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Abstract

Deterministic public-key encryption, introduced by Bellare, Boldyreva, and O’Neill (CRYPTO
2007), is an important technique for searchable encryption; it allows quick, logarithmic-time,
search over encrypted data items. The technique is most effective in scenarios where frequent
search queries are performed over a huge database of unpredictable data items. We initiate the
study of deterministic public-key encryption (D-PKE) in the presence of leakage. We formulate
appropriate security notions for leakage-resilient D-PKE, and present constructions that achieve
them in the standard model. We work in the continual leakage model, where the secret-key is
updated at regular intervals and an attacker can learn arbitrary but bounded leakage on the
secret key during each time interval. We, however, do not consider leakage during the updates.
Our main construction is based on the (standard) linear assumption in bilinear groups, tolerat-
ing up to 0.5− o(1) fraction of arbitrary leakage. The leakage rate can be improved to 1− o(1)
by relying on the SXDH assumption.

At a technical level, we propose and construct a “continual leakage resilient” version of the
all-but-one lossy trapdoor functions, introduced by Peikert and Waters (STOC 2008). Our
formulation and construction of leakage-resilient lossy-TDFs is of independent general interest
for leakage-resilient cryptography.

1 Introduction

The notion of semantic security for public key encryption schemes was introduced in the seminal
work of Goldwasser and Micali [GM84]. While this strong notion of security is desirable in many
applications, it requires that the encryption algorithm must be a random process. This creates
a significant performance bottleneck if, for example, one wants to perform fast search over many
encrypted data items. To address this issue, Bellare, Boldyreva, and O’Neill [BBO07] initiated the
study of deterministic public-key encryption (D-PKE) schemes. In D-PKE schemes, the encryp-
tion algorithm is required to be a deterministic function of the message. Consequently, D-PKE
cannot satisfy any meaningful notion of security for low-entropy plaintext distributions. Bellare et
al. demonstrated that a strong notion of security can in fact be realized for relatively high-entropy
plaintext distributions. Several follow up works then further investigated security notions for deter-
ministic encryption and presented standard model constructions [BFOR08, BFO08, O’N10, BS11,
MPRS12, FOR12, RSV13].

Deterministic encryption is a promising technique for building “searchable encryption” [PRZB11,
PRZB12]. It is most effective in scenarios where frequent search queries are performed over a huge
database of unpredictable, data items (e.g., credit card numbers). This is in fact the ideal setting for
deterministic encryption: on one hand, the “hard-to-guess” nature of credit-card numbers ensures
that they are well protected even if encryption is deterministic; on the other hand, logarithmic
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search-time ensures good response-time even if the database is potentially huge and search queries
are rather frequent.

We initiate a study of deterministic PKE in the presence of leakage attack where an adversary
can learn partial but important information about the secret key of the system (e.g., by means
of insider attacks, or side channel attacks [Koc96, AK97, QS01, OST06]). Existing deterministic
PKE schemes are not resilient to leakage and assume that the adversary only has black-box access
to the decryption box.

We present a thorough study of leakage-resilient D-PKE. We adapt existing security notions for
deterministic PKE to the continual leakage model [DHLAW10, BKKV10] and present constructions
that achieve them.

Let us note that although several leakage-resilient schemes for randomized PKE are known
[DP08, AGV09, DKL09, ADN+10, NS09, BKKV10, DHLAW10, HLWW13], they have no direct
implication to determinisitc PKE. This is because the security of randomized PKE crucially relies
on the randomness of encryption even in the leakage setting and such randomness is simply not
present in deterministic PKE. In general—even without leakage—there is no direct way of obtaining
deterministic PKE schemes from the randomized ones in the standard model; the techniques for
constructing deterministic PKE are usually quite different.

The continual memory leakage (CML) model was introduced in [DHLAW10, BKKV10]. In the
context of public-key encryption, we envision a system with a fixed public-key pk, along with a
(variable) secret key sk which is “refreshed” or “updated” at regular time intervals. In each time
interval, the adversary can issue a leakage query of its choice, in the form of a polynomial-time
computable function L, and learn L(sk). The adversary can repeat this process for polynomially
many time intervals, issuing queries of the form Li, and learning L(ski) in the i-th interval. To
prevent trivially leaking the whole key, the model asserts that the size of all leakage answers in
the i-th intervals is bounded by ρ.|ski| for every i, where ρ ∈ [0, 1) is the leakage parameter of
the system and ski is the secret-key in the i-th interval. It is also required that every ski should
correctly decrypt the ciphertexts under pk, and be roughly of the same size as the initial key of the
system. The higher the ρ for a scheme, the higher the amount of leakage it can tolerate.1

The CML model is indeed a very powerful model since it allows the attacker to potentially
learn unbounded leakage on the system’s secret memory. In addition to constructions of ran-
domized PKE mentioned above, leakage-resilient schemes for several tasks in a variety of leakage
models are now known, e.g., digital signatures [LW10, BSW11, LLW11], identity-based encryption
[BKKV10, CDRW10, LRW11], interactive proofs [GJS11, Pan14, AGP14], secure computation
[FRR+10, BGJK12, GR12], and so on. We remark that the study of leakage-resilient cryptography
was initiated in [DP08, MR04, ISW03] as an attempt to provide an algorithmic defense against
side-channel attacks [Koc96, AK97, QS01, OST06]. Renauld, Standaert, Veyrat-Charvillon, Kamel,
and Flandre [RSV+11] highlight several difficulties in formalizing an appropriate model of leakage
for real-world side-channel attacks, and argue that often an algorithmic defense is not possible
since the key might have been completely compromised. In such settings, we cannot do anything
except for developing alternative methods such as those at the hardware level. However, when the
adversary is limited to side-channel attacks that do not fully compromise the system, the continual
leakage model is essentially as good a model as possible.

1We note that in our model no leakage is allowed during update phase. However, the most general model allows
leakage during the update phase as well.
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Our results. Our goal is to obtain standard model constructions of deterministic PKE which
can deliver meaningful security under the CML attack. The security notions for deterministic PKE
have evolved over time. Bellare et al. [BBO07] proposed the notions of PRIV1-IND and PRIV-IND
security; the former is the most basic notion of security, while the latter was shown in [BFOR08,
BFO08] to be one of the strongest notions. In the special setting when plaintext distributions have
sufficient block-wise min-entropy, these two notions are actually equivalent. Bellare et al. [BBO07]
argued that in the general setting, the plaintext distributions cannot depend on the public-key of
the system. However, under special constraints over plaintext distributions, this restriction may
not be necessary [BS11, RSV13].

In this work, we stick to the original setting of [BBO07], and reformulate PRIV1-IND and
PRIV-IND security in the presence of CML attacks. We then construct a deterministic PKE
scheme satisfying the PRIV1-IND security under the CML attack. Our scheme is based on the
(standard) linear (a.k.a. “matrix DDH”) assumption [BBS04, NS09] in bilinear groups, and it can
tolerate a leakage-rate up to ρ = 0.5 − o(1). A simpler variant of this scheme has better system
parameters, and can tolerate an almost optimal leakage rate of ρ = 1 − o(1); however, it is based
on the (stronger) SXDH assumption.

To construct our deterministic PKE, we formulate and construct a “continual leakage resilient”
version of lossy trapdoor functions, abbreviated as CLR-LTDF. Lossy trapdoor functions were
introduced by Peikert and Waters [PW08], and have found a vast number of applications in cryp-
tography. We actually work with the more general notion of lossy TDFs, namely all-but-one (ABO)
functions, since the simpler definition (consisting of only two families) cannot tolerate even 1 bit of
leakage. We believe that our formulation of CLR-LTDF is of independent general interest especially
with regard to constructing other leakage-resilient schemes.

We remark that unlike the standard setting where lossy TDFs almost immediately imply D-PKE
[BFO08], CLR-LTDFs do not immediately imply a leakage-resilient D-PKE. The leakage setting is
more challenging and the proof that such a reduction is possible, is not straight forward.

1.1 An overview of our approach

Bellare et al. [BBO07] show that, in the random-oracle model [BR93], a semantically secure (ran-
domized) PKE also implies a PRIV-IND secure deterministic PKE; the reduction simply replaces
the randomness of encryption by H(m) where H is a random-oracle and m is the message to be
encrypted. By using a LR (randomized) PKE in this reduction, we immediately get a LR D-
PKE. However, in the standard model, no such general reduction is known. In general, due to the
deterministic nature of encryption, D-PKE generally require their own set of techniques.

A prominent technique for constructing deterministic PKE (in the standard model) is based
on lossy trapdoor functions [PW08]; it was given by Boldyreva, Fehr, and O’Neill [BFO08]. Recall
that, lossy TDFs define two function families {Finj} and {Flossy}. Functions in the first family are
always injective and can be efficiently inverted using a trapdoor. Functions in the other family are
always lossy : meaning that the range-size of every function in {Flossy} is much smaller than its
domain-size. Therefore, functions in the second family necessarily loose a lot of information about
their input. In addition, these two families are computationally indistinguishable: it is hard to
decide whether a (properly sampled) function belongs to the injective family or the lossy family.
Boldyreva et al. [BFO08] observe that if the lossy mode also acts as a universal hash function then
the functions from the injective family (of a lossy TDF) act as a PRIV1-IND secure deterministic-
PKE. Furthermore, following [DS05], they show that even if the lossy mode is not universal, it still
leads to a secure scheme provided that the message is first permuted using a pairwise independent
permutation. They prove this by extending the crooked LHL of [DS05] to work with lossy functions
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and average conditional min-entropy (see lemma 2).
A natural idea is to suitably adapt this approach to the leakage setting. Unfortunately, lossy

TDFs cannot be leakage-resilient as defined: just one bit of leakage on the trapdoor suffices to tell
injective functions from the lossy ones. To make this approach work, we first need to re-formulate
the notion of lossy TDFs in the leakage setting and then suitably modify the approach of [BFO08]
to obtain a deterministic PKE.

Leakage-resilient lossy TDFs. Since lossy TDFs cannot be leakage-resilient as defined, we
work with all-but-one (ABO) functions also introduced in [PW08]. ABO functions define only one
family {F} where each f ∈ F takes two inputs. The first input is called a branch b taken from a
branch space B. As the name suggests, there exists a unique branch b∗ ∈ B such that the single
input function F (b, ·) is lossy when b = b∗ and injective otherwise. We consider a notion similar to
ABO functions. Specifically, we consider a family of functions {F} which take two inputs where
the first input is a branch b. We require that at least one branch b defines a lossy function F (b, ·),
and the fraction of all lossy branches is negligible. All other branches define an injective function.

Intuitively, leakage resilience for our functions, should mean that given (f,Lf (t), b), where is t is
the trapdoor, it is hard to decide whether b is lossy or injective; here Lf is the leakage function which
can depend on f (but not b, since otherwise we will have the same problem as before). We note
that it is of independent interest to consider such functions under various models for leakage Lf .
However, motivated by our application of deterministic PKE, we will consider the most demanding
CML model. Since the CML model requires that the trapdoor should refreshed or updated after
each time interval, our functions will have an update algorithm in addition to usual ones for ABO.

The attack model for our functions will then work as follows. Once the description of f is fixed,
the adversary will be able to ask (bounded) leakage during each time-interval; the trapdoor for the
function f will be updated after each time interval. Once the leakage is complete, the adversary
will enter a challenge phase in which it will be given either a lossy branch b∗ or an injective branch
b 6= b∗; the adversary wins if it successfully guesses the type of the branch. The adversary is not
allowed any queries once the challenge branch is given. The formal description appears in later
sections.

As mentioned earlier, we call such functions continual leakage-resilient lossy-trapdoor functions
or CLR-LTDF. We construct CLR-LTDF under the linear assumption tolerating a leakage fraction
of ρ = 0.5 − o(1). A simpler variant of this construction based on SXDH assumption can tolerate
almost optimal leakage of ρ = 1− o(1).

Achieving leakage-resilient D-PKE from CLR-LTDF. Although our formulation of CLR-
LTDF seems natural, it remains to be seen if it can prove useful in constructing D-PKE. Let us see
if we can use an approach along the lines of Boldyreva et al. [BFO08].

Suppose that we are given a family of CLR-TDFs. The functions in the family require a branch
for evaluation. We need to find a deterministic method to sample the branch. If a branch is chosen
and provided with public-parameters, we will not have any leakage-resilience. The adversary can
simply check if the branch is lossy or injective via leakage queries. A better idea, following [BFO08],
would be to let the branch b = h(m) and then encrypt π(m) where m is the message to be encrypted,
h is a universal hash function, and π a pairwise independent permutation; both (h, π) are sampled
at the time of setup. If m has sufficient entropy the branch looks random due to (standard) LHL;
further if m has enough entropy conditioned on (h, h(m)), we might hope to use the analysis from
[BFO08] (which relies on “generalized crooked LHL”) to argue security.2

2Note that here it is important that distribution of m does not depend on h, π. This is indeed the case since (h, π)
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Unfortunately, the analysis from [BFO08] does not quite work since it crucially relies on the fact
that the family is a lossy TDF without branches. (If ABO functions are used, then a single branch
must be chosen as part of the public-parameters, and used for all evaluations for their analysis to
work.) In contrast, in our proposed scheme, the branch changes for almost every sampled message.
This results in two main difficulties. Consider the reduction in which the proof will try to reduce the
security of our proposed construction to that of the CLR-LTDF. That is, the reduction attempts to
correctly guess whether a challenge branch b′ is injective or lossy with the help of an adversary A
who breaks our proposed scheme. The reduction will somehow need to use b′ to create a correctly
generated challenge ciphertext c. For example, in the simplest type of reduction, we may try to
ensure that c is an encryption under the branch b′ for some message, say m. Then, the reduction
must ensure that: (1) h(m) = b′, and (2) m comes from one distribution if b′ is injective and from
the other distribution if it is lossy.

It turns out rather non-trivial to show that we can design such a reduction and the proposed
construction indeed works. However, making this construction work requires us to consider a
slightly strengthened version of CLR-LTDFs where the challenge branches can be sampled using
an arbitrary, possibly adversarial, algorithm as long as the sampling results in independent and
correctly distributed branches. The security is then required to hold even in the presence of some
auxiliary information about the challenge branch.

1.2 How to construct CLR-LTDF

We now present an overview of our construction of CLR-LTDFs. Our starting point is the ABO
construction of [PW08] which works as follows. It samples a n × n matrix A whose entries are,
roughly speaking, (ElGamal) encryptions of 0. The function description is then set to gM where
M = A + b∗I, I denotes the identity matrix, and b∗ is lossy branch. The function evaluation on
(b,x) is g(M−bI)x, which is easily inverted if x ∈ {0, 1}n, given A, b, b∗. To ensure lossiness when
b = b∗, the randomness of the ElGamal encryptions are “correlated” in a special manner.

A natural idea is to replace the ElGamal encryption with an appropriate continual LR PKE
scheme. The hope is that leakage-resilience of ABO can now be reduced to leakage-resilience of
the PKE in use. The central difficulty such a reduction faces is as follows. The reduction needs to
provide the adversary, say A, the description of a function f from the family in the beginning, and
a challenge branch b′ in the end. Clearly, whether b′ is injective or lossy, should somehow depend
on whether the challenge ciphertext c obtained from the PKE-challenger encrypts 0 or 1.3 Since
c is not known ahead of time, the reduction must be able to find a b′ when c becomes known, yet
this b′ should make the function injective or lossy depending on what c encrypts.

We do not know if such a black-box reduction is possible in general. However, it might be
possible to make this approach work by relying on specific constructions of LR PKE. Our con-
struction uses a similar approach and uses BKKV encryption instead of ElGamal. A key property
of this encryption scheme is that it supports (almost) additive homomorphic encryptions. This
allows us to use the branches as a one-time pad to mask the diagonal entries. However, we still
cannot obtain an injective or lossy branch from a challenge ciphertext of BKKV in a black-box
manner. Instead, we directly work with “matrix DDH” challenger, and use the ideas from BKKV,
to directly prove that our construction is leakage-resilient. More specifically, our reduction directly
works with the matrix DDH challenger, but relies on the structure of BKKV encryption and the
fact that random subspaces are leakage resilient (Theorem 2.1, [BKKV10]) to answer the leakage

are part of the public-key and m is not allowed to depend on public-key in our setting.
3For the PW construction, we will need to use n such ciphertexts, one for each diagonal entry; this can be handled

using a hybrid argument.
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queries of the adversary. The reduction only knows a key from a random subspace of the entire
key space, and therefore can fail to decrypt some special ciphertexts. These special cipertexts will
correspond to the DDH challenges, and used to define the challenge branch b′. A description of
BKKV encryption scheme is given in the preliminaries.

Related work on lossy TDFs. There has been a significant follow up work on extending lossy
TDFs such as all-but-N functions defined by Hemnway et al. [HLOV11], all-but-many functions
defined by Hofheinz [Hof12], and identity-based lossy TDFs defined by Bellare et al. [BKPW12].
Likewise, in addition to the constructions in these works, several other works have presented con-
structions of (standard) lossy TDFs based on a variety of assumptions [FGK+10, Wee12]. Qin et
al. [QLCC13] propose an alternate type of leakage-resilient lossy-TDF in which a master-key mk is
selected first; injective/lossy functions f are chosen later, and mk generates trapdoors for injective
f . Leakage is allowed only on mk, and no leakage is allowed after f is fixed. It is not clear how to
use this version for our application of deterministic-PKE.

2 Preliminaries

Standard notation. We use uppercase roman letters A,X, . . . for representing sets and matrices,
lowercase roman letters to denote elements of a set x ∈ X, and bold for vectors x ∈ Xn. When X

is a set, x
$← X denotes a uniformly sampled x ∈ X. Notation 〈x,y〉 represents standard scalar

product of vectors x and y. If A is a matrix then Ax denotes the standard matrix product where
x is seen as a column vector (with scalar coordinates). The transpose of a matrix A is denoted by
AT. For vectors (x1, . . . ,xn), we denote by span(x1, . . . ,xn) and kernel(x1, . . . ,xn) the linear-span
and the kernel space of these vectors.

Sets N,R,Z and Zp denote the sets of natural numbers, real numbers, integers, and integers
modulo p respectively. We let Rankm×nr (S) be the set of all m×n matrices of rank r whose entries
are from S, whenever such a rank is well defined, e.g., when S = Zp. Given any function f , |f(·)|
represents the size of image space of f . A function µ : N → R is negligible if it approaches zero
faster than every polynomial.

Probability distributions will be denoted by calligraphic letters X , and x ← X denotes an
element x drawn according to X . Uniform distribution over {0, 1}n is denoted by Un. The statistical
distance between two probability distributions X and Y over the same support S is denoted by
∆(X,Y ) = 1

2

∑
a∈S |Pr[X = a]− Pr[Y = a]|.

The min-entropy of a distribution X that is defined over a set Ω is defined as H∞(X ) =
minω∈Ω lg (1/Pr[X = ω]). An α-source is a distribution X with H∞(X ) ≥ α, and the min-entropy
rate of an α-source over the set {0, 1}n is α/n. A distribution X is ε-close to an α-source if there
exists an α-source Y such that ∆(X ,Y) ≤ ε. The average conditional min-entropy [DORS08] of a
random variable X given Y is defined as: H̃∞(X|Y) := − lg

(
Ey←Y

[
2−H∞(X|Y=y)

])
.

A family of hash functions H = {hi : {0, 1}n → R} is said to universal if for every distinct x1, x2,
Prh←H[h(x1) = h(x2)] ≤ 1/|R|. A stronger notion is pairwise independence (p.i.): H is pairwise
independent if for all distinct x1, x2 ∈ {0, 1}n and all y1, y2 ∈ R, Prh←H[h(x1) = y1 ∧h(x2) = y2] ≤
1/|R|2. We will actually need p.i. permutations, denoted perm, which can be efficiently inverted to
recover the input.

Leftover hash lemma (LHL). We use two extension of the classical LHL [ILL89, HILL99].
The first version, called generalized LHL, is its generalization to the case of average conditional
min-entropy [DORS08]:
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Lemma 1 (Generalized LHL [DORS08]). Let X ,Y be random variable such that X ∈ {0, 1}n and
H̃∞(X|Y) ≥ α. Let H be a family of universal hash functions. Then, for h ← H, we have that:
∆
(

(Y, h, h(X )), (Y, h,Um)
)
≤ ε, provided α ≥ m+ 2 lg(1/ε) and m is the output length of h.

Classical LHL is obtained by dropping Y and replacing H̃∞(X|Y) with H∞(X ) in the above.
The second version we use is a further extension of the above lemma to the “crooked” case:

roughly speaking, it says that if f is function with small range, and h is a pairwise independent
permutation then f(h(X )) is statistically independent of X .4

Lemma 2 (Generalized “Crooked” LHL [DS05, BFO08]). Let X ,Y be random variable such that
X ∈ {0, 1}n and H̃∞(X|Y) ≥ α. Let H be a family of pairwise independent functions from
{0, 1}n to a set R, and f : R → S be an arbitrary function to a set S. Then, for h ← H,
∆
(

(Y, h, f(h(X ))), (Y, h, f(U))
)
≤ ε, provided α ≥ log |S|+ 2 lg(1/ε) and (U) is the uniform

distribution over the range R.

Observe that h does not necessarily have a smaller range, and can be injective. Furthermore,
the lemma holds for all functions f , even those, which potentially depend on Y. The following
lemma for average conditional min-entropy [DORS08] will be useful in the proofs.

Lemma 3. If Y has 2r values and Z is any random variable, then H̃∞(X|(Y,Z)) ≥ H∞(X|Y)− r.

New notation. We will use two types of matrices: matrices of scalars, denoted by uppercase
letters A = [aij ] and matrices of vectors, denoted by bold uppercase letters A = [aij ]. When we
want to be explicit about the dimension of a matrix A, we will write Am×n; define Am×n similarly.
Let Am×n = [aij ] be a matrix of vectors, and x = (x1, . . . , xn)T be a column vector (with scalar
coordinates), then we define:

Ax = Ym×1 = (y1, . . . ,ym)T where yi =
∑
j∈[n]

xjaij

for every i ∈ [m]. That is, each yi is a linear combination of the vectors in the i-th row of matrix
A, where the scalars of the linear combination are the coordinates of vector x.

Let G be a group of prime order p, and g be its generator. For x = (x1, . . . , xn) ∈ Znp , we define

gx := (gx1 , . . . , gxn); similarly, we define matrices gA := [gaij ] and gA := [gaij ] where A is a matrix
of scalars aij ∈ Zp, and A is a matrix of vectors aij ∈ Z`p (for some ` ∈ N) for all values of i and j.

Finally, when dealing with vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) both in Znp , we
denote by +, −, and · the component-wise addition, subtraction, and multiplication modulo p. In
particular, x · y = (x1y1, . . . , xnyn) with product taken modulo p. However, when we deal with
vectors u = (u1, . . . , un) and v = (v1, . . . , vn) both in Gn for some group G, we use · to denote the
group operation of G and define u ·v = (u1 ·v1, . . . , un ·vn) as the component-wise group operation.

Bilinear groups and the matrix DDH assumption. We work with multiplicative groups
G,GT of prime order p, equipped with a non-degenerate bilinear map e : G × G → GT satisfying
the following property: for every (a, b) ∈ Z2

p and generator g ∈ G, e(ga, gb) = e(g, g)ab. We require
that the group operation and the map e are efficiently computable. We will assume an efficient

4Dodis and Smith [DS05] formulated and proved the crooked version of the classical LHL. The extension to the
general case which works with average conditional min-entropy and any (lossy) function f was proved by Boldyreva
et al. [BFO08].
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generation algorithm G, which on input a security parameter λ, outputs the description of groups
G,GT of order p, the map e, and a generator g where p is a prime number of length O(λ).

The “matrix DDH” assumption [BBS04, NS09], also known as the 3-linear assumption,5 states
that it is hard to tell whether a randomly chosen matrix A ∈ Zn×3

p has rank 2 or 3 when given only

gA where g ∈ G is the generator of a prime-oder bilinear group G. Formally, for every polynomial
n := n(λ), we have that distributions

D2(λ, n) ≡
{(

aux, gA
)

: A
$← Rankn×3

2 (Zp)
}
λ,n

and D3(λ, n) ≡
{(

aux, gA
)

: A
$← Rankn×3

3 (Zp)
}
λ,n

are computationally indistinguishable, where aux := (p,G,GT , g, e) ← G(λ) and λ ∈ N. It follows
from this assumption [NS09] that for all polynomially bounded n, ` ≥ 3, r ≥ 2, t ≥ 0, a random
rank-r matrix is computationally indistinguishable from a random rank-(r + t) matrix when given
in the exponent.

Random subspaces are leakage-resilient [BKKV10]. Brakerski, Kalai, Katz, and Vaikun-
tanathan [BKKV10] prove the following theorem which serves as as important tool in building
their continual leakage resilient PKE scheme. The theorem roughly states that random subspaces
of Znp are “leakage resilient” provided that the leakage is “small” and independent of the subspace.
More formally, let X ⊆ Znp be a random subspace, x1,x2 two random vectors in X and u1,u2 two
random vectors from the entire space. Let L : Znp → W be a leakage function independent of X.
The theorem states that if leakage is bounded (i.e. |W | is small), then L(x) is statistically close to
L(u) even given the subspace X.

Theorem 4 ([BKKV10]). Let n, ` ∈ N, n ≥ ` ≥ 4 and p be a prime. Let X
$← Zn×`p , T

$←
Rank`×2

2 (Zp) and let Y
$← Zn×2

p . Let L : Zn×2
p → W be some function independent of X such that

|W | ≤ p`−3 · ε2 for a constant ε ∈ (0, 1). Then, ∆
(
(X,L(X · T ), (X,L(Y ))

)
≤ ε.

BKKV encryption scheme. Our result uses the BKKV encryption which works as follows.
The key generation algorithm chooses two uniformly random `-dimensional vectors v1 and v2 with
elements from Zp, and another vector t uniformly at random from the orthogonal subspace of v1 and
v2. The public key is set to be (gv1 , gv2) and the secret key is gt, where g is a generator of a bilinear
pairing group G and exponentiation happens component-wise: gt = (gt1 , gt2 , . . . , gt`)T ∈ G`. To
encrypt the bit 0, the encryption algorithm outputs a linear combination of v1 and v2 in the
exponent: gc1v1+c2v2 . The encryption of 1 is a completely random vector in the exponent. Notice
that encryptions of 0 have exponents orthogonal to the secret key, while exponents of encryptions
of 1 are not orthogonal to the secret key with overwhelming probability. During decryption, the
respective components from the secret key and the ciphertext are paired via the bilinear pairing
and the results are multiplied. As a result, if the vectors in the exponent are orthogonal, the result
is the identity element. Otherwise, it is a random group element.

An important property of this encryption scheme is that it is almost additively homomorphic. It
is easily shown that multiplying component-wise an encryption of b1 ∈ {0, 1} with an encryption of
b2 ∈ {0, 1} provides an encryption of b1 + b2, except when b1 = b2 = 1 where you get an encryption
of 1.

5We use the therms “matrix DDH assumption” and “linear assumption” interchangeably throughout the paper.

8



3 Lossy TDF under Continual Leakage

3.1 Our model

As noted earlier, we will define a “branch” based version of lossy trapdoor functions. To evaluate
the function, an evaluator must specify a branch in addition to the input to the function. Some
branches will be “lossy” whereas most other will be injective. The set of branches will be denoted
Bλ for security parameter λ.

This primitive is closer to the all-but-one (ABO) primitive of Peikert and Waters [PW08]; the
only difference is that in our formulation more than one branch might be lossy. In fact, there may
exist branches which are neither injective nor “sufficiently lossy.” Nevertheless, fraction of such
branches will be negligible, and a random branch will be injective with overwhelming probability.

The leakage-resilience is formulated by requiring that it is hard to distinguish lossy branches
from injective even under a continual leakage attack on the trapdoor. We will use a parameter
ρ ∈ [0, 1) to capture the leakage as the fraction of the length the secret-key. That is, in any given
time period, the adversary can learn any PPT leakage function of the trapdoor t with output length
at most ρ|t|. We now present the formal definition.

Lossy trapdoor functions resilient to continual memory leakage. Let λ ∈ N be the
security parameter, and n := n(λ) and k := k(λ) be polynomials in λ. Parameter n denotes
the length of the input to the function(s) and k is the lossiness parameter. For convenience, we
define the residual information parameter r := r(λ) = n(λ) − k(λ). Let ρ := {0, 1}poly(λ) → [0, 1)
be a leakage tolerance parameter, representing the length of the leakage function as a fraction
of the length the trapdoor. Finally, let {Bλ}λ ∈ N be the ensemble of branch-spaces, where
Bλ = {0, 1}poly(λ).6

A collection of (n, k, ρ)-continual leakage resilient lossy trapdoor functions (CLR-LTDF) with
the domain {0, 1}n and branch collection B = {Bλ} is given by a tuple of four (possibly probabilistic)
polynomial-time (in λ) algorithms (Setup,Eval, Inv,Update) with the following specifications:

Setup(1λ, b∗) takes as input 1λ and a branch b∗ ∈ Bλ, and outputs (pp, t) where pp is a function
index and t is its trapdoor.

Eval(pp, b, x) is a deterministic algorithm which, given pp, a branch b ∈ Bλ, and an input x ∈
{0, 1}n, outputs a value y.

Update(pp, t) is a randomized algorithm which, given pp, and a trapdoor t for pp, outputs a new
trapdoor t′ such that |t′| = |t|. We call t′ to be the refreshed or updated trapdoor.

Inv(pp, t∗, y) is a deterministic algorithm which given pp, a trapdoor t∗, and a value y, outputs
either x ∈ {0, 1}n or ⊥. Usually, either t∗ = t or t∗ is obtained by repeated (at most
polynomial) application of Update(pp, ·).

We require that the following correctness and lossiness requirements hold.

1. Injective, and invertible, on almost all branches: except for a negligible fraction of b ∈
Bλ \ {b∗}, algorithm Eval(pp, b, ·) computes a (deterministic) injective function, which can
be inverted using either the trapdoor t or any of its polynomially-many refreshings. That

6We can also consider more structured sets instead of {0, 1}poly(λ). For example, a very intuitive and convenient
choice is Bλ = Zmp ; i.e., the branches vectors in Zmp for some m = poly(n) and p is a prime of length λ. However, too
much structure in Bλ should be avoided to ensure non-triviality and usefulness of the primitive.
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is, for every polynomial q := q(λ), every sufficiently large λ, every x ∈ {0, 1}n, and every
b∗ ∈ Bλ,

Pr

[
Inv (pp, tq,Eval(pp, b, x)) 6= x

∣∣∣∣E] ≤ µ(λ),

where E is the event that (pp, t)← Setup(1λ, b∗), b← Bλ, tq is obtained by repeatedly applying
the function Update(pp, ·) to its own output (with fresh randomness) q times, starting from
the initial input t and µ is a negligible function.7

2. Lossy at the given branch b∗: for every b∗ ∈ Bλ, except with negligible probability over the
randomness of Setup, we have: |Eval(pp, b∗, ·)| ≤ 2n−k, where (pp, t)← Setup(1λ, b∗).

Finally, we require the following hardness properties.

1. Indistinguishability of lossy branch under continual memory leakage: We require that for
every PPT algorithm A, it holds that{

GameρA(1λ, 0)
}
λ∈N

≡c
{
GameρA(1λ, 1)

}
λ∈N

(1)

where the variable GameρA(1λ, d) is defined for d ∈ {0, 1} as follows:

GameρA(1λ, d): The game proceeds between a challenger and adversary A in following stages:

(a) Init: The challenger chooses two branches (b, b∗) uniformly from the set Bλ and samples
(pp, t)← Setup(1λ, b∗). It sends pp to A.

(b) Leakage queries: A sends polynomially many leakage queries (in the form polynomial-
sized circuits) L1, . . . ,Ls where Li has output length at most ρ|t|, and i ∈ [s] for some
s = poly(λ). The queries are chosen adaptively and answered as follows. At the start of
this phase, the challenger sets i = 1 and t1 = t. Upon receiving a leakage function Li
for i ∈ [s], the challenger computes σi = Li(ti), ti+1 ← Update(pp, ti), and increases the
counter i to i+ 1. It then returns σi to A and waits for the next leakage function.

(c) Challenge: Finally, if d = 0 the challenger sends b, and if d = 1 it sends b∗ to the
adversary.

The output of the game is whatever A outputs: w.l.o.g. the output is a single bit.

2. Hard to sample a non-injective branch even given the inversion trapdoor: roughly speaking,
we require that no PPT algorithm A, given (pp, t) sampled by Setup(1λ, b∗) for a random
b∗, can compute a branch b such that the function Eval(pp, b, ·) is not injective except with
negligible probability. Formally, for every PPT algorithm A and every sufficiently large λ ∈ N,

Pr

[
b ∈ Bλ ∧ |Eval(pp, b, {0, 1}n)| 6= 2n

∣∣∣∣E] ≤ µ(λ),

where E denotes the event b∗ ← Bλ, (pp, t)← Setup(1λ, b∗), b← A(pp, t) and µ is a negligible
function.

It is straightforward to extend this definition to allow leakage during setup and update phases.

7We note that this formulation does ensure that Eval(pp, b, ·) is indeed an injective function for all but a negligible
fraction of (pp, b) since inversion must almost always succeed for every given x.
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Allowing general sampling algorithms. Our current formulation works with two uniform
and independent branches (b, b∗) without worrying about how they are sampled. We consider a
slightly more general definition where the algorithm for sampling the branches, say Samp, outputs
an encoded branch (instead of the actual branch); a public decoding function is then used to
compute the actual branch from the encoding. Two independent executions of Samp are used to
sample branch encodings, which are then decoded. We require that the distribution of the decoded
branches be statistically close to uniform over Bλ×Bλ. In addition, during the Challenge phase,
the challenger sends the encoding of the challenge branch.

Formally, in the general definition, an (n, k, ρ)-CLR-LTDF is defined as above, except that we
modify GameρA(1λ, d) as follows.8 For a non-uniform polynomial time algorithm Samp (with advice
z) and a collection of decoding functions H, we change the Init phase as follows. The challenger
samples a random decoding function h← H. It then samples two encodings e← Samp(1λ, z) and
e∗ ← Samp(1λ, z) to define the branches b = h(e) and b∗ = h(e∗). Branch b∗ is used as the lossy
branch (as before). We require that for a randomly chosen h, (h(e), h(e∗)) is statistically close to
the uniform distribution over the pair of branches, and call (Samp,H) to be good if they satisfy
this requirement. Both h and pp are sent during Init phase. During the Challenge phase, if
d = 0, encoding e is sent, otherwise e∗ is sent. We require that (1) holds for all good (Samp,H).

3.2 Our construction

We now present our construction. As described in Section 1.2, our construction of CLR-LTDF
is inspired by the ABO functions of [PW08] which samples a n × n matrix A whose entries are
(ElGamal) encryptions of 0 with correlated randomness. The function description is then set to gM

where M = A + b∗I, I denotes the identity matrix, and b∗ is lossy branch. The function evaluation
on (b,x) is g(M−bI)x.

Our construction uses a similar approach and uses BKKV encryption instead of ElGamal.
The branches in our construction will be a collection of n vectors, denoted by a matrix Bn×1 =
(b1, . . . ,bn)T where every bi ∈ Z`p. Each bi can be interpreted as a BKKV encryption of 1, and it
can also be used as a one-time pad for the diagonal elements of A. Matrix M will now be matrix
A whose diagonal entries are “masked”, i.e., set to aii + bi for i ∈ [n].

The construction. We will be working with prime-order bilinear groups. It will be convenient to
assume the existence of a universal setup algorithm G(λ) which sets up some universal parameters
such as the bilinear groups, bilinear map, a generator, and the set of branches Bλ. That is, G(1λ)
is a randomized algorithm which outputs global parameters params = (p,G,GT , g, e) where p is a
random prime of length λ, G and GT groups of order p, and g is a generators of G. Let n, k, ρ be
functions of λ, as defined earlier.

We define the set of branches to be Bλ = {Z`p}n. That is, a branch B ∈ Bλ is a collection of

vectors (denoted as a matrix as per our notation) as: Bn×1 = (b1, . . . ,bn)T where bi ∈ Z`p for i ∈
[n]. We will assume that all algorithms described below has access to the global parameters params.9

The four algorithms of our CLR-LTDF Πclr−ltdf := (Setup,Eval, Inv,Update) are as follows.10

8We abuse the notation and continue to denote this modified game by GameρA.
9We note that assuming such a G is only for convenience and without loss of generality. Indeed, we can assume G

to be a part of the Setup algorithm. Since the length of the generated prime p is independent of p and only depends

on λ, we can set Bλ =
(

({0, 1}blg pc)`
)n

which is independent of p and always a subset of (Z`p)n.
10We remind the reader that uppercase letters, such as A,R, S, denote matrices of scalars (e.g., elements of Zp),

whereas bold uppercase letters, such as A, denote matrices of vectors (e.g. elements of Z`p or G`). Bold lowercase
letter such as x represent vectors with only scalar entries.
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Setup(1λ,B∗). Sample two uniformly random vectors v1 and v2 in Z`p, and two uniformly random

n×n matrices of rank one, namely R = [rij ] and S = [sij ] from Rankn×n1 (Zp). Let M = [mij ]
be a n × n matrix so that mij = rijv1 + sijv2 for every valid i, j. The cell-entries of M are
therefore vectors in span(v1,v2).

Let B∗ = (b∗1, . . . ,b
∗
n)T ∈ (Z`p)n. Compute the matrix A := M�B∗ := [aij ] as follows:

aij =

{
mij + b∗i i = j
mij i 6= j

Note that the operation � affects only the diagonal entries of M. The public-parameter is

defined to be pp = gA. To compute the trapdoor, choose a matrix T
$← kernel2(v1,v2);

that is, T has two rows each of which is a vector in kernel(v1,v2). The trapdoor is set to
gT ∈ G2×`. Output (pp, gT ).

Eval(pp,B,x). Let x ∈ {0, 1}n be a bit vector. The algorithm outputs gY such that:

gY := (gy1 , . . . , gyn)T = gA
′x where A′ = A� (−B).

Note that gA
′
is easily computed given (gA,B); likewise, gY is easily computed given (gA

′
,x).11

Update(pp, gT ). Choose a full rank matrix V ∈ Z2×2
p and output T ′ = gV T . The update operation

essentially samples two random vectors in the row-span of T .

Inv(pp, gT , gY). Let gY = (gy1 , . . . , gyn)T and let the two rows of gT be gt1 and gt2 . Output a
bit vector z = (z1, . . . , zn) where, for every i ∈ [n], bit zi = 0 if yi is orthogonal to both t1

and t2; otherwise zi = 1. Recall that if gy = (gy1 , . . . , gy`) ∈ G` and gt = (gt1 , . . . , gt`) ∈ G`

for y ∈ {y1, . . . ,yn} and t ∈ {t1, t2}, then y is orthogonal t if and only if
∏
i e
(
gyi , gti

)
= 1.

This completes the description of our function. The main theorem of this section is stated
below. As noted earlier, the proof makes use of the fact that branches act as a one-time pad to
successfully program that a future BKKV challenge can be appropriately mapped to either an
injective or a lossy branch while still allowing the reduction to answer leakage queries. To be
precise, the reduction works directly with a “matrix DDH” challenger instead of BKKV challenges.
This is because the proof requires several steps that are specific to lossy trapdoor functions; it is
unclear whether a “semi automatic” reduction to BKKV exists.

Theorem 5. Under the validity of the matrix DDH assumption, the tuple (Setup,Eval,Update, Inv)
specifies a (n, k, ρ)-CLR-LTDF over the domain {0, 1}n for every polynomial n where k = n−2 lg p
and ρ = 1

2 −
3+γ
` for every ` ≥ 7, γ > 0

Proof. Let us first verify the correctness and lossiness of our construction. For any given branch
B and input x, consider the matrix Y = (y1, . . . ,yn)T = A′x = (M� (B∗ −B))x. Letting
B = (b1, . . . ,bn), and expanding, we see that:

yi = xi(b
∗
i − bi) + Mx[i] (2)

where i ∈ [n] and Mx[i] denotes the i-th row of Mx (which is a vector in span(v1,v2)). By
construction, if xi = 0 then yi is orthogonal to both (trapdoor) vectors {t1, t2}, and if xi = 1 it is
not except when (b∗i − bi) is also orthogonal to {t1, t2}. But the later happens with exactly 1/p2

11Recall that i-th row of A′x contains a vector in the span of the vectors in the i-th row of A′. See section 2.
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probability (since there are two vectors) for a random B. It follows that Inv works correctly (for
all refreshings of the trapdoor) and the function is injective on almost all B.

To see that the function is lossy when B = B∗, observe that in this case Y = Mx. Recall that M
was constructed using matrices R and S of rank 1. In particular, Mx[i] = (Rx[i]) ·v1 + (Sx[i]) ·v2.
The range of both Rx and Sx is of size at most p, and therefore the size of the range of Mx is at
most p2. The function is lossy with k = n− 2 lg p.

The following lemmata prove the security properties of the construction.

Lemma 6. For every PPT adversary A∗,
{
GameρA∗(1

λ, 0)
}
λ∈N ≡c

{
GameρA∗(1

λ, 1)
}
λ∈N provided

that ρ < 1
2 −

3
` for every ` ≥ 7.

Proof. We prove the claim by designing a set of hybrid experiments. For simplicity we will drop
subscripts and define hybrid H0(d) = GameρA∗(1

λ, d). Next consider the following two hybrids:

H1(d): Same as H0(d) except that matrices R and S (see Setup) are sampled to be random matrices
(and therefore are unlikely to have rank 1).

H2(d): Same as H1(d) except that this experiment updates the existing trapdoor differently. That
is, whenever Update algorithm should be executed, the challenger in this experiment samples
two uniformly random vectors in the space kernel(v1,v2) and sets that as the new trapdoor.12

We claim that under the linear assumption, H0(d) and H1(d) are computationally indistinguishable.
This is because both experiments can be executed in polynomial time given (gR, gS) and without
knowing their rank. Further, if R,S are rank-1 then the resulting experiment would be H0(d) and
if they are random (therefore statistically close to full rank), it will be H1(d).

Next we claim that H1(d) and H2(d) are also computationally indistinguishable. To prove this,

consider a random basis X ∈ Z`×(`−2)
p of the space kernel(v1,v2). Note that such a basis can be

computed efficiently in polynomial time given (v1,v2). Suppose that we are given a challenge ma-

trix in the exponent gC such that C ∈ Z(`−2)×(`−2)
p is either a random rank-2 matrix or a random

full rank matrix. Further, if we let gT0 = gT , gT1 , . . . represent the trapdoors after each update
procedure, then we can set gTi = gX.C.Vi where Vi ∈ Z`−2×2

p is random matrix; and this value can

be efficiently computed given only gC , X, Vi for every i. In addition, if C has rank 2 (resp., full)
then the trapdoors are distributed identically to how they are distributed in H1(d) (resp., H2(d)).
Distinguish H1 from H2 therefore violates the linear assumption and the claim follows.13

To complete the proof, we need to show that,

H2(0) ≡c H2(1).

We prove this by setting up n hybrids H2,1, . . . ,H2,n. In these hybrids, instead of sending either
B or B∗ during the challenge phase, we will send a “hybrid” branch whose first i coordinates match
B and rest n− i match B∗. Since these branches “mask” the diagonal of matrix A, these hybrids
are equivalent to setting up the diagonal of A so that first i entries, when “unmasked”, reveal a
BKKV-encryption of 0 and the rest n− i that of 1.

Formally, for i ∈ {1, . . . , n} hybrid H2,i is defined below; define H2,0 to be the same as H2(0).

12This is done easily since the challenger runs the Setup algorithm and therefore knows (v1,v2).
13This part of the argument requires using two vectors in the trapdoor. If we use only one vector, we must assume

(stronger) SXDH assumption. Under this assumption further optimizations and better parameters are possible.
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H2,i: This hybrid is identical to H2,i−1 except that during the challenge phase it sends the “hybrid”
branch Bi defined as follows. Let B = (b1, . . . ,bn) and B∗ = (b∗1, . . . ,b

∗
n) be the branches

sampled (by the challenger) at the start of the experiment. Then,

Bi := (b∗1, . . . ,b
∗
i ,bi+1, . . . ,bn).

Note that H2,n is the same as H2(1) since Bn = B∗.

To complete the proof, we need to show that H2,i ≡c H2,i+1 for every i ∈ {0, . . . , n− 1}. This
is the final part of the argument where the proof flows along the lines of BKKV with one key
difference. As in BKKV, our challenger will also set up a “crooked” trapdoor from which it can
answer leakage queries directly. However, in order to be able to apply theorem 4, it must ensure
that prior to selecting the leakage function, the adversary has no information about the subspace
from which the crooked trapdoor is sampled. This, however, is ensured by our construction since
the branch B∗ acts as a one-time pad to information theoretically hide the “BKKV challenge” that
gets revealed in the end.

Formally, consider the following hybrid. (For convenience let us call v1,v2 in our procedures to
be the reference vectors and M the reference matrix ).

H∗2,i: This hybrid uses a slightly different way to sample the parameters and trapdoors than H2,i;

nevertheless, it results in identical distributions. The hybrid uses a matrix C ∈ Z3×3
p of rank

at least 2, sampled uniformly at the start of the execution.14

The challenger samples a random matrix Y ∈ Z3×`
p ; it also samples a random basis X ∈

Z`×(`−3)
p for the space kernel(Y ). We view Y as a row matrix and X as a column matrix.

Next, the challenger computes the matrix CY and let v1,v2,v3 to be its 3 rows.

The challenger now uses vectors v1,v2 as reference vectors and samples M,B∗,A and B

exactly as in the previous hybrid H2,i. However, it sets T
$← kernel2(v1,v2). Note that

span(X) is always a subspace of kernel(v1,v2). Recall that the hybrid branch Bi is also set
as before: first i coordinates from B∗ and last n− i from B. Note that v3 is not used in this
hybrid.

Since Y is random and C is a random matrix of rank≥ 2, distribution of v1,v2 is identical in H2,i

and H∗2,i. All other values are sampled in the same way in both hybrids, and therefore H2,i and
H∗2,i are identical.

Next, we intend to use “crooked” trapdoors and apply theorem 4. However, the application of
this theorem is slightly tricky and we actually need to consider two cases separately: depending
on whether rank of C is 3 or 2. This makes the description of the next hybrid look somewhat
complex, but actually it is simple at a high level. There are two main changes. First, the trapdoors
come from the subspace defined by span(X). Second, we wish to output a branch Bch so that
ajj −Bch[j] = v3 where j = i+ 1 is for succinctness. The purpose of the second part will become
clear shortly. The description follows.

G
(2)
i : The challenger samples C ← Z3×3

p of rank 2. It also samples matrices Y and X as before,
and sets (v1,v2,v3) to be the rows of matrix CY . It then samples B,B∗ as before and a
random challenge vector c ∈ Z`p. Finally, the remaining quantities are sampled as follows (for
succinctness we let j = i+ 1):

14Jumping ahead, eventually gC will be received from an external challenger of the matrix DDH assumption.
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1. Sample all entries of matrix A as before except ajj , which is set to ajj = v3 + c.

2. Sample the trapdoor T
$← span2(X); all subsequent updates are also sampled in the

same way.

3. In the challenge phase, send the following challenge branch:

Bch := (b∗1, . . . ,b
∗
i , c,bi+2, . . . ,bn)

where bi′ = B[i′],b∗i′ = B∗[i′] for i′ ∈ [n].

G
(3)
i : Same as above except that C has full rank (i.e., three).

We first prove that G
(2)
i is statistically close to H∗2,i+1. The proof is as follows. First we note that

A is distributed identically in both hybrids since ajj is uniformly random in G
(2)
i as well. The only

difference is that the leakage occurs on vectors from span(X) which is a subspace of kernel(v1,v2).
Note that gA contains no information about the subspace X.(In fact this holds even if v3 were
given, since C has rank 2). Therefore we can apply theorem 4 to conclude that the execution
of the two hybrids are statistically close up to the challenge phase. When Bch is revealed, note
that c is revealed. The distribution of c is uniform under the condition that ajj − c distributed
uniformly in span(v1,v2). Note that this is identical to the distribution of b∗i+1 in game H2,i+1; all
other branch components are identically distributed in both hybrids. To compute the statistical

distance between G
(2)
i and H∗2,i+1, note that the random subspace X has dimension l × l − 3. Let

W be the range of any leakage function L. Since L leaks ρ fraction of the secret key, |W | = pρ.2l.
From theorem 4 it follows that the statistical distance is bounded by poly(λ)

√
|W |/pl−6. For this

quantity to be negligible, it suffices to satisfy ρ.2l < l − 6. Hence, for all γ > 0, ρ = l−6−γ
2l ensures

that H2,i+1 and G
(2)
i are statistically indistinguishable.

Next we prove that G
(3)
i is statistically close to H∗2,i. By the same argument as above gA is

distributed identically in both hybrids. In addition, since c is chosen independently and uniformly,
distribution of v3 is independent from gA. Therefore, the leakage function is also independent of
v3 and hence the subspace X. We can therefore apply theorem 4 as above to conclude that the
execution of these hybrids are statistically close up to the challenge phase. When Bch is revealed,
note that c is revealed. The distribution of c is uniform under the condition that ajj − c = v3 is
uniformly distributed in Z`p. Note that this is identical to the distribution of bi+1 in game H2,i;
all other branch components are identically distributed in both hybrids. Note that revealing v3 is
equivalent to revealing the subspace X. However, since theorem 4 holds even given X, we have
that the two hybrids remain statistically close even after the challenge phase.

Finally, observe that both hybrids G
(2)
i and G

(3)
i can be executed perfectly even if instead of

sampling C internally, they receive gC from an outside party. It follows from the linear assumption

that G
(2)
i ≡c G

(3)
i . Consequently, H2,i and H2,i+1 are also computationally indistinguishable. This

completes the proof of the lemma.

Lemma 7. It is hard to sample a non-injective branch against our scheme.

Proof. Suppose that there exists a PPT adversary A∗ which outputs a non-injective branch with
probability ε = 1/q for some polynomial q. That is, A returns a branch containing a coordinate bi
for some i ∈ [n] such that b∗i − bi is orthogonal to both trapdoor vectors t1, t2. We show how to
use A∗ to solve the discrete log problem.

Consider the following adversary B which, except with negligible probability, on input a vector
gb
∗ ∈ G` returns a random vector t and a scalar α such that 〈t,b∗i 〉 = α (all computations modulo
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some prime p). To do so, B first runs the setup algorithm our construction on a random B∗ and
let A = [aij ] be the matrix in the exponent. B multiplies gb

∗
to the j-th element of the diagonal

so that the new matrix in the exponent becomes A′ which is same A except that a′jj = ajj + b∗.
Trapdoors for A are also valid trapdoors for A′ and distributed uniformly; except that now the
lossy branch becomes B∗

′
—same as B∗ but j-th coordinate differ by an additive term b∗. B runs

A∗ on these new parameters (distributed correctly) to obtain a b∗i so that (a′ii − b∗i ) is orthogonal
to the trapdoor vectors and j = i with probability ε/n = 1/nq.15 Repeating this experiment
n2/ε = n2q times finds a b∗j with probability exp(−n). If b∗j is found in one of the experiments, B
returns one of the trapdoors in that experiment, say t, and its scalar product α = 〈t, (b∗j − ajj)〉
where ajj is j-th diagonal element of A.

Running B for ` times yields ` equations with entries of b∗ as variables; these equations are
linearly independent w.h. probability. Solving the equations yieldss b∗. The discrete-log challenge
is solved by planting it in one of the coordinates of b∗ and sampling the rest uniformly. This
completes proof.

An interesting property of our functions is that they are actually universal on the lossy branches.
I.e., they have a low collision probability. We prove this extra feature in Section A.

Remark. Our proof is not sensitive to how the branches are sampled in the game, so long as
they are uniform and independent over the branch space. Therefore, it actually proves the general
version of the definition where the branch encodings are sampled using an arbitrary non-uniform
PPT sampler Samp, and then decoded efficiently using a random function from H.

4 Leakage Resilient Deterministic PKE

In this section, we define leakage-resilient D-PKE and its security, and show that our CLR-LTDF
yield such a scheme when branch b is set to h(m) provided certain conditions on h and the entropy
of m are met.

4.1 Modeling deterministic PKE under continual leakage

A deterministic public-key encryption scheme is a triple of polynomial-time algorithms Π = (KG,
Enc,Dec,Update). The key-generation algorithm KG is a randomized algorithm which on input the
security parameter 1λ outputs a pair (pk, sk) of a public key pk and a secret key sk. The encryption
algorithm Enc is deterministic, takes as input 1λ, a public key pk, and a plaintext m ∈ {0, 1}n(λ),
and outputs a ciphertext c ∈ {0, 1}t(λ). The (possibly deterministic) decryption algorithm Dec
takes as input 1λ, a secret key sk, and a ciphertext c ∈ {0, 1}t(λ), and outputs either a plaintext
m ∈ {0, 1}n(λ) or the special symbol ⊥.

Algorithm Update(pk, sk′) is a randomized update algorithm which, given pk, and a secret-key
sk′ for pk, outputs a new secret-key sk′′ such that |sk′′| = |sk′|; input sk′ is either sk or one of
the outputs of Update. We call sk′ to be the refreshed or updated secret-key. We require that the
outputs of Dec is identical on sk or sk′ (which is output of Update). For succinctness, we will
always assume 1λ as an implicit input to all algorithms and refrain from explicitly specifying it.

We now define our security notion, namely CLR-PRIV1-IND security. It is essentially a direct
extension of the standard PRIV1-IND definition in the leakage-free setting. PRIV1-IND is the

15Orthogonality is tested using pairings and therefore knowing ga
′
jj and the trapdoor is sufficient.
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“single challenge” version of the PRIV-IND definition which requires that, roughly speaking, the
encryptions of two sequences of messages be computationally indistinguishable provided that each
message has sufficient min-entropy and the sequences have same “equality pattern.” Formally,
these requirements are captured by defining a α-source q-message adversary, which is also relevant
to our definition.16

The α-source q-message adversary. Let A = (A1, A2) be a probabilistic polynomial-time
algorithm, and let α = α(λ) and q = q(λ) be functions of the security parameter λ ∈ N. For any

λ ∈ N denote by (M(0)
λ ,M(1)

λ ,ST AT Eλ) the distribution corresponding to the output of A1(1λ).
Then, A is a α-source q-message adversary if the following properties hold:

1. M(b)
λ =

(
M(b)

1,λ, . . . ,M
(b)
q,λ

)
is a distribution over sequences of q plaintexts for each b ∈ {0, 1}.

2. For any λ ∈ N, i, j ∈ [q], and for every triplet
((
m

(0)
1 , . . . ,m

(0)
q

)
,
(
m

(1)
1 , . . . ,m

(1)
q

)
, state

)
that

is produced by A1(1λ) it holds that m
(0)
i = m

(0)
j if and only if m

(1)
i = m

(1)
j .

3. For any λ ∈ N, b ∈ {0, 1}, i ∈ [q], and state ∈ {0, 1}∗ it holds that M(b)
i,λ|ST AT Eλ=state is a

α(λ)-source.

We are now ready to define the continual-leakage-resilient version of PRIV1-IND security, namely
CLR-PRIV1-IND. The definition is same as PRIV1-IND security except that the adversary is
allowed to ask leakage queries before receiving the challenge encryption.

CLR-PRIV1-IND Security. A deterministic public-key encryption scheme Π = (KG,Enc,Dec,
Update) is CLR-PRIV1-IND-secure for α(λ)-source 1-message adversaries with leakage-parameter
ρ if for any probabilistic polynomial-time α(λ)-source 1-message adversary A = (A1, A2) there
exists a negligible function ν(λ) such that

AdvCLR−PRIV1−IND
Π,A,λ

def
=

∣∣∣∣∣∣ Pr
[
ExptCLR−PRIV1−INDΠ,A,λ (0) = 1

]
−Pr

[
ExptCLR−PRIV1−INDΠ,A,λ (1) = 1

] ∣∣∣∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptCLR−PRIV1−INDΠ,A,λ (b) is defined as follows:

1. Init: sample (pk, sk)← KG(1λ), and send pk to A2.

2. Leakage queries: set i = 1 and sk1 = sk; interact with A2, answering every leakage query
Li whose output length is at most ρ · |sk|, as follows. Send σi = Li(ski) to A2, and set
ski+1 ← Update(pk, ski) and i = i+ 1.

3. Challenge: sample (m0,m1, state)← A1(1λ) and set c← Encpk(mb); send (c, state) to A2.
Output of A2 is the output of the experiment.

Remark. It is not necessary to sample (m0,m1, state)← A1(1λ) in the Challenge phase. Instead,
they can be sampled during the Init phase so long as they are kept completely outside the view of
the adversary; Challenge phase then only computes c and sends (c, state) to A2. From here on,
we shall work with this modified version. Also, the advantage can also be mentioned in terms of
probability p of correctly guessing which distribution the encrypted message comes from; it is easy
to see that the advantage above comes out to be |2p− 1|.

16We will only focus on the single challenge setting; it is straightforward to extend our definition to deal with
sequence of messages and get the corresponding notion CLR-PRIV-IND. However, our construction only satisfies the
single message definition, and we do not know if our scheme can be shown to satisfy security for multiple messages.
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4.2 Our deterministic public-key encryption scheme

The construction. Let Πclr−ltdf := (Setup,Eval, Inv,Update) be a (n, k, ρ)-CLR-LTDF which
satisfies the universal hash property with respect to lossy branches. Let s = s(λ) be a polynomial
describing the length of branches b ∈ Bλ.17 Let H = {h : {0, 1}n → {0, 1}s} be a family of universal
hash functions, and perm be a family of pairwise independent permutations which are easy to
invert.18 The message space of the scheme is {0, 1}n.

The key-generation algorithm KG samples h← H, π ← perm, b∗ ← Bλ, (pp, t)← Setup(1λ, b∗).
It outputs pk = (h, π, pp) and sk = t. The encryption algorithm Enc takes as input pp and a message
x ∈ {0, 1}n. It outputs y = Eval(pp, b, π(x)) where b = h(x) is used as the branch. The decryption
algorithm Dec takes as input y, sk, and pk = (h, π, pp). It outputs x = π−1(Inv(pp, sk, y)) if x is
valid and ⊥ otherwise. The update algorithm of the scheme is the same as Update.

We denote this scheme by Πclr−de := (KG,Enc,Dec,Update). It is easy to verify the correctness
of this scheme.

Theorem 8. Scheme Πclr−de is a CLR-PRIV1-IND secure scheme for α(λ)-source 1-message ad-
versary with leakage parameter ρ provided that Πclr−ltdf is a (n, k, ρ)-CLR-LTDF and: α(λ) ≥
n(λ)− k(λ) + s(λ) + 2 lg(1/ε), where ε is an arbitrary negligible function in λ.

Proof. The overview for the proof is as follows. We will show that the advantage of every α-source
1-message adversary A = (A1, A2) is at most 2δ + 6ε where δ is distinguishing advantage for the
CLR-LTDF functions and ε is the statistical gap from the (generalized crooked) LHL.

To do so, we will start by designing five hybrid games, H1, . . . ,H5 where H1 is essentially the
experiment ExptCLR−PRIV1−INDΠclr−de,A,λ

(0). HybridH5 will be independent of the any underlying distribution

imposed by the adversary on the messages. Analogously, we write hybrids H5, . . . ,H9 (in the reverse
order) where we achieve the same conclusion for the second experiment ExptCLR−PRIV1−INDΠclr−de,A,λ

(1).
In order to reduce the security of our scheme to that of CLR-LTDF, we will create a situation in

our hybrids such that the branch corresponding to only the challenge message becomes lossy. This
is rather tricky since, unlike previous usage of lossy trapdoor functions for deterministic encryption,
we cannot simply switch to the lossy mode or a pre-selected lossy branch. This also requires that
we work with the generalized version of CLR-LTDF where the challenger sends encoded branches.

We now describe the hybrid experiments. LetA = (A1, A2) be our α-source 1-message adversary.

H1: This hybrid experiment is identical to the experiment ExptCLR−PRIV1−INDΠclr−de,A,λ
(0). In particular,

the experiment first samples (m0,m1, state) ← A1(1λ), and then (independently) samples h ← H,
π ← perm, b∗ ← Bλ, and (pp, t)← Setup(1λ, b∗), to define pk = (h, π, pp) and sk = t. It gives pk to
A2 and answers the leakage queries repeatedly while updating sk everytime. In the end, it sends
the ciphertext c = Eval(pp, b, π(m0)) to A2, where b = h(m0) is used as the branch. The output of
A2 is the output of the experiment.

H2: This hybrid is identical to H1 except that instead of sampling b∗ randomly from Bλ, it uses the
following specific method to generate it: samples an independent triplet (m′0,m

′
1, state

′)← A1(1λ)
and computes b∗ = h(m′0).

We observe that since m′0 is sampled independently, and has min-entropy at least α, by the
(standard) LHL b∗ is ε-close to uniform distribution over Bλ. Consequently, the statistical distance
between (the outputs of) H2 and H1 is at most ε.

17W.l.o.g. we can assume s to be quite small if necessary. If the length requires a large string to describe the
branch, we can use pseudorandom generators of sufficient stretch.

18Such permutations are known.
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H3: This hybrid is identical to H2 except that instead of encrypting m0 in the last phase, it
encrypts m′0. I.e., the ciphertext is c = Eval(pp, b′, π(m′0)) where b′ = h(m′0). Observe that, b′ = b∗

since they are both h(m′0).
Let δ2 denote the advantage in distinguishing the outputs of H2 and H3. Let δ denote the

advantage in distinguishing the lossy and injective branches of Πclr−de. From lemma 9, δ2 = δ.

H4: Identical to H3 except that the value of π(m′0) is replaced by a uniformly random value U
(from the domain) to compute c. I.e., it computes c as c = Eval(pp, b′, U). Note that b′ is still equal
to h(m′0) so that b′ = b∗ as before.

From lemma 10, H3 and H4 are ε-close.

H5: Identical to H4 except that the branch b∗ is sampled uniformly at random. That is, the
hybrid does not set b∗ = h(m′0) any more, and just samples it randomly.

Since m′0 has large min-entropy α, and h is independent of m′0, by the standard LHL, we have
that H4 and H5 are ε-close.

In the rest of the proof, we now “reverse the hybrids” using the second component of A1’s output
so that we eventually reach the second experiment, namely ExptCLR−PRIV1−INDΠclr−de,A,λ

(1).

H6: Same as H5 except that instead of sampling b∗ uniformly, it is computed as b∗ = h(m′1).
Recall that m′1 was sampled from an independent run of A1, and c = Eval(pp, b∗, U) in this hybrid.

As before, from the standard LHL, H6 and H5 are ε-close.

H7: Same as H6 except that the uniform value U is replaced by π(m′1). I.e., as in the pre-
vious hybrid, public parameters pp are sampled using b∗ = h(m′1), but c is computed as c =
Eval(pp, b∗, π(m′1)).

H7 and H6 are ε-close; the proof is identical to that of lemma 10.

H8: Same as H7 except that c is set to be an encryption of m1 instead of m′1. I.e., as before
b∗ = h(m′1) and it is used to sample pp. However, c = Eval(pp, b, π(m1)) where b = h(m1).

H7 and H8 can be distinguished with advantage at most δ. The proof is identical to that of
lemma 9 except that instead of using the sampler Samp0, it uses the following sampler Samp1(1λ):
(1) sample (m0,m1, state)← A1(1λ); (2) output e = (m1, state) as the encoded branch.19

H9: Same asH8 except that the branch b∗ is sampled uniformly at random and values (m′0,m
′
1, state

′)
are not sampled any more. H8 and H9 are ε-close due to standard LHL.

H9 is essentially the experiment ExptCLR−PRIV1−INDΠclr−de,A,λ
(1). It follows that A’s advantage in breaking

our scheme is at most 2δ + 6ε which is negligible.

Lemma 9. δ2 = δ.

Proof. We prove the lemma by constructing an adversary B against Πclr−de. We work with the
general security definition for indistinguishability of lossy branches.

19The decoding function remains the same: h(e) = h(m, state) = h(m), but since m = m1 for Samp1, we will have
b = h(m1).
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Recall that in this definition, the adversary specifies a sampling algorithm for generating encoded
branches, and the challenger selects a good decoding function to compute the branches from these
encodings. Therefore, before describing B, we first describe a sampling algorithm, Samp0 and
corresponding decoding functions.

Sampler Samp0(1λ):

1. Sample (m0,m1, state)← A1(1λ).

2. Output e := (m0, state) as the encoded branch.

Decoding: The set of decoding functions is the family of universal hash functions H; a random
h ← H is fixed as the decoding function.20 A branch b corresponding to an encoding e =
(m, state) is defined as: b = h(e) = h(m, state) := h(m).

Before B can use Samp0, we must argue that (Samp0,H) are good, i.e., the branch b = h(e) is
statistically close to uniform distribution over the branch space. This, however, is trivially true due
to the (standard) LHL since the first component of e, namely m = m0, has min-entropy at least α
and h is an independently chosen universal hash function.

We are now ready to describe B. Adversary B participates in the indistinguishability game for
lossy/injective branches — namely GameρB — with a challenger. B internally uses the adversary
A = (A1, A2) who distinguishes between hybrids H2 and H3. B works as follows.

Adversary B. It uses algorithm A1 to define the sampler Samp0 as above and sends Samp0

to the challenger. Upon receiving (h, pp) from the challenger, B samples π ← perm to define
pk = (h, π, pp). It sends pk to A2. If A2 asks any leakage queries, B forwards them to the
challenger and returns its answers back to A2. Finally, after all leakage queries are over, B
receives an encoding e = (m, state) from the challenger. B computes c = Eval(pp, h(m), π(m))
and sends (c, state) to A2. B outputs whatever A2 outputs.

We argue that if the challenger sends an encoding e corresponding to an injective branch, then B
perfectly simulates hybrid H2 for A; otherwise it perfectly simulates H3. The challenger in GameρB
starts by sampling a uniform h and two independent branch encodings e = (m0, state0) and e∗ =
(m∗0, state

∗
0) using the sampler Samp0. It then sets b = h(m0) as the injective branch, b∗ = h(m∗0)

as the lossy branch, and samples (pp, t)← Setup(1λ, b∗). It then sends (h, pp) to B who samples π
honestly. Therefore the distribution of pk, as well as the answer to the leakage queries are perfectly
simulated by B for A (identical in H2 and H3). If the challenger sends the injective encoding, then
B receives e = (m0, state0), and therefore A receives c = Eval(pp, h(m0), π(m0)). This is identical
to c in H2. On the other hand, if the challenger sends the lossy encoding e∗ = (m∗0, state

∗
0), A

receives c = Eval(pp, h(m∗0), π(m∗0)), as in H3. In both cases, the state variable is also appropriately
distributed. This proves the lemma.

Lemma 10. H3 and H4 are ε-close.

Proof. We invoke the generalized crooked LHL (lemma 2) to claim that H3 and H4 are statistically

close. Let M(0)
λ denote the random variable corresponding to the first and the last output of A1;

i.e., it is of the form (m0, state).
Let us first observe that H3 can be perfectly simulated given only the tuple (π, h, b∗, pp, state, c)

where c = Eval(pp, b∗, π(m′0)) and pp is sampled using Setup(1λ, b∗).

20Function h will be sampled by the challenger during the Init phase of the lossy/injective game.
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Let X = M(0)
λ and Y = (h, h(X ), pp, state) for h ← H. Furthermore, for every y ← Y define

the function fy as follows (note that y is of the form (h, b∗, pp, state)): fy(·) = Eval(pp, b∗, ·). Note
that fy, for every y in the support of Y is a lossy function with range of size at most 2n−k.

With this notation, we have that H3 can be perfectly simulated given (π, y, fy(x)) where x← X
and y is computed from x: i.e., y = (h, h(x), pp, state).

Now observe that π is independent of X , the average conditional min-entropy of X|Y is at least
n − k − 2 lg ε (by our choice of α and lemma 3), and fy has range of size at most 2n−k (since it
corresponds to the evaluation of Eval on the lossy branch b∗) for every value of y in the support of
Y. Therefore, by the generalized crooked LHL, the tuple is ε-close to the distribution (π, y, fy(U))
for every value of y in the support where U is the uniform distribution over the domain. (and hence
over the entire support since it is a convex combination of individual distributions defined by each
y); . It follows that the distributions (π,Y, fY(X )) and (π,Y, fY(U)) are ε-close where we denote
by fY the distribution over functions fy for y ← Y. This is because the two distributions are ε-close
“point-wise”, i.e. for every “point” y.21

Finally, observe that the distribution (π,Y, fY(U)) takes values of the form (π, h, b∗, pp, state, c)
where c = Eval(pp, b∗,U), which is sufficient to perfectly simulate H4. Therefore H3 and H4 are
ε-close.
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A Universal Hash Property

We prove here that our construction satisfies the stronger requirement of universal hash property
on lossy branches.

Lemma 11. Let Πclr−ltdf := (Setup,Eval, Inv,Update) be the construction in 3.2. Then, for every
sufficiently large λ ∈ N and every b∗ ∈ Bλ, the function family {Fpp,b∗} over {0, 1}n defined as
Fpp,b∗(x) := Eval(pp, b∗, x) is universal with respect to the following algorithm for sampling the
functions: compute (pp, t)← Setup(1λ, b∗) and output (pp, b∗).

Proof. We show that for every distinct x1,x2, the collision probability Pr [Fpp,b∗(x1) = Fpp,b∗(x2)] ≤
1/ξ; here ξ ≤ p2 is the size of the range of Fpp,b∗ and the probability is taken over the sampling of
pp using Setup. Recall that p is a large prime fixed by the global setup algorithm G

Recall that sampling pp involves sampling a matrix M, and from equation (2), Fpp,b∗(x) = Mx
where i-th entry is a vector yi of the form:

yi := Mx[i] = Rx[i] · v1 + Sx[i] · v2

for i ∈ [n]. Further recall that R and S are rank 1 matrices and v1 and v2 are random vectors.
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Vectors v1,v2 are not parallel w.h.p.; it will be convenient to work with orthogonal vectors.
Therefore, let u1 be the component of v2 that is parallel to v1, i.e., u1 = 〈v1,v2〉

||v2|| · v1. Then
u2 = v2 − u1 is orthogonal to v1 and we can write yi in terms of u1 and u2:

yi = (R+ S)x[i] · u1 + Sx[i] · u2 (3)

A collision occurs for two vectors x1,x2 if and only if Mx1 = Mx2 ⇒M(x1 − x2) = 0. Using (3),
it follows that since u1⊥u2, this can happen if and only if R(x1 − x2) = S(x1 − x2) = 0. That is,
if we define hA(x) = Ax for a rank-1 n × n matrix in Zp and x ∈ {0, 1}n, then a collision occurs
for Fpp,b∗ if and only if collision occurs on both of its component functions hR and hS . It is easy
to check that hA is a universal hash function, and since R and S independently chosen, it follows
that Fpp,b∗ is also universal.

B Construction of CLR-LTDFs Based on SXDH Assumption

In this section, we describe a leakage resilient lossy trapdoor function family that allows optimal
leakage bounds. This scheme is based on the symmetric external Diffie-Hellman (SXDH) assump-
tion. Let G1,G2 and GT be groups of prime order p, and let e : G1×G2 → GT be a non-degenerate
bilinear map. The SXDH assumption states that the DDH problem is hard in both G1 and G2.

This construction is similar to the one in Section 3.2, with minor modifications in the Setup
and Update algorithms. Eval and Init are the same as before.

Setup(1λ,B∗). Sample a uniformly random vector v1 from Zlp, and a uniformly random n × n
rank one matrix R = [rij ] from Rankn×n1 (Zp). Let M = [mij] be an n × n matrix such that
mij = rijv1 for all 1 ≤ i, j ≤ n.

Let B∗ = (b∗1, . . . ,b
∗
n)T. Define matrix A := M�B∗ := [aij] as follows:

aij =

{
mij i 6= j
mij + b∗i i = j

The public parameter is defined to be pp = gA1 . To compute the trapdoor, choose t
$←

kernel(v1). The trapdoor is set to be gt2. Output (pp, gt2).

Update(pp, gt2). To update the trapdoor gt2, sample r
$← Zlp and output grt2 .

Theorem 12. Under the validity of the SXDH assumption, the tuple (Setup, Eval, Inv, Update)
specifies a (n, k, ρ)-CLR-LTDF over the domain {0, 1}n with k = n− dlog pe, and ρ = 1− 3+γ

l for
all γ > 0.

Proof. The proof of correctness is similar to what we had for the original construction. To prove that
the function is lossy when branch B = B∗, note that in this case, Y = Mx, where Mx[i] = Rx[i]·v1.
Rx can take p different values, and therefore Y can take p different values. The function is lossy
with k = n− dlog pe.

The hybrids are essentially the same as before. The only place where we require the SXDH
assumption is when we go from hybrid H1(d) to H2(d). Here, we use the SXDH assumption to
prove that rank 1 and rank l − 3 matrices in the exponent are computationally indistinguishable.

To compute the leakage bonds, note that in the SXDH case, the random subspace X has
dimension l × l − 2. Let W be the range of any leakage function L. Since L leaks ρ fraction
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of the secret key, |W | = pρ·l. From an analogue of Theorem 4 for single vectors, it follows that

the statistical distance between H2,i+1 and G
(2)
i (and similarly the statistical distance between

H2,i and G
(3)
i ) is bounded by poly(λ)

√
|W |/pl−3. For this quantity to be negligible, it suffices to

satisfy ρ.l < l − 3. Hence, for all γ > 0, ρ = l−3−γ
l ensures that H2,i+1 and G

(2)
i are statistically

indistinguishable.

C Application to CCA Security under Continual Leakage

In this section we demonstrate, by constructing a CCA secure PKE in the continual leakage model,
that our formulation of CLR-LTDF is of general interest. It can be just as useful in “leakage world”
as the original lossy TDFs in the “leakage free” setting.

We now describe how to construct a leakage-resilient CCA secure cryptosystem using our
leakage-resilient LTDF primitive. Our construction is similar to the respective construction of
[PW08] and the security proof follows closely their security proof. Our CCA secure encryption
system uses four underlying primitives: a CLR-LTDF family, an ABO-LTDF family, a pairwise
independent hash function family, and an one-time strongly unforgeable signature scheme. Notice
that to achieve leakage resilience only the first family has to be leakage resilient. In [PW08] there
was a regular LTDF instead of a CLR-LTDF. All the parameters of our system depend on the
security parameter λ and therefore, for simplicity, we omit this explicit dependence.

Let (Setupclr,Evalclr, Invclr,Updateclr) be a collection of (n, k, ρ)-continual leakage resilient lossy
trapdoor functions (CLR-LTDF) with branch sets Bλ = {0, 1}v. Also, let (Setupabo,Evalabo, Invabo)
be a collection of (n, k′) all-but-one lossy trapdoor functions (ABO-LTDF) with branch sets B′λ =
{0, 1}w, and let (Setupσ,Signσ,Vrfyσ) be an one-time strongly unforgeable scheme (OT-SUF) with
verification keys vk ∈ {0, 1}w = B′λ. We require that the total lossiness k + k′ ≥ n + κ for a
parameter κ = ω(log(n)). Finally, let H be a pairwise independent hash function family from
{0, 1}n to {0, 1}` where ` ≤ κ − 2 log(1/ε) for some negligible ε ∈ negl(λ). Our cryptosystem Π
consists of the following four polynomial time algorithms and its message space is {0, 1}`.

Setup(1λ) → (pk, sk): The algorithm first picks a uniformly random branch b∗
R← {0, 1}v = Bλ.

Then it calls Setupclr(1
λ, b∗)→ (ppclr, t) and Setupabo(1

λ, 0w)→ (ppabo, t
∗). Also it picks a uniformly

random hash function h
R← H. It outputs:

pk = (ppclr, ppabo, h), sk = t

Notice that the branch b∗ and the trapdoor t∗ are not used.

Encrypt(pk,m) → ct: The encryption algorithm first generates a verification - signing key pair
from the one-time signature scheme: Setupσ(1λ)→ (vkσ, skσ). It picks a uniformly random branch

b
R← {0, 1}v = Bλ and a uniformly random input for the trapdoor functions: x

R← {0, 1}n. It
computes:

c0 = m⊕ h(x), c1 = Evalclr(ppclr, b, x), c2 = Evalabo(ppabo, vkσ, x), c3 = b

Finally, it signs the tuple (c0, c1, c2, c3) with Signσ(skσ, (c0, c1, c2, c3))→ σ and outputs

ct = (c0, c1, c2, c3, vkσ, σ)

Decrypt(pk, sk, ct) → m: The decryption algorithm gets ct = (c0, c1, c2, c3, vkσ, σ) and fails im-
mediately by outputting ⊥ if Vrfyσ(vkσ, (c0, c1, c2, c3), σ) = false. Otherwise, it computes x =
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Invclr(ppclr, t, c1) and checks if c1 = Evalclr(ppclr, c3, x) and c2 = Evalabo(ppabo, vkσ, x). If not the
algorithm outputs ⊥. Otherwise it outputs m = c0 ⊕ h(x).

Update(pk, sk)→ sk′: The update algorithm takes a public key pk = (ppclr, ppabo, h) and a secret
key sk = t and outputs sk′ = t′ where t′ = Updateclr(ppclr, t).

We argue that the above system is a correct, continual-leakage resilient, CCA-secure public key
encryption system. Firstly we will prove that Π decrypts correctly all messages with probability 1
minus negligible.

Let ct = (c0, c1, c2, c3, vkσ, σ) be a ciphertext produced by the above encryption algorithm.
During decryption we would have that Vrfyσ(vkσ, (c0, c1, c2, c3), σ) = true according to the cor-
rectness of the one-time signature scheme. Therefore the decryption algorithm would compute
x = Invclr(ppclr, t

′, c1), where t′ is the secret key that might have been updated several times. Ac-
cording to the injective property of CLR-LTDFs , this would return the original x ∈ {0, 1}n unless
with negligible probability µ(λ). If it returns the original x, both checks c1 = Evalclr(ppclr, c3, x) and
c2 = Evalabo(ppabo, vkσ, x) would succeed with probability 1, since both evaluation algorithms are
deterministic. Since h is also deterministic, the decryption algorithm retrieves the original message
m.

What remains is to prove the following theorem regarding the CCA security of Π.

Theorem 13. Scheme Π = (Setup,Encrypt,Decrypt,Update) is a ρ-continual-leakage resilient CCA
secure public key encryption system under the assumptions that (Setupclr,Evalclr, Invclr,Updateclr) is
(n, k, ρ)-CLR-LTDF, (Setupabo,Evalabo, Invabo) is (n, k′)-ABO-LTDF, (Setupσ, Signσ,Vrfyσ) is an
OT-SUF signature scheme, H is a pairwise independent hash function family, and all parameters
satisfy the above relations.

In order to prove theorem 13 we define the following sequence of games. For completeness, we
briefly describe the continual leakage CCA game.

Continual Leakage CCA Game: In the Init phase the challenger calls Setup(1λ) and gives
the public key pk to the attacker. In query Phase-1, the attacker can make leakage queries
and decryption queries to the challenger in a fully adaptive way. The leakage queries are of the
form of polynomial-sized circuits Li with output size at most ρ|sk|. The challenger replies to the
attacker with Li(sk) and updates the secret key to sk′ = Update(pk, sk). The decryption queries
consist of ciphertexts cti and the challenger responds with Decrypt(pk, sk, cti). In the challenge
phase Challenge, the attacker sends two messages m0 and m1, the challenger flips a random
coin c

R← {0, 1}, and it replies with the ciphertext ct∗ = Encrypt(pk,mc). The next phase is query
Phase-2 where the attacker can only make decryption queries as above. The only restriction is
that all the queried ciphertexts must be different than the challenge ciphertext ct∗. Finally, in the
Guess phase the attacker tries to guess the bit c.

Game-1: The first game we define for our scheme is the same as the CL-CCA game with the
difference that the verification key vk∗σ that is used in the challenge ciphertext ct∗ is generated
at the beginning of the game (in the Init phase). Namely, in the Init phase the challenger calls
Setupσ(1λ) → (vk∗σ, sk

∗
σ) and in the Challenge phase the Encrypt(pk,mc) call uses (vk∗σ, sk

∗
σ) to

generate the ciphertext instead of generating a new key pair.

Game-2: This game is the same as Game-1 except the treatment of the decryption queries.
In this game if the attacker makes a decryption query cti = (c0, c1, c2, c3, vkσ, σ) with vk = vk∗,
then the challenger immediately replies with ⊥, instead of calling the decryption algorithm. Notice
that since vk∗ is generated and known to the challenger at the beginning of the game, this is a
well-defined security game.
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Game-3: This game differs from the previous one only in the Init phase. Remember that the
challenger calls Setupσ(1λ) → (vk∗σ, sk

∗
σ) at the beginning of this phase. After doing that it calls

a new setup algorithm for the scheme Setup∗(1λ) which is the same as Setup(1λ) except that the
ABO-LTDF is created with Setupabo(1

λ, vk∗) → (ppabo, t
∗). Namely, the ABO lossy branch is

vk∗ ∈ B′.

Game-4: The only difference of this game from Game-3 is that the challenger does not call
x = Invclr(ppclr, t, c1) for decryption queries anymore, but x = Invabo(ppabo, t

∗, vkσ, c2). Namely, it
has stored the ABO trapdoor t∗ during the Init phase and uses this to decrypt the ciphertext. The
other computations of the Decrypt algorithm remain the same. We remind that, as in the previous
games, when it gets a decryption query with vkσ = vk∗σ it outputs ⊥ immediately.

Game-5: The final game differs from the previous one in the Challenge phase. During the
encryption of the challenge ciphertext the challenger does not call b

R← Bλ but sets c3 = b =
b∗. Therefore, it computes the c1 component using the lossy branch of the CLR-LTDF as c1 =
Evalclr(ppclr, b

∗, x).

We will prove the following lemmas that conclude the proof of theorem 13.

Lemma 14. The advantage of any PPT attacker playing the CL-CCA game is the same as the
advantage of the same attacker playing Game-1.

Proof. This lemma is obvious, since the only difference in the two games is the time of when the
Setupσ(1λ)→ (vk∗σ, sk

∗
σ) is called. In the first game it is called during the Challenge phase while

in the second during the Init phase. The distribution of all inputs to the attacker is exactly the
same. �

Lemma 15. The advantage of any PPT attacker playing Game-1 is negligibly close to the advan-
tage of the same attacker playing Game-2, given that the signature scheme (Setupσ, Signσ,Vrfyσ)
is OT-SUF secure.

Proof. To prove this lemma, let E define the event that a PPT attacker A makes at least one
decryption query cti = (c0, c1, c2, c3, vkσ, σ) such that vkσ = vk∗σ, the signature σ is valid, and the
ciphertext cti 6= ct∗ (in case cti is done in Phase-2). The two games differ only when this event
happens. We claim that the probability of E is negligible in λ in both games, under the assumption
that the signature scheme (Setupσ,Signσ,Vrfyσ) is OT-SUF secure. Therefore, the difference in the
advantage is also negligible.

To prove this let’s assume that the probability of E in one of the games is non-negligible. Then
we can build a successful PPT attacker B on the signature scheme. B will simulate the security
game and use A to break the scheme. First B receives a verification key vk′ from its challenger.
This key will take the place of vk∗ in the security game. Then B proceeds in playing the security
game until E happens (before that both games are exactly the same). That is, it calls Setup(1λ),
answers leakage queries, and answers decryption queries that do not satisfy the restrictions of the
event E. B can do this since it has the secret key t. During the Challenge phase, it creates a
valid ciphertext ct∗ with the verification key vk∗ = vk′, but in order to create the signature σ∗, it
queries its signature challenger with the message (c0, c1, c2, c3).

In case the event E happens in Phase-1, the attacker A requested a decryption on the ciphertext
cti =

(
c0, c1, c2, c3, vk

′
σ, σ
)

with Vrfyσ(vk′, (c0, c1, c2, c3), σ) = true. At this point the simulator B

outputs ((c0, c1, c2, c3), σ) as a valid forgery. In that case B breaks the OT-SUF scheme without
having done any signature queries.
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In case the event E happens in Phase-2, we know that cti 6= ct∗. Again B outputs ((c0, c1, c2, c3), σ)
as a forgery. Since this is different from the challenge ciphertext, it is also a successful forgery for
the OT-SUF scheme. �

Lemma 16. The advantage of any PPT attacker playing Game-2 is negligibly close to the advan-
tage of the same attacker playing Game-3, given the hidden lossy branch property of the ABO-TDF
(Setupabo,Evalabo, Invabo).

Proof. We will prove this lemma by describing a simulator B that can distinguish the lossy branch
from the injective one when given access to an oracle O. The oracle takes as inputs two branches
b0, b1 ∈ B′ and outputs the public parameters of the ABO-TDF using one of the two branches with
probability 1/2.

The simulator works by calling Setupσ(1λ) → (vk∗σ, sk
∗
σ) and then calling the oracle with

O(vk∗σ, 0
w)→ ppabo. All operations for the games are computed as defined except the Setupabo(1

λ, ·)→
(ppabo, t

∗). The simulator uses for ppabo the public parameters it received from the oracle. Notice
that it knows the secret key t (but not t∗), and therefore it can answer all leakage and decryption
queries. As before decryption queries with vkσ = vk∗σ are answered with ⊥.

Notice that, depending on the choice of the oracle, B simulates perfectly Game-2 or Game-3.
�

Lemma 17. The advantage of any PPT attacker playing Game-3 is negligibly close to the advan-
tage of the same attacker playing Game-4 given that it is hard to sample a non-injective branch
from the CLR-LTDF (Setupclr,Evalclr, Invclr,Updateclr).

Proof. The two games differ solely on the computations during the decryption queries. We will
prove that with 1 minus probability the outputs of the decryption queries are exactly the same.
According to the property of the CLR-LTDF family the probability that one of the branches c3 = b
in the decryption queries gives a non injective function is negligible in λ. Therefore we assume that
all the decryption queries contain injective branches for the CLR-LTDF.

In both games when the decryption query has vkσ = vk∗σ the output is the same: ⊥. If this is
not the case, the decryption algorithm calculates an x, either by x = Invclr(ppclr, t, c1) in Game-
3 or x = Invabo(ppabo, t

∗, vkσ, c2) in Game-4. Then it asserts that c1 = Evalclr(ppclr, c3, x) and
c2 = Evalabo(ppabo, vkσ, x). According to the above assumption and since vkσ 6= vk∗σ, we know that
both functions are injective. This means that for a pair (c1, c2) there is either a unique x that
satisfies both relations or none. In Game-3 this x is found by inverting the CLR-LTDF, while in
Game-4 it is found by inverting the ABO-TDF. If there is no such x one of the two checks will
fail and in both games the challenger will output ⊥. �

Lemma 18. The advantage of any PPT attacker playing Game-4 is negligibly close to the ad-
vantage of the same attacker playing Game-5, given the indistinguishability of lossy branch under
continual memory leakage of the CLR-LTDF (Setupclr,Evalclr, Invclr,Updateclr).

Proof. In order to prove this lemma we will construct a PPT attacker B on the indistinguishability
game of the CLR-LTDF if the difference in the advantage of any PPT attacker A is more than neg-
ligible. According to the lossy branch indistinguishability game the simulator/attacker B receives
the public parameters ppclr from its challenger where (ppclr, t) ← Setupclr(1

λ, b∗). Notice that the
simulator does not know the lossy branch b∗ or the trapdoor t.

However it simulates Game-4 and Game-5 by calling (vk∗σ, sk
∗σ)← Setupσ(1λ) and (ppabo, t

∗)←
Setupabo(1

λ, vk∗σ). Notice that it knows the trapdoor t∗ and the verification key vk∗. Therefore it
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can answer the decryption queries according to the rules of the games. For the leakage queries on
the trapdoor t, B forwards them to its challenger.

In the Challenge phase B requests the challenge branch from its challenger. It uses this in
order to create the challenge ciphertext ct∗. If this branch is the injective branch b, B simulates
Game-4. If it received the lossy branch b∗, it simulated Game-5. B can answer the remaining
decryption queries as before. Notice that no more leakage queries are needed. �

Lemma 19. No PPT attacker has a more than negligible advantage in Game-5 given that H is a
pairwise independent hash function family.

Proof. In order to prove this lemma we will prove that the challenge ciphertext ct∗, encrypting
either of the two messages, is within negligible statistical distance from a ciphertext, encrypting a
random message. Therefore no PPT attacker can distinguish encryption of one message from the
other with more than negligible advantage.

To do that fix all the randomness of Game-5, including the randomness of the adversary, except
the randomness of choosing the variable x and the function h. We will show that conditioning on
the values of the challenge ciphertext c∗1, c

∗
2 and the value of the fixed randomness, the value h(x)

is a nearly uniform and independent “one-time pad”. By averaging over the choice of the fixed
randomness, we conclude that any adversary can not distinguish the encryption of the message mc

(for c ∈ {0, 1}) from the encryption of a random message.
In order to do that we first observe that both Eval functions used in the challenge ciphertext

and which contain x are lossy. Namely, Evalclr(ppclr, b
∗, ·) can take at most 2n−k values, while

Evalabo(ppabo, vk
∗
σ, ·) can take at most 2n−k

′
values. As a result the random variable (c∗1, c

∗
2) can

take at most 22n−k−k′ ≤ 2n−κ values according to the relation k + k′ ≥ n+ κ.
As a result, we have that H̃∞ (x|(c∗1, c∗2, h)) ≥ H(x|h)− (n− κ) = n− n+ κ = κ. We have that

H (x|h) = n since x and h are independent. Since ` ≤ κ − 2 log(1/ε) according to Lemma 1, we
have that (c∗1, c

∗
2, x, h(x)) is within statistical distance ε = negl(λ) from (c∗1, c

∗
2, x, U`) . �
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