Parametric Trojans for Fault-Injection Attacks on
Cryptographic Hardware

Raghavan Kumar®, Philipp J ovanovic€, Wayne Burleson® and Ilia Polian€
$University of Massachusetts Amherst, 01002, USA
€University of Passau, 94032, Germany
{rkumar|burleson } @ecs.umass.edu, {philipp.jovanovic|ilia.polian}@uni-passau.de

Abstract—We propose two extremely stealthy hardware
Trojans that facilitate fault-injection attacks in crypto-
graphic blocks. The Trojans are carefully inserted to
modify the electrical characteristics of predetermined
transistors in a circuit by altering parameters such as
doping concentration and dopant area. These Trojans are
activated with very low probability under the presence
of a slightly reduced supply voltage (0.001 for 20%
Vaq reduction). We demonstrate the effectiveness of the
Trojans by utilizing them to inject faults into an ASIC
implementation of the recently introduced lightweight
cipher PRINCE. Full circuit-level simulation followed by
differential cryptanalysis demonstrate that the secret key
can be reconstructed after around 5 fault-injections.

Keywords-fault-based fault

hardware Trojans

cryptanalysis, injection,

I. INTRODUCTION

Hardware Trojans are malicious modifications of a
circuit by an untrusted third-party manufacturer that aim
at manipulating its behavior in an undesired manner [1].
A Trojan may deactivate the circuit (denial-of-service),
change its functionality, or establish a hidden side chan-
nel through which protected secret information processed
by the circuit is leaked. Trojans may be activated by
external events (e. g., applying a specific combination
of logic values to the circuit inputs) or internal events
(for instance, a counter reaching a certain value). In
general, Trojans are designed to be stealthy, that is, to
escape detection by methods such as testing [2], optical
inspection [3] or side-channel analysis [1].

In this paper, we introduce two types of Trojans
that are optimized for fault-based attacks on circuits
that implement cryptographic functions. In the course
of a fault-based attack [4], physical disturbances are
introduced into the circuit when it runs the cryptographic
algorithm. The fault-affected output values are collected,
and differential cryptanalysis is used to derive the secret
key. Recently, a number of highly efficient attacks on

state-of-the-art ciphers including AES [5], LED [6], [7],
PRESENT [8] and PRINCE [7], [9] have been reported.
These attacks need a small number of fault injections
(1 for AES and LED64, around 3-4 for LED128 and
PRINCE) for successful key recovery. However, fault
injection must be precise: both the location and the time
of the disturbance have to be well-controlled. Low-cost
fault-injection techniques like Vyq reduction or clock
manipulation do not achieve the required accuracy, while
highly precise methods such as pinpointed irradiation of
desired fault sites by intensive laser light are difficult to
perform and require costly equipment [10].

We call the Trojans introduced in this work
MAnufacturing-Process-LEvel Trojans, or MAPLE Tro-
jans. They are based on manipulating the voltage-transfer
characteristics (VTC) of a specific gate in the circuit
by changing the doping concentration or reducing the
dopant area within the active area of its transistors. The
idea of dopant-level Trojans was recently introduced in
[11] and used to manipulate both the functionality and
the non-functional properties of the affected gates and
memory elements. Our MAPLE Trojans inherit some
properties of the Trojan from [11]; in particular, the
layout of the circuit is not changed and the Trojans
are nearly impossible to detect by optical inspection.
However, the Trojans in [11] resulted in a deterministic
change of the affected gate’s function, similar to the
effect of a stuck-at fault, and can be detected by testing.'
In contrast, our Trojans only slightly shift the Vi,-Vout
characteristic of the gate. The resulting faults are rare and
therefore highly unlikely to be detected during testing,
while at the same time sufficient for a successful fault-
based attack.

We demonstrate the fault-based attack on the recent

'The circuit investigated in [11] was equipped with a self-test
mechanism, which was circumvented by forging the expected sig-
nature; this approach would not work for regular testing.

lightweight cipher PRINCE [12]. The attack [7] works
in multiple stages and requires two or three fault injec-
tions into the 8™ round (out of 10) and several further
(between 2 and 11, roughly 3 on average) fault injections
into the 9*" round of PRINCE. In order to be exploitable
for the attack, the injected faults must adhere to several
conditions, and the faults in the 8" and the 9'" round
may not be present at the same time. MAPLE Trojans are
applied to three inverters that belong to the 8" round of
PRINCE and three further inverters from the 9*" round.
Trojans are activated by a slight reduction of V4, with
the probability of activation being around 10~° for 10%
reduction and around 10~2 for 20% reduction.

The multi-stage attack is particularly challenging for
the MAPLE Trojan insertion because a fault may be
injected in the 8' and in the 9*" round at the same
time and such double faults are not exploitable. We
demonstrate the feasibility of the attack using both a
combinational (one clock cycle per encryption) and a se-
quential (one cycle per round, 10 cycles per encryption)
implementation of the circuit. We simulate the PRINCE
circuit incorporating the manipulated six inverters on
electrical level and hand the observed outputs to a soft-
ware routine that performs the differential cryptanalysis
and derives the secret key. In the combinational circuit,
the percentage of exploitable faults is around 10%.
This means that around 10,000 to 1,000,000 encryptions
are sufficient to obtain an exploitable fault, depending
on the used amount of Vyq reduction. This is clearly
feasible as one encryption takes one clock cycle. In the
sequential implementation, the correlation is much lower,
the percentage of exploitable faults is higher but the
duration of one encryption is longer, so the overall effort
is comparable to the combinational case.

The remainder of the paper is organized as follows.
Background on Trojans is provided in the next section.
Section III provides details on the MAPLE Trojans.
The threat model, detectability methods and the possible
countermeasures are provided in section IV. Section V
explains the fault attack on the PRINCE circuit. Results
are reported in Section VI. Section VII concludes the

paper.
II. HARDWARE TROJANS AND THEIR DETECTION

Apart from register transfer level (RTL) modifications,
Trojans can also be inserted to an IC by the malicious
foundry. As the foundry doesn’t have access to the RTL
code, the modifications are made in the layout mask and
process level [11], [13]. The Trojans proposed in [13]
affect the reliability of CMOS circuits by accelerating

wear-out mechanisms such as Negative Bias Tempera-
ture Instability (NBTI) and Hot Carrier Injection (HCI)
effects. To insert the Trojans, the manufacturing process
conditions are slightly altered. The recently reported
layout-level Trojans in [11] involve modification of the
dopant polarities in the active-area of a transistor and
are extremely difficult to discover by functional testing.
By applying the Trojan to a random number generator
(RNG) from Intel, the authors demonstrate that the
entropy of the RNG can be reduced but in a way that is
not noticed by the on-chip self-test block.

Most of the hardware Trojans inserted into an IC
can be detected using either side-channel or activation
mechanisms [1]. As the Trojans typically have para-
metric effects on the circuit including changes in delay
and power consumption profile, they can be detected by
power- and timing-based side-channel analysis (SCA)
[2]. These techniques require comparison of the mod-
ified chip with a golden chip. So, the effectiveness of
these techniques are often affected by increasing process
variations in integrated circuits. An IC can have millions
of paths, which can make timing-based SCA impractical.
Another way to detect Trojans is by functional testing,
in which the Trojans are activated by test patterns. One
of the problems involved in functional testing is the
lack of information about the inserted Trojan, which
can increase the complexity involved in test pattern
generation.

ITI. MAPLE TROJANS

In this section, we present efficient techniques for
inserting Trojans to an IC to facilitate fault attacks. The
proposed hardware Trojans are based on the modification
of a logic gate’s electrical characteristics in such a way
that the metal, polysilicon layer and active area remain
unchanged. This is essential to render them hard to
detect by optical inspection, as changes in the above
mentioned layers can be detected reliably by inspection
[11]. To alter the gate’s electrical characteristics, we
exploit doping concentration and dopant area within the
active area of a transistor. As the proposed Trojans are
either in manufacturing level or layout-level and also
introduce changes in electrical characteristics, they fall
under the category of parametric Trojans [1]. We use an
inverter as the target logic gate to explain the proposed
Trojan insertion techniques.

A. Doping Concentration Manipulation

In this hardware Trojan insertion technique, the Vj,-
Vous or the voltage transfer characteristic (VTC) of the

target logic gate is modified by changing the doping
concentration in the channel region. The channel doping
concentration of the n-MOS and p-MOS transistors is
one of the major factors that determine the threshold
voltage of the transistors and therefore the VTC of
the logic gate. The malicious foundry could create a
Trojan gate, e.g., an inverter with a manipulated VTC, by
reducing the doping concentration. This is illustrated in
Figure 1. As shown in Figure 4, the threshold voltages
of the transistors in an inverter are increased and the
inverter exhibits a reduced voltage swing. This results
in a shift in switching threshold. We call this type of
gate modification TrojanConc and denote the switching
threshold of the Trojan gate by V},,. We define switching
threshold as the input voltage (Vi,) at which the output
voltage (Vout) is around 0.5 V, although TrojanConc
exhibits a reduced output voltage swing. The shift in Vi,
will have a significant impact on the gate being driven
by the Trojan as explained in section III-C.

p*implant
VSS VDD VSS VDD

n*implant

polysilicon
Oxide layer
Metal-1

1 n-well (original)

: n-well (Trojan)

(a) (b)

i1 p-substrate

Fig. 1. Cross-sectional view of (a) original inverter and (b) Trojan
inverter using doping concentration manipulation

B. Dopant Area Manipulation

A different Trojan inverter can be created by reducing
the dopant area within the active area of a transistor
[11]. This effectively weakens a transistor and pushes
the VTC towards the weakened transistor. For example,
by reducing the dopant area of the n-MOS transistor in
an inverter, a Trojan with a VTC shown in Figure 4 can
be created and we call this type of gate modification as
TrojanArea. A similar Trojan inverter can be created by
reducing the dopant area within the p-MOS transistor.
The layouts of the normal inverter and TrojanArea are
shown in Figure 3. The shift in switching voltage (V;,)
for TrojanArea is shown in Figure 4. In our analysis, we
observed that the maximum shift in V}, for the Trojans is
significantly higher than the shift observed due to process
variations (30 ~ 150 mV for 45 nm CMOS technology
[14]). The resulting VTCs with process variations (both
the maximum and minimum bounds) are shown in Fig-

ure 5. Note that the VTC of the Trojan is far from the
shifted VTCs due to process variations and hence the
faults induced into the circuit will be most likely from
the Trojans at slightly reduced V.

L
DD

I:] n-well
D p-well

Il polysilicon
Il contact
I Metal-1

p-implant
n-implant

r
L o Active area

Fig. 2. Layout of (a) original inverter and (b) Trojan inverter using
dopant polarity manipulation from [11]

D n-well
I:I p-well

Bl polysilicon
Hl Diffusion contact

Bl Metal-1

P implant

N implant

i i Active area

.....

YL

Vss
(a)

Fig. 3. Layout of (a) original inverter and (b) Trojan inverter using
dopant area manipulation

C. Trojan Activation

The proposed Trojans are activated in the presence
of slightly reduced supply voltage. If the supply voltage
is noisy enough, then the Trojan inverter will flip its
state, when the supply voltage crosses the switching
threshold. To ensure that only the Trojan gate flips
the state, the switching threshold of the Trojan should
be pushed far away from the original threshold. The
switching probability or trigger factor under various Vgq
of the Trojan inverters (TrojanConc and TrojanArea) is
shown in Figure 6. To compute the trigger factor, we

Vout

No Trojan e
TrojanCong === .
TrojanArea rreeees
Dopant Trojan[11] — -
0 P L : [] | 1 e LI
? % 4 4 4y
Vin
Fig. 4. Electrical characteristics of the unmodified and Trojan
inverters
1 uem————
~
\
] 1
0.8 \ |
B
a i
: !
0.6 i : |
% . “
> : ! \
0.4 o |‘ |
: i v
B v
. I v i
Maximum bound ---a---
0.2 Trojan ==== a
Nominal VTC s »
Minimum Bound A
0 L ! .

Fig. 5. Impact of process variations on Nominal VTC and the Trojan
VTC

model the noisy supply voltage as a Gaussian distribution
with a 30 deviation of =210% of the mean V4. We can
infer that the trigger factor is sufficiently low (< 107°)
when Vyq is reduced from its nominal value of 1 V to
0.9 V. This means that the Trojan inverter approximately
produces a faulty bit (bit-flip) with a probability of 1076.

Note that the activation of the MAPLE Trojans pro-
posed in this paper is fundamentally different from the
technique in [11], even though it works on process level.
The manipulation from [11] is based on a complete
change of dopant polarities and results in a “stuck-at”
behavior, that is, constant voltage at the inverter output
independent of the voltage at its input (see the Trojan in
Figure 2 and VTC in Figure 4). This behavior results in
deterministic fault injection which is detectable by func-
tional testing. In contrast, the MAPLE Trojans from this
section are activated stochastically, with low probability
controlled by the extent of manipulation (actual change
in dopant area or doping concentration). This allows fault
injection with a rate that is still sufficient for practical

100 F T T T T T
_ 10 - .
S i
= 1F §
g i
~—
'3 L
S 0.1 F E
9 i
&
&0 0.01 E
=
0.001 . 4
TrojanConc kY
I TrojanArea -------
0.0001 L L L
0.65 0.7 0.75 0.8 0.85 0.9 0.95
Vad

Fig. 6. Triggering factor of the Trojan inverters

cryptanalysis but makes the detection infeasible, as dis-
cussed in Section IV. Also, [11] discusses about Dopant-
area Trojans from side-channel perspective (reducing
dopant area within the active area of a transistor) and
we focus only on transient fault-injection rather than
a side-channel perspective. Conventional functional test
methods are based on the notion of fault coverage: a fault
that did not manifest itself during test is considered to be
absent from the circuit. This approach is not applicable in
case of non-deterministic faults which show up with low
probability, such as the faults due to MAPLE Trojans.
We are not aware of earlier Trojan insertion techniques
that employ probabilistic behavior to resist detection
while still being useful for an actual attack.

As the main objective of our Trojans is to facilitate
fault-based attacks in cryptographic circuits, we apply
the presented Trojan insertion techniques over a recently
introduced block cipher known as PRINCE [12]. The
details on fault injection and cryptanalysis are presented
in Section V. In the next section, we outline the threat
model and discuss possible countermeasures.

IV. THREAT MODEL AND COUNTERMEASURES

Like for any other Trojan, exploiting a MAPLE Trojan
involves two adversaries: the malicious manufacturer
who includes manipulated gates into the circuit, and
the actual attacker who triggers the MAPLE Trojan
in a manufactured instance of the circuit. These two
adversaries need not be the same physical person. The
malicious manufacturer may sell the information about
the introduced weakness to an attacker who would then,
for instance, recover the secret key from the device
using a technique such as the one described later in this
paper (Section V). Moreover, the manufacturer may be
approached by a governmental agency to provide “back-

doors” in security-relevant IP and could use MAPLE
Trojans to implement such backdoors. In the following
section, we outline the capabilities needed by the manu-
facturer and by the attacker to exploit MAPLE Trojans,
their detectability and countermeasures.

A. Threat Model

In order to manipulate gates using TrojanConc or
TrojanArea techniques, the malicious manufacturer has
to be able to use masks that deviate from the GDS II
layout files received from the circuit designer. This is
not a limitation, as most manufacturers perform optical
proximity correction and other post-processing in order
to improve the manufacturability of the circuit, and
these modifications are not communicated back to the
designer. Realizing TrojanArea requires a slight modifi-
cation of one mask and can be done in a very stealthy
way (only the engineer working with the mask will
know about the modification). Implementing TrojanConc
requires a substantial modification of dopant concentra-
tion. This is technically feasible: the doped areas of
the manipulated gates must undergo implanting for a
different amount of time than the doped area of all other
gates. The same approach is used to implement low-
Vt and high-Vt transistors within the same design, even
though the concentrations used for TrojanConc are far
outside the regular specifications (doping concentrations
have been reduced by 1000x for synthesizing the Trojan
in Figure 4). An additional set of masks and new process
steps which are not performed for a Trojan-free circuit
are needed to implement TrojanConc. Therefore, the
effort is more significant (though realistic), and more
employees will know about the manipulation.

State-of-the-art fault-injection attacks require precise
knowledge of the location of the fault, that is, the
manipulated logic gate(s). For example, in the case study
used later in this paper, six inverters known to be driving
specific state bits are manipulated while all other gates
are left untouched. In this paper, we follow Kerckhoff’s
principle, i.e. “the enemy knows the system”, which is
usually assumed in security analysis. In practice, the ma-
licious manufacturer may not have a functional gate-level
description of the circuit and will first have to find out the
location of the gate(s) to be manipulated within the GDS
II layout. This is a classical reverse-engineering problem
which can be solved given sufficient resources. The
circuit designer can complicate reverse-engineering by
using obfuscation techniques. In general, a manufacturer
who knows that the circuit must include a cryptographic
block should be able to locate characteristic structures

of such a block within the larger layout.

After the Trojan-affected circuit has been manufac-
tured, mounting the attack involves simply running the
circuit at a slightly lowered V4. As pointed out in
Section III-C, the Trojan will trigger with a rather low
probability of < 1076 for 10% Vg4 reduction. This
means that the operation has to be repeated several thou-
sand times until a fault-injection takes place. Therefore,
the attacker needs the capability to control the Vg4 and
to repeat the computation multiple times assuming that
the same secret key is used. These capabilities do not
require any non-trivial equipment or skills.

B. Detection

The key characteristic of the MAPLE Trojans is their
ultra-low detectability by all known means: functional
testing, side-channel analysis, and visual inspection. We
elaborate on the detectability aspects in detail.

1) Functional testing under nominal Vyq: Since the
Trojans are not activated under nominal Vg4, they cannot
be detected during regular post-manufacturing testing.

2) Functional testing under slightly reduced Vyq:
It appears promising to detect the Trojans under their
activation conditions, namely slightly reduced V3q. Low-
voltage testing is feasible and is often performed in
practice [15]. However, recall that the activation of the
Trojans is probabilistic and the likelihood of activation
(trigger factor) is as low as 1076 for 10% Vyq reduction.
It is acceptable for the attacker, who knows the location
of the Trojan gate and its expected trigger factor, to
perform the well-defined attack several thousand times.
In contrast, the party who runs the test (e. g., the system
integrator) neither knows whether a MAPLE Trojan or
any other Trojan is present in the circuit at all, nor where
it might be located, nor whether the trigger factor is
<1075, < 107%, < 1075 or any other value. Repeating
the test several thousand times based just on vague
suspicions is generally incompatible with economical
aspects. Even if the test is applied and no fault is
observed, it is not clear whether the circuit is Trojan-
free or a Trojan is present but its trigger factor is so
low that more repetitions are required. Finally, if several
thousands of tests are indeed performed and a faulty
effect is observed, it is easily confused with a random
transient fault due to noise or radiation, rather than a
Trojan.

3) Functional testing under significantly reduced Vyq:
From Figure 6, it can be seen that the low trigger factor,
which effectively prevents the detection by functional
testing under slightly reduced Vg4, can be significantly

increased by further lowering the operating voltage.
However, if V4 is lowered far beyond its nominal value,
the switching delays of the gates on the circuit paths will
be increased and the circuit will exhibit regular timing
errors. Consequently, if failures are observed, it does not
appear feasible to distinguish the effects of the activated
Trojan from that of regular failures.

4) Side-channel analysis (parametric test): The ma-
nipulated logic gates have a parametric response that
is clearly different from regular gates. If one manip-
ulated gate would be considered in isolation, it would
be easily distinguished from non-manipulated gates by,
for instance, Ippg testing. This is true for TrojanConc
and, in particular, TrojanArea. However, the number of
manipulated gates will be low: for example, only six
inverters are affected in the case study in this paper, and
that block will be likely integrated into an even larger
circuit. Therefore, the effect of few manipulated gates
will be negligible compared with Ippg drawn elsewhere
on the chip and cannot be measured in presence of even
minimal variability.

In order to illustrate low detectability of MAPLE
Trojans by Ippg testing, we simulated the circuit of
cipher PRINCE used in Section V-D. Figure 7 shows
the current drawn from the supply during ten encryptions
using random key and plaintext. The peak in the profile
corresponds to the latching of key and plaintext into
the corresponding registers right before the start of the
encryption. The Trojan inverters inserted into PRINCE
are under operation between the time duration 8.7 and
8.75ns, and this period is magnified in Figure 8. The
current profile shows the supply drawn current for both
the unmodified (“Normal”) and Trojan inverters for the
possible input patterns (0 — 1 and 1 — 0). It can be
seen from the figure that all deviations in drawn current
are absolutely minimal and will likely be masked by
the Ippg drawn in other parts of the chip. Note that
the process variations have not been accounted in this
analysis and they can further impede the side-channel
analysis using Ippg profiles.

5) Optical inspection: The Trojans are highly im-
mune to detection by optical inspection, as the metal,
polysilicon and active area remain unchanged [3].

C. Other countermeasures

1) On-chip voltage detectors: Some cryptographic
devices are protected by voltage detectors in order to
identify fault injection by V4q manipulation. However,
the activation of the presented Trojans requires only
very moderate V4 reduction to values that are routinely

0.1 T T T T T
0.05 1‘ —
0 ’) i
« |
2 {
a2 -0.05 !r —
- |
.- I
-0.1 | E
E
|
0.15 | | —
0.2 1 1 1 1 1
0 2 4 6 8 10 12
Time (ns)
Fig. 7. Supply drawn current for PRINCE
0.0003 T T T T
Normal(0->1) ——
Trojan(0->1) s
0.0002 - Normal(1->0) ==----- -
Trojan(1->0) ===
0.0001 |- i .
i
0 i
< 7 i
= !
- -] -
a 0.0001 ;
z
= -0.0002 | | b
i}
-0.0003 b
-0.0004 —
-0.0005 L L L L
8700 8710 8720 8730 8740 8750
Time (ps)
Fig. 8. Supply drawn currents for the normal and Trojan inverters

observed in regular operation due to power-supply noise
[16]. Consequently, voltage detectors will have to tol-
erate power-supply voltages of 10 to 20% below the
nominal Vg4, which are sufficient for Trojan activation. If
there are no voltage detectors in the circuit, the attacker
can increase the probability of activation by further
lowering V34, as can be inferred from Figure 6.

2) Limited number of encryptions: The attack sce-
narios rely on the ability of the attacker to repeat the
same calculation several thousand times, because the
probability of Trojan activation is low. If the application
of the circuit has a meaningful limit on the number of
encryptions during its lifespan or some time period (e. g.,
up to 10 encryptions per day, after which the device is
deactivated), enforcing this limit would make the attack
infeasible, as too much time would be required before
a fault is injected. Note that this countermeasure does
not provide information whether the circuit is affected
by the Trojan or not.

RG,RC R RCmRC

P»@%E IIMEM %%ew
ko ki, S N . 41 B , e N . . k1 ko
»@»@»..»

*II%
R(Ll kl R(
Fig. 9. Layout of PRINCE.

3) Frequent key exchange: The repeated encryptions
must all use the same secret key, in order to gather
consistent data for cryptanalysis. If the key is frequently
exchanged, the attacker may not succeed in performing
a sufficient number of encryptions using the Trojan-
affected circuit to break the cipher. Moreover, if the
attacker does determine the key, this key is only useful
to access data that was being processed before the last
key exchange. In other words, the attacker could log the
encrypted data and, once the key has been determined,
apply this key to decrypt these data. As soon as a new
key has been generated, a new round of cryptanalysis
is required. Note, however, that key distribution may
be interrupted or compromised in a scenario where the
attacker has physical access to the circuit. This system-
level countermeasure also does not identify a Trojan but
only alleviates its effect if one is present. Moreover,
frequent key distribution can be costly and security is
generally traded off for efficiency.

V. TROJAN FAULT ATTACK ON PRINCE

In this section we describe the block cipher PRINCE,
as specified in [12], report on our hardware design of the
cipher, outline the fault-based cryptanalysis of PRINCE
using the Multi-Stage Fault Attack algorithm [7] and
explain the fault-injection techniques using the proposed
MAPLE Trojans.

A. Specification of PRINCE

PRINCE is a 64-bit block cipher with a 128-bit key.
Before an encryption (or decryption) is executed, a 64-
bit subkey k2 is derived from the user supplied 128-bit
key ko || k1 via ko = (ko > 1) ® (ko > 63), where >
and > denote non-cyclic and cyclic shift, respectively.
The subkeys kg and ky are used for input- and output-
whitening. The core of PRINCE is a 10-round block
cipher which solely uses k; as subkey. Figure 9 gives an
overview of the cipher.

Each round R; and R;' with i € {1,...,5} and
j € {6,...,10} consists of four operations: a key
addition; an S-layer that applies a combinational SBox S
shown in Figure 10a; a linear layer which multiplies the

[« Joli[2[3[4[5]6[7]8[9[a]B[C|D[E]F]

[SEI[Blr[3]2[afc[of[1]6[7[8]0[E]5[D]4]
(a)

Round constant RC;

0000000000000000, 13198a2e03707344, a4093822299£31d0,
082efa98ec4e6c89, 452821e638d01377, be5466cf34e90chbe,
7ef84£78£d955cbl, 85840851flac43aa, c882d32£25323c54,
64a251195e0e3610d, d3b5a399calc2399, c0ac29b7c97c50dd

(®)

Fig. 10. PRINCE SBox (a), round constants (b)

(V]

oo ot

[R S

—
—

Cla|w|lo

state (represented by a 64-bit row vector) by a matrix
M or M’ (see the original specification [12] for the
exact definitions of M and M"); and the addition (bitwise
XOR) of a round constant (see Figure 10b).

B. Hardware Implementation of PRINCE

We designed a combinational (fully unrolled) imple-
mentation of PRINCE that executes a complete encryp-
tion or decryption in one round, and a sequential version
with one cycle per round. We implemented the circuit
using Synopsys DC Compiler and Nangate Open Cell
Library(45nm). The gate count and power details of
the combinational version, which includes 16 identical
SBoxes, are presented in Table I and shown to be highly
competitive with the original circuit reported in [12].
We use this circuit for Trojan-based fault injection and
cryptanalysis.

TABLE 1
ASIC IMPLEMENTATION DETAILS FOR PRINCE (ENCRYPTION
AND DECRYPTION)

| [Original design [Our design ‘
Area (GE) 8260 8320
Power (mW) 38.5 41.2

C. Differential Fault Analysis of PRINCE

The differential fault analysis on PRINCE is per-
formed in two stages. For both stages, a plaintext is
first encoded using the fault-free PRINCE circuit and the
ciphertext C' is recorded. Then, the encoding is repeated
using the same plaintext but a fault is injected, yielding
a faulty ciphertext C’. A system of fault equations is
constructed that relate C, C” and the (unknown) parts of
the secret key. These equations are used to restrict the
keyspace, that is, the set of secret key candidates through
a process called filtering. If this number is sufficiently
small, each candidate is simulated (brute-force search).
Otherwise, an additional fault-injection is performed and
new fault equations further reduce the keyspace. Both

£ £ o @) v v e (o (o Wl (=)
kg sr-1 W [o® sLki | x o1 x W |geNe@le @@ 51 &
RCy Agz(f) RCji+1 y y %(w)tpo(x)gq(y)w](z) RCj+2
<p,3(f) z z %(W)ﬁ(}:)apz(y)%(Z)
. . . —1
Fig. 11. Fault propagation in PRINCE over two R~ " rounds [7]

stages are outlined below; refer to [7] for an in-depth
discussion.

Stage 0 aims at restricting the keyspace for the
expression (ki @ ko). The fault is injected into the
state of the cipher in the beginning of round Ry L
The general scheme of the attack does not specify the
means of fault injection, but in this paper we employ
the MAPLE Trojans, as described in Section V-D. The
state of PRINCE is organized in 4-bit nibbles, and the
attack requires that the fault injection is restricted to one
nibble, that is, an arbitrary number of bits in the nibble
have to be flipped, but all other nibbles must remain
unaffected. Based on the obtained faulty ciphertext pair
C’ and the fault-free ciphertext C, the fault equations
are constructed as follows.

Let i € {0,...,15}, and let v; and v] be variables
representing the i*" nibble of the correct and the faulty
ciphertext, respectively. Let the variables p; represent
the nibbles of the key and ¢; the nibbles of the round
constant RC;;. The " nibble of the state of the fault-
free circuit just before the application of the final SBox
S—1 of round Rfol is S(v; ® p; @ ¢;). The Boolean
difference of each such nibble between the fault-free and
the faulty circuit is S(v; ®p; Dq;) S (v, Bp;®¢;). On the
other hand, if the fault f is injected into the circuit state
before the beginning of round Ry ! the corresponding
Boolean difference of this state will be simply f. If
the fault is restricted to one nibble [, it is possible to
symbolically propagate the Boolean difference through
round Ry' to the step in round Ry, just before SBox
application. It can be shown that the value of nibble
i in that state has the shape ¢j (a) for some 4-bit
value @ = by || by || by || bs. Here, j,(a) is equal
to a except for the jith bit which is set to 0 (e. g.,
wa(a) = bo || b1 || O || b3). The values of indices j;
are derived from the nibble [into which the fault has
been injected using the propertis of the matrix M’. Their
values are shown below:

(0,1,2,3,2,3,0,1,3,0,1,2,3,0,1,2), if L € {0, 7,10, 13}

. (3,0,1,2,1,2,3,0,2,3,0,1,2,3,0,1), if { € {1,4, 11, 14}

(o, J1s) = (2,3,0,1,0,1,2,3,1,2,3,0,1,2,3,0), if L € {2,5,8,15}
(1,2,3,0,3,0,1,2,0,1,2,3,0,1,2,3), if | € {3,6,8,12}

Sixteen fault equations are obtained by propagating
the Boolean difference of the observed fault-free and
faulty ciphertext from the circuit outputs backward to
Ry; and equating them with the Boolean difference f
due to the fault injection propagated forward to the same
round as shown in Figure 11:

g (w), i€{0,..., 3}

))) ’) N Jes(E), ief4,. .., 7}
S(vi ®p; qi) ®S(v; ®p; ®aq;) = 03 (v), i€ {8, ., 11}
v (2), i€{12,..., 15}

Here, w, x, y and z are unknown (free) 4-bit variables.
A solution of this system of 16 fault equations contains
these four variables and 16 nibbles of the secret key
P1, - -.,P16. One of the solutions is guaranteed to be the
correct secret key. The keyspace for (k1 ®ks) is restricted
from 254 possible values in the beginning by excluding
values that are inconsistent with the fault equations.
This filtering is done in three steps, Evaluation, Inner
Filtering and Outer Filtering; the details are omitted here
and can be looked up in the Appendix (Section VIII).
The size of the restricted keyspace is compared with
a user-defined threshold. If the threshold is exceeded,
another fault injection followed by another round of
filtering is applied. Otherwise, stage O is finished and
stage 1 starts with a set of key candidates for (k1 @ ks)
as input.

Stage 1 aims at shrinking the keyspace for k. It
is performed similar to stage 1, with the following
distinctions. The fault is injected in the beginning of
round g ! (instead of Ry 1Y and the faulty ciphertext C”
is obtained. The analysis is repeated for each (k1 @ ko)
candidate calculated in stage 0. For each such can-
didate, the last operations are “peeled off” by using
M(S(C @ k1 @ k2 ® RC11)) ® RCh instead of C' and
M(S(C'"® ki ®ko®dRC11))® RCYy instead of C’. Then,
the same fault equations are constructed and filtering is
applied. When the keyspace falls below a user-defined
threshold, brute-force search is applied for all remaining
k1 values using the kg part of the key calculated from
(k1@ ks). If brute-force search is unsuccessful, the guess
of (k1 @ k2) was wrong and stage 1 is repeated with
another key candidate from stage 0.

D. Fault Injections using MAPLE Trojans

The attack outlined in the previous section requires
fault injection in single nibbles of rounds g Land Ry L
Faulty ciphertexts obtained from faults in Ry ! (Rg 1y are
used during stage O (stage 1) of the algorithm. As the
round constants of PRINCE can be implemented through
inverters, they are an ideal target for MAPLE Trojans. In
order to maximize the probability of a fault injection we
choose those nibbles of a round constant with a high
number of inverters, namely nibble 5 from RCj and
nibble 16 from RCg. As can be seen in Figure 10b,
these nibbles have the value d and therefore there are 3
Trojan inverters for stage 0 and stage 1.

k1 c882d32£25323c54

nl\ el o
w s I i I

nibble 5~ pwe o
regular

Trojans < I
_—

nibble 5

nibble 4

Fig. 12.
faults

Trojan insertion in RCg of PRINCE for injecting stage 1

The insertion of Trojan inverters into the design is
illustrated in Figure 12. In the upper part the layout of
round 8 is depicted. The lower part shows the section of
the round constants (RCg) addition at bit level, where
the MAPLE Trojans are inserted into the nibble with
value d. The Trojan inverters are coloured in black and
marked with a white “T”. It is important to note that
faults may be injected in both stages simultaneously most
of the time. However, at certain times the faults occur
solely in one of the two stages. In that case we capture
the resulting faulty ciphertexts and use them later for
our cryptanalysis. Figure 13 shows the trigger factor of
the TrojanConc inverters inserted into the combinational
version of PRINCE. We observed a similar behaviour
for TrojanArea inverters. The probabilities correspond to
the case where the faults occur only in one of the two
stages and not in both simultaneously.

E. Impact of Sequential Design

All the discussions above are for a combinational
design of the PRINCE cipher, which can perform encryp-
tions and decryptions in a single clock cycle. In order

100 F T T T T T
wlE T 3
S : .]
s 1k]
5 ! |
= 0.1]
& I
= 0.01 |]
@ i
g I |
2 0001 F .
) L |
0.0001 Combinational design]
Sequential design ==-----
18-05 1 1 1 1
0.65 0.7 0.75 0.8 0.85 0.9 0.95
Vaa
Fig. 13. Triggering factor of the Trojan inverters inserted into
PRINCE

to evaluate the trigger factor in a sequential design, we
implemented PRINCE such that each round in the cipher
takes one clock cycle, with a total of ten clock cycles for
encryption and decryption. Though it takes more clock
cycles, the frequency of regular operation (~1.7 GHz) is
much higher than the combinational design (~150 MHz).

As the sequential design allows an attacker to manip-
ulate the supply voltage over a particular clock cycle,
the number of simultaneous bit-flips can be reduced.
However, to achieve higher trigger factor, the frequency
must be reduced, as switching the supply voltage from
one level to another takes considerable amount of time.
Recent figures indicate that switching the voltage by
+0.1V takes around 20ns [17]. So, when the cipher
is under attack it should be operated at a much lower
frequency than the maximum frequency possible in the
sequential design. Also, the sequential design does not
completely eliminate the simultaneous bit-flips, albeit
their likelihood is much lower (~5%). The activation
probabilities of TrojanConc inserted in sequential design
of PRINCE are shown in Figure 13.

VI. EXPERIMENTAL RESULTS

In this part we report on the experimental results of
the differential fault analysis of PRINCE using MAPLE
Trojans. The analysis was executed on a workstation
with an AMD Opteron Processor 6172 operating at
2.1 GHz. The attack was executed 10000 times, in each
case on a data set of 50 triples (C,C",C") where C
denotes the correct and C” and C” the faulty ciphertexts
of stage 0 and 1, respectively. The ciphertexts were
generated from plaintexts and keys chosen uniformly
at random, but the key remained fixed for each set of
50 triples. The faulty ciphertexts were obtained using
electrical-level simulation of the circuit incorporating the

MAPLE Trojans using Synopsys® NanoSim™, Table II
summarizes the results of the attack and shows that
on average between 4 and 5 faults are necessary to
successfully reconstruct the 128-bit key.

TABLE II
OVERVIEW ON THE NUMBER OF REQUIRED FAULTS

| Stage [Min Max Avg Median ‘
0 2 3 2.06 2.0
1 2 11 2.84 3.0

We modified the thresholds for the Multi-Stage Fault
Attack algorithm to rather low values: 2'2 for stage 0 and
216 for stage 1. In general, higher thresholds lead to less
required fault injections but increase the complexity of
subsequent post-processing. In our case, fault injections
using Trojans are relatively easy to perform; therefore we
opted for lower values and observed approximately one
more required fault on average, compared with [7]. The
run time of the post-processing algorithm, implemented
in Python and employing no parallelization, was around
13 seconds.

We also analysed the distributions of the number of
remaining keys after one and two fault injections and
compared them to the theoretical results. The distribu-
tions are shown in Figure 14. The upper graph shows
the results for stage 0 and the lower graph for stage
1. The x-axis denotes the logarithms with respect to
base 2 of the number of key candidates and the y-axis
shows the (rounded) rate how often a particular number
of key candidates occurred. There are cases where much
more faults (up to 11) are required, but 2 faults were
the minimum for every instance. As every exploitable
fault requires a reasonable number (10* — 10°) of fault
injections, a complete attack using 4 — 5 exploitable
faults is feasible.

VII. CONCLUSION

We presented two parametric manufacturing process
level Trojans and demonstrated their application to a suc-
cessful fault-based attack on the state-of-the-art cipher
PRINCE. The Trojans are extremely stealthy and nearly
impossible to detect by today’s methods. The conducted
attack is modeled by a cross-level framework which
combines electrical-level simulation of an optimized
PRINCE circuit with advanced post-processing based on
multi-stage filtering techniques. The considered attack is
particularly challenging for Trojan-based fault injection,
as two fault locations in different rounds have to be used
which might interfere with each other. Even with this

1 Fault |]
[2 Faults||

1400
1200
1000
800
600
400
200

rate

35 40

1400
1200
1000
800
600
400
200

B 1 Fault |]
3 2 Faults|]|

rate

10 15 20 25 30
log, (#keys)

Fig. 14. Analysis results for stage 0 (upper) and 1 (lower)

restriction, the effort to inject a fault in a well-defined
location is so low that the number of injected faults
can be increased in order to reduce the post-processing
complexity.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware
Trojan Taxonomy and Detection,” IEEE Design & Test of
Computers, vol. 27, no. 1, pp. 10-25, 2010.

[2] B. Cha and S. Gupta, “Trojan Detection Via Delay Measure-
ments: A New Approach to Select Paths and Vectors to Maxi-
mize Effectiveness and Minimize Cost,” in Design Automation
and Test in Europe, 2013, pp. 1265-1270.

[3] S. International, “Circuit Camouflage Technology - SMI IP Pro-
tection and Anti-Tamper Technologies,” White Paper Version
1.9.8j, 2012.

[4] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
Injection Attacks on Cryptographic Devices: Theory, Practice
and Countermeasures,” Proc. IEEE, vol. 99, 2012.

[5] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential Fault
Analysis of the Advanced Encryption Standard Using a Single
Fault,” LNCS, vol. 6633, pp. pp. 224-233, 2011.

[6] P.Jovanovic, M. Kreuzer, and I. Polian, “A Fault Attack on the
LED Block Cipher,” in Int’l Workshop on Constructive Side-
channel Analysis and Secure Design (LNCS 7275), 2012, pp.
120-134.

[7]1 P. Jovanovic, M. Kreuzer, and I. Polian, “Multi-Stage Fault
Attacks on Block Ciphers,” Cryptology ePrint Archive, Report
2013/778, 2013.

[8] N. Bagheri, R. Ebrahimpour, and N. Ghaedi, “New Differential
Fault Analysis of PRESENT,” EURASIP Journal on Advances
in Signal Processing, no. 1, pp. 1-10, 2013.

[9] L. Song and L. Hu, “Differential Fault Attack on the PRINCE

Block Cipher,” Cryptology ePrint Archive, Report 2013/043,

2013.

H. Bar-El er al., “The Sorcerer’s Apprentice Guide to Fault

Attacks,” Proc. IEEE, vol. 94, pp. 370-382, 2006.

G. Becker, F. Regazzoni, C. Paar, and W. Burleson, “Stealthy

Dopant-Level Hardware Trojans,” in Cryptographic Hardware

(10]

(11]

and Embedded Systems - CHES 2013, 2013, vol. 8086, pp.
197-214.

J. Borghoff et al., “PRINCE — A Low-Latency Block Cipher for
Pervasive Computing Applications,” in Advances in Cryptology
— ASIACRYPT 2012, ser. Lecture Notes in Computer Science,
X. Wang and K. Sako, Eds. Springer Berlin Heidelberg, 2012,
vol. 7658, pp. 208-225.

Y. Shiyanovskii et al., “Process Reliability Based Trojans
Through NBTI and HCI Effects,” in Adaptive Hardware and
Systems (AHS), 2010 NASA/ESA Conference on, 2010, pp. 215—
222.

“International technology roadmap for semiconductor (itrs),”
2006.

H. Hao and E. McCluskey, “Very-Low-Voltage Testing for
Weak CMOS Logic ICs,” in Test Conference, 1993. Proceed-
ings., International, 1993, pp. 275-284.

I. Polian, “Power Supply Noise: Causes, Effects, and Testing,”
ASP Jour. Low-Power Electronics, vol. 6, no. 2, pp. 326-338,
2010.

W. Kim, M. S. Gupta, G.-Y. Wei, and D. M. Brooks, “Enabling
On-Chip Switching Regulators for Multi-Core Processors Using
Current Staggering,” in In Proceedings of the Work. on Archi-
tectural Support for Gigascale Integration, 2007.

[12]

[13]

(14]

(15]
(16]

(17]

VIII. ApPPENDIX: PRINCE KEY CANDIDATE
FILTERING

In this part we provide details on the steps done during
the cryptanalysis of a correct and faulty ciphertext pair
shown in Figure 11.

Evaluation. Each equation F; is evaluated for all
possible 4-bit values u of nibble candidates associated
to the variable p;. When the result of an evaluation
t = E;j(u) has been computed, the tuple (t,u) is
appended to the set .S;.

Inner Filtering. In this step we check for all tuples
(t,u) € S; if the entry ¢ is valid with respect to the bit
pattern ¢;,. Those tuples that do not have a valid entry
t are discarded, all others are kept.

For example, we take fault equation Ej and assume
that a fault was injected in nibble [= 0. From the
definition of j; above we see that the 0-th entry of jg is 0.
Moreover, we assume that the tuple (¢,u) = (0x7,0x3)
is an element of Sy and observe immediately that 0x7
matches the bit pattern p;, = 0 || s1 || s2 || s3. Thus
(0x7,0x3) is a valid tuple and 0x3 a potential candidate
for the nibble associated to pg.

Outer Filtering. The idea in the final filtering step
is to exploit the fact that the elements of the sets

Samy - -+, S4.m+3 are related to each other for a fixed
m € {0,...,3}. This is due to the fact that the right-hand
sides of the equations FEg,...,E4m4+s are derived
from a common pre-image. This can be utilized to build
conditions for filtering candidates of the nibbles associ-
ated tO Pgm, - .., Pam+3. First we fix m € {0,...,3}
and order the tuples (t4.m+4n, Udmtn) € Stm+n lexico-
graphically for all n € {0,...,3}. Then we compute
the sets Pj.,1n containing the pre-images of all the
values t4.;+n. This is done as follows. After the Inner
Filtering, all values t4.n,+, match the bit pattern derived
from @4.4rn. But we do not know if the j4.,,1p-th bit
of t4.m+n had value O or 1 before it was fixed to 0.
Hence we obviously have two possible values for the
pre-images of t4.;+n. One is t4.,+y itself, and the other
has a 1 at bit position j4.,4+rn. Then we intersect the
pre-image sets Py.y, ..., Pimy3 with each other and
obtain a set (G, of pre-image candidates. After that we
check for each g, € Gy, if, for every n € {0,...,3},
there is at least one tuple in Sy.,,+,, Which has the value
iy (gm) in its first component. If so, g, is a valid
pre-image. When all pre-images have been processed, all
tuples are deleted from the sets Sy, - - . , S4.m+3, €Xcept
those where the first entry has a valid pre-image g,.

Finally, after projecting the sets S; to their second
components u;, the Cartesian product over those projec-
tions is computed to get the key candidates for ki & ks.
If the number of candidates for k; @ ko is small enough,
stage 0 of the attack ends. Otherwise the whole pro-
cedure from above is executed again and the resulting
candidate set is intersected with the ones from all the
previous runs of the procedure. This is repeated until the
set of candidates for k; & ko is smaller then a previously
defined threshold 7.

In the second stage of the attack, candidates for k; are
computed using the previously described configurations
for the fault injections. This is repeated until the number
of candidates for k; falls below the specified threshold
value 7. As soon as this is the case, the candidates for &
and k; @ ko are used to derive candidates for the subkeys
ko and kg. Finally, a brute-force search on the Cartesian
product Ky x K; is performed to find the actual key
ko || k1.

