
Implementing Cryptographic Program Obfuscation

Daniel Apon∗ Yan Huang† Jonathan Katz∗ Alex J. Malozemoff∗

Abstract

Program obfuscation is the process of making a program “unintelligible” without changing
the program’s underlying input/output behavior. Although there is a long line of work on
heuristic techniques for obfuscation, such approaches do not provide any cryptographic guar-
antee on their effectiveness. A recent result by Garg et al. (FOCS 2013), however, shows that
cryptographic program obfuscation is indeed possible based on a new primitive called a graded
encoding scheme.

In this work, we present the first implementation of such an obfuscator. We describe several
challenges and optimizations we made along the way, present a detailed evaluation of our im-
plementation, and discuss research problems that need to be addressed before such obfuscators
can be used in practice.

1 Introduction

The goal of program obfuscation is to make programs “unintelligible” while preserving their original
behavior. Formally, an obfuscator O is a compiler taking as input a program f (expressed, say,
in C code or as a Boolean circuit) and outputting an obfuscated program f ′ = O(f) such that
f ′(x) = f(x) for all inputs x. Intuitively, the security requirement is that the obfuscated code f ′
reveals nothing about the internal structure of the original program f other than what can be
inferred from its input/output behavior and (a bound on) its size/running time.

For decades, program obfuscation has been suggested for, e.g., protecting intellectual prop-
erty [23] or avoiding static or dynamic code analysis [22, 28, 30]. Generally, researchers have
approached the problem by applying a series of static program transformations, hoping to ob-
tain an incomprehensible (but equivalent) version of the original program. Unfortunately, such
approaches do not offer any cryptographic guarantee of security. However, the recent landmark
result of Garg et al. [15] demonstrates that cryptographic program obfuscation can be achieved,
assuming a graded encoding scheme. Since then, many papers have been written improving various
aspects of the original construction [3, 5, 10, 24] and utilizing the technique for many interesting
applications [9, 14, 19, 25].

The construction of Garg et al. [15] satisfies a weaker notion of obfuscation than the virtual
black-box obfuscation notion described intuitively above (which is known to be impossible to achieve
in general [6]). This weaker notion, called indistinguishability obfuscation, ensures that for any two
equivalent programs f and g (i.e., programs such that f(x) = g(x) for all x), an obfuscation of f
is indistinguishable (in a cryptographic sense) from an obfuscation of g. While weaker than virtual
∗Dept. of Computer Science, University of Maryland. Email: {dapon,jkatz,amaloz}@cs.umd.edu
†Dept. of Computer Science, Indiana University. Email: yh33@indiana.edu. Portions of this work were done

while at the University of Maryland.

1

black-box obfuscation, indistinguishability obfuscation is surprisingly powerful. Applications of
indistinguishability obfuscation include deniable encryption [25], efficient traitor tracing [9], two-
round multiparty computation with succinct messages [14], full domain hash without a random
oracle [19], and more. In addition, many obfuscation constructions have been shown to be vir-
tual black-box obfuscators in a generic model [3, 5, 10], and it appears that such constructions
may indeed be virtual black-box obfuscators for particular classes of functions, such as evasive
functions [4].

Yet despite the fast growing body of literature on cryptographic program obfuscation, the idea
has thus far remained entirely theoretical. It was not even clear whether these new constructions
are even close to practically feasible.

Contributions. This work investigates the practicality of cryptographic program obfuscation
through implementation and experimentation.

• We implement a full program-obfuscation toolchain for the first time, based on schemes from
the literature [5, 10] and using the formula-to-branching-program construction of Ananth et
al. [3]; see Section 2 and Section 3. Our code is publicly available for the benefit of the
research community.1

• We investigate the practicality of program obfuscation through experiments; see Section 4.
We find that program obfuscation is still far from being deployable, with the most complex
functionality we are able to obfuscate being a 16-bit point function (i.e., a function that
outputs 1 if the input matches some secret value, and 0 otherwise).

• We discuss the implications of our work and the bottlenecks that researchers should focus on
to make obfuscation more practical; see Section 5.

2 Overview

In this section, we provide a self-contained overview of the techniques underlying cryptographic
program obfuscation and our implementation. Our obfuscator O takes as input a program repre-
sented as a Boolean formula. (We only implement “basic” obfuscation and not the “bootstrapping”
step which requires obfuscating an FHE logic implemented purely by Boolean formulas to obfus-
cate generic Boolean circuits. Note that any circuit can be expressed as a formula; although this
results in exponential blowup asymptotically, for moderately-sized circuits converting the circuit
to a formula and using basic obfuscation should be more efficient than applying bootstrapping to
the original circuit.) A Boolean formula is a binary tree where each vertex is labeled with some
Boolean gate type — in our implementation, AND, NOT, or XOR — and each leaf is labeled with
some input bit xi for i ∈ {1, . . . , n}; the root of the tree corresponds to the (1-bit) output.2 The
depth d of a formula is the number of vertices on the longest path from any leaf to the root, and
the size s of a formula is the number of vertices in the entire tree.

Given a Boolean formula f , our obfuscator proceeds through a sequence of transformations (see
Figure 1) before producing the final obfuscated program O(f). We give a general outline of these
steps before giving further details:

1https://github.com/amaloz/ind-obfuscation
2In order to obfuscate a function with k output bits one would need to construct k Boolean formulas, with the

ith formula computing the ith output bit.

2

https://github.com/amaloz/ind-obfuscation

f BPf MBPf M̃BPf O(f) f(x)
[7] or [27] convert randomize encode evaluate on x

Section 2.1 Section 2.2 Section 2.3 Section 2.4 Section 2.5

Figure 1: Workflow diagram for obfuscation. Starting from a Boolean formula f , we first convert f to
a branching program BPf using one of two methods. We then convert this to a matrix branching pro-
gram MBPf . Next, MBPf is randomized to give M̃BPf . Finally, each matrix element in M̃BPf is encoded
using a graded encoding scheme. The output of this procedure is an obfuscation O(f) of f . Any party given
O(f) can evaluate it on any input x of their choice to compute O(f)(x) = f(x).

1. The Boolean formula f is converted into a functionally equivalent branching program BPf ,
written as a directed, acyclic graph (Section 2.1.1). (Branching programs are defined below.)

2. The branching program BPf is mapped to a matrix branching program MBPf , which consists
of a sequence of pairs of matrices (Section 2.2).

3. The matrix branching program MBPf is randomized to give M̃BPf (Section 2.3). Intuitively,
this step (in combination with the next step) prevents an attacker from mixing-and-matching
different pieces of the computation together.

4. The randomized matrix branching program M̃BPf is then encoded, matrix element by matrix
element, using a graded encoding scheme (Section 2.4). This step can be viewed, naively, as
encrypting MBPf using a scheme that enables homomorphic evaluation of MBPf , and is the
only step that relies on a cryptographic hardness assumption. It has the effect of hiding from
the attacker all details of the matrix branching program as well any information about the
computation being performed (other than the final output).

We now describe each of these steps in more detail. In order to illustrate the concepts, we use
the running example of obfuscating a single AND gate, i.e., the Boolean formula f(x1, x2) = x1∧x2.

Notation. We let λ denote the security parameter. That is, an obfuscation with security parameter
λ is designed to bound the probability of successful attacks by 2−λ. We let [k] = {1, . . . , k}, use
bold letters to denote vectors, and use capital letters to denote matrices.

2.1 Branching Programs

Let f : {0, 1}n → {0, 1} be some Boolean formula, and let x ∈ {0, 1}n be the input with xi denoting
the ith bit of x. A branching program is a directed acyclic graph whose vertices are partitioned
into disjoint layers, defined as follows:

Definition 1 A branching program of width w and length m is a directed acyclic graph with s
vertices, such that the following constraints hold:

• Each vertex is either a source vertex, an internal vertex or a final vertex.
• Each non-final vertex is labeled with some ` ∈ {‘x1’, . . . , ‘xn’} and has out-degree two, with

one of the outgoing edges labeled ‘0’ and the other ‘1’.

3

• There are two final vertices; both have out-degree zero and one is labeled ‘0’ and the other ‘1’.
• There is a unique source vertex with in-degree zero.
• The vertices are partitioned into m layers Lj, where |Lj | ≤ w. All vertices in a layer have

the same label ‘xi’.
• Edges starting in layer Lj end in some layer Lj′ with j′ > j.
• Both final vertices are in the same layer, Lm.

Note that the notation ‘xi’ stresses it is the symbol, rather than the bit value represented by the
symbol, which is associated with a vertex.

We can evaluate a branching program as follows. On input x = x1 · · ·xn, start from the source
node in the branching program and traverse the edges corresponding to the Boolean value of the
current node’s label. For example, suppose the source node has label ‘xj ’. Then, on an input x
where xj = 1, we would take the outgoing edge labeled ‘1’. The 0/1 label of the final vertex is the
output of the program.

2.1.1 From Formulas to Branching Programs

We investigate two approaches for compiling Boolean formulas into branching programs: using
Barrington’s theorem [7] (as done in the work of Garg et al. [15], among others), or using the
approach of Sauerhoff et al. [27] (as proposed in the work of Ananth et al. [3]).3 Barrington’s
theorem shows how to convert any Boolean formula of depth d into a branching program of width 5
and length at most 4d, whereas the approach of Sauerhoff et al. converts formulas of size s into
branching programs of width at most 2s + 4 and length at most s. However, the approach of
Sauerhoff et al. is more efficient both asymptotically [3] and in practice, and thus we focus on this
approach in what follows.4

The transformation of Sauerhoff et al. from formulas to branching programs is inductive. The
base case is a “trivial” branching program—one for each input wire—consisting of only three ver-
tices: the source node, the reject node, and the accept node. There is a directed edge labeled ‘1’
from source to accept, and a directed edge labeled ‘0’ from source to reject.

We then proceed inductively. Given a branching program BPf for some formula f , we can
construct the branching program for the formula ¬f by swapping the labels of the accept and
reject nodes in BPf .

Given two branching programs BPf and BPg for the formulas f and g, we can “AND” the two
formulas, producing the branching program BPf∧g, as follows: First, we merge the accept node of
BPf with the source node of BPg. Second, we merge the reject node of BPf with the reject node
of BPg. Finally, we let the source node of BPf be the source node of BPf∧g, and let the accept
and reject nodes of BPg be the accept and reject nodes, respectively, of BPf∧g. Figure 2 shows the
branching program obtained by applying this approach to a single AND gate.

Lastly, given two branching programs BPf and BPg for the formulas f and g, we can “XOR”
the two formulas, producing the branching program BPf⊕g as follows: Without loss of generality,
assume BPg is the smaller of the two branching programs (otherwise we can swap the order of f
and g). We first duplicate BPg and use the NOT-transformation to produce BP¬g. Next, we merge

3Recently, two new approaches [26, 31] to constructing obfuscators present asymptotic improvements to the ap-
proaches discussed in this work. In addition, later versions of the work of Ananth et al. [3] propose an alternative
approach than that of Sauerhoff et al. We leave implementations of these new approaches as future work.

4Note that our implementation contains both approaches.

4

src

acc

rej

1
0

1

0

x0 x1

Figure 2: Branching program for an AND gate. To evaluate on input x0x1, look at each layer of the graph
(denoted by the dotted rectangles). If the layer corresponds to the ith input bit, then remove all outgoing
edges from that layer that are not labeled by the value xi. The output is 1 iff there is a path from src to acc
in the resulting graph.

the accept node of BPf with the source node of BP¬g and merge the reject node of BPf with the
source node of BPg. Finally, we merge the accept nodes (and, respectively, the reject nodes) of
BPg and BP¬g. The branching program BPf⊕g has the same source node as BPf and the same
accept and reject nodes as BPg (equivalently, BP¬g).

2.2 Matrix Branching Programs

The next step is to compile the graph-based branching program BPf into a functionally equivalent
matrix branching program MBPf , which can be evaluated by iterated matrix multiplication. We
utilize the notion of a matrix branching program, defined as follows:

Definition 2 A matrix branching program of width w and length m for n-bit inputs is given
by a tuple

MBPf =
(
inp, s, (Bj,0, Bj,1)j∈[m], t

)
where Bj,b ∈ {0, 1}w×w, for j ∈ [m] and b ∈ {0, 1}, inp : [m] → [n] is a function mapping layer
indices j to input-bit indices i, s := (1, 0, . . . , 0), and t := (0, . . . , 0, 1)T . The output of MBPf on
input x ∈ {0, 1}n is defined as follows:

MBPf (x) = s ·

 m∏
j=1

Bj,xinp(j)

 · t ∈ {0, 1}.
Note that the output of a matrix branching program is the 0/1 entry in the first row and last
column of the iterated matrix product, and the vectors s and t simply select this entry as the
output.

Thus, for each layer Lj of BPf , we produce two w-by-w 0/1-valued, integral matrices Bj,0, Bj,1.
Specifically, the matrix Bj,b is the adjacency matrix composed of edges leaving layer Lj with label
b. Additionally, the diagonal entries are marked 1 so that Bj,b is a full-rank matrix [3], which is
important for the subsequent randomization step.

In Figure 3 we show the matrix branching program generated from the graph in Figure 2.

2.2.1 Oblivious Branching Programs

Depending on the setting, it may also be necessary to ensure that the inp function does not leak
information about the underlying formula f . (This is needed in order to satisfy the formal definition
of obfuscation. But in settings where some information about f is known anyway—e.g., when f is

5

1
0
0
0

︸︷︷︸
s

,

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

︸ ︷︷ ︸
x0

,

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

︸ ︷︷ ︸
x1

,

0
0
0
1

︸︷︷︸
t

Figure 3: Matrix branching program for an AND gate. To evaluate on input x0x1, proceed as follows. If
xi = 0, choose the first matrix; otherwise choose the second matrix. Multiply the matrices; if the [1, 4] entry
of the resulting matrix is 1 then the output is 1; otherwise, the output is 0.

known to be a point function, and only the hidden point must remain secret—this step may not
be needed.) This can be done by fixing inp independently of f , setting inp to cycle through each of
the input bits x1, x2, . . . , xn in order, m times. “Dummy” layers are filled in with a pair of identity
matrices, thus preserving correctness of the iterated matrix multiplication.

Note, however, that when using the approach of Sauerhoff et al., the width w is a function
of the type of gates used. For example, a standalone XOR gate under Sauerhoff et al.’s approach
equates to a width 5 matrix branching program whereas a standalone AND gate equates to a width
4 matrix branching program [27]. Thus, we need to pad the graph with “dummy” vertices before
transforming the graph into a matrix branching program to prevent the attacker from learning
information about what gate is being computed by simply looking at the width of the matrix
branching program.

2.3 Randomized Matrix Branching Programs

The first step toward hiding the underlying computation is to randomize the matrices [20]. This
randomization ensures that an attacker cannot “mix-and-match” steps of the computation once the
matrices have been encoded under the graded encoding scheme.

Let g be a prime, and define the procedure randg(MBPf) as follows:

1. Uniformly sample m+ 1 invertible matrices from Zw×wg , denoted R0, . . . , Rm.
2. Let B̃j,b := Rj−1Bj,bR

−1
j for all j ∈ [m], b ∈ {0, 1}.

3. Compute two “bookend” vectors s̃ := (1, 0, . . . , 0) ·R−1
0 and t̃ := Rm · (0, . . . , 0, 1)T .

4. Output M̃BPf,g =
(

inp, s̃,
(
B̃j,0, B̃j,1

)
j∈[m]

, t̃
)

.

Indeed, we have that for all inputs x ∈ {0, 1}n,

M̃BPf,g(x) = s̃ ·

 m∏
j=1

B̃j,xinp(j)

 · t̃ = s ·R−1
0 ·

 m∏
j=1

Rj−1Bj,bR
−1
j

 ·Rm · t
= s ·

 m∏
j=1

Bj,xinp(j)

 · t = MBPf (x),

where matrix multiplication arithmetic is performed modulo g. For notational convenience, we
drop the g subscript and write M̃BPf when the modulus is understood.

6

1
1
4
4

︸︷︷︸
s

,

10 4 9 2
10 9 10 10
1 4 7 0
1 7 6 4

 ,

4 0 8 3
8 4 6 3
5 3 4 3
2 4 8 2

︸ ︷︷ ︸
x0

,

3 4 4 3
9 2 2 0
7 3 0 9
9 0 6 2

 ,

7 7 6 3
10 0 8 0
10 8 7 9
1 5 2 2

︸ ︷︷ ︸
x1

,

0
10
5
9

︸ ︷︷ ︸
t

Figure 4: Randomized (with prime modulus 11) matrix branching program for an AND gate. Evaluation
happens as in the non-randomized setting (cf. Figure 3), except all operations are done modulo 11.

Figure 4 shows the randomization of the matrix branching program (from Figure 3) for an AND
gate, using “toy” prime modulus 11.

2.4 Graded Encoding Schemes

While the prior randomization step ensures that a valid sequence of matrices must be multiplied
in order, we still need to ensure that (1) only valid sequences of matrices give meaningful output,
and (2) the matrix values themselves are hidden—or more generally, that inspecting the obfuscated
program does not leak distinguishing information about the underlying implementation. Concretely,
observe that randomized matrix branching programs can suffer from attacks that try to compute
something other than the original function f(x). For example, if two layers Lj and Lj′ of M̃BPf are
labeled with the same input bit xi, it is possible to include B̃j,0 and B̃j′,1 in the product and obtain
some output where the random Rj terms still cancel out. This equates to computing a function f ′
that is different from f , which enables the attacker to do things that are impossible merely from
access to f .

To thwart such attacks, we need to use some cryptographic mechanism to hide the entries of
the matrices and to prevent an attacker from using inconsistent matrices for some input bit. The
cryptographic primitive used is a graded encoding scheme [13].

In a graded encoding scheme, producing an encoding of a plaintext message is a private method
that can only be performed by a party that knows the scheme’s secret parameters. But, similar
to fully homomorphic encryption (FHE), any party, given an encoding u of message m and an
encoding u′ of a message m′, can add u + u′ to get a new encoding of the message m + m′.
Similarly, multiplying encodings u · u′ gives a new encoding of the message m ·m′.

Unlike FHE, however, each encoding u is defined relative to some subset S of a universe [Z].
These subsets restrict the way in which encodings may be added and multiplied. In particular,
two encodings may only be added if they are encoded relative to the same set S, and their sum is
encoded relative to S as well. Moreover, two encodings may only be multiplied if they are encoded
relative to two disjoint sets S and S′, and their product is encoded relative to the union of S and S′.

Finally, and again in contrast to FHE, there is a public “zero-test parameter” pzt that is used
to test if an encoding u encodes the plaintext 0. However, zero-testing only works on encodings
relative to the entire universe [Z].

Definition 3 A graded encoding scheme is a tuple of probabilistic polynomial time algorithms
(InstGen, Enc, Add, Mult, isZero) that behave as follows:

7

• Instance Generation: (sp, pp)← InstGen(1λ, 1κ).
InstGen takes as input the security parameter λ and multilinearity parameter κ, and outputs
secret parameters sp and public parameters pp. The secret parameters sp contain an integer Z
with κ ≤ Z ≤ 2κ, primes g1, . . . , gN , where N = poly(λ, κ), and a collection of sets {EmS :
m ∈ Zg1 × · · · × ZgN , S ⊆ [Z]}. We view EmS as the set of possible encodings of the value m
with respect to the set S. The public parameters pp enable the public operations on encodings
described below.

• Encoding: u← Enc(sp,m, S).
Enc takes as input the secret parameters sp, a plaintext value m ∈ Zg1 × · · · × ZgN , and a set
S ⊆ [Z], and outputs a randomized encoding of m with respect to the set S, denoted u ∈ EmS .

• Addition: u← Add(pp, u, u′).
Add takes as input the public parameters pp and encodings u ∈ EmS , u′ ∈ Em

′
S′ , and outputs an

encoding u ∈ Em+m′
S if S = S′, and ⊥ otherwise.

• Multiplication: u← Mult(pp, u, u′).
Mult takes as input the public parameters pp and encodings u ∈ EmS , u′ ∈ Em

′
S′ , and outputs

an encoding u ∈ Em·m′S∪S′ if S ∩ S′ = ∅, and ⊥ otherwise.

• Zero Test: b← isZero(pp, u).
isZero takes as input the public parameters pp and an encoding u and outputs 1 if u ∈ E0

[Z]
(i.e., u is an encoding of 0 with respect to the entire universe [Z]), and 0 otherwise.

We defer a discussion of security until later, but informally, a graded encoding scheme is secure
if (1) the only way an evaluator can produce an encoding u∗ of the all-zeros plaintext with respect to
the entire universe [Z] is by combining given encodings {u1, u2, . . . } by addition and multiplication,
and (2) only such encodings u∗ pass the zero-test.

2.4.1 Choosing a Set System

It remains to describe the system of sets S under which each matrix element of M̃BPf is encoded
in order to produce O(f). Intuitively, we want to leverage the fact that zero-testing requires an
element encoded with respect to the entire universe [Z] to force the evaluator of O(f) to commit
to a fixed setting of each input bit xi ∈ {0, 1}. In particular, we ensure that only combinations
of matrices in M̃BPf that are consistent with some well-defined input x produce an encoding that
forms an exact set cover of [Z]. Thus, we associate each matrix of M̃BPf with a distinct subset
S ⊂ [Z]. This means that for any fixed matrix of M̃BPf , we encode each of its individual elements
using the same set S. The vectors s and t are each encoded using a distinct element in [Z].

More concretely, we group the matrices of M̃BPf according to their input bit label ‘xi’. For
example, denote the matrices associated with x1 as B̃j1,0, B̃j1,1, . . . , B̃jk,0, B̃jk,1 (for some k). We
assign sets S to these matrices as follows:

• We assign the matrices B̃j1,0, B̃j2,0, . . . , B̃jk,0 the sets {1, 2}, {3, 4}, . . . , {2k−3, 2k−2}, {2k−1}
(in that order).
• We assign the matrices B̃j1,1, B̃j2,1, . . . , B̃jk,1 the sets {1}, {2, 3}, . . . , {2k − 2, 2k − 1} (in

that order).

8

We continue this process for each such group of matrices (associated with the remaining labels ‘x2’,
. . . , ‘xn’) using increased set-indices, until every matrix is assigned a distinct subset S ⊂ [Z]. This
process allows us to determine the value of Z needed in our implementation, which we increase by
two to account for encoding the vectors s and t.

Note the attacker cannot use inconsistent values for a given variable since sets corresponding to
the inconsistent values are not disjoint (as valid multiplications require disjoint sets). The attacker
cannot run a zero-test on a partially evaluated program either, because the encoding of a partial
result is always formed with respect to a strict subset of Z whereas zero-testing only works for
encodings regarding the (full) set Z.

2.5 Executing Obfuscated Programs

Putting everything together, an evaluator can use the Add and Mult procedures of the graded
encoding scheme to evaluate the iterated matrix multiplication of an underlying, randomized matrix
branching program M̃BPf on some input x, retrieving Enc(s ·

∏m
j=1Bj,xinp(j) · t) = u. The evaluator

can then use isZero to zero-test this result; namely, if isZero(pp, u) = 1 then f(x) = 0, otherwise
f(x) = 1.

3 Implementation

We have implemented an obfuscator using both Barrington’s theorem [5] and the approach of
Sauerhoff et al. [3] for converting formulas to branching programs. Our implementation is written
in a combination of Python and C, using Sage [29] for algebraic operations, the GNU Multiple
Precision Arithmetic Library [1] for efficient large number computations, and OpenMP [2] for
parallelization. We program all the computationally expensive steps in C, and thus our use of
Python does not significantly affect the overall performance.5

As shown in Figure 1, our tool takes as input a Boolean formula f and produces as output
its obfuscated form O(f), which can then be evaluated by anyone who receives a copy of it. In
the rest of this section, we provide details about our implementation and discuss some challenges
encountered during implementation along with the various optimizations we made to address them.

3.1 Implementing Graded Encodings

We utilize the graded encoding scheme of Coron et al. [12] (the “CLT scheme”), which has better
space efficiency than the scheme based on ideal lattices [13]. We note that a recent result constructs
a graded encoding scheme from lattices using an assumption similar to the Learning With Errors
assumption [16]. We leave implementing and optimizing obfuscation using this new scheme as
interesting future work.

The CLT graded encoding scheme is instantiated as follows. (We discuss the concrete values of
all parameters in Section 3.1.3.)

• InstGen: Let Z be the desired size of the set system (cf. Section 2.4.1), and N a value
that depends on Z and the security parameter λ (see Section 3.1.3). First, we generate

5For example, when obfuscating and evaluating f(x0, x1) = x0 ∧ x1 with security parameter 128 we find that
98.5% of the execution time is spent executing C code. This percentage only increases as the size of the Boolean
formula increases.

9

N (large) secret primes {pi}Ni=1 and compute their product q =
∏N
i=1 pi. In addition, we

generate N (small) secret primes {gi}Ni=1, N random integers {hi}Ni=1, and Z random values
z1, . . . , zZ ∈ Zq.
Next, we construct a zero-test parameter, defined as the integer6

pzt =
N∑
i=1

hi ·

 Z∏
j=1

zj · g−1
i mod pi

 ·∏
i′ 6=i

pi′ mod q.

The secret parameters are
(
{zi}Zi=1, {gi}

N
i=1, {pi}

N
i=1

)
; the public parameters are (pzt, q).

• Enc: An encoding of a message m = (m1, . . . ,mN) ∈ Zg1 × · · · × ZgN relative to the set
S ⊆ [Z] is a value u ∈ Zq such that for all 1 ≤ i ≤ N ,

u ≡ ri · gi +mi∏
j∈S zj

(mod pi) (1)

for (small, random) integers ri.

• Add: Given u, u′ ∈ Zq with

∀i : u ≡ ri · gi +mi∏
j∈S zj

(mod pi), u′ ≡ r′i · gi +m′i∏
j∈S zj

(mod pi),

it is easy to see that

∀i : u+ u′ ≡ (ri + r′i) · gi + (mi +m′i)∏
j∈S zj

(mod pi),

which lies in Em+m′
S assuming (ri + r′i) · gi + (mi +m′i) < pi for all i.

• Mult: Let S and S′ be sets such that S ∩ S′ = ∅. Given u, u′ ∈ Zq with

∀i : u ≡ ri · gi +mi∏
j∈S zj

(mod pi), u′ ≡ r′i · gi +m′i∏
j∈S′ zj

(mod pi)

it is easy to see that

∀i : u · u′ ≡ (rir′i + rim
′
i + r′imi) · gi +mim

′
i∏

j∈S∪S′ zj
(mod pi),

which lies in Em·m
′

S∪S′ assuming (rir′i + rim
′
i + r′imi) · gi +mim

′
i < pi for all i.

• isZero: Using pzt, we zero-test an element u encoded with respect to [Z] by first computing

ω := pzt · u (mod q)
6Note that here we are utilizing the heuristic as presented by Coron et al. [12, §6] of using a single zero-testing

element pzt rather than a vector of elements.

10

where

pzt · u =

 N∑
i=1

hi ·

 Z∏
j=1

zj · g−1
i mod pi

 ·∏
i′ 6=i

pi′

·

 N∑
i=1

(ri · gi +mi) ·

 Z∏
j=1

z−1
j mod pi

 ·
∏
i′ 6=i

pi′(p−1
i′ mod pi)

 (mod q)

=
N∑
i=1

hi ·

 Z∏
j=1

zj · g−1
i mod pi

 · (ri · gi +mi) ·

 Z∏
j=1

z−1
j mod pi

 ·∏
i′ 6=i

pi′ (mod q)

=
N∑
i=1

hi ·
(
ri +mi · (g−1

i mod pi)
)
·
∏
i′ 6=i

pi′ (mod q).

Then, we test whether ω ∈ Z is “small” compared to q or not. (Concretely, ω is small if
|ω| < q · 2−ν−λ−2.) In particular, ω is small if mi = 0 for all i ∈ [N], as otherwise for some i,
the relatively large g−1

i mod pi term does not vanish in the final expression.

3.1.1 Using the CLT Graded Encoding Scheme

We make use of the CLT graded encoding scheme as follows:

1. We first construct a (non-randomized) matrix branching program MBPf . Using this we can
derive the multilinearity κ of the graded encoding scheme, and thus run InstGen to generate
the public and secret parameters.

2. Using the gis generated in the previous step, we can now construct λ randomized matrix
branching programs M̃BPf,g1 , . . . , M̃BPf,gλ corresponding to the first λ “(mod gi)-slots” of
the plaintext space (see Section 3.1.2 for an explanation of why we generate λ branching
programs instead of, say, one).

3. Finally, we encode the matrices element by element, where each element is the vector cor-
responding to the same-position matrix element in the λ randomized matrix branching pro-
grams.

4. To evaluate on an input x, we multiply together the matrices (as specified by x and inp) along
with the bookend vectors, and zero-test the resulting value.

3.1.2 Attack on a Naive Implementation

At first glance, it seems we only need to make use of one slot of the plaintext space rather than
the λ number of slots mentioned above. That is, instead of constructing, say, λ randomized ma-
trix branching programs, one for each prime gi, it seems plausible to construct a single matrix
branching program with respect to g1 only. Then, we could encode an element m1 ∈ Zg1 as
m

def= (m1, 0, . . . , 0) ∈ Zg1 × · · · × ZgN . While this approach preserves correctness, it proves to be
insecure, in the sense that we can learn secret prime g1 (although it is not clear how to “break” the
obfuscation with this additional knowledge). We discuss the attack below. (We note that Gentry

11

et al. [18, Appendix B.6] encounter a similar vulnerability in CLT encodings in a different algebraic
context.)

When utilizing only a single slot of the plaintext space, the output of the zero-test procedure
on an element u encoding a non-zero message m is close to a somewhat small multiple of the secret
prime g1 (or technically, g−1

1 , although the effect is the same). It turns out that this isolates g1 in
a way that allows one to recover g1 with high probability using the Euclidean-GCD algorithm (to
solve the shortest vector problem exactly in two dimensions).

For an encoding u of the plaintext m def= (m1, 0, . . . , 0) with m1 6= 0, we have

u ≡ r1 · g1 +m1∏
j∈S zj

(mod p1) and ∀i 6= 1, u ≡ ri · gi∏
j∈S zj

(mod pi).

Thus upon zero-testing we recover

ω =
N∑
i=1

hi ·
(
ri +mi · (g−1

i mod pi)
)
·
∏
i′ 6=i

pi′ (mod q)

=

 N∑
i=1

himi(g−1
i mod pi)

∏
i′ 6=i

pi′

+

 N∑
i=1

hiri
∏
i′ 6=i

pi′

 (mod q)

and since mi = 0 for all i 6= 1, we have that

ω = h1m1(g−1
1 mod p1)

∏
i′ 6=1

pi′

+
N∑
i=1

hiri
∏
i′ 6=i

pi′ (mod q),

and although we do not have g1, we know that

b
def= ω · g1 = h1m1

∏
i′ 6=1

pi′

+ g1

N∑
i=1

hiri
∏
i′ 6=i

pi′ (mod q). (2)

Note that this is quite close to the output of the zero-test on an element that in fact encodes 0.
In particular, assuming that h1m1 and g1hiri for all i are small relative to q, then b is small relative
to q, allowing us to recover g1 by applying the Euclidean-GCD algorithm.

Concretely, we first compute an integer Ω by sampling fresh values for the variables m1 and
hi, ri, gi, pi, for all i, and using these to compute an estimate of b as defined in Equation 2; we
denote this estimated value as b̂. We then set Ω := b̂/ĝ1, where ĝ1 is our freshly sampled guess at
the value g1 we are trying to recover. Finally, we compute a value ω = pzt · u, where u is some
non-zero encoding relative to the set [Z] and pzt is the (public) zero-test parameter.7

Now, consider the lattice L generated by the basis {(Ω, ω), (0, q)}, where q is the value given
in the public parameters. The lattice L contains the vector ~v := (Ω · g1, b) of length (roughly)
at most 2Ω · g1. The determinant of L is Ω · q, which implies that all vectors in L not parallel
to ~v must have length at least det(L)/||~v|| ≥ (Ω · q)/(2Ω · g1) = q/2g1. Then, when Ω < q/4g2

1,
we have 2Ω · g1 < q/2g1, which implies ~v is the unique, shortest vector in L. Since the two

7We can compute u by choosing random encodings in each matrix and multiplying the values together; due to
Kilian’s randomization, with high probability this multiplication will not equal zero.

12

dimensional shortest vector problem can be solved exactly in polynomial time using the Euclidean-
GCD algorithm, we recover ~v := (Ω · g1, b) exactly. Dividing the (known) value Ω from the first
coordinate of ~v yields the secret prime g1, violating security of the graded encoding scheme.

To resolve this problem, we can run randgi(MBPf) for all i ∈ [N], producing N independently
randomized, same-size matrix branching programs, whose moduli match the plaintext slots of the
graded encoding scheme. Then, for each matrix element of the original matrix branching program
MBPf , we produce a vector of integers (m1, . . . ,mN) ∈ Zg1×· · ·×ZgN corresponding to the same-
position matrix element in the N randomized matrix branching programs M̃BPf,gi . Now, given an
appropriate set system S as described in Section 2.4, we can use Equation 1 to encode the plaintext
(m1, . . . ,mN).

Alternatively, since the complexity of the attack presented above grows exponentially with the
number of non-zero plaintext slots, we can choose to instead only fill λ-many slots and leave the
remainder filled with 0’s. This is, in fact, what we do in our implementation. The main impact on
efficiency is the added cost of constructing λ randomized branching programs, which is negligible
compared to the cost of encoding elements.

To validate the above attack, we implemented it and verified the ability to extract g1 from
obfuscated programs which use only one plaintext slot. As an example, running on a standard
laptop we are able to recover g1 from the obfuscation (utilizing only one slot of the plaintext space)
of an AND gate with security parameter 48 in approximately 20 seconds.

3.1.3 Setting Parameters

The parameters given by Coron et al. [12] were chosen to support their particular use-case of mul-
tiparty key exchange, which requires a public mechanism for re-randomizing encodings. However,
in the case of program obfuscation, there is no need to re-randomize. This allows us to optimize
the parameters of the scheme to gain improved efficiency. That is, since Add and Mult give correct
results as long as the growth of the noise terms ri does not cause any of the respective numerators
of an encoding to exceed the moduli pi, we only need to set the size of the pi sufficiently large to
ensure we can perform all the operations required to evaluate the obfuscated program.

Similarly, we can bound ρf , the maximum size in bits of the noise terms ri, at the maximum
depth of multiplication (i.e., when κ initial encodings have been multiplied together) as ρf =
κ(2λ + 2). Using the parameters specified by Coron et al. would have given us ρf � κ(5λ + 2).
Reducing the size of ρf greatly improves efficiency, as it affects the size η of the primes pi, which
subsequently affects the vector dimension. Both of these parameters appear to be the main efficiency
bottlenecks.

For completeness, we list all the parameters we use for the CLT scheme, and the reasoning
behind our choices. Recall that λ denotes the security parameter. These settings are designed in
order to achieve 2λ security against known attacks.

α (the bit-size of the primes gi): λ, to prevent a brute-force attack on the plaintext space.
β (the bit-size of the hi values used to construct pzt): λ, due to a GCD-based attack [12, §5.2].8
ρ (the bit-size of the random ri values): λ, to prevent a brute-force attack on the noise [11, 12].

8 Recent work [21] demonstrates an attack on the zero-test parameter which necessitates increasing β to 4λ.
However, that attack only applies to the full CLT scheme where there is a vector of zero-test parameters available to
the attacker. As we (heuristically) only publish a single zero-test parameter, the presented attack does not apply in
our setting.

13

κ α β ρ ρf η ν N

10 52 52 52 1060 1276 115 7273
14 52 52 52 1484 1700 115 9690
18 52 52 52 1908 2124 115 12107

Table 5: Concrete parameter settings for various settings of κ. The security parameter λ is fixed at 52.
Note that these are the parameters for the obfuscations presented in Table 7.

η (the bit-size of the primes pi): ρf + α+ 2β + λ+ 8, due to [12, Lemma 3]. Recall that ρf is
a bound on the noise after performing all the necessary multiplications.
ν (for zero-testing; ω is “small” if the ν most-significant bits of ω are all zeroes): α + β + 11,
due to [12, Lemma 3].
N (the vector dimension of the plaintext space): η log2 λ, to prevent an orthogonal lattice
reduction attack [12, §5.1].

Table 5 presents concrete numbers for various settings of κ with a fixed security parameter of 52.

3.2 Security of Our Implementation

To date, the security of general-purpose obfuscators has been argued in three general ways:

1. By showing the virtual black-box (VBB) property in an ideal model [5, 10],

2. By an exponential number of “semantically-secure graded encoding” assumptions [8, 24], or

3. By a single assumption on multilinear groups (and CLT encodings’ quality as an instantiation
of multilinear groups) plus complexity leveraging [17].

An ideal model proof of VBB security for our scheme would follow that of Barak et al. [5],
except that we do not use dual-input branching programs in our implementation (as an efficiency
optimization). Consequently, we do not know how to directly prove Claim 5 in their work [5, §6],
namely that, to use their terminology, profiles of all single-input elements are complete. Nonetheless,
we observe that an ideal model proof of VBB security for our scheme should go through in a
straightforward way assuming the Bounded Speedup Hypothesis [10].

In addition, as previously mentioned in Section 3.1.2, the resilience of our implementation of
CLT graded encodings to cryptanalysis requires the same type of assumption as used by Gentry
et al. [17]; namely, that it is safe to publish a set of encodings from which an attacker can reliably
produce a zero-testable element that is non-zero in λ-many slots, rather than non-zero in all N
slots.

4 Evaluation

We ran all of our experiments, unless stated otherwise, on Amazon EC2 using an r3.8xlarge instance
(32 cores and 244 GB RAM).9 Likewise, all our experiments use non-oblivious branching programs
unless stated otherwise. For each set of experiments, we look at three things: the time to generate
the obfuscation, the size of the resulting obfuscation, and the time to evaluate the obfuscation.

9All the experiments used the code from commit cac80b159ab99b8aab86cf776f0d48387db86ff4.

14

https://github.com/amaloz/ind-obfuscation/commit/cac80b159ab99b8aab86cf776f0d48387db86ff4

40 56 72 88 104120136152

Security Parameter

0

5

10

15

20

25

Ti
m

e
(m

in
ut

es
)

ID
AND
XOR

40 56 72 88 104120136152

Security Parameter

0

50

100

150

200

250

300

350

S
iz

e
(M

B
)

ID
AND
XOR

40 56 72 88 104120136152

Security Parameter

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

ID
AND
XOR

Figure 6: Obfuscation time (left), obfuscation size (center), and evaluation time (right) of single gate
circuits with various security parameters.

8 12 16
Input size of point function

0

2

4

6

8

10

O
bf

us
ca

ti
on

ti
m

e
(h

r) Param gen
Encoding

8 12 16
Input size of point function

0

5

10

15

20

25

30

35
O

bf
us

ca
ti

on
si

ze
(G

B
)

8 12 16
Input size of point function

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
va

lu
at

io
n

ti
m

e
(h

r)

Figure 9: Obfuscation time (left), obfuscation size (center), and evaluation time (right) versus input size
of the point function, with security parameter set to 52.

4.1 Varying the Security Parameter

We first look at the cost of obfuscating a single gate while varying the security parameter. While
obviously a toy example, the goal here is to measure the impact of increasing the security parameter.
We present results for three single-gate circuits: an identity (ID) gate, which takes a single bit as
input and outputs that bit as the output, an AND gate, and an XOR gate; see Figure 6.

Note the increase in time and size between an AND gate and an XOR gate. Recall that a
single AND gate maps to a width-4 branching program and a single XOR gate maps to a width-5
branching program. Here we quantify the cost of that increase. Using security parameter 152 as an
example, an obfuscation of an AND gate has size 216.3 MB whereas an obfuscation of an XOR gate
has size 327.4 MB, a 51.4% increase, which coincides reasonably well with the expected theoretical
increase of (52/42) = 56%.10 We see a larger increase going from identity gates to AND gates due to
the increase in the number of inputs, and thus the number of encoded matrices, when obfuscating
an AND gate.

4.2 Point Obfuscation

In our next experiment, we obfuscated point functions of varying input lengths using a fixed security
parameter in order to measure how the size of the function affects performance.

10This latter calculation comes from the fact that AND gates map to 4× 4 matrices, and XOR gates map to 5× 5
matrices.

15

CLT param gen BP rand Bookends enc Layer enc Obf time RAM Size
pi/gi CRT zi pzt total avg total avg total (GB) (GB)

8 67.3 12.6 9.0 23.8 112.7 2.3 6.7 13.6 120.4 962.9 1091.8 9.2 1.8
12 260.6 32.3 17.8 53.2 364.0 7.5 19.3 38.8 613.8 7366.0 7776.9 21.5 9.1
16 1396.0 170.5 45.5 336.4 1948.4 19.4 56.8 113.9 1893.9 30302.9 32385.3 42.3 31.1

Table 7: Microbenchmarks for point function obfuscation, with security parameter λ = 52. All timings
are in seconds. ‘#’ denotes the input size of the point function. ‘pi/gi’ denotes the time to generate
random pis and gis, as well as compute q =

∏
pi. ‘CRT’ denotes the time to compute CRT coefficients

for the pi’s, which is used when encoding. Likewise, ‘zi’ and ‘pzt’ denote the time required to generate zis
and the zero test element pzt. ‘BP rand’ denotes the time required to randomize λ branching programs.
(This is the only computationally expensive step not implemented in C.) ‘Bookend enc’ denotes the time
to construct and encode the bookend vectors. ‘Layer enc’ denotes the time to encode each layer of the
randomized matrix branching program. ‘Obf time’ denotes the total time to obfuscate (which includes the
CLT parameter generation time and encoding times). ‘RAM’ denotes the maximum amount of memory used
during obfuscation. ‘Size’ denotes the size of the resulting obfuscation. See Table 5 for the concrete CLT
parameters for these obfuscations.

1 2 3 4 5 6 7 8 9 10 Zero test Total RAM (GB)

8 0.11 9.1 12.5 21.6 26.7 29.3 33.7 45.9 12.7 191.7 3.7
12 0.39 36.7 72.8 86.6 128.0 152.8 158.1 178.4 255.8 283.3 41.0 2040.4 12.9
16 0.94 144.0 249.9 294.3 360.8 553.4 638.7 672.4 743.8 825.2 139.3 12053.4 40.7

Table 8: Microbenchmarks for point function evaluation. All times are in seconds. The number headings
correspond to the index of the matrix being multiplied. For example, a heading of ‘6’ corresponds to the
time required to multiply the sixth matrix of the obfuscation with the existing matrix product up to that
point. The heading of ‘1’ corresponds to the time it takes to load the first matrix into memory. For the
12-bit and 16-bit point functions, we only display the running time of multiplying the first 10 matrices. ‘Zero
test’ denotes the time to run the isZero method. ‘Total’ denotes the total running time of evaluation. ‘RAM’
denotes the maximum amount of memory (in GB) used during evaluation.

We obfuscate point functions taking 8, 12, and 16 bits of input, using security parameter 52
throughout.11 These functions produce branching programs of widths 10, 14, and 18, respectively.
Due to the time it takes to obfuscate and evaluate each function, we only conduct a single run for
each. Table 7 breaks down the cost of each step in the obfuscation process, Table 8 breaks down
the cost of evaluating the obfuscation, and Figure 9 depicts the obfuscation time, obfuscation size,
and evaluation time of each point function.

As a first observation, note that the majority of time is spent encoding elements; the CLT
parameter generation takes only 4–10% of the overall running time. Also note the large amount
of RAM required to obfuscate. A large portion (90%+) of this is to compute and store the CRT
coefficients which are needed to make encoding efficient. In terms of the evaluation time, we see
that as we multiply matrices into the matrix product, the running time increases as well. This
is because each multiplication increases the multilinearity level of the underlying graded encoding
scheme and thus the size of the resulting encoding.

11We choose 52 simply because it is the smallest “reasonable” security parameter to experiment with.

16

CLT param gen BP rand Bookends enc Layer enc Obf time Eval time
pi/gi CRT zi pzt total

8 47.7 35.7 29.1 27.7 41.9 4.2 25.7 40.8 40.7 43.5
12 49.4 42.7 37.1 39.9 47.1 1.3 49.2 45.0 45.1 46.8
16 30.8 49.0 47.7 45.1 36.1 -0.5 49.2 47.6 47.0 48.1

Table 10: Comparison of running times for point-function obfuscation when using 16 cores versus 32 cores.
The numbers presented denote the percentage decrease in running time when going from 16 to 32 cores.
Perfect parallelizability would result in a 50% decrease in running time. See Table 7 for column information.

Oblivious? w κ η N CLT param gen Encoding Obf time Obf size (MB) Eval time

N 6 6 404 1852 1.9 2.6 4.5 26.8 1.0
Y 9 18 1004 4603 42.5 285.7 328.2 1436.8 250.4

Table 11: The effect of constructing oblivious branching programs. Both runs obfuscate the same circuit
f(x0, x1, x2, x3) = (x0 ∧ x1) ∧ (x2 ∧ x3) using (toy) security parameter 24, with the second run constructing
oblivious matrix branching programs. ‘w’ is the width of the branching program, ‘κ’ denotes the multilin-
earity level of the graded encoding scheme, ‘η’ denotes the bit-size of the random primes pi, and ‘N ’ denotes
the plaintext space for the CLT encodings. See Table 7 for details on the other columns.

4.3 Parallelizability

Notice that the CLT instantiation of InstGen algorithm involves generating a large number of prime
numbers, which we can parallelize across multiple cores. Likewise, when obfuscating a matrix, note
that each element in each matrix can be encoded independently of other elements, and thus we can
easily parallelize the obfuscation process. Finally, when evaluating on obfuscated program, we can
parallelize across the matrix computations. In order to test how parallelizable these steps are in
practice, we re-run the point function obfuscations using an r3.4xlarge Amazon EC2 instance (16
cores and 122 GB RAM). Table 10 shows the results.

We can see that in general, obfuscation and evaluation are very parallelizable. The one step
that has almost no parallelizability, the branching program randomization step (‘BP rand’) is also
the only step done in Python, and thus we lose the ability to use OpenMP. Likewise, the reason
some steps, e.g., the zero-test parameter generation (‘pzt’), are less parallelizable is because they
require a synchronization step between threads to compute the result.

4.4 Oblivious Branching Programs

In the previous experiments we obfuscated non-oblivious matrix branching programs. Obfuscating
non-oblivious branching programs makes sense for applications such as obfuscating point functions,
where the structure of the program is known but an embedded secret needs to be hidden. For
settings where the entire program needs to be hidden, however, the branching program needs to be
made oblivious before being obfuscated (cf. Section 2.2.1). Table 11 measures the impact of this
step on the efficiency of obfuscating the formula f(x0, x1, x2, x3) = (x0∧x1)∧ (x2∧x3). In this one
example, we can see that the obfuscation size increases by 53.6× and the running time increases
by 250×, and (unfortunately) these blow-ups in size and running time will only increase as the size
of the formula and input length increases.

17

5 Discussion and Conclusion

In this work, we provide the first implementation of cryptographic program obfuscation. We discuss
both challenges encountered and optimizations made over the course of our development, and
present a detailed evaluation of the performance of such obfuscators. Although we show that
obfuscation is still far from practical, we are still able to obfuscate some “meaningful” programs.
We hope that the availability of an obfuscation prototype will spur further work in both making
obfuscation more practical as well as understanding the underlying security primitives better.

The evaluation results from Section 4 show that work still needs to be done before program
obfuscation is usable in practice. In fact, the most complex function we obfuscate with meaningful
security is a 16-bit point function, which contains just 15 AND gates. Even such a simple function
requires about 9 hours to obfuscate and results in an obfuscation of 31.1 GB. Perhaps more
importantly (since the obfuscation time is a one-time cost), evaluating the 16-bit point obfuscation
on a single input takes around 3.3 hours. However, it is important to note that the fact that we
can produce any “useful” obfuscations at all is surprising. Also, both obfuscation and evaluation
are embarrassingly parallel and thus would run significantly faster with more cores (the largest
machine we experimented on had 32 cores). Hopefully our implementation will help spur further
research into making obfuscation more practical.

Regarding the main bottlenecks in efficiency, the most immediate one is the efficiency of the
underlying graded encoding scheme, and in particular, the size η of the primes and the vector
dimension N . Recall that κ represents the multilinearity of our graded encoded scheme, and grows
linear in the length of the matrix branching program. The size of η, which affects both the encoding
time and overall size of the obfuscation, is roughly O (κλ). Likewise, N , which also greatly affects
the encoding time and size, is roughly O (η log λ) = O (κλ log λ). Unfortunately, these parameters
need to be set as such due to known attacks [12]. A possible research direction would be to analyze
the practical impact of these attacks, and determine whether these values can be reduced in any
way without impacting the overall security.

Ideally, we would even prefer to have a mechanism for graded encoding schemes that func-
tions akin to bootstrapping or modulus switching for fully homomorphic encryption, allowing the
evaluator to control the growth of the various system parameters mid-computation while retaining
security. Unfortunately, all known noise management techniques for FHE implicitly rely on the
plaintext space being public, while in the case of graded encoding schemes, the parameters that
define the plaintext space — the primes gi — must remain secret in order to hide the encoded
values.

Another major bottleneck is the use of branching programs, which restrict us to obfuscating
single-bit Boolean formulas. This (1) precludes computing more than n − 1 gates in one circuit,
and (2) requires obfuscating the computation of every single output bit independently. While
branching programs generated using Barrington’s approach suffer from exponential growth with
the circuit depth, the work of Ananth et al. [3] is a very important step in reducing the overhead
due to branching programs. More recently, Zimmerman [31] devised a construction which avoids
branching programs altogether; investigating the practical impact of this approach is left as future
work.

Finally, to aid in the cryptanalysis of program obfuscation and the underlying cryptographic tool
of graded encoding schemes, we have released a “challenge” to the community: we have published

18

an obfuscated point function with a hidden secret; the challenge is to determine the secret.12 We
hope this challenge will inspire cryptanalysts to focus on attacking the cryptographic constructs
used in program obfuscation, both to improve confidence in the constructions themselves as well as
to better understand the concrete parameters needed for the underlying graded encoding scheme
in order to achieve real-world security.

Acknowledgments

This work was supported in part by NSF awards #1111599 and #1223623. Work of Alex J.
Malozemoff was conducted with Government support through the National Defense Science and
Engineering Graduate (NDSEG) Fellowship, 32 CFG 168a, awarded by DoD, Air Force Office of
Scientific Research.

References

[1] The GNU Multiple Precision Arithmetic Library. https://gmplib.org. Accessed on May 11
2014.

[2] The OpenMP R© API specification for parallel programming. https://openmp.org. Accessed
on May 11 2014.

[3] P. Ananth, D. Gupta, Y. Ishai, and A. Sahai. Optimizing obfuscation: Avoiding Barrington’s
theorem. Cryptology ePrint Archive, Report 2014/222, Version 20140329:175740, 2014. https:
//eprint.iacr.org/2014/222.

[4] B. Barak, N. Bitansky, R. Canetti, Y. T. Kalai, O. Paneth, and A. Sahai. Obfuscation for
evasive functions. In Y. Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference,
volume 8349 of Lecture Notes in Computer Science, pages 26–51, San Diego, CA, USA, Feb. 24–
26, 2014. Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/
2013/668.

[5] B. Barak, S. Garg, Y. T. Kalai, O. Paneth, and A. Sahai. Protecting obfuscation against
algebraic attacks. In P. Q. Nguyen and E. Oswald, editors, Advances in Cryptology – EURO-
CRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 221–238, Copen-
hagen, Denmark, May 11–15, 2014. Springer, Berlin, Germany. Full version available at
https://eprint.iacr.org/2013/631.

[6] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In J. Kilian, editor, Advances in Cryptology
– CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 1–18, Santa
Barbara, CA, USA, Aug. 19–23, 2001. Springer, Berlin, Germany. Full version available at
https://eprint.iacr.org/2001/069.

[7] D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1. Journal of Computer and System Sciences, 38(1):150–164, 1989.

12See https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip, which contains an obfuscation
of a 14-bit point function using security parameter 60.

19

https://gmplib.org
https://openmp.org
https://eprint.iacr.org/2014/222
https://eprint.iacr.org/2014/222
https://eprint.iacr.org/2013/668
https://eprint.iacr.org/2013/668
https://eprint.iacr.org/2013/631
https://eprint.iacr.org/2001/069
https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip

[8] N. Bitansky, R. Canetti, Y. T. Kalai, and O. Paneth. On virtual grey box obfuscation
for general circuits. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer Science, pages 108–125,
Santa Barbara, CA, USA, Aug. 17–21, 2014. Springer, Berlin, Germany. Full version available
at https://eprint.iacr.org/2014/580.

[9] D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In J. A. Garay and R. Gennaro, editors, Advances in Cryp-
tology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages
480–499, Santa Barbara, CA, USA, Aug. 17–21, 2014. Springer, Berlin, Germany. Full version
available at https://eprint.iacr.org/2013/642.

[10] Z. Brakerski and G. N. Rothblum. Virtual black-box obfuscation for all circuits via generic
graded encoding. In Y. Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference,
volume 8349 of Lecture Notes in Computer Science, pages 1–25, San Diego, CA, USA, Feb. 24–
26, 2014. Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/
2013/563.

[11] Y. Chen and P. Q. Nguyen. Faster algorithms for approximate common divisors: Breaking
fully-homomorphic-encryption challenges over the integers. In D. Pointcheval and T. Johans-
son, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 502–519, Cambridge, UK, Apr. 15–19, 2012. Springer, Berlin,
Germany. Full version available at https://eprint.iacr.org/2011/436.

[12] J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers. In
R. Canetti and J. A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume
8042 of Lecture Notes in Computer Science, pages 476–493, Santa Barbara, CA, USA, Aug. 18–
22, 2013. Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/
2013/183.

[13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In T. Jo-
hansson and P. Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 1–17, Athens, Greece, May 26–30, 2013.
Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/2012/610.

[14] S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from indis-
tinguishability obfuscation. In Y. Lindell, editor, TCC 2014: 11th Theory of Cryptog-
raphy Conference, volume 8349 of Lecture Notes in Computer Science, pages 74–94, San
Diego, CA, USA, Feb. 24–26, 2014. Springer, Berlin, Germany. Full version available at
https://eprint.iacr.org/2013/601.

[15] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistin-
guishability obfuscation and functional encryption for all circuits. In 54th Annual Symposium
on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA, Oct. 26–29, 2013. IEEE
Computer Society Press. Full version available at https://eprint.iacr.org/2013/601.

[16] C. Gentry, S. Gorbunov, and S. Halevi. Graded multilinear maps from lattices. Cryptology
ePrint Archive, Report 2014/645, 2014. https://eprint.iacr.org/2014/645.

20

https://eprint.iacr.org/2014/580
https://eprint.iacr.org/2013/642
https://eprint.iacr.org/2013/563
https://eprint.iacr.org/2013/563
https://eprint.iacr.org/2011/436
https://eprint.iacr.org/2013/183
https://eprint.iacr.org/2013/183
https://eprint.iacr.org/2012/610
https://eprint.iacr.org/2013/601
https://eprint.iacr.org/2013/601
https://eprint.iacr.org/2014/645

[17] C. Gentry, A. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation from the
multilinear subgroup elimination assumption. Cryptology ePrint Archive, Report 2014/309,
2014. http://eprint.iacr.org/2014/309.

[18] C. Gentry, A. B. Lewko, and B. Waters. Witness encryption from instance independent
assumptions. Cryptology ePrint Archive, Report 2014/273, 2014. http://eprint.iacr.org/
2014/273.

[19] S. Hohenberger, A. Sahai, and B. Waters. Replacing a random oracle: Full domain hash
from indistinguishability obfuscation. In P. Q. Nguyen and E. Oswald, editors, Advances in
Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages
201–220, Copenhagen, Denmark, May 11–15, 2014. Springer, Berlin, Germany. Full version
available at https://eprint.iacr.org/2013/509.

[20] J. Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM Symposium on
Theory of Computing, pages 20–31, Chicago, Illinois, USA, May 2–4, 1988. ACM Press.

[21] H. T. Lee and J. H. Seo. Security analysis of multilinear maps over the integers. In J. A. Garay
and R. Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of
Lecture Notes in Computer Science, pages 224–240, Santa Barbara, CA, USA, Aug. 17–21,
2014. Springer, Berlin, Germany. Full version available at https://eprint.iacr.org/2014/
574.

[22] C. Linn and S. K. Debray. Obfuscation of executable code to improve resistance to static
disassembly. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM CCS 03: 10th Conference
on Computer and Communications Security, pages 290–299, Washington D.C., USA, Oct. 27–
30, 2003. ACM Press.

[23] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and R. Perdisci. HTTPOS: Sealing
information leaks with browser-side obfuscation of encrypted flows. In ISOC Network and
Distributed System Security Symposium – NDSS 2011, San Diego, California, USA, Feb. 6–9,
2011. The Internet Society.

[24] R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-secure
multilinear encodings. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages 500–517,
Santa Barbara, CA, USA, Aug. 17–21, 2014. Springer, Berlin, Germany. Full version available
at https://eprint.iacr.org/2013/781.

[25] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In D. B. Shmoys, editor, 46th Annual ACM Symposium on Theory of Computing, pages
475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press. Full version available at
https://eprint.iacr.org/2013/454.

[26] A. Sahai and M. Zhandry. Obfuscating low-rank matrix branching programs. Cryptology
ePrint Archive, Report 2014/773, 2014. https://eprint.iacr.org/2014/773.

[27] M. Sauerhoff, I. Wegener, and R. Werchner. Relating branching program size and formula
size over the full binary basis. In C. Meinel and S. Tison, editors, STACS 99: 16th Annual

21

http://eprint.iacr.org/2014/309
http://eprint.iacr.org/2014/273
http://eprint.iacr.org/2014/273
https://eprint.iacr.org/2013/509
https://eprint.iacr.org/2014/574
https://eprint.iacr.org/2014/574
https://eprint.iacr.org/2013/781
https://eprint.iacr.org/2013/454
https://eprint.iacr.org/2014/773

Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes in
Computer Science, pages 57–67, Trier, Germany, Mar. 4–6, 1999. Springer, Berlin, Germany.

[28] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee. Impeding malware analysis using conditional
code obfuscation. In ISOC Network and Distributed System Security Symposium – NDSS 2008,
San Diego, California, USA, Feb. 10–13, 2008. The Internet Society.

[29] W. Stein and D. Joyner. SAGE: System for algebra and geometry experimentation. ACM
SIGSAM Bulletin, 39(2):61–64, 2005.

[30] Z. Wang, J. Ming, C. Jia, and D. Gao. Linear obfuscation to combat symbolic execution.
In V. Atluri and C. Dı́az, editors, ESORICS 2011: 16th European Symposium on Research
in Computer Security, volume 6879 of Lecture Notes in Computer Science, pages 210–226,
Leuven, Belgium, Sept. 12–14, 2011. Springer, Berlin, Germany.

[31] J. Zimmerman. How to obfuscate programs directly. Cryptology ePrint Archive, Report
2014/776, 2014. https://eprint.iacr.org/2014/776.

Changelog

• Version 1.0 (October 1, 2014): First release.

22

https://eprint.iacr.org/2014/776

	Introduction
	Overview
	Branching Programs
	From Formulas to Branching Programs

	Matrix Branching Programs
	Oblivious Branching Programs

	Randomized Matrix Branching Programs
	Graded Encoding Schemes
	Choosing a Set System

	Executing Obfuscated Programs

	Implementation
	Implementing Graded Encodings
	Using the CLT Graded Encoding Scheme
	Attack on a Naive Implementation
	Setting Parameters

	Security of Our Implementation

	Evaluation
	Varying the Security Parameter
	Point Obfuscation
	Parallelizability
	Oblivious Branching Programs

	Discussion and Conclusion

