
Precise Fault-Injections using Voltage and Temperature
Manipulation for Differential Cryptanalysis

Raghavan Kumar$, Philipp Jovanovice and Ilia Poliane
$University of Massachusetts, 01002 USA
eUniversity of Passau, 94032, Germany

rkumar@ecs.umass.edu, {philipp.jovanovic|ilia.polian}@uni-passau.de

Abstract—State-of-the-art fault-based cryptanalysis methods
are capable of breaking most recent ciphers after only a few
fault injections. However, they require temporal and spatial
accuracies of fault injection that were believed to rule out low-cost
injection techniques such as voltage, frequency or temperature
manipulation. We investigate selection of supply-voltage and
temperature values that are suitable for high-precision fault
injection even up to a single bit. The object of our studies is
an ASIC implementation of the recently presented block cipher
PRINCE, for which a two-stage fault attack scheme has been
suggested lately. This attack requires, on average, about four
to five fault injections in well-defined locations. We show by
electrical simulations that voltage-temperature points exist for
which faults show up at locations required for a successful attack
with a likelihood of around 0.1%. This implies that the complete
attack can be mounted by approximately 4,000 to 5,000 fault
injection attempts, which is clearly feasible.

I. INTRODUCTION

Fault-based cryptanalysis is an effective technique to ex-
tract the secret information from cryptographic devices [1], [2].
A number of highly effective fault-based attacks on classical
and new ciphers have been recently introduced [3]–[7]. This
latest generation of attacks is able to recover the secret key
using a very low number of fault injections (one for AES-
128 [3] and LED-64 [4], three to four for PRESENT [6],
LED-128 [5] and PRINCE [5], [7]. The flip side of the coin
from the attacker’s point of view are the high requirements on
the precision of the fault injection: Values in specific registers
must be manipulated at an exactly known point in time, in
order to mount a successful attack. It is commonly believed
that such precision is achievable only using complex and
invasive injection techniques based on irradiation by intense
laser light [8].

Low-cost manipulation of clock frequency or power sup-
ply voltage (VDD) tends to result in fault effects that are
unpredictable and cannot be exploited for advanced attacks.
For example, lowering VDD will lead to failures because
the delay of some paths in the combinatorial logic of the
circuit will increase beyond the cycle time. However, the
paths that will fail when VDD is slightly reduced are typically
determined by process variations, ambient temperature and
power-supply noise and cannot be controlled. When VDD is
reduced significantly, a large number of paths will be delayed
and the failing registers will most likely not correspond to the
precise requirements of advanced fault-based attacks.

In this paper, we introduce a low-cost manipulation tech-
nique that can provide the accuracy that is sufficient to mount
last-generation fault-based attacks on hardware implemen-
tations of state-of-the-art ciphers. The technique combines

lowering VDD to the point when individual logic gates are
not able to switch with increasing ambient temperature. We
demonstrate that a small but significant percentage of such
fault injections (around 0.1%) are exploitable, that is, consis-
tent with the requirements of the fault attack. This percentage
is sufficient to make an attack practical. For example, if four
exploitable fault injections are required for successful recovery
of the key and every 1,000th injected fault is exploitable, a total
of about 4,000 fault injections are required, which is clearly a
feasible number.

The fundamental reason for the success of our fault-
injection technique is the existence of small-scale variations.
Exploitable faults typically require a fault effect in a given
location (e.g. a cell of a register) and the absence of fault
effects elsewhere in the circuit. By substantial lowering of
VDD, fault effects are induced on individual logic gates rather
than accumulated over entire paths. The fault is exploitable if
the desired location is flipped before other gates. The first gate
that will flip is determined by random variations, and varying
the temperature further increases the chance that one of the
desired locations will be flipped in one of the fault injection
runs.

We demonstrate our technique for a very new fault-
based attack [5], [7] on the recently introduced block cipher
PRINCE [9]. The attack requires a variable number of fault
injections in rounds 8 and 9 of the PRINCE cipher. Each
exploitable fault injection reduces the number of secret key
candidates, and the exact number of required fault injections is
adaptively decided based on the reduction obtained so far. The
attack is successful, as soon as the number of remaining key
candidates becomes sufficiently small for brute-force search.

For our experiments, we developed an ASIC design of
PRINCE, which has comparable characteristics to the reference
implementation in [9]. We implemented both a combinatorial
and a sequential design of the cipher, as they have different
fault injection statistics. The sequential design shows higher
percentage of exploitable faults than the combinatorial design
due to the presence of precise timing for fault injection. We
perform technology-aware full-chip simulation for selected
values of power-supply voltage and temperature. The outputs
of the faulty circuit are handed over to a software routine that
implements the cryptanalysis and ultimately recovers the secret
key if the fault was exploitable. We investigate the probability
of exploitable faults and validate, that the software routine
indeed calculates the correct secret key from the responses
of the simulated circuit.

The remainder of the paper is organized as follows. Sec-
tion II provides some background information on attacks on
cryptographic blocks. Our voltage and temperature based fault

injection techniques on cryptographic hardware are presented
in Section III. Experimental results of fault-based attacks on
PRINCE are shown in Section IV. Finally, the concluding
remarks are discussed in Section V.

II. BACKGROUND

Cryptanalysis is the science of analyzing cryptographic
primitives with the aim to measure their level of security. A
sub-field of cryptanalysis is the so-called implementation at-
tacks, which target concrete implementations of cryptographic
primitives (e.g. on an FPGA, ASIC or micro-controller) and
consider additional implementation dependent information.
Those attacks can be further divided into active and passive
categories.

Passive attacks predominantly use some side-channel leak-
age information for cryptanalysis purposes. Possible side-
channel techniques include timing [10], power consumption
[11], EM (electromagnetic) noise [12] etc. Most of the side-
channel attacks are based on some statistical analysis over
the data obtained from physical measurements. For example,
a simple timing based attack involves monitoring the data
movement in the cryptographic hardware. By observing the
duration that the hardware takes to perform cryptographic
operations, an attacker might be able to obtain the whole or
parts of the secret key.

In active attacks, such as fault-based attacks, the adver-
sary manipulates the operation of a cryptographic circuit. By
injecting faults, it is often possible to reconstruct the key by
performing differential cryptanalysis on the observed outputs
[13]. Fault injection can be either transient or permanent
[2]. Transient faults are more practical than permanent faults,
as they are flexible and repeatable. They can be injected
through various methods: Voltage manipulation [14], [15],
clock frequency manipulation [16], laser and EM-induced
faults [17], etc. Among these methods, voltage and clock
frequency manipulation are low-cost and do not require sophis-
ticated equipment unlike laser- and EM-based fault injection.
However, the precision of injected faults is low in voltage and
frequency manipulation and may require fault injection over
an extended period of time to get the desired faults.

Voltage manipulation based attacks can involve either in-
troducing a well-timed glitch into the power supply or under-
powering the device. Glitch based fault injection alters the
state of the latches or flip-flops, thereby affecting the control
and data path logic of the circuit. A successful attack on a
RSA implementation using this technique was proposed in
[18] and a similar attack on AES implemented in an SRAM
based FPGA was demonstrated in [19]. In under-powering
attacks, the propagation delays of some combinatorial gates
may increase and lead to timing errors. This can cause a
flip-flop to capture the erroneous value. One such attack to
break a smart card implementation of AES was shown in
[20]. Most of the fault-based attacks do not demonstrate very
high-precision fault injection depending on the cryptanalysis
in effect. However, we demonstrate that very high precision
fault-injection is possible through voltage and temperature
manipulation, as required by some of the block ciphers such as
PRINCE. There are several techniques and emulators available
to test and simulate the transient faults injected into secure
circuits [21], [22].

As described in [23], fault-based attacks are based on
assumptions about an attacker’s capability (also known as fault
model), which defines the spatial and temporal resolution of
fault injections. Temporal resolution refers to the ability of
an attacker to inject fault(s) into a circuit at a specific point
of time (in terms of clock cycle), whereas spatial resolution
identifies the capacity to inject fault(s) in the desired location
of the circuit. Most of the published fault-based attacks require
injection of faults at a specific location of the circuit. For
example, the multi-stage attack framework used to attack
PRINCE [5] requires fault injections in the 8th and 9th rounds
(temporal resolution). Also, the faults must be confined to a
single nibble of the 64-bit state (spatial resolution). The spatial
and temporal resolutions vary with attacks and the vulnerable
locations of a cryptographic circuit.

III. FAULT INJECTION TECHNIQUES ON CRYPTOGRAPHIC
HARDWARE

In this section, we describe fault injection in cryptographic
hardware using voltage and temperature manipulation. We use
the block cipher PRINCE [9] as a target, to demonstrate the
technique. First, we begin with the description of PRINCE.
Then we introduce voltage and temperature manipulations
based fault injection in PRINCE and show the statistics of the
induced faults. Finally, we also show the multi-stage attack
framework, adapted to PRINCE, which is able to reconstruct
key candidates using the results of our fault injections for
differential cryptanalysis.

p

k0 k1

RC0

R1

k1

RC1

. . . R5

k1

RC5

S M’ S-1 R-1
6

k1

RC6

. . . R-1
10

k1

RC10RC11

k1 k2

c

MS

RCi k1

M-1 S-1

RCjk1

Fig. 1. Layout of PRINCE.

A. Specification of PRINCE

PRINCE takes as input a 64-bit plain-text p and a 128-bit
secret key k, that consists of two 64-bit sub-keys k0 and k1,
with k = k0 ‖ k1 and computes from these a 64-bit cipher-text
c. This process is outlined in Figure 1. The encryption (and
likewise decryption) of PRINCE can be roughly divided into
five phases: Input whitening (with keys k0 and k1), application
of the round functions R1 to R5, a middle layer, application
of the inverse round functions R−16 to R−110 , and finally output
whitening (with keys k1 and k2 := (k0 ≫ 1)⊕(k0 � 63)). In
the following we provide some details on the particular phases.

After the initial state has been loaded with p, the keys k0
and k1 and the round constant RC0 are XORed onto the state.
For more information on the round constants, see [9]. Then the
round functions Ri, with 1 ≤ i ≤ 5, are applied, which consist
of four operations each: First the 16 nibbles (4-bit words) of
the state are substituted using a 4-bit SBox S. The SBox is the
only non-linear operation in PRINCE. It is required to prevent
an adversary from modeling the primitive as a system of linear
equations and then solving it for the key bits, thereby breaking
the cipher. The next operation is the multiplication of the state

by a 64× 64 binary matrix M , which accomplishes diffusion
on bit-level. The last two operations consist of addition of
the round constant RCi and the key k1. Details on the SBox
S, diffusion matrix M and round constant RCi can be found
in [9].

The middle layer consists of the application of the SBox
S, followed by the multiplication of a 64 × 64 binary matrix
M ′ (6=M) and finally by the application of the inverse SBox
S−1. Details on the matrix M ′ can be found in the specification
of PRINCE. In the next phase the inverse round functions R−1i ,
with 6 ≤ i ≤ 10, are applied. Basically each of those consists
of the inverse operations as done in the normal rounds, applied
in reversed order: First the key k1 is XORed to the state,
followed by a round constant RCi. Then the inverse diffusion
matrix M−1 and the inverse SBox S−1 are applied to the state.

Once all inverse rounds are processed, the final round
constant RC11 and the keys k1 and k2 are XORed to the state,
which ultimately results in the 64-bit cipher-text c. Again more
details on the round constants RC6, . . . , RC11 can be retrieved
from the specification document of PRINCE.

B. ASIC Implementation of PRINCE

We designed an ASIC that implements the PRINCE func-
tion using the 45nm Nangate Open Cell Library. The circuit
is combinatorial and performs one full encryption per clock
cycle. Its gate count is 8,320 and its power dissipation was
estimated as 41.2 mW, compared to a gate count of 8,260 and
a power consumption of 38.5 mW of the reference implemen-
tation. For obtaining the fault injection statistics shown in this
section, we performed full electrical-level simulation over 40
different instances of PRINCE using NanoSimTM. To generate
different instances, process variations in terms of threshold
voltage variations were assigned from a Gaussian distribution
with 3σ deviation of 150mV in order to be consistent with
ITRS specifications [24].

C. Voltage & Temperature Manipulation Based Fault Injection

To inject faults in PRINCE, we consider low cost tech-
niques like voltage and temperature manipulation [2]. In [2] the
cost of fault injection using the above techniques is identified
to be less than $3,000. For fault injection, we varied the supply
voltage in terms of 2mV (although more fine tuning is possible
[14]) and temperature by 5◦. We assume the ideal values for
supply voltage and temperature to be 1.1V and 25◦ in all
computations.

We investigated the impact of under-powering the device
implementing the PRINCE circuit. As the supply voltage is
reduced, transient faults are injected into the circuit ranging
from single to multiple bit faults based on the voltage reduc-
tion. As the faults are transient in nature, the attacker can
perform the computation again with varied settings when the
required faults are not injected. The number of correct and
faulty computations in PRINCE with different Vdd values is
shown in Figure 2. There exists a point at which the probability
of faulty and correct computations is same. Below this point,
the probability of faulty computation increases with reducing
Vdd and multiple faults may be injected. We performed this
experiment at various temperatures and observed an increase
in faulty computation probability at high temperatures. For the

 0

 20

 40

 60

 80

 100

 880 885 890 895 900 905 910

P
ro

b
a

b
il

it
y

Vdd(mV)

Correct - 25°

Correct - 40°

Faulty - 25°

Faulty - 40°

Fig. 2. Percentage of correct and faulty computations as a function of Vdd

and temperature

sake of brevity, we show the probabilities of faulty and correct
computations for two different temperatures (25◦ and 40◦). We
can also infer that more faults can be injected at slightly higher
supply voltages by increasing the temperature from Figure 2.

The multi-stage attack framework for PRINCE [5] requires
that the faults are confined to a single nibble. Therefore,
we evaluated the interval of supply voltage over which the
required faults are injected to the circuit. The distributions of
fault injection in a nibble as a function of supply voltage for
three different temperatures (25◦, 35◦ and 45◦) are shown in
Figure 3. Note that the supply voltage interval shrinks with
increasing temperature, as the faults are likely to be injected in
multiple bits of a nibble at high temperatures. However, beyond
certain temperature, the faults spread to multiple nibbles and
they are not exploitable in our attack. Through simulations,
we observed a rapid increase of the likelihood for faults in
multiple nibbles with temperatures beyond 60◦.

Given that there exist successful supply voltage and tem-
perature points for fault injection, we analyzed further fault
injection statistics in PRINCE. The probability of fault injec-
tion in the state over various rounds in PRINCE is shown in
Figure 4. We can observe that the fault injection is uniformly
distributed over all the rounds. Figure 5 shows the distribution
of the number of faulty nibbles in the 64-bit state of PRINCE.
It can be observed that the probability of fault injection over all

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 880 885 890 895 900

P
er

ce
n

ta
g

e
o

f
in

je
ct

ed
 f

a
u

lt
s

Vdd(mV)

25°

35°

45°

Fig. 3. Percentage of injected faults in a nibble as a function of Vdd and
temperature

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8 9 10

P
e
r
c
e
n

ta
g
e
 o

f
fa

u
lt

s

Round index

Fig. 4. Percentage of injected faults per round in PRINCE

 0

 5

 10

 15

 20

 25

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

P
er

ce
n

ta
g

e
o

f
fa

u
lt

s

Number of faulty nibbles

Fig. 5. Percentage of injected faults as a function of number of faulty nibbles

the nibbles is higher than the fault injection in reduced number
of nibbles. The fault injection in a single nibble happens with
the lowest probability over the supply voltage and temperature
interval shown in Figure 3. By observing Figures 4 and 5, the
probability of exploitable faults as required by the multi-stage
attack framework can be estimated. As the faults in rounds
8 and 9 are exploitable, the probability of successful fault
injection is around 0.1% (= 2×0.005×0.1, where 0.005 is the
percentage of single-nibble faults from Figure 5 and 0.1 is the
percentage of faults in nibble 8 or 9 among these faults, as seen
in Figure 4). If a fault is not exploitable, the cryptanalysis will
not yield the correct secret key as the solution, and the attacker
will have to perform further fault injections. This means that
around 1000 fault injections are required to get one exploitable
fault. Please note that the total fault injections required to
get a single exploitable fault might require different voltage
and temperature points within the interval shown in Figure 3.
We also evaluated the percentage of fault injection in a single
nibble and the statistics are shown in Figure 6. The probability
of 4-bit errors in a nibble was found to be higher than 3-, 2-,
or 1-bit errors. It is important to note that even 4-bit errors in
a nibble are useful from our attack perspective.

 0

 10

 20

 30

 40

 50

 60

4 3 2 1

P
e
r
c
e
n

ta
g
e
 o

f
fa

u
lt

s

Number of faulty bits in a nibble

Fig. 6. Percentage of faulty bits in a nibble

 0

 2

 4

 6

 8

 10

 12

 14

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

P
er

ce
n

ta
g

e
o

f
fa

u
lt

s

Number of faulty nibbles

Fig. 7. Percentage of injected faults as a function of number of nibbles in a
sequential design

D. Fault Injection in Sequential Implementations

All the discussions above are for a combinatorial design
of PRINCE. But, it is interesting to analyze the fault injection
statistics in a sequential cipher. As it is feasible to under-power
the device over a particular clock cycle, the percentage of
exploitable faults can be increased. To analyze this effect, we
implemented a sequential design of PRINCE using the same
Nangate 45nm library. The sequential design takes one clock
cycle for every round and hence one encryption/decryption
takes 10 clock cycles. Although the number of clock cycles is
higher, the frequency of operation is much higher (∼ 1.7GHz)
when compared to the combinatorial design (∼ 150MHz).

Figure 7 shows the percentage of injected faults as a func-
tion of the number of nibbles of the 64-bit state. The statistics
correspond to both rounds 8 and 9, as faults in those rounds are
exploitable for our framework. As switching the supply-voltage
takes a considerable amount of time (for example switching
the supply voltage by ± 0.1V takes about 20ns [25]), some
faults are injected into rounds 8 and 9 simultaneously. Such
double faults are not exploitable by our framework and hence
those faults are discarded. From Figure 7, we can infer that
the percentage of such exploitable faults is about 2.5%, which
is substantially higher than for the combinatorial design.

E. Multi-Stage Fault Attack

The fault attack used here for validation of the fault-
injection technique was introduced in [5], [7]. While details
can be found in these publications, this section focuses on its
generic principles that are necessary for understanding how the
fault injection interacts with the mathematical analysis.

Before we describe the structure of the attack we want to
remark that the secret key k = k0 ‖ k1 and the derived key
k2 are used internally during encryption, but are not directly
observable by the attacker. In other words, the implementation
is treated as a black-box, where only in- and outputs can be
observed and recorded. Additionally, we allow an attacker to
inject faults during a query to the black-box, as described in
Sections III-C and III-D, in order to obtain the faulty cipher-
texts. The purpose of the attack is to reconstruct the values for
k from the retrieved in- and (faulty) outputs.

In the beginning the adversary queries the black-box to
encrypt a plain-text p, and records the resulting cipher-text

c. Then, the encryption is repeated while a fault (a physical
disturbance) is injected during the calculation. The faulty
cipher-text c′ is observed at the output and recorded. During
cryptanalysis the relation between c and c′ is used to restrict
the number of key candidates. Each additional fault injection
restricts the number of key candidates even further. Once the
number of remaining key candidates falls below a certain
threshold (e. g., 225), an exhaustive search over the remaining
keys is performed using the PRINCE circuit and a recorded
plain-text, cipher-text pair (p, c) with the aim to determine the
correct key k.

It is important that the attack assumes a mathematical
model of fault injection that is, in general, not electrically
accurate. The attack discussed here requires a fault that affects
one of the 16 four-bit nibbles of a particular state in the
PRINCE circuit whereas no further faults occur in any other
nibble of that state nor in any other state. This is not necessarily
consistent with the effects of manipulating supply voltage
and/or temperature: they may lead to faults in multiple nibbles
simultaneously. Such faults are not exploitable for the attack.
We show by simulations that a sufficiently high percentage of
faults are exploitable.

The attack on PRINCE is organized in two stages. In stage
0, the expression (k1 ⊕ k2) is treated as the secret key and a
small number of candidates for (k1 ⊕ k2) are generated. For
this purpose, a fault is injected into the state in the beginning of
round R−19 . Let this state be s9 in the fault-free circuit and s′9 in
the fault-affected circuit. Note that the attacker cannot observe
s9 nor s′9, yet if the fault is exploitable, then the Boolean
difference (s9 ⊕ s′9) must equal the injected fault f , with 1-
bits of f restricted to one nibble, according to the assumptions
on the fault injection.

While applying operations from rounds R−19 and R−110
perturbs the states s9 and s′9 in an unpredictable way, some
properties of the difference of these states can be derived.
For example, the first operations applied to s9 and s′9 are
XORs with k1 (unknown to the attacker) and RC6 (known
to the attacker). Since neither k1 nor RC6 are affected by
fault injection, the Boolean difference of the fault-free and
the faulty states after the XOR operation will perfectly match
the prior difference f . More complex propagation rules have
been derived for other operations (M−1 and S−1), see [5].
Using these rules, equations that describe the difference of
states s10 and s′10 before the SBox application in round R−110
are generated.

The restriction of the set of key candidates is achieved
by matching the Boolean difference s10 ⊕ s′10 described by
the above-mentioned equations with the Boolean difference
between the same states calculated backwards from the circuit
outputs. Since c is the observed fault-free cipher-text, the
correct state s10 is given by s10 = S(c⊕k2⊕k1⊕RC11). Here,
c and RC11 are known to the attacker and S is the inverse of
the last SBox S−1 of round R−110 . Similarly, the fault-affected
state is s′10 = S(c′ ⊕ k2 ⊕ k1 ⊕ RC11). The resulting system
of equations s10⊕s′10 = S(c⊕k2⊕k1⊕RC11)⊕S(c′⊕k2⊕
k1 ⊕ RC11) restricts possible values of (k1 ⊕ k2). A further
fault injection would result in a different faulty cipher-text c′′
and a smaller set of key candidates.

The second stage of the attack is applied for every (k1⊕k2)

candidate determined in the first stage. It aims at determining
the sub-key k1 based on the fault injection in the beginning of
round R−18 . Let s̃8 denote the fault-free state and s̃′8 denote the
faulty state in that position, and let s̃9 and s̃′9 denote the fault-
free and faulty states before the SBox in round R−19 , respec-
tively. Similarly to the first stage, the Boolean difference e =
s̃8⊕ s̃′8 is propagated to yield equations that describe (s̃9⊕ s̃′9).
Let the fault-free cipher-text be c̃ and the faulty cipher-text be
c̃′. Since (k1⊕k2) is fixed, the fault-free state s̃10 directly after
the XOR operation with k1 in round R−110 is obtained by s̃10 =
RC10⊕M(S(RC11⊕(k1⊕k2)⊕ c̃)). The corresponding fault-
affected state is s̃′10 = RC10⊕M(S(RC11⊕ (k1⊕ k2)⊕ c̃′)).
By further backwards propagation, the system of equations
(s̃9⊕ s̃′9) = S(k1⊕ s̃10)⊕S(k1⊕ s̃′10) is obtained and can be
used to restrict the key candidate set for k1.

IV. EXPERIMENTAL RESULTS

In this part we report on the experimental results of the
differential fault analysis of PRINCE using our proposed
voltage and temperature based fault injection techniques. The
analysis was executed on a workstation with an AMD Opteron
Processor 6172 operating at 2.1 GHz. The attack was exe-
cuted 10000 times, in each case on a data set of 10 triples
(C,C ′, C ′′) where C denotes the correct and C ′ and C ′′

the faulty cipher-texts of stage 0 and 1, respectively. The
cipher-texts were generated from plain-texts and keys chosen
uniformly at random, but the key remained fixed for each set of
10 triples. To generate faulty cipher-texts, full electrical-level
simulation was performed under the required supply voltage
and temperature points using Nanosim. Table I summarizes the
results of the attack and shows that on average between 4 and
5 faults are necessary to successfully reconstruct the 128-bit
key.

TABLE I. OVERVIEW ON THE NUMBER OF REQUIRED FAULTS

Stage Min Max Avg Median

0 2 3 2.06 2.0
1 2 10 2.85 3.0

Total 4 13 4.91 5.0

We modified the thresholds for the Multi-Stage Fault
Attack algorithm to rather low values: 212, for stage 0 and
216 for stage 1. In general, higher thresholds lead to less
required fault injections but increase the complexity of sub-
sequent post-processing. Fault injections based on voltage and
temperature modifications are very cheap, thus we decided to
use low threshold values to improve the running time of the
cryptanalysis algorithm. The downside of these low thresholds
is, that we require, on average, one more fault injection as
compared to [5]. With this configuration, the run time of post-
processing (implemented in Python, with no parallelization)
was around 11 seconds.

We also analyzed the distributions of the number of re-
maining keys after one and two fault injections and compared
them to the theoretical results. Note that the fault injections
mentioned here in the context of cryptanalysis refer to ex-
ploitable faults, each of which requires several (around 1,000)
fault injections as explained above. The distributions are shown
in Figure 8. The upper diagram shows the results for stage 0
and the lower for stage 1. The x-axis denotes the logarithms
with respect to base 2 of the number of key candidates and

the y-axis shows the (rounded) rate how often a particular
number of key candidates occurred. There are cases where
much more faults (up to 10) are required, but 2 faults were
the minimum for every instance. As every exploitable fault
requires a reasonable number, around 1,000 fault injections, a
complete attack using 4 – 5 exploitable faults is feasible.

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

ra
te

1 Fault
2 Faults

0 5 10 15 20 25 30 35 40 45

log2 (#keys)

0

500

1000

1500

2000

2500

3000

3500

ra
te

1 Fault
2 Faults

Fig. 8. Analysis results for stage 0 (upper) and 1 (lower)

V. CONCLUSION

We demonstrated that low-cost voltage and temperature
manipulations can be used for high-precision fault injection
required to break recent ciphers. The attack requires significant
lowering of Vdd and is thus detectable by a sensor that monitors
the integrity of the power supply. Moreover, several thousands
encryptions are required for a successful attack. While this
is feasible, some applications may regularly exchange the
secret key. This would be an effective (though not perfect)
countermeasure if the number of encryptions between key
exchanges are small, e. g., less than 1,000. In circuits without
Vdd integrity sensor and secret key exchange, the attack is
highly effective and can be mounted using cost-effective equip-
ment. We showed that the PRINCE cipher requires around
5 exploitable fault injections, which translates to roughly
5,000 total fault injections, for key recovery. The approach
is easy to generalize to other lightweight ciphers. Since their
circuit implementations are comparable in size to PRINCE,
and attack schemes with same or lower number of required
fault injections are known for them, similar complexity can be
expected for a successful attack.

REFERENCES

[1] D. Boneh, R. DeMillo, and R. Lipton, “On the Importance of Elimina-
tion Errors in Cryptographic Computations,” Jour. Cryptology, vol. 14,
pp. 101–119, 2001.

[2] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault Injection
Attacks on Cryptographic Devices: Theory, Practice and Countermea-
sures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, 2012.

[3] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential Fault Analysis
of the Advanced Encryption Standard Using a Single Fault,” in Infor-
mation Security Theory and Practice. Security and Privacy of Mobile
Devices in Wireless Communication, ser. LNCS, vol. 6633, 2011, pp.
224–233.

[4] P. Jovanovic, M. Kreuzer, and I. Polian, “A Fault Attack on the LED
Block Cipher,” in COSADE, ser. LNCS, W. Schindler and S. Huss, Eds.,
vol. 7275. Springer Berlin Heidelberg, 2012, pp. 120–134.

[5] P. Jovanovic, M. Kreuzer, and I. Polian, “Multi-Stage Fault Attacks on
Block Ciphers,” Cryptology ePrint Archive, Report 2013/778, 2013.

[6] N. Bagheri, R. Ebrahimpour, and N. Ghaedi, “New Differential Fault
Analysis of PRESENT,” EURASIP Journal on Advances in Signal
Processing, vol. 2013, no. 1, pp. 1–10, 2013.

[7] L. Song and L. Hu, “Differential Fault Attack on the PRINCE Block
Cipher,” Cryptology ePrint Archive, Report 2013/043, 2013.

[8] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
Sorcerers Apprentice Guide to Fault Attacks,” Proceedings of the IEEE,
vol. 94, no. 2, pp. 370–382, 2006.

[9] J. Borghoff et al., “PRINCE – A Low-Latency Block Cipher for
Pervasive Computing Applications,” in Advances in Cryptology – ASI-
ACRYPT 2012, ser. LNCS, X. Wang and K. Sako, Eds., vol. 7658.
Springer Berlin Heidelberg, 2012, pp. 208–225.

[10] P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems,” in Advances in Cryptology CRYPTO 96.
Springer Berlin Heidelberg, 1996, vol. 1109, pp. 104–113.

[11] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology CRYPTO 99, ser. Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 1999, vol. 1666, pp. 388–397.

[12] D. Agrawal, B. Archambeault, J. Rao, and P. Rohatgi, “The EM
sidechannel(s),” in Cryptographic Hardware and Embedded Systems,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2003, vol. 2523, pp. 29–45.

[13] R. Leveugle, “Early analysis of fault-based attack effects in secure
circuits,” IEEE Transactions on Computers, vol. 56, no. 10, pp. 1431–
1434, 2007.

[14] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low voltage fault
attacks on the RSA cryptosystem,” in Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2009 Workshop on, 2009, pp. 23–31.

[15] A. Barenghi, C. Hocquet, D. Bol, F.-X. Standaert, F. Regazzoni,
and I. Koren, “Exploring the feasibility of low cost fault injection
attacks on sub-threshold devices through an example of a 65nm AES
implementation,” in RFID. Security and Privacy, 2012, vol. 7055, pp.
48–60.

[16] F. Amiel, C. Clavier, and M. Tunstall, “Fault analysis of DPA-resistant
algorithms,” in Fault Diagnosis and Tolerance in Cryptography, ser.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006,
vol. 4236, pp. 223–236.

[17] J. marc Schmidt and M. Hutter, “Optical and EM fault-attacks on CRT-
based RSA: Concrete results,” pp. 61–67, 2007.

[18] J. Schmidt and C. Herbst, “A practical fault attack on square and
multiply,” in Fault Diagnosis and Tolerance in Cryptography, 2008.
FDTC ’08. 5th Workshop on, 2008, pp. 53–58.

[19] G. Canivet, P. Maistri, R. Leveugle, J. Cldire, F. Valette, and M. Re-
naudin, “Glitch and laser fault attacks onto a secure AES implementa-
tion on a SRAM-based FPGA,” Journal of Cryptology, vol. 24, no. 2,
pp. 247–268, 2011.

[20] N. Selmane, S. Guilley, and J.-L. Danger, “Practical setup time violation
attacks on AES,” in Dependable Computing Conference, 2008, pp. 91–
96.

[21] L. Antoni, R. Leveugle, and B. Feher, “Using run-time reconfiguration
for fault injection in hardware prototypes,” in IEEE Defect and Fault
Tolerance in VLSI Systems, 2000, pp. 405–413.

[22] C. Lopez-Ongil, M. Garcia-Valderas, M. Portela-Garcia, and L. Entrena,
“Autonomous fault emulation: A new FPGA-based acceleration system
for hardness evaluation,” IEEE Transactions on, vol. 54, no. 1, pp. 252–
261, 2007.

[23] I. Polian and M. Kreuzer, “Fault-based attacks on cryptographic
hardware,” in Design and Diagnostics of Electronic Circuits Systems
(DDECS), 2013, pp. 12–17.

[24] “International technology roadmap for semiconductor (ITRS),” 2006.
[25] W. Kim, M. S. Gupta, G. yeon Wei, and D. M. Brooks, “Enabling

OnChip Switching Regulators for Multi-Core Processors Using Current
Staggering,” in In Proceedings of the Work. on Architectural Support
for Gigascale Integration, 2007.

