
tained in such a way that the inputs are ciphertexts rather than elements of ZQ, and
the additions and evaluations of the polynomial fcarry,Q in StreamAddQ modulo Q are
replaced with the corresponding homomorphic evaluations for ciphertexts, i.e., addi-
tions and evaluations of fcarry,Q “Modulo N”. Let MatrixAdd′Q and FinalAdd′Q be the
corresponding variants of MatrixAddQ and FinalAddQ, respectively. We construct the
algorithm Bootstrap(pk∗, c, σ) by using FinalAdd′Q, as follows:

• Permuted bootstrapping Bootstrap(pk∗, c, σ): First, compute zi,ℓ for 1 ≤ i ≤ k
and 1 ≤ ℓ ≤ Θi as in Dec∗, and write

zi,ℓ = (zi,ℓ;0.zi,ℓ;1, . . . , zi,ℓ;Li
)Qi

where zi,ℓ;ξ ∈ ZQi for each 0 ≤ ξ ≤ Li. For 0 ≤ ξ ≤ Li, set

vi,ℓ;ξ := zi,ℓ;ξ · vσℓ ModN . (7)

Then compute
(wi;0, wi;1, . . . , wi;Li)← FinalAdd′Qi

(Vi) ,

where Vi = (vi,ℓ;ξ)1≤ℓ≤Θi,0≤ξ≤Li
is a Θi×(Li+1) matrix consisting of ciphertexts.

Moreover, for 1 ≤ i ≤ k, compute

c⟨i⟩ ← crti · (wi;0 − wi;1)ModN ,

where crti denotes the unique integer in (−(
∏k

i′=1Qi′)/2, (
∏k

i′=1Qi′)/2] with crti ≡
δi,i′ (mod Qi′) for any 1 ≤ i′ ≤ k. Finally, output

c∗ ←

(
cMod

k∏
i=1

Qi

)
− c⟨1⟩ − · · · − c⟨k⟩ModN .

From Theorem 4, the multiplicative degree of the FinalAdd′ circuit is

Qi
Li+1 = Qi

⌈logQi
λ⌉+3 ≤ Qi

logQi
λ+4 = Qi

4 · λ

(see Sec. 6.3 below for the choice of Li) which is O(λ) for a constant Qi.

12

6.3 Choice of Parameters

We give an instance of the choice of parameters for our scheme, where we regard all of
k, Qi and hi as constants. First, we set

ρ = Θ(λ log log log λ), η = Θ(λ2 log log λ), γ = Θ(λ4(log λ)2), τ = γ + λ .

Then all the conditions mentioned in Sec. 5 are indeed satisfied. Secondly, for the
additional parameters in the squashed scheme, we set

Li = ⌈logQi
θi⌉+ 2 , κi = ⌈(γ − log2(4Qi − 5))/ log2Qi⌉+ 2 ,

Θi = Θ((λ log λ)4) , θi = λ for each 1 ≤ i ≤ k .
(8)

Then the conditions mentioned in Sec. 6.1 are also satisfied. Moreover, the analysis
given in Sec. 7 below shows that our scheme is indeed bootstrappable by using these
parameters. We emphasize that the order of the bit length η of pi,j is only slightly
higher than ρ · λ, which is significantly lower than ρ · λ(log λ)2 required in the previous
FHE schemes [3, 8] (see also (13) in Sec. 7 for a concrete lower bound for η). This
reduces the key sizes for the scheme, even in the previously achieved cases Qi = 2.

7 Analysis of Our Proposed Scheme

In this section, we analyze our proposed scheme, especially our bootstrapping algorithm,
to see the correctness of the scheme and estimate appropriate parameters. For the
purpose, we introduce the following definition, which intuitively means the amount of
noise in a ciphertext:

Definition 1. Let c be a ciphertext for plaintext m⃗ = (mi,j)(i,j)∈I . We define the
weight wti,j(c) of c at position (i, j) ∈ I to be the minimum integer satisfying the
following for some αi,j(c), βi,j(c) ∈ Z:

c = αi,j(c) · pi,j + βi,j(c) ·Qi +mi,j and |βi,j(c) ·Qi +mi,j | ≤ wti,j(c) .

We evaluate the weights of fresh ciphertexts:

Proposition 1. For any c ← Enc∗(pk∗, m⃗) with m⃗ ∈ M, we have wti,j(c) ≤ QiΓ for
any (i, j) ∈ I, where we define

Γ :=
(
h1(Q1 − 1) + · · ·+ hk(Qk − 1) + τ

)
· 2ρ .

Proof. For (i, j) ∈ I, since N is a multiple of pi,j , we have

c ≡
∑

(i′,j′)∈I

mi′,j′(e
′
i′,j′;i,jQi + δ(i′,j′),(i,j)) +

∑
ξ∈T

eξ;i,jQi

≡

 ∑
(i′,j′)∈I

mi′,j′e
′
i′,j′;i,j +

∑
ξ∈T

eξ;i,j

Qi +mi,j (mod pi,j) .

13

Since mi′,j′ ∈ [0, Qi′ − 1] and eξ;i,j , e
′
i′,j′;i,j ∈ (−2ρ, 2ρ), the absolute value of the right-

hand side is bounded by ∑
(i′,j′)∈I

(Qi′ − 1) + τ

 (2ρ − 1)Qi +Qi − 1 ≤

(
k∑

i′=1

hi′(Qi′ − 1) + τ

)
Qi2

ρ .

Hence we have wti,j(c) ≤ QiΓ, therefore Proposition 1 holds.

The next property is implied directly by the definition of wti,j(c):

Proposition 2. Let cℓ be a ciphertext for plaintext (mℓ;i,j)(i,j)∈I , 1 ≤ ℓ ≤ n. Let f be a
polynomial, and let fabs denote the polynomial obtained by replacing the coefficients in f
with their absolute values. Then the output c← Eval∗(pk∗, f, c1, . . . , cℓ) of the evaluation
algorithm is a ciphertext for plaintext (f(m1;i,j , . . . ,mℓ;i,j) mod Qi)i,j ∈ M, and we
have

wti,j(c) ≤ fabs(wti,j(c1), . . . ,wti,j(cℓ)) for any (i, j) ∈ I .

From now, we show the correctness of the squashed scheme:

Lemma 2. Let c be a ciphertext for plaintext m⃗ = (mi,j)(i,j)∈I with weight wti,j(c).
Then for any (i, j) ∈ I, we have

Θi∑
ℓ=1

si,j;ℓzi,ℓ = pi,j · αi,j(c) + β̃i,j ·Qi + εi,j (9)

for the integer αi,j(c) in Definition 1, some integer β̃i,j and some value εi,j with |εi,j | ≤
ε̃i,j(c), where

ε̃i,j(c) := Qiwti,j(c)/(2pi,j) + θi ·Qi
−Li +NQi

−κi/4 .

Proof. First, by the definition of zi,ℓ, we have zi,ℓ = c ·ui,ℓ/Qi
κi +Ai,ℓQi+∆i,ℓ for some

∆i,ℓ with |∆i,ℓ| < Qi
−Li and an integer Ai,ℓ. Then we have

Θi∑
ℓ=1

si,j;ℓzi,ℓ = c ·
Θi∑
ℓ=1

si,j;ℓui,ℓ/Qi
κi +A′

i,jQi +∆′
i,j (10)

for some A′
i,j ∈ Z and ∆′

i,j :=
∑Θi

ℓ=1 si,j;ℓ∆i,ℓ with |∆′
i,j | < θi · Qi

−Li (recall that
(si,j;1, . . . , si,j;Θi) has Hamming weight θi). Now, by the definitions of Xi,j and ui,ℓ,
there are an integer Bi,j and a value ∆′′

i,j ∈ [−1/2, 1/2] satisfying that the right-hand
side of (10) is equal to

c · (Qi
κi · (pi,j ModQi)/pi,j +∆′′

i,j +Bi,jQi
κi+1)/Qi

κi +A′
i,jQi +∆′

i,j

= (pi,j ModQi) · c/pi,j + (cBi,j +A′
i,j)Qi +∆′

i,j +∆′′
i,jc/Qi

κi .

14

Moreover, by the expression of c as in Definition 1, the right-hand side above is equal
to the right-hand side of (9), where

β̃i,j := cBi,j +A′
i,j −

pi,j − (pi,j ModQi)

Qi
· αi,j(c) ∈ Z ,

εi,j := (pi,j ModQi)(βi,j(c) ·Qi +mi,j)/pi,j +∆′
i,j +∆′′

i,jc/Qi
κi .

Now, by the definition of wti,j , we have |βi,j(c) ·Qi +mi,j | ≤ wti,j(c) and

|εi,j | ≤ (Qi/2) · wti,j(c)/pi,j + θi ·Qi
−Li + (1/2) · (N/2)/Qi

κi = ε̃i,j(c) .

Hence, Lemma 2 holds.

Proposition 3. Let c be as in Lemma 2. If ε̃i,j(c) < 1/2 for any (i, j) ∈ I (see Lemma
2 for the definition), then Dec∗(sk∗, c) outputs m⃗ correctly.

Proof. Recall the result of Lemma 2. Then for (i, j) ∈ I, we have |εi,j | < 1/2. There-
fore, by Definition 1, we have

c−

⌊
Θi∑
ℓ=1

si,j;ℓzi,ℓ

⌉
≡ c− pi,j · αi,j(c) ≡ mi,j (mod Qi) .

Hence, Proposition 3 holds.

From now, in order to analyze our bootstrapping algorithm, we consider the follow-
ing condition for ciphertexts which is in general stronger than the condition mentioned
in Proposition 3 for correct decryption:

Definition 2. We say that a ciphertext c is bootstrappable, if ε̃i,j(c) < 1/Qi for any
(i, j) ∈ I (see Lemma 2 for the definition of ε̃i,j(c)).

We analyze the algorithm Bootstrap(pk∗, c, σ). We assume that c is bootstrappable.
For any ciphertext c′, let m(c′) = (m(c′)i,j)(i,j)∈I denote the plaintext for c′. Set

w′
i := wi;0 − wi;1ModN for any 1 ≤ i ≤ k .

We analyze FinalAdd′Qi
(Vi) for 1 ≤ i ≤ k. First, for 1 ≤ j ≤ hi, we have m(vi,ℓ;ξ)i,j =

si,σi(j);ℓzi,ℓ;ξ for each ℓ, ξ. Therefore, by Theorem 3 (applied to the Li-digit shift of the
sum of si,σi(j);ℓzi,ℓ to the left), we have

(m(wi;0)i,j .m(wi;1)i,j , . . . ,m(wi;Li)i,j)Qi

≡
Θi∑
ℓ=1

si,σi(j);ℓzi,ℓ ≡ pi,σi(j) · αi,σi(j)(c) + εi,σi(j) (mod Qi)

15

(see Lemma 2 for the last relation). By Lemma 2, we have |εi,σi(j)| < 1/Qi since c is
bootstrappable. Therefore, one of the followings holds:{

m(wi;1)i,j = 0 and pi,σi(j) · αi,σi(j)(c) ≡ m(wi;0)i,j (mod Qi) ,

m(wi;1)i,j = Qi − 1 and pi,σi(j) · αi,σi(j)(c) ≡ m(wi;0)i,j + 1 (mod Qi) .

In any case, we have

m(w′
i)i,j ≡ m(wi;0)i,j −m(wi;1)i,j ≡ pi,σi(j) · αi,σi(j)(c) (mod Qi) .

On the other hand, Definition 1 applied to ciphertexts w′
i′ implies that

c∗ = pi,jαi,j(c
∗) + (cModQ1 · · ·Qk)−

k∑
i′=1

crti′
(
βi,j(w

′
i′) ·Qi +m(w′

i′)i,j
)
,

where αi,j(c
∗) = −

∑k
i′=1 crti′ · αi,j(w

′
i′). Now, by the definition of crti′ ,

(cModQ1 · · ·Qk)−
k∑

i′=1

crti′
(
βi,j(w

′
i′) ·Qi +m(w′

i′)i,j
)

≡ c−m(w′
i)i,j ≡ c− pi,σi(j) · αi,σi(j)(c) ≡ m(c)i,σi(j) (mod Qi)

(note that c = pi,σi(j) · αi,σi(j)(c) + βi,σi(j) ·Qi +m(c)i,σi(j) by Definition 1). Therefore,
c∗ is a ciphertext for plaintext (mi,σi(j)(c))(i,j)∈I , with weights satisfying the following
(since |crti′ | ≤ Q1 · · ·Qk/2):

wti,j(c
∗) ≤

∣∣∣∣∣(cModQ1 · · ·Qk)−
k∑

i′=1

crti′
(
βi,j(w

′
i′) ·Qi +m(w′

i′)i,j
)∣∣∣∣∣

≤ Q1 · · ·Qk

2

(
1 +

k∑
i′=1

wti,j(w
′
i′)

)

≤ Q1 · · ·Qk

2

(
1 +

k∑
i′=1

(
wti,j(wi′;0) + wti,j(wi′;1)

))
.

From now, we evaluate the weights wti,j(wi′;0) and wti,j(wi′;1):

Lemma 3. Let (i, j) ∈ I. For two ciphertexts c1, c2, suppose that wti,j(c1) ≤ α and
wti,j(c2) ≤ β, where 1 < β < α. Then we have

wti,j(fcarry,Q(c1, c2)) ≤ ⌊Q/2⌋ · β

β − 1
· (α/β)

(α/β)− 1
· αQ−1β .

16

Proof. First, each monomial in fcarry,Q(t1, t2) is of the form at1
d1t2

d2 with |a| ≤ Q/2,
d1, d2 ∈ {1, 2, . . . , Q− 1} and d1 + d2 ≤ Q. Therefore, by Proposition 2, we have

wti,j(fcarry,Q(c1, c2)) ≤ ⌊Q/2⌋
∑

d1,d2∈{1,2,...,Q−1}
d1+d2≤Q

αd1βd2 .

Now the sum in the right-hand side is

Q−1∑
d1=1

αd1

Q−d1∑
d2=1

βd2 =

Q−1∑
d1=1

αd1 β

β − 1
(βQ−d1 − 1) ≤ β

β − 1

Q−1∑
d1=1

αd1βQ−d1

(where we used the relation β > 1), and similarly, the sum in the right-hand side above
is

αβQ−1
Q−2∑
d1=0

(α/β)d1 ≤ αβQ−1 · (α/β)
Q−1

(α/β)− 1
= αQ−1β · (α/β)

(α/β)− 1

(where we used the relation α/β > 1). Hence, Lemma 3 holds.

Lemma 4. Let A = (aℓ,ξ)ℓ,ξ be a matrix of ciphertexts aℓ,ξ with Θ rows. Let µ > 1.
For each (i, j) ∈ I, if wti,j(aℓ,ξ) ≤ µ for any ℓ, ξ, then the output ((bℓ,ξ)ℓ,ξ, d) of
MatrixAdd′Q(A) satisfies that wti,j(d) ≤ Θ · µ and

wti,j(bℓ,ξ) ≤ ⌊Q/2⌋ · µ

µ− 1
· Θ

Θ− 1
·ΘQ−1µQ for any ℓ, ξ . (11)

Proof. For the intermediate objects sξ and cξ in the subroutine StreamAdd′Q whose
inputs are Θ components of A, we have wti,j(sξ) ≤ Θµ for any ξ by the choice of µ,
while Lemma 3 with α := Θµ and β := µ implies that wti,j(cξ) is bounded by the
right-hand side of (11). Hence, Lemma 4 holds (note that the right-hand side of (11)
is larger than Θµ).

Lemma 5. Let (i, j) ∈ I and 1 ≤ i′ ≤ k. For ξ = 1, . . . , Li′ + 1, let (V (ξ), wi′;Li′+1−ξ)

denote the output of the subroutine MatrixAdd′Qi′
(V (ξ−1)) in FinalAdd′Qi′

(Vi′), where

V (0) := Vi′ . Then we have wti,j(wi′;Li′+1−ξ) ≤ (Ξi,i′)
Qi′

ξ−1
, where

Ξi,i′ :=

(⌊
Qi′

2

⌋
Qi′QiΓ

Qi′QiΓ− 1
· Θi′

Θi′ − 1

)(Qi′−1)−1

·Θi′Qi′QiΓ

(see Proposition 1 for the definition of Γ).

17

Proof. We show that wti,j(v
(ξ)) ≤ µξ/Θi′ for any 0 ≤ ξ ≤ Li′ + 1 and any component

v(ξ) of V (ξ), where

µξ :=

(⌊
Qi′

2

⌋
Qi′QiΓ

Qi′QiΓ− 1
· Θi′

Θi′ − 1

)1+Qi′+···+Qi′
ξ−1

· (Θi′Qi′QiΓ)
Qi′

ξ
.

Once this is shown, we have wti,j(wi′;Li′+1−ξ) ≤ µξ−1 by Lemma 4, while we have

µξ ≤ (Ξi,i′)
Qi′

ξ
since 1 + Qi′ + · · · + Qi′

ξ−1 ≤ Qi′
ξ/(Qi′ − 1), therefore the claim will

follow.
First, for ξ = 0, we have µ0/Θi′ = Qi′QiΓ, while we have wti,j(v

(0)) ≤ Qi′QiΓ by
(7) and Proposition 1. Hence, the claim holds for the case.

For ξ > 0, we use the induction on ξ. First, we have

µξ−1/Θi′

µξ−1/Θi′ − 1
≤ Qi′QiΓ

Qi′QiΓ− 1

since µξ−1/Θi′ ≥ µ0/Θi′ = Qi′QiΓ. Then by Lemma 4 and the induction hypothesis,
we have

wti,j(v
(ξ)) ≤

⌊
Qi′

2

⌋
Qi′QiΓ

Qi′QiΓ− 1
· Θi′

Θi′ − 1
·Θi′

Qi′−1

(
µξ−1

Θi′

)Qi′

=
µξ

Θi′
.

Hence the claim holds for the case, therefore Lemma 5 holds.

By Lemma 5, we have

wti,j(c
∗) ≤ Q1 · · ·Qk

2

(
1 +

k∑
i′=1

(
(Ξi,i′)

Qi′
Li′ + (Ξi,i′)

Qi′
Li′−1))

≤ Q1 · · ·Qk

2

k∑
i′=1

(
1 + (Ξi,i′)

Qi′
Li′ + (Ξi,i′)

Qi′
Li′−1)

≤ Q1 · · ·Qk

k∑
i′=1

(Ξi,i′)
Qi′

Li′

where we used the relation

1 + (Ξi,i′)
Qi′

Li′−1

≤
(
(Ξi,i′)

Qi′
Li′−1

)2
≤
(
(Ξi,i′)

Qi′
Li′−1

)Qi′

(note that (Ξi,i′)
Qi′

Li′−1

≥ 2). Summarizing, we have the following result:

Theorem 5. Suppose that the parameters satisfy

Qi ·Q1 · · ·Qk

k∑
i′=1

(Ξi,i′)
Qi′

Li′ /(2pi,j) + θi ·Qi
−Li +NQi

−κi/4 < 1/Qi (12)

for any (i, j) ∈ I (see Lemma 5 for the definition of Ξi,i′). Then, for any ciphertext c
for plaintext (mi,j)(i,j)∈I which is bootstrappable in the sense of Definition 2 and any
σ ∈ Π, the output c∗ ← Bootstrap(pk∗, c, σ) is a ciphertext for plaintext (mi,σi(j))(i,j)∈I
which is bootstrappable.

18

Finally, we investigate the choice of parameters to satisfy the condition (12). First,
for the parameters Li and κi in (8), we have

θi ·Qi
−Li +NQi

−κi/4 ≤ 1/Qi
2 + (4Qi − 5)/(4Qi

2) = 1/Qi − 1/(4Qi
2)

since N ≤ 2γ , while we have Qi′
Li′ ≤ θi′Qi′

3. On the other hand, we have pi,j ≥ 2η−1

since pi,j is an η-bit prime. Therefore, to satisfy (12), it suffices to satisfy the following
(where we used θi′ = λ as in Sec. 6.3):

Qi ·Q1 · · ·Qk

k∑
i′=1

(Ξi,i′)
λQi′

3
/2η ≤ 1/(4Qi

2) ,

or, more strongly,

η ≥ 2 + log2(Qi
3 ·Q1 · · ·Qk · k) + λ max

1≤i′≤k
Qi′

3 log2 Ξi,i′ . (13)

From now, we study the asymptotic behavior of the parameters. By using the relation
t/(t− 1) ≤ e(t−1)−1

for t > 1, we have

Ξi,i′ ≤
(
Qi′

2
· e(Qi′QiΓ−1)−1+(Θi′−1)−1

)(Qi′−1)−1

Θi′Qi′QiΓ ,

therefore

log2 Ξi,i′ ≤
1

Qi′ − 1

(
log2Qi′ − 1 +

(
1

Qi′QiΓ− 1
+

1

Θi′ − 1

)
log2 e

)
+ log2Θi′ + log2Qi′ + log2Qi + log2 Γ .

Moreover, we have

log2 Γ = ρ+ log2(h1(Q1 − 1) + · · ·+ hk(Qk − 1) + τ) .

Now, for the choice of parameters in Sec. 6.3, the term ρ in log2 Γ is dominant among
the terms in the upper bound for log2 Ξi,i′ above, therefore it suffices to set η = ω(ρ ·λ)
to satisfy (13) asymptotically. Hence, the choice of parameters in Sec. 6.3 is suitable
to enable the bootstrapping.

Acknowledgements. The authors thank Shizuo Kaji, Toshiaki Maeno, Yasuhide
Numata, and members of Shin-Akarui-Angou-Benkyou-Kai, especially Goichiro Hanaoka,
for their helpful comments.

19

References

[1] J. Boyar, R. Peralta, D. Pochuev: On the Multiplicative Complexity of Boolean
Functions over the Basis (∧,⊕, 1). Theor. Comput. Sci., 235(1), pp.43–57, 2000.

[2] J. Buhler, H. W. Lenstra Jr., C. Pomerance: Factoring Integers with the Number
Field Sieve. In: A. Lenstra, H. W. Lenstra Jr. (eds.), The Development of the
Number Field Sieve, Lecture Notes in Mathematics vol.1554, pp.50–94, Springer,
1993.

[3] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, A. Yun:
Batch Fully Homomorphic Encryption over the Integers. In: EUROCRYPT 2013,
LNCS 7881, pp.315–335, 2013.

[4] Y. Chen, P. Nguyen: Faster Algorithms for Approximate Common Divisors:
Breaking Fully-Homomorphic-Encryption Challenges over the Integers. In: EU-
ROCRYPT 2012, LNCS 7237, pp.502–519, 2012.

[5] H. Cohn, N. Heninger: Approximate Common Divisors via Lattices. IACR Cryp-
tology ePrint Archive 2011/437, 2011.

[6] J.-S. Coron, T. Lepoint, M. Tibouchi: Scale-Invariant Fully Homomorphic En-
cryption over the Integers. In: PKC 2014, LNCS 8383, pp.311–328, 2014.

[7] J.-S. Coron, A. Mandal, D. Naccache, M. Tibouchi: Fully Homomorphic Encryp-
tion over the Integers with Shorter Public Keys. In: CRYPTO 2011, LNCS 6841,
pp.483–500, 2011.

[8] M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan: Fully Homomorphic En-
cryption over the Integers. In: EUROCRYPT 2010, LNCS 6110, pp.24–43, 2010.

[9] C. Gentry: Fully Homomorphic Encryption Using Ideal Lattices. In: STOC 2009,
pp.169–178, 2009.

[10] C. Gentry, S. Halevi, N. P. Smart: Better Bootstrapping in Fully Homomorphic
Encryption. In: PKC 2012, LNCS 7293, pp.1–16, 2012.

[11] N. Howgrave-Graham: Approximate Integer Common Divisors. In: CaLC, pp.51–
66, 2001.

[12] J. C. Lagarias: The Computational Complexity of Simultaneous Diophantine Ap-
proximation Problems. SIAM J. Comput., 14(1), pp.196–209, 1985.

[13] H. W. Lenstra, Jr.: Factoring Integers with Elliptic Curves. Annals of Math.,
Second Series, 126(3), pp.649–673, 1987.

20

[14] N. P. Smart, F. Vercauteren: Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes. In: PKC 2010, LNCS 6056, pp.420–443, 2010.

[15] N. P. Smart, F. Vercauteren: Fully Homomorphic SIMD Operations. Des. Codes
Cryptography, 71(1), pp.57–81, 2014.

[16] R. P. Stanley, Enumerative Combinatorics, Volume I (first edition). Cambridge
University Press, 1997.

21

