
Simple-looking joint decoders for traitor tracing and group testing

Boris Škorić

Abstract The topic of this paper is collusion resistant watermarking, a.k.a. traitor tracing, in particular

bias-based traitor tracing codes as introduced by G. Tardos in 2003. The past years have seen an ongoing

effort to construct efficient high-performance decoders for these codes.

In this paper we construct a score system from the Neyman-Pearson hypothesis test (which is known to

be the most powerful test possible) into which we feed all the evidence available to the tracer, in particular

the codewords of all users. As far as we know, until now similar efforts have taken into consideration only

the codeword of a single user, namely the user under scrutiny.

The Neyman-Pearson score needs as input the attack strategy of the colluders, which typically is not

known to the tracer. We insert the Interleaving attack, which plays a very special role in the theory of

bias-based traitor tracing by virtue of being part of the asymptotic (i.e. large coalition size) saddlepoint

solution. The score system obtained in this way is universal: effective not only against the Interleaving

attack, but against all other attack strategies as well. Our score function for one user depends on the other

users’ codewords in a very simple way: through the symbol tallies, which are easily computed.

We present bounds on the False Positive and False Negative error probability, yielding a.o. a prescription

for setting the accusation threshold. We investigate the probability distribution of the score. Finally we

apply our construction to the area of (medical) Group Testing, which is related to traitor tracing.

Keywords traitor tracing · Tardos code · collusion · watermarking · group testing

1 Introduction

1.1 Collusion attacks on watermarking

Forensic watermarking is a means for tracing the origin and distribution of digital content. Before dis-

tribution, the content is modified by embedding an imperceptible watermark, which plays the role of a

personalized identifier. Once an unauthorized copy of the content is found, the watermark present in this

copy can be used to reveal the identities of those users who participated in its creation. A tracing algorithm

or ‘decoder’ outputs a list of suspicious users. This procedure is also known as ‘traitor tracing’.

The most powerful attacks against watermarking are collusion attacks: multiple attackers (the ‘coalition’)

combine their differently watermarked versions of the same content; the observed differences point to the

locations of the hidden marks and allow for a targeted attack.

Several types of collusion-resistant codes have been developed. The most popular type is the class of bias-

based codes, introduced by G. Tardos in 2003. The original paper [37,38] was followed by a lot of activity,

e.g. improved analyses [5,14,15,23,33,42,41], code modifications [17,29,30], decoder modifications [2,9,

25,31,13] and various generalizations [8,39,40,43]. The advantage of bias-based versus deterministic codes

is that they can achieve the asymptotically optimal relationship ` ∝ c2 between the sufficient code length

` and the coalition size c.

Two types of tracing algorithm can be distinguished: (i) simple decoders, which assign a level of suspicion

to single users, based on their codeword, and (ii) joint decoders [2,9,25], which look at sets of users.

One of the main advances in recent years was finding [17,19] the saddlepoint of the information-theoretic

max-min game (see Section 2.5) in the case of joint decoding. Knowing the location of the saddlepoint

makes it easier for the tracer to build a decoder that works optimally against the worst-case attack and

that works well against all other attacks too.

b.skoric@tue.nl

2

1.2 Contributions and outline

We consider the non-asymptotic regime, i.e. coalitions of arbitrary finite size, and joint decoders. We

do something that has somehow been overlooked: we determine the Neyman-Pearson score [28] aimed

against the collusion attack in the asympotic saddlepoint (i.e. the Interleaving attack), but contrary to

previous approaches (such as [22] for a binary alphabet), we take all available information as evidence

in the Neyman-Pearson hypothesis test. More precisely, in order to determine if a user j is suspicious,

a hypothesis test is done taking as evidence not only his codeword, but all the other codewords as well.

The result is a joint decoder which, when the Interleaving attack is inserted, miraculously simplifies to

an easy-to-compute score for a single user; the score depends on all the other users’ codewords merely

through symbol tallies.

– In Section 2 we give some background on traitor tracing.

– In Section 3 we derive our new tally-based score function. We first present a general result valid in

the Combined Digit Model and then narrow it down to the Restricted Digit Model. Our score reduces

to the log-likelihood score of [22] in the limit of many users, and further reduces to the asymptotic-

capacity-achieving score of [31] in the large c limit.

– In Section 4 we upper-bound the False Positive error rate using an approach similar to the ‘operational

mode’ that was recently proposed by Furon and Desoubeaux [13].

– In Section 5 we derive an upper bound on the False Negative error rate.

– In Section 6 we discuss the setting of the accusation threshold as a function of all the data available

to the tracer.

– In Section 7 we discuss the tails of the probability distribution of the tally-based score. We find that

the distribution of the score in a single position has an exponential tail. This implies that the total

score has a distribution that is closer to Gaussian than most previously considered scores, which have

power-law tails.

– In Section 8 we briefly comment on hypothesis tests for Group Testing. There is a link between Group

Testing on the one hand and on the other hand binary traitor tracing where the colluders employ

the All-1 attack. We evaluate the Neyman-Pearson hypothesis test in the case of the All-1 attack and

obtain a new, tally-dependent, score function for Group Testing.

2 Preliminaries

2.1 General notation and terminology

Random variables are written as capitals, and their realisations in lower-case. Sets are written in calli-

graphic font. (E.g. random variable X with realisations x ∈ X .) The probability of an event A is denoted

as Pr[A], and the expectation over a random variable X is denoted as EX [f(X)]
def
=
∑
x∈X Pr[X = x]f(x).

The notation [n] stands for {1, . . . , n}. The Kronecker delta is written as δxy, the Dirac delta function as

δ(·). The step function is denoted as Θ(·). Vectors are written in boldface. The 1-norm of a vector v is

denoted as |v| =
∑
α vα.

The number of users is n. The length of the code is `. The alphabet is Q, with size |Q| = q. The number

of colluders is c. The set of colluders is denoted as C ⊂ [n] with |C| = c. The coalition size that the code

is built to withstand is c0. We will use the term ‘asymptotically’ meaning ‘in the limit of large c0’.

2.2 Code generation

The bias vector in position i is denoted as pi = (piα)α∈Q, and it satisfies |pi|
def
=
∑
α∈Q piα = 1. The bias

vectors pi are drawn independently from a probability density F . The asymptotically optimal F is given by

the following Dirichlet distribution (multivariate Beta distribution): F (p) = Γ (q2)[Γ (1
2)]−q

∏
α∈Q p

−1/2
α .

We use the ‘bar’ notation to indicate a quantity in all positions, e.g. p̄
def
= (pi)i∈[`].

3

The code matrix is a matrix x ∈ Qn×`; the matrix rows are the codewords. The j’th row is denoted

as x̄j
def
= (xji)i∈[`]. The entries of x are generated column-wise from the bias vectors: in position i, the

probability distribution for user j’s symbol is given by Pr[Xji = α|P i = pi] = piα.

2.3 Collusion attack

For i ∈ [`], α ∈ Q we introduce tally variables as follows,

tiα
def
= |{j ∈ [n] : xji = α}|

miα
def
= |{j ∈ C : xji = α}|. (1)

In words: tiα is the number of users who have symbol α in the i’th position of their codeword; miα is the

number of colluders who have symbol α in the i’th position of their codeword. We write ti = (tiα)α∈Q
and mi = (miα)α∈Q. They satisfy |ti| = n and |mi| = c. In the remainder of this paper, the position

index i will sometimes be omitted when it is clear that a single position is studied.

In the Combined Digit Model (CDM) [40], the attackers have to decide which symbol, or combination of

averaged symbols, to choose in each content position i ∈ [`]. This set of symbols is denoted as ψi ⊆ Q,

with ψi 6= ∅. According to the Marking Assumption, ψi may only contain symbols for which the colluder

tally is nonzero. In addition, the colluders may add noise. The effect of the attack on the content is

nondeterministic, and causes the tracer to detect of a set of symbols ϕi ⊆ Q that does not necessarily

match ψi. This is modelled as a set of transition probabilities Pϕ|ψ which depend on |ψ|, the amount of

noise etc. For more details on the CDM we refer to [40].

In the Restricted Digit Model (RDM) the colluders are allowed to select only a single symbol (usually

denoted as y ∈ Q) with nonzero tally, which then gets detected with 100% fidelity by the tracer.

As is customary in the literature on traitor tracing, we will assume that the attackers equally share the

risk. This leads to “colluder symmetry”, i.e. the attack is invariant under permutation of the colluder

identities. Furthermore we assume that there is no natural ordering on the alphabet Q, i.e. everything

is invariant under permutation of the alphabet. Given these two symmetries, the attack depends only on

m̄, the set of colluder tallies. Any attack strategy can then be fully characterized by a set of probabilities

θψ̄|m̄. In the case of the RDM this reduces to θȳ|m̄.

The process of generating the matrix x as well as tracing the colluders is fully position-symmetric, i.e.

invariant under permutations of the columns of x (the content positions). However, that does not guarantee

that the optimal collusion strategy is position-symmetric as well, since the realisation of x itself breaks

the symmetry. Asymptotically the symmetry is restored (due to `→∞); the attack strategy can then be

parametrized more compactly as a set of probabilities θψ|m applied in each position independently. In the

RDM the asymptotically optimal attack [18,19] is the Interleaving attack: a colluder is selected uniformly

at random and his symbol is output.

2.4 Decoders

The process of tracing colluders based on p̄, x and ȳ is referred to as ‘decoding’. The decoder outputs a list

L ⊂ [n] of suspicious users. The literature distinguishes between two types of decoder: simple and joint. A

simple decoder computes a score for each user j ∈ [n] based on his codeword x̄j without considering the

symbols of other users. A joint decoder, on the other hand, looks at the whole matrix x in order to select

suspicious users. The runtime of a simple decoder is linear in n, whereas a joint decoder typically takes

much more time because it e.g. has to check all possible user tuplets up to a certain size.

Examples of simple decoders are the original Tardos score function [37,38], its symmetrized generalization

[39], the empirical mutual information score [35,27], and the score function [31] targeted against the

Interleaving attack. Examples of joint decoders are the Expectation Maximization algorithm [9], the

decoder of Amiri and Tardos [2] and the Don Quixote algorithm [25].

4

One usually considers the ‘catch-one’ scenario: the tracer is happy to identify at least one attacker. In this

scenario a decoder can make two kinds of mistake: (i) Accusation of one or more innocent users, known

as False Positive (FP); (ii) Not finding any of the colluders, known as False Negative (FN).

The error probabilities of the decoder are PFP = Pr[L \ C 6= ∅] and PFN = Pr[L∩ C = ∅]. In the literature

on Tardos codes one is often interested in the one-user false accusation probability PFP1
def
= Pr[j ∈ L|j ∈

[n] \ C], for proof-technical reasons. For bias-based codes it holds [41] that PFP ≈ (n− c)PFP1 if PFP � 1.

2.5 Joint decoder saddlepoint

The fingerprinting rate is defined as R
def
= (logq n)/`. This is the number of q-ary symbols needed to specify

a single user in [n] (the message part of the codeword), divided by the actual number of symbols used by

the code in order to convey this message.

The maximum achievable fingerprinting rate at which the error probabilities can be kept under control

is called the fingerprinting capacity. We consider the most general case, the joint decoder, in which case

the capacity is denoted as Cjoint. Shannon’s channel coding theorem (see e.g. [11]) gives a bound on the

decoding error probability Perr of an error-correcting code (for ` → ∞), Perr ≤ q−`(C−R). From this it

follows that, in the limit of large n, the sufficient code length `suff for resisting c0 colluders at some given

error probability is given by

`suff =
ln(n/PFP)

Cjoint(q, c0) ln q
. (2)

Here the FP error appears because it is usually dominant (more critical than FN) in audio-video wa-

termarking. Computing the capacity as a function of q and c0 is a nontrivial exercise. It is necessary to

find the saddlepoint of a max-min game with payoff function 1
c I(Φ;M |P), where I(·; ·) stands for mutual

information. In the max-min game, the tracer controls the bias distribution F and tries to maximize the

mutual information. The colluders know F . They control the attack strategy and try to minimize the

mutual information. There is a saddlepoint, a special combination of F and strategy such that it is bad for

both parties to stray from that point. The value of the payoff function in the saddlepoint is the capacity.

The asymptotic (large c) capacity in the RDM was found [2,6,18] to be CRDM,asym
joint = (q − 1)/(2c2 ln q),

leading to a sufficient code length `RDM,asym
suff = 2

q−1c
2
0 ln(n/PFP). In the asymptotic saddlepoint [19] the

bias distribution is the Dirichlet distribution as specified in Section 2.2, and the attack strategy is the

Interleaving attack applied independently in each content position. For non-asymptotic c0 only numerical

results are available (except at c0 = 2). There are also numerical results for the asymptotics in the case of

attack models like the CDM [7]. It turns out [18] that the optimal attack quickly converges to Interleaving

with increasing c.

2.6 Universal score function

Based on the work of Abbe and Zheng [1], Meerwald and Furon [26] pointed out that a universal decoder

for traitor tracing is obtained by evaluating a Neyman-Pearson score [28] in the saddlepoint of the mutual-

information-game. The term ‘universal’ means that the decoder is effective not only against the saddlepoint

value of the attack, but also all other attacks. The general formula for the Neyman-Pearson score yields

a result that depends on the attack strategy, which is not known to the tracer. Hence the existence of a

universal decoder is very important.

Laarhoven [22] showed for the binary case that the asymptotic-capacity-achieving score function of Ooster-

wijk et al. [31] is asymptotically equivalent to such a Neyman-Pearson score evaluated for the Interleaving

attack.

2.7 The multivariate hypergeometric distribution

Consider a single column of the matrix x. Let T be the total tally vector and M the colluders’ tally

vector, as defined in (1). If a coalition of c users is selected uniformly at random out of the n users, the

5

probability Lm|t that colluder tally m occurs, for given t, is

Lm|t
def
= Pr[M = m|T = t] =

1(
n
c

) ∏
α∈Q

(
tα
mα

)
. (3)

(For each symbol α, a number mα of users have to be selected out of the tα users who have that symbol).

Eq. (3) is known as the multivariate hypergeometric distribution. Its first and second moment are

EM |T=t[M] =
c

n
t (4)

EM |T=t[MαMβ]− (
c

n
tα)(

c

n
tβ) = c

n− c
n− 1

[δαβ
tα
n
−
tαtβ
n2

]. (5)

2.8 Some useful lemmas

Lemma 1 (Markov’s inequality)

Let X be a nonnegative random variable, and let a > 0. Then Pr[X ≥ a] ≤ a−1E[X].

Lemma 2 (Bernstein’s inequality [4]) Let V1, · · · , V` be independent zero-mean random variables,

with |Vi| ≤ a for all i. Let ζ ≥ 0. Then

Pr

[∑̀
i=1

Vi > ζ

]
≤ exp

(
− ζ2/2∑

i E[V 2
i] + aζ/3

)
.

Lemma 3 (Bennett’s inequality [3]) Let b > 0 be a constant. Let V1, · · · , V` be independent zero-mean

random variables, with |Vi| ≤ b for all i. Let ω2 =
∑`
i=1 E[V 2

i]. Let the function Ξ be defined as

Ξ(u)
def
=

∫ u

0

dx ln(1 + x) = (u+ 1) ln(u+ 1)− u. (6)

Let T ≥ 0. Then

Pr

[∑̀
i=1

Vi > T

]
≤ exp

(
−ω

2

b2
Ξ(

b

ω2
T)

)
. (7)

Lemma 4 Let A be a (N, p)-binomial-distributed random variable. Then E 1
1+A =

1−(1−p)N+1

(N+1)p
.

Proof
∑N
a=0

1
1+a

(
N
a

)
pa(1−p)N−a = 1

(N+1)p

∑N
a=0

(
N+1
a+1

)
pa+1(1−p)N+1−(a+1) = 1

(N+1)p

∑N
a′=1

(
N+1
a′
)
pa
′
(1−

p)N+1−a′ . The summation consists of the full binomial sum
∑N
a′=0 minus the a′ = 0 term. �

3 Tally-based universal score function

Motivated by the fact that with increasing c the saddlepoint value of the attack strategy quickly converges

to Interleaving, we construct a Neyman-Pearson score against Interleaving. However, instead of taking as

the evidence the detected signals ϕ̄, the biases p̄ and a single user’s codeword, as was done before, we

include the whole matrix x. This is an obvious step, but as far as we know it has not been done before.

Theorem 1 Let the biases p̄, the matrix x and the detected symbols (or symbol fusions) ϕ̄ be known to

the tracer. Let the attack be position-symmetric, parametrized by the probabilities θψ|m. Consider a tracer

who has no a priori suspicions about the users. His a priori knowledge about the coalition is that it is a

uniformly random tuple of c users from [n]. For him the most powerful hypothesis test to decide if a certain

user j ∈ [n] is a colluder or not is to use the score

∑̀
i=1

ln

∑
m Lm|tiPϕi|mmxji∑

m Lm|tiPϕi|m(tixji −mxji)
(8)

where we have used the notations Pϕ|m, Lm|t, m and t as defined in the Preliminaries section.

6

Proof The most powerful test to decide between two hypotheses is to see if the Neyman-Pearson score

exceeds a certain threshold. We consider the hypothesis Hj = (j ∈ C). The Neyman-Pearson score in

favour of this hypothesis is the ratio Pr[Hj |evidence]/Pr[¬Hj |evidence], which can be rewritten as
Pr[Hj]

Pr[¬Hj] ·
Pr[evidence|Hj]

Pr[evidence|¬Hj] . We have Pr[Hj] = c
n and Pr[¬Hj] = 1− c

n since the a priori distribution of colluders over

the users is uniform. We discard1 the constant factor
Pr[Hj]

Pr[¬Hj] and study the expression
Pr[evidence|Hj]

Pr[evidence|¬Hj] .

The evidence is given by p̄, x, ϕ̄. Using symbol symmetry and colluder symmetry we have

Rj
def
=

Pr[p̄, x, ϕ̄|Hj]
Pr[p̄, x, ϕ̄|¬Hj]

=
Pr[p̄] Pr[x|p̄]

∑
m̄ Pr[m̄|x,Hj] Pr[ϕ̄|m̄]

Pr[p̄] Pr[x|p̄]
∑

m̄ Pr[m̄|x,¬Hj] Pr[ϕ̄|m̄]
=

∑
m̄ Pr[m̄|x,Hj] Pr[ϕ̄|m̄]∑
m̄ Pr[m̄|x,¬Hj] Pr[ϕ̄|m̄]

. (9)

Note that the randomness of the coalition causes m̄|x to be a random variable. Due to the position

symmetry of the attack, Rj reduces to a factorized expression,

Rj =
∏̀
i=1

∑
mi

Pr[mi|x,Hj]Pϕi|mi∑
mi

Pr[mi|x,¬Hj]Pϕi|mi

=
∏̀
i=1

∑
mi

Pr[mi|ti, Hj]Pϕi|mi∑
mi

Pr[mi|ti,¬Hj]Pϕi|mi

. (10)

Next we write

Pr[mi|ti, Hj] =
1(
n−1
c−1

) ∏
α∈Q

(
tiα − δα,xji
miα − δα,xji

)
=
n

c
·
mixji

tixji
Lmi|ti (11)

Pr[mi|ti,¬Hj] =
1(
n−1
c

) ∏
α∈Q

(
tiα − δα,xji

miα

)
=

n

n− c
tixji −mixji

tixji
Lmi|ti . (12)

Substitution of (11),(12) into (10) yields

Rj =
∏̀
i=1

n− c
c
·

∑
mi

mixjiLmi|tiPϕi|mi∑
mi

(tixji −mixji)Lmi|tiPϕi|mi

. (13)

We discard the constant factor (n−cn)`. We drop the index i on the summation variable mi. Finally we

take the logarithm; this is allowed since applying a monotonic function to a Neyman-Pearson score leads

to an equivalent score system. �

We note a number of interesting properties of the score (8):

– The p̄ has disappeared from the score. This is not surprising because x contains more evidence than p̄.

(The x is generated from p̄ and after that all further events depend directly on x.)

– The score for user j depends on the tallies t̄, i.e. on the codewords of all the other users. In this sense

we have a joint decoder, even though a hypothesis is tested for each j ∈ [n] individually.

In the case of the RDM, the ϕ̄ reduces to ȳ, and Pϕi|mi
reduces to θyi|mi

.

Theorem 2 In the case of the Restricted Digit Model and the Interleaving attack, the score function of

Theorem 1 reduces to

∑̀
i=1

(
ln

c

n− c + ln

[
1 +

1

c

{
δxjiyi

1− 1/n

tiyi/n− 1/n
− 1

}])
(14)

which is equivalent to ∑̀
i=1

ln

[
1 +

1

c

{
δxjiyi

1− 1/n

tiyi/n− 1/n
− 1

}]
. (15)

1 This is allowed. Score systems that differ in a constant factor are equivalent.

7

Proof We omit indices i and j for notational brevity. In the case of the RDM and Interleaving, the Pϕ|m
in (8) reduces to θy|m = my/c. With the use of (4),(5) we obtain∑

m

Lm|tmymx = c2
txty
n2

+ c
n− c
n− 1

[δxy
ty
n
− txty

n2
] (16)

∑
m

Lm|tmy(tx−mx) = tx
∑
m

Lm|tmy −
∑
m

Lm|tmymx = (
c

n
− c

2

n2
)txty − c

n− c
n− 1

[δxy
ty
n
− txty

n2
]. (17)

We have two cases, δxy = 0 and δxy = 1,which after some algebra can be simplified to

x 6= y :
(16)

(17)
=
c− 1

n− c x = y :
(16)

(17)
=
c− 1

n− c +
1

n− c ·
1− 1/n

ty/n− 1/n
. (18)

Together this can again be written compactly as

(16)

(17)
=
c− 1

n− c [1 +
δxy
c− 1

· 1− 1/n

ty/n− 1/n
] =

c

n− c [1 +
1

c
{δxy

1− 1/n

ty/n− 1/n
− 1}]. (19)

The result (14) follows by substituting (19) into (8) and finally taking the logarithm. �

We mention a number of interesting points about the score function (15):

– If for any i ∈ [`] it occurs that δxjiyi = 1 and tiyi = 1, then user j’s score is infinite. This makes perfect

sense: he is the only user who received symbol yi in position i, which makes it possible to accuse him

with 100% certainty.

– For large n the expression (15) approaches
∑
i ln(1+c−1[δxjiyi

1
p̂yi
−1]) ≈

∑
i ln(1+c−1[δxjiyi

1
pyi
−1]).

The latter form was already obtained by Laarhoven [22] in the case of binary alphabets.

– If c is large as well, then the score may be approximated by its first order Taylor expansion, yielding

c−1∑
i[δxjiyi

1
pyi
−1]. This is (up to the unimportant constant c−1) precisely the asymptotic-capacity-

achieving simple decoder of Oosterwijk et al. [31].

– For given pi, the tally ti is multinomial-distributed with parameters n and pi. The first moment and

variance are given by ET i|P i=pi
[T i] = npi and ET i|P i=pi

[T 2
iα] − (np2

iα) = npiα(1 − piα). Thus the

expression tiyi/n that appears in the score function is an estimator for piyi that becomes more accurate

with increasing n. We will use the shorthand notation p̂iα
def
= tiα/n. The typical deviation |p̂iα − piα|

scales as 1/
√
n. If n is not very large, or if piyi is small, then p̂iyi is noticeably different from piyi ,

which yields a score noticeably different from [22].

– The parameter c appears in the score function, even though it is not known to the tracer. The tracer

has to use a parameter c0 instead, indicating the maximum coalition size that can be traced given

the code length ` and alphabet size q. Alternatively, he can use several score systems, each with a

different c0, in parallel.

Due to c <∞ there is of course a mismatch between the strategy that the Neyman-Pearson score is aimed

against (Interleaving) and the actual saddlepoint strategy. Hence (15) is not completely optimal. However,

it is guaranteed to give a low FP error probability even when the coalition is much larger than expected.

We investigate the performance of our score function in Section 4.

4 Performance of the tally-based score function: False Positive

We first define a version of the score that is shifted by a constant ln(1− 1/c), such that a symbol xji 6= yi
incurs zero score. Furthermore we replace the unknown c by c0.

sj =
1

`

∑̀
i=1

sji

sji
def
= ln

(
1 +

δxjiyi
c0 − 1

· n− 1

tiyi − 1

)
= δxjiyi ln

(
1 +

1

c0 − 1
· n− 1

tiyi − 1

)
.

(20)

(21)

8

Most scores in the literature are balanced such that an innocent user’s expected score (at fixed p̄) is zero.

However, here we cannot achieve this with a constant shift, because an innocent’s score depends on the

coalition’s actions in a complicated way.

4.1 FP bound using Bernstein’s inequality

The tracer uses a threshold Z that may in principle depend on all the knowledge he has, namely p̄, x

and ȳ. In contrast to e.g. the Tardos score function [37,39] a constant Z will not work.

We analyze this more complicated situation by considering the following sequence of experiments.

Experiment 0 Randomly generate p̄ according to the distribution F . Then, using p̄, generate the code-

words of the colluders, i.e. the x̄j for all j ∈ C. Finally generate ȳ based on m̄. (The m̄ follows from

the colluders’ codewords.)

Experiment 1 The p̄, (x̄j)j∈C and ȳ are fixed. Now randomly generate the codewords of the innocent

users. (Note: the innocent user symbols at all the positions i ∈ [`] are independent random variables,

even if the attack strategy breaks position symmetry!)

This approach is similar to the ‘operational mode’ of Furon and Desoubeaux [13].

For Experiment 1 we want to investigate the probability Pr[Sj > Z] for arbitrary innocent user j /∈ C.

We want to use Bernstein’s inequality (Lemma 2). However, our Sji does not have zero mean, so we first

have to shift it. We define

Uji
def
= Sji − EXinnocents|p̄m̄ȳ[Sji] for j /∈ C. (22)

We stress that Uji is defined only for innocent users. In order to do the ‘Xinnocents’ average we introduce

a tally variable K for the set of innocent users minus user j,

kiα
def
= |{v ∈ ([n] \ C) \ {j} : xvi = α}|. (23)

For all i ∈ [`] it holds that
∑
α∈Q kiα = n − c − 1. The dependence of ki on j is not made explicit in

the notation, since ki has the interpretation ‘the tally of a set of n− c− 1 randomly generated innocent

users’. The tally ki is multinomial-distributed, with parameters pi and n− c− 1. This notation allows us

to express Uji more precisely,

Uji
def
= Sji − EXjiKi|p̄m̄ȳ[Sji] for j /∈ C. (24)

We write tiα = miα + δxjiα + kiα, which yields

sji = δxjiyi ln(1 +
1

c0 − 1
· n− 1

miyi + kiyi
) for j /∈ C. (25)

TheXji and Ki are independent random variables. Hence the EXjiKi|p̄m̄ȳSji factorizes into (EXji|p̄m̄ȳδXjiyi)·
EKi|p̄m̄ȳ ln(· · ·) and we get

Uji = δXjiyi ln(1 +
1

c0 − 1
· n− 1

miyi +Kiyi
)− piyiJ1(piyi ,miyi) (26)

Ja(piyi ,miyi)
def
= EKi|pi lna(1 +

1

c0 − 1
· n− 1

miyi +Kiyi
). (27)

We furthermore define

Umax
def
= max

i
max

[
ln(1 +

n− 1

(c0 − 1)miyi
)− piyiJ1(piyi ,miyi), piyiJ1(piyi ,miyi)

]
(28)

as the maximum absolute value of the score that could possibly occur, and

ν(p̄, m̄, ȳ)
def
=

1

`

∑̀
i=1

piyiJ1(piyi ,miyi) ; ζ
def
= Z − ν (29)

9

σ2(p̄, m̄, ȳ)
def
=

1

`

∑̀
i=1

[piyiJ2(piyi ,miyi)− p
2
iyiJ

2
1 (piyi ,miyi)] (30)

We are now ready to invoke Bernstein’s inequality.

Theorem 3 Let j ∈ [n] \ C be an arbitrary innocent user. Let the score Sji be defined as in (25) and

let the threshold Z be parametrized as Z = ν + ζ. Then in Experiment 1 the one-user false accusation

probability PFP1
def
= Pr[1

`

∑
i∈[`] Sji > Z|j /∈ C] can be bounded as

PExp.1
FP1 ≤ exp

[
−` ζ2

2σ2 + 2
3ζUmax

]
. (31)

where Umax and σ2 are defined as in (28), (30).

Proof We have Pr[1
`

∑
i∈[`] Sji > Z] = Pr[1

`

∑
i∈[`] Uji > ζ]. The Uji are zero-mean, independent ran-

dom variables, and ζ does not depend on these variables. We write Vi = Uji/` in Bernstein’s inequality

(Lemma 2). The absolute value |Uji| cannot exceed Umax. Hence we can set a = Umax/` in Bernstein’s

inequality. Finally we need to evaluate E[U2
ji]. We have

∑
i E[U2

ji] =
∑
i E[S2

ji − 2piyiSjiJ1 + p2
iyiJ

2
1]

=
∑
i[piyiJ2 − 2p2

iyiJ
2
1 + p2

iyiJ
2
1] = `σ2. Substitution of all these elements into Lemma 2 yields (31). �

Even though we cannot analytically evaluate the expressions J2 and J1, they are straightforward to

compute numerically, and hence Theorem 3 gives a recipe for setting the accusation threshold.

Theorem 4 Let the tracer use the score function (21) and set the accusation threshold as

Z∗ = ν + ζ∗ (32)

ζ∗ =
1

3`
Umax ln

1

ε1
+

√
(

1

3`
Umax ln

1

ε1
)2 +

2

`
σ2 ln

1

ε1
.

Then in Experiment 1 it holds that PFP1 ≤ ε1.

Proof According to Theorem 3, it is sufficient for the tracer to set ζ such that exp[−`· 12ζ
2/(σ2+ 1

3Umaxζ)] =

ε1. This yields a quadratic equation in ζ, namely 1
2 `ζ

2− 1
3Umax ln 1

ε1
ζ−σ2 ln 1

ε1
= 0, whose positive solution

ζ∗ is precisely the expression given in Theorem 4. Hence the tracer may set the threshold Z at ν + ζ∗ or

larger, and then it is guaranteed that PFP1 ≤ ε1. �

The result (32) makes intuitive sense. The part ν corresponds to the observed average of all the user

scores. The σ2 under the square root corresponds to the score variance. Its magnitude compared to the

(1
3 · · ·)

2 term under the square root depends on the collusion strategy. If the variance term dominates,

then Z is tends to the form “ν + σ`−1/2
√

2 ln(1/ε1)”, which is approximately where one would put the

threshold if the score were Gaussian-distributed.

Note that the tracer does not know the colluder tallies m̄; hence the above result is not immediately

practical. Below we derive a practical ‘recipe’ for placing the threshold.

Lemma 5 Let Umax be defined as in (28). For n� c it then holds that

Umax < Upract
max

def
= ln[1 +

n− 1

c0 − 1
]. (33)

Proof For n� c, the expression ln[1 + n−1
(c0−1)miyi

] in (28) dominates the expressions containing J1. This

yields Umax = maxi

[
ln(1 + n−1

(c0−1)miyi
)− piyiJ1(piyi ,miyi)

]
< maxi ln(1 + n−1

(c0−1)miyi
) ≤ ln(1 + n−1

c0−1).

�

Lemma 6 Let σ2 be defined as in (30). Let 2 ≤ c ≤ c0. Then

σ2 < σ2
pract

def
=

1

`

∑̀
i=1

[piyiJ2(piyi , 1)− p2
iyiJ

2
1 (piyi , c0)]. (34)

10

Proof We use 1 ≤ miyi ≤ c. We have J2(piyi ,miyi) ≤ J2(piyi , 1) and J1(piyi ,miyi) ≥ J1(piyi , c) ≥
J1(piyi , c0). Substitution of these inequalities into (30) yields the right-hand side of (34). Since miyi

cannot be simultaneously equal to 1 and to c0, the σ2 cannot equal σ2
pract. �

Lemma 7 Let ν be defined as in (29). Then

ν ≤ νpract
def
=

1

`

∑̀
i=1

piyiJ1(piyi , 1). (35)

Proof We use J1(piyi ,miyi) ≤ J1(piyi , 1). �

For n� c0 ≥ c the ‘practical’ parameters do not differ much from the original ones.

Corollary 1 Let the threshold in Experiment 1 be set as Z = νpract + ζ. Then

PExp.1
FP1 < exp

[
−` ζ2/2

σ2
pract + 1

3ζU
pract
max

]
. (36)

For obtaining PExp.1
FP1 ≤ ε1 it suffices to set

ζ =
1

3`
Upract

max ln
1

ε1
+

√
(

1

3`
Upract

max ln
1

ε1
)2 +

2

`
σ2

pract ln
1

ε1
. (37)

Proof We have Z > ν + ζ, which implies that the FP error probability is smaller than in Thorem 4. Into

Theorem 4 we substitute σ2 < σ2
pract and Umax < Upract

max (Lemmas 6 and 5). This yields (36). Finally (37)

follows by demanding that the right-hand side of (36) equals ε1 and then solving for ζ. �

Corollary 1 is a recipe that contains only quantities known to the tracer.

4.2 A simple bound using Markov’s inequality

We again look at the FP error probability in Experiment 1, but now we use Markov’s inequality (Lemma 1).

Theorem 5 Let c ≤ c0. Let the tracer use the score function (21) and set the accusation threshold as

Z1 =
1

`
ln

1

ε1
+

1

`

∑
i∈[`]

ln

[
1 +

n− 1

n− c0
·

1− (1− piyi)
n−c0

c0 − 1

]
. (38)

Then in Experiment 1 it holds that PFP1 ≤ ε1.

Proof For arbitrary innocent user j, we write PFP1 = Pr[Sj > Z] ≤ Pr[Sj ≥ Z] = Pr[e`Sj ≥ e`Z]. Then we

use Markov’s inequality to get Pr[e`Sj ≥ e`Z] ≤ e−`ZE[e`Sj], where the expectation is over the ‘innocent’

part of the matrix x. We write Sji as in (25). This allows us to write PFP1 ≤ e−`Z
∏
i EKi|piEXji|pie

Sji .

Next we have

EXji|pie
Sji = (1− piyi)e

0 + piyi(1 +
n− 1

c0 − 1
· 1

miyi +Kiyi
)

≤ 1− piyi + piyi(1 +
n− 1

c0 − 1
· 1

1 +Kiyi
). (39)

Next we evaluate the expectation EKi|pi using Lemma 4 where Kiyi is the binomial variable and we

substitute N → n− c− 1 and p→ piyi . This yields

EKi|piEXji|pie
Sji ≤ 1− piyi + piyi

[
1 +

n− 1

c0 − 1
·

1− (1− piyi)
n−c

piyi(n− c)

]
= 1 +

n− 1

c0 − 1
·

1− (1− piyi)
n−c

n− c

≤ 1 +
n− 1

c0 − 1
·

1− (1− piyi)
n−c0

n− c0
. (40)

11

In the last step we used c ≤ c0 and the fact that (1− ux)/x, with u ∈ (0, 1), is a decreasing function of x.

Thus we have established that PFP1 ≤ e−`Z exp
∑
i ln[1 + n−1

n−c0 ·
1−(1−piyi)

n−c0

c0−1]. Setting the threshold

according to (38) achieves PFP1 ≤ ε1. �

A more simple, p̄-independent, expression can be obtained if we sacrifice a little bit of tightness.

Corollary 2 Let c ≤ c0. Let the tracer use the score function (21) and set the accusation threshold as

Z2 =
1

`
ln

1

ε1
+ ln

[
1 +

n− 1

n− c0
· 1

c0 − 1

]
. (41)

Then PFP1 ≤ ε1.

Proof In the proof of Theorem 5, at the end, we use 1− (1− piyi)
n−c ≤ 1. The

∑
i reduces to a factor `.

�

The tracer can set the threshold to the value prescribed by Corollary 1 or Theorem 5, whichever is smaller.

5 Performance: False Negative

The analysis of the FN probability is more complicated. Again we consider Experiment 1, with the score

function (21).

We will exclude the trivial case ∃itiyi = 1 from our analysis, since it never yields a False Negative. We

artificially enforce that for each i there always exists at least one innocent user j who has symbol xji = yi.

We do this by writing tiα = miα+ 1 +kiα, where ki is multinomial-distributed with parameters n− c−1

and pi. We define the coalition score as

sC
def
=
∑
j∈C

sj =
1

`

∑
i∈[`]

miyi ln[1 +
1

c0 − 1
· n− 1

tiyi − 1
] =

1

`

∑
i∈[`]

miyi ln[1 +
1

c0 − 1
· n− 1

miyi + kiyi
]. (42)

We want to use Bennett’s inequality. For this we need zero-mean variables. We construct these as

Yi
def
= miyi

(
J1(piyi ,miyi)− ln[1 +

1

c0 − 1
· n− 1

miyi +Kiyi
]

)
. (43)

We furthermore define

Ymax
def
= max

i
miyi ·max

(
J1 − ln[1 +

1

c0 − 1
· n− 1

miyi + n− c− 1
], ln[1 +

1

c0 − 1
· n− 1

miyi
]− J1

)
(44)

which is the maximal value of |Yi| that can possibly occur in Experiment 1, and the colluder score variance

τ2 def
=

1

`

∑̀
i=1

EKi|piY
2
i =

1

`

∑̀
i=1

m2
iyi [J2(piyi ,miyi)− J

2
1 (piyi ,miyi)]. (45)

Finally we define

ρ
def
=

1

`

∑̀
i=1

(miyi − cpiyi)J1(piyi ,miyi). (46)

Theorem 6 Let Z = ν + ζ with ν as defined in (29). Let τ2 be defined as in (45) and ρ as in (46). Let

the function Ξ be defined as in Lemma 3. If the following condition is satisfied,

ρ− cζ > 0, (47)

then in Experiment 1 it holds that

PExp.1
FN ≤ exp

[
−` τ2

Y 2
max

Ξ

(
Ymax

τ2
[ρ− cζ]

)]
. (48)

Proof We have PFN = Pr[∀j∈C Sj < Z] ≤ Pr[SC < cZ] = Pr[1
`

∑
i Yi >

1
`

∑
imiyiJ1 − cν − cζ] =

Pr[1
`

∑
i Yi >

1
`

∑
i(miyi − cpiyi)J1− cζ]. We use Bennett’s inequality (Lemma 3) substituting Vi → Yi/`;

ω2 → τ2/`; b→ Ymax/` and T → 1
`

∑
i(miyi − cpiyi)J1 − cζ = ρ− cζ. �

12

6 Setting the code length and the threshold

We remark on the following properties of Theorem 3 and Theorem 6:

– Simulations for n � c show that ρ > 0 with overwhelming probability2, even in the case of the

Minority Voting attack, which minimizes miyi . We think this is caused by the ‘undetectable positions’

(positions i where miyi = c), which give a positive contribution c(1− piyi)J1 to the summation (46).

The fact that ρ is positive makes it possible to choose ζ < ρ/c and thus obtain a useful bound on the

FN probability.

– The ρ, σ2, τ2, Umax and Ymax are quantities that depend on the collusion strategy. One can argue

that they depend only very weakly on `.

– The ρ, σ2, and τ2 have the form of an empirical average over the positions, which typically tends

to the expected value for a single position.

– In the typical case n � c we can bound Ymax as Ymax < c ln[1 + n−1
(c0−1)c

] which does not depend

on `. Similarly, Umax is upper bounded by Upract
max which is also independent of `.

– If we completely neglect the `-dependence of ρ, σ2, τ2, Umax and Ymax then both the FP bound

and the FN bound are of the form exp[−` · {some function of ζ}]. For the FP, the function of ζ is

increasing, whereas for the FN it is decreasing. Hence Theorem 3 and Theorem 6 together create an

‘allowed’ interval for ζ, where the interval depends on `.

Obtaining a practical recipe for keeping the FN probability under control is difficult. On the one hand,

for c ≤ c0 we can obtain a tight m̄-independent bound on Ymax, namely Ymax < c ln[1 + n−1
(c0−1)c

] ≤
c0 ln[1 + n−1

(c0−1)c0
] as mentioned above. On the other hand, for τ2 and the crucial parameter ν we cannot

follow the same procedure as for the FP, i.e. lower-bounding by using miyi ≥ 1, since the loss of tightness

is too big.

We propose a heuristic procedure. We know that the Minority Voting attack minimizes the colluder tally

miyi . Let’s define

ρMinV(c)
def
= Ep̄Em̄|p̄E

MinV
ȳ|m̄ ρ ; τ2

MinV(c)
def
= Ep̄Em̄|p̄E

MinV
ȳ|m̄ τ2 (49)

where the notation EMinV
ȳ|m̄ is an expectation given that the colluders are using Minority Voting. Note that

the two quantities defined in (49) do not depend on ` but only on c, n and q. (We do not make the n and

q-dependence explicit in the notation.) They can be computed numerically.

Now let c ≤ c0. When Experiment 0 is performed (see Section 4.1), it holds with considerable probability

that ρ ≥ ρMinV(c0) and τ2 ≥ τ2
MinV(c0). Whenever this situation occurs, we can3 use (48) with the

replacement ρ ≥ ρMinV(c0), τ2 → τ2
MinV(c0). What we end up with is two lower bounds on ` that both

have to be satisfied,

` ≥ λ1(ζ)
def
= ln

1

ε1

{
2σ2

pract

ζ2
+

2
3U

pract
max

ζ

}

` ≥ λ2(ζ)
def
= ln

1

ε2
·
c20 ln2[1 + n−1

(c0−1)c0
]

τ2
MinV(c0)

· 1

Ξ(
c0 ln[1+ n−1

(c0−1)c0
]

τ2
MinV(c0)

[ρMinV(c0)− c0ζ])
, (50)

with 0 < ζ < ρMinV(c0)/c0. Here σ2
pract is assumed not to depend on `. Note that λ1 is a decreasing

function with λ1(0) = ∞, while λ2 is an increasing function with λ2(ρMinV(c0)/c0) = ∞. Hence, the

smallest achievable value of ` occurs when λ1(ζ) = λ2(ζ). Solving this equation yields ζ, and then finally

the tracer can set Z = νpract + ζ and set ` as ` = λ1(ζ) or, equivalently, ` = λ2(ζ).

Numerical simulations of this heuristic procedure are left for future work.

2 We mention this without showing the details of the simulations.
3 We use that τ2Ξ(···

τ2) is an increasing function of τ2.

13

7 Tails of the score distribution

We want study the probability distribution of the score Sji (21) for an innocent user j. We will do this in

the limit of large n in order to simplify the analysis. In this limit, the score becomes

wj
def
=

1

`

∑̀
i=1

wji ; wji
def
= δxjiyi ln(1 +

1

(c0 − 1)piyi
), (51)

i.e. the estimator p̂i goes to pi. We do our analysis by first looking at Oosterwijk et al.’s score function h,

h(x, y,p)
def
=

δxy
py
− 1, (52)

and then applying a change of variables,

wji = ln[1 +
1

c0
h(xji, yi,pi)]− ln[1− 1

c0
]. (53)

We derive the distribution of the score h in a couple of small steps.

Lemma 8 Let f : R → R be a monotonous function with inverse function f inv. Let δ denote the Dirac

delta function. Then δ(u− f(p)) =
δ(p−f inv(u))
|f ′(p)| .

See e.g. [16] for a proof.

Corollary 3 Let h1(p)
def
= 1/p− 1. It holds that

δ(u− h1(p)) = p2δ(p− 1

u+ 1
) =

δ(p− 1
u+1)

(u+ 1)2
. (54)

Proof We use Lemma 8 with f = h1. We have hinv
1 (u) = 1/(u+ 1) and h′1(p) = −p−2. �

Lemma 9 For a user j /∈ C, the probability density of the score h in a single position, with given py, is

ϕh(u|py) = (1− py)δ(u+ 1) + pyδ(u− h1(py)). (55)

Proof With probability 1−py, an innocent user gets score u = −1; with probability py he gets u = h1(py).

�

Lemma 10 Let α ∈ Q. Consider the bias p in a single segment. The marginal distribution of pα, given

tally mα, is

F (pα|ma) =
1

B(mα + 1
2 , c−mα + q−1

2)
p
− 1

2 +mα
α (1− pα)−1+c−mα+ q−1

2 . (56)

Proof We start from the joint probability F (pα,mα) = F (pα)
(
c
mα

)
pmαα (1 − pα)c−mα , where F (pα) ∝

p
−1/2
α (1−pα)−1+ q−1

2 is the marginal distribution of pα [33] that follows from the F (p) given in Section 2.2.

We divide F (pα,mα) by the marginal distribution of mα, which does not depend on pα. This yields

F (pα|ma) ∝ p−
1
2 +mα

α (1− pα)−1+c−mα+ q−1
2 . The Beta function in (56) is a normalization constant. �

At this point we assume position symmetry of the attack, and we define a strategy-dependent quantity,

Gb
def
= Pr[MY = b]. (57)

In words: Gb is the probability that the coalition’s tally of the ‘guilty’ symbol Y equals b. From the

Marking Assumption it follows that G0 is zero, and that Gc does not depend on the attack strategy.

Lemma 11 Let the colluders use a position-symmetric strategy. The probability density for the variable

PY is given by ρ(py) =
∑c
b=1GbF (py|b).

14

Proof If my is known, then the probability density for PY is given by F (py|my) as defined in (56). Taking

the expectation over MY yields the
∑
b expression in Lemma 11. �

Theorem 7 Let the colluders use a position-symmetric strategy. For a user j /∈ C, the probability density

of the score h in a single position is

ϕh(u) =

c∑
b=1

Gb

{
δ(u+ 1)

c− b+ q−1
2

c+ q
2

+
Θ(u)

B(b+ 1
2 , c− b+ q−1

2)
(

1

1 + u
)
5
2 +b(

u

1 + u
)−1+c−b+ q−1

2

}
. (58)

Proof We have ϕh(u) = Epyϕh(u|py). Using Lemma 9 and Corollary 3 we get ϕh(u) = δ(u + 1)Epy (1 −
py) + (u+ 1)−3Epyδ(py − 1

u+1). The expectations are evaluated using the ρ(py) from Lemma 11,

Epy (1− py) =

c∑
b=1

Gb

∫ 1

0

dp F (p|b)(1− p) =

c∑
b=1

Gb
c− b+ q−1

2

c+ q/2
(59)

Epyδ(py −
1

u+ 1
) = Θ(u)

c∑
b=1

Gb F (
1

u+ 1
|b). (60)

The step function Θ(u) in (60) occurs because for u < 0 the delta function δ(py − 1
u+1), with py ≤ 1,

vanishes. �

From Theorem 7 we see that the density at u� 1 is proportional to (1
u)5/2+b, with b ≥ 1.

– The Minority Voting strategy will cause the largest possible G1 and thereby put maximal probability

mass in the tail.

– In general (G1 > 0) the 2nd moment of the distribution exists, but not the 3rd moment. Note that

the Majority Voting attack for c > 2 has G1 = 0.

Theorem 8 Let the coalition use the Interleaving attack. Then for a user j /∈ C, the probability density

of the score h in a single position is

ϕInt
h (u) = δ(u+ 1)

q − 1

2 + q
+Θ(u)

q

B(1
2 ,
q−1

2)
(

1

1 + u
)
7
2 (

u

1 + u
)−1+ q−1

2 . (61)

Proof: We follow the proof of Theorem 7, but now the expectations (59) and (60) can be easily computed

using Pr[Y = y|P = p] = py,

Epy (1− py) =
∑
y

Eppy(1− py) = 1−
∑
y

Epp
2
y = 1−

∑
y

B(1
21q + 2ey)

B(1
21q)

= 1− q
Γ (5

2)Γ (q/2)

Γ (1
2)Γ (2 + q/2)

=
q − 1

2 + q
(62)

Epyδ(py −
1

u+ 1
) =

∑
y

Eppyδ(py −
1

u+ 1
) = q [pF (p)]p= 1

u+1
=

q

u+ 1
F (

1

u+ 1
). (63)

Here 1q is the vector (1, 1, . . . , 1) of length q, and ey is a q-component vector with (ey)α = δyα. The ‘B’

is the generalized Beta function. �

Lemma 12 Let X ∼ ρX and Y ∼ ρY , with Y = λ(X), where λ is a monotonous function. Then

ρY (y) = ρX(x)/|λ′(x)| = ρX(λinv(y)) / |λ′(λinv(y))|.

For a proof, see any book on probability theory.

15

Theorem 9 Let the colluders use a position-symmetric strategy. For a user j /∈ C, the probability density

of the score wji (51) in a single position is

ϕw(α) =

c∑
b=1

Gb

{
δ(α)

c− b+ q−1
2

c+ q/2

+ Θ(α− ln c0
c0−1)

(c0 − 1)−
3
2−b

B(b+ 1
2 , c− b+ q−1

2)

eα(eα − c0
c0−1)−1+ q−1

2 +c−b

(eα − 1)1+c+q/2

}
. (64)

Proof We use Lemma 12 with ρX → ϕh; ρY → ϕw; α = λ(u) = ln c0+u
c0−1 ; u = λinv(α) = (c0−1)(eα− c0

c0−1);

u + 1 = (c0 − 1)(eα − 1); 1/λ′(u) = c0 + u = (c0 − 1)eα, and then simplify. We use that δ(u + 1) =

e−α(c0 − 1)−1δ(α) and Θ(u) = Θ(α− ln c0
c0−1). �

Note that (64) contains c0 as well as c. Also note that for eα � 1 the b’th term is proportional to

e−[32 +b]α, i.e. we have an exponentially decreasing tail, with dominant contribution ∝ e−
5
2α if G1 > 0.

When random variables with an exponential tail are summed, the result quickly converges to a Gaussian-

distributed random variable. Hence we believe that the Gaussian assumption [42] may well hold for the

score wj (51) even at non-asymptotic c. Since sj ≈ wj this would hold for the tally-based score (20) as

well.

8 Group Testing

There is a well known link [36,10,24,20] between on the one hand Traitor Tracing in the RDM with the

‘All-1’ attack, and on the other hand (non-adaptive) Group Testing [12]. The Group Testing scenario is as

follows. There is a population of n people, of which c are infected. Medical tests are expensive, and there

is money to do only ` tests, with ` � n. Furthermore the tests take a long time, so they are done non-

adaptively, in parallel. An efficient way has to be devised to find out who is infected. Luckily it is possible

to combine samples (e.g. blood samples) from multiple people and run a single test on the combination;

if one or more of the individual samples come from an infected person, the medical test is positive.

The analogy with Traitor Tracing is straightforward. The user symbol xji ∈ {0, 1} indicates whether

person j’th blood is included in the i’th test. The result of the i’th test is yi ∈ {0, 1}. The way the

combined test works exactly matches the All-1 strategy: θ1|m1
equals 1 if m1 ≥ 1 and 0 if m1 = 0.

We derive the most powerful hypothesis test for the hypothesis ‘person j is infected’.

Theorem 10 In the case of the Restricted Digit Model, q = 2, and the All-1 collusion strategy, the score

(8) reduces to

y = 0, x = 0 : ln c− ln(t0 − c)
y = 0, x = 1 : −∞

y = 1, x = 0 : − ln

(
n−1
c

)
−
(
t0−1
c−1

)(
n−1
c−1

)
−
(
t0−1
c−1

)
y = 1, x = 1 : − ln

n− c
c
− ln[1−

(
t0
c

)(
n
c

)]. (65)

Here we have omitted indices i and j, i.e. x stands for xji, y for yi and t0 for ti0.

Proof For q = 2 the colluder tally vector reduces to (c −m1,m1) and we can sum over a single variable

m1 ∈ {0, . . . , c}. We will write m instead of m1. The strategy parameters can be written as θy|m =

δy1(1− δm0) + δy0δm0. We go case by case.

For y = 0, x = 0 the enumerator in (8) reduces to
∑
m Lm|t1θ0|m(c −m) = L0|t1c and the denominator

reduces to
∑
m Lm|t1θ0|m(t0 −m0) = L0|t1(t0 − c).

For y = 0, x = 1 the enumerator reduces to zero, while the denominator is nonzero. The logarithm of zero

is −∞.

16

For y = 1, x = 0 the enumerator reduces to c(1−L0|t1)− c
n t1, while the denominator becomes (t0− c)(1−

L0|t1) + c
n t1. Then we use t1 = n− t0 and L0|t1 =

(
t0
c

)
/
(
n
c

)
, followed by some laborious rewriting.

For y = 1, x = 1 the enumerator reduces to c
n t1 and the denominator to t1(1− L0|t1)− c

n t1. �

We note the following about Theorem 10,

– The ‘−∞’ for x = 1, y = 0 makes perfect sense: if a person is included in the test and this test gives

a negative result, then he is definitely not infected.

– In the case y = 0, x = 0 we see that the score increases when t0 decreases. This is intuitively correct: At

decreasing t0 the event Y = 0 becomes more and more ‘special’ in the sense of condemning person j,

since the tested group becomes bigger and bigger without yielding a detection. In the extreme case

t0 = c, the outcome y = 0 immediately implies that all the people excluded from the test, including j,

are infected. Indeed the score becomes − ln 0 = +∞. (Note that t0 < c automatically causes y = 1;

Eq. (65) never gets a negative argument in a logarithm.)

– It may look strange that in the case x = 0 (the person under scrutiny is not included in the test)

the score actually depends on y. This dependence is caused by the fact that the result y does say

something about the number of infected people outside the tested set.

In group testing there is no adversary and hence no max-min game. Instead of using a bias distribution

F (p) it is optimal to take a constant p for each test, with p1 = (ln 2)/c + O(c−2) [21]. This means that

typically t1 = O(n/c) and t0 = n − O(n/c). Hence the fraction
(
t0
c

)
/
(
n
c

)
typically is not much smaller

than 1.

Lemma 13 For n� c we can approximate the score (65) as

y = 0, x = 0 : − ln
n

c
− ln

t0
n

+O(
c

n
)

y = 0, x = 1 : −∞

y = 1, x = 0 : − ln
n

c
+ ln[1− (

t0
n

)c−1] +O(
c

n
)

y = 1, x = 1 : − ln
n

c
− ln[1− (

t0
n

)c] +O(
c

n
). (66)

Proof We asked Wolfram Mathematica for a series expansion in the limit n→∞ for finite c. �

Note that we can add ln n
c to all the expressions in (66) to obtain an equivalent score that does not depend

so heavily on the (possibly unknown) parameter c.

9 Summary

We have written down a standard Neyman-Pearson hypothesis test for the hypothesis “user j is part of

the coalition”, and as evidence we have taken all the information available to the tracer, including the

codewords of all the other users. This results in Theorem 1, which is very general. Motivated by the

closeness of the Saddlepoint attack to Interleaving, we have substituted into our test the Interleaving

attack, in order to obtain a ‘universal’ decoder. This procedure yields the score (21) for user j, which

depends on the ‘guilty symbol’ tallies (tiyi)
`
i=1 of the whole population. In this respect one can call the

new score system a ‘joint decoder’. On the other hand, the tested hypothesis pertains to a single user.

In the limit n→∞ the score function reduces to a p-dependent log-likelihood score already known in the

literature [22], which in turn reduces to Oosterwijk et al.’s score [31] for c0 →∞.

We have given a first analysis of the error probabilities. Corollary 1 shows a threshold setting sufficiently

high to ensure that the single-user FP error probability stays below ε1. The threshold depends on the

observed ȳ and p̄. In Section 6 we have given an algorithm for determining a sufficient code length ` such

that the FN error probability is below ε2. We expect that our bounds can be significantly improved upon.

In the case of position-symmetric attacks, the statistical behaviour of a score system can be understood by

studying the probability distribution of single-position scores [33,32,34]. To this end we have derived the

innocent-user single-position distribution for the score (52) of Oosterwijk et al. [31] and Laarhoven’s score

17

[22]. The results are given in Theorem 7 and Theorem 9. The strategy dependence is entirely contained

in the parameters Gb. We expect that the distribution of the sj score is close to that of the wj score.

Finally we have applied our Neyman-Pearson test (8) to the field of Group Testing and obtained a new

score function (Theorem 10) that may improve the state of the art.

We see various open questions for future work. (i) Investigate how much performance difference there is

between (21) and the score that would be obtained if the finite-c saddlepoint is substituted into Theorem 1;

(ii) See how much performance difference there is between (21) and (51); (iii) Get a tighter bound on the

FP, e.g. using techniques from [13]; (iv) Get a tighter bound on the FN and do simulations to see how

the FN behaves in the case of well known attacks; (v) Use the method of Simone et al. [33] to determine

the full probability distribution of the score (51); (vi) See if (65) yields an improvement over previously

known group testing ‘decoders’. (vii) Study various noise models and generalizations for group testing,

using Theorem 1 as a starting point.

Acknowledgements

Thijs Laarhoven, Jeroen Doumen, Jan-Jaap Oosterwijk and Benne de Weger are thankfully acknowledged

for useful discussions.

References

1. E. Abbe and L. Zheng. Linear universal decoding for compound channels. IEEE Transactions on Information
Theory, 56(12):5999–6013, 2010.

2. E. Amiri and G. Tardos. High rate fingerprinting codes and the fingerprinting capacity. In SODA 2009, pages
336–345, 2009.

3. G. Bennett. Probability Inequalities for the Sum of Independent Random Variables. Journal of the American
Statistical Association, 57(297):33–45, 1962.

4. S.N. Bernstein. Theory of Probability. Nauka, 1927.
5. O. Blayer and T. Tassa. Improved versions of Tardos’ fingerprinting scheme. Designs, Codes and Cryptography,

48(1):79–103, 2008.
6. D. Boesten and B. Škorić. Asymptotic fingerprinting capacity for non-binary alphabets. In Information Hiding

2011, volume 6958 of Lecture Notes in Computer Science, pages 1–13. Springer, 2011.
7. D. Boesten and B. Škorić. Asymptotic fingerprinting capacity in the Combined Digit Model. In Information

Hiding 2012, pages 255–268. Springer, 2012. LNCS Vol. 7692.
8. A. Charpentier, C. Fontaine, T. Furon, and I.J. Cox. An asymmetric fingerprinting scheme based on Tardos

codes. In Information Hiding 2011, volume 6958 of LNCS, pages 43–58. Springer, 2011.
9. A. Charpentier, F. Xie, C. Fontaine, and T. Furon. Expectation maximization decoding of Tardos probabilistic

fingerprinting code. In SPIE Media Forensics and Security 2009, page 72540, 2009.
10. C.J. Colbourn, D. Horsley, and V.R. Syrotiuk. Frameproof codes and compressive sensing. In 48th Allerton

Conference on Communication, Control, and Computing, pages 985–990, 2010.
11. T.M. Cover and J.A. Thomas. Elements of information theory, 2nd edition. Wiley, 2006.
12. R. Dorfman. The detection of defective members of large populations. The Annals of Mathematical Statistics,

14(4):436–440, 1943.
13. T. Furon and M. Desoubeaux. Tardos codes for real. In IEEE Workshop on Information Forensics and Security

(WIFS) 2014, 2014.
14. T. Furon, A. Guyader, and F. Cérou. On the design and optimization of Tardos probabilistic fingerprinting

codes. In Information Hiding 2008, volume 5284 of LNCS, pages 341–356. Springer, 2008.
15. T. Furon, L. Pérez-Freire, A. Guyader, and F. Cérou. Estimating the minimal length of Tardos code. In

Information Hiding 2009, volume 5806 of LNCS, pages 176–190, 2009.
16. R.F. Hoskins. Delta Functions, 2nd edition. Woodhead Publishing, 2009.
17. Y.-W. Huang and P. Moulin. Capacity-achieving fingerprint decoding. In IEEE Workshop on Information

Forensics and Security (WIFS) 2009, pages 51–55, 2009.
18. Y.-W. Huang and P. Moulin. On the saddle-point solution and the large-coalition asymptotics of fingerprinting

games. IEEE Transactions on Information Forensics and Security, 7(1):160–175, 2012.
19. Ye.-W. Huang and P. Moulin. On fingerprinting capacity games for arbitrary alphabets and their asymptotics.

In IEEE International Symposium on Information Theory (ISIT) 2012, pages 2571–2575, 2012.
20. T. Laarhoven. Efficient probabilistic group testing based on traitor tracing. In 51st Allerton Conference on

Communication, Control and Computing, pages 1458–1465, 2013.
21. T. Laarhoven. Asymptotics of fingerprinting and group testing: Tight bounds from channel capacities. http:

//arxiv.org/abs/1404.2576, 2014.

18

22. T. Laarhoven. Capacities and capacity-achieving decoders for various fingerprinting games. In ACM Informa-
tion Hiding and Multimedia Security Workshop (IH&MMSec) 2014, pages 123–134, 2014.

23. T. Laarhoven and B. de Weger. Optimal symmetric Tardos traitor tracing schemes. Designs, Codes and
Cryptography, pages 1–21, 2012.

24. P. Meerwald and T. Furon. Group testing meets traitor tracing. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) 2011, pages 4204–4207, 2011.

25. P. Meerwald and T. Furon. Towards Joint Tardos Decoding: The ‘Don Quixote’ Algorithm. In Information
Hiding 2011, pages 28–42, 2011.

26. P. Meerwald and T. Furon. Toward Practical Joint Decoding of Binary Tardos Fingerprinting Codes. IEEE
Transactions on Information Forensics and Security, 7(4):1168–1180, 2012.

27. P. Moulin. Universal fingerprinting: Capacity and random-coding exponents. In Preprint arXiv:0801.3837v2,
2008.

28. J. Neyman and E.S. Pearson. On the problem of the most efficient tests of statistical hypotheses. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 231:694–706, 1933.

29. K. Nuida. Short collusion-secure fingerprint codes against three pirates. In Information Hiding 2010, volume
6387 of LNCS, pages 86–102. Springer, 2010.

30. K. Nuida, S. Fujitsu, M. Hagiwara, T. Kitagawa, H. Watanabe, K. Ogawa, and H. Imai. An improvement of
discrete Tardos fingerprinting codes. Designs, Codes, and Cryptography, 52(3):339–362, 2009.

31. J.-J. Oosterwijk, B. Škorić, and J. Doumen. Optimal suspicion functions for Tardos traitor tracing schemes. In
ACM Information Hiding and Multimedia Security Workshop (IH&MMSec) 2013, pages 19–28, 2013.

32. A. Simone and B. Škorić. Asymptotically false-positive-maximizing attack on non-binary Tardos codes. In
Information Hiding 2011, pages 14–27, 2011.

33. A. Simone and B. Škorić. Accusation probabilities in Tardos codes: beyond the Gaussian approximation.
Designs, Codes and Cryptography, 63(3):379–412, 2012.

34. A. Simone and B. Škorić. False Positive probabilities in q-ary Tardos codes: comparison of attacks. Designs,
Codes and Cryptography, Feb 2014.

35. A. Somekh-Baruch and N. Merhav. On the capacity game of private fingerprinting systems under collusion
attacks. IEEE Transactions on Information Theory, 51(3):884–899, 2005.

36. D.R. Stinson, T. van Trung, and R. Wei. Secure frameproof codes, key distribution patterns, group testing
algorithms and related structures. Journal of Statistical Planning and Inference, 86(2):595–617, 2000.

37. G. Tardos. Optimal probabilistic fingerprint codes. In ACM Symposium on Theory of Computing (STOC)
2003, pages 116–125, 2003.

38. G. Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2):1–24, 2008.
39. B. Škorić, S. Katzenbeisser, and M.U. Celik. Symmetric Tardos fingerprinting codes for arbitrary alphabet

sizes. Designs, Codes and Cryptography, 46(2):137–166, 2008.
40. B. Škorić, S. Katzenbeisser, H.G. Schaathun, and M.U. Celik. Tardos Fingerprinting Codes in the Combined

Digit Model. IEEE Transactions on Information Forensics and Security, 6(3):906–919, 2011.
41. B. Škorić and J.-J. Oosterwijk. Binary and q-ary Tardos codes, revisited. Designs, Codes, and Cryptography,

July 2013.
42. B. Škorić, T.U. Vladimirova, M.U. Celik, and J.C. Talstra. Tardos Fingerprinting is Better Than We Thought.

IEEE Transactions on Information Theory, 54(8):3663–3676, 2008.
43. F. Xie, T. Furon, and C. Fontaine. On-off keying modulation and Tardos fingerprinting. In Multimedia &

Security (MM&Sec) 2008, pages 101–106. ACM, 2008.

