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Abstract. Feistel constructions have been shown to be indifferentiable
from random permutations (STOC 2011). Whereas how to properly mix
the keys into an un-keyed Feistel construction (without appealing to
domain separation technique) to obtain a block cipher which is provably
secure against known-key and chosen-key attacks – or, to obtain an ideal
cipher, – remains an open question (the latter was mentioned by Lampe
et. al, Asiacrypt 2013). We study this. NSA’s SIMON family of block
ciphers takes a construction which has the subkey xored into a halve
of the state at each round. More clearly, at the i-th round, the state is
updated according to

(xi, xi−1) 7→ (xi−1 ⊕ Fi(xi)⊕ ki, xi)

For such key-alternating Feistel ciphers, we show that 21 rounds are suf-
ficient to achieve indifferentiability from ideal ciphers with 2n-bit blocks
and n-bit keys, assuming the n-to-n-bit round functions F1, . . . , F21 to
be random and public and an identical user-provided n-bit key to be
applied at each round. This gives an answer to the question mentioned
before, and is the first to study the provable security of key-alternating
Feistel ciphers in the open key model, to our knowledge.

Keywords: block cipher, ideal cipher, indifferentiability, key-alternating cipher,
Feistel cipher.

1 Introduction

Block ciphers are the most important primitives in cryptography. Most of the ex-
istent designs can be roughly split into two families, namely Feistel-based ciphers
and substitution-permutation networks (SPNs). For a block cipher, the standard
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security notion concerns with the indistinguishability from a random permuta-
tion when the key is fixed to some unknown random values. Such pseudoran-
domness captures the security in traditional single secret key setting. However,
block ciphers find numerous and essential uses beyond encryption, such as con-
structing hash functions, message authentication codes, etc. These applications
require the security in the open key model, where the adversary knows or even
controls the keys. To assess such stronger security, an extension of the indistin-
guishability notion, the indifferentiability framework, has to be employed. This
framework provides a formal way to assess the security of idealized construc-
tions in the settings where the underlying primitives are public. It can be used
to evaluate the “closeness” of the block cipher construction to an ideal cipher

E : {0, 1}n × {0, 1}κ → {0, 1}n, which is taken randomly from the set of (2n!)2
k

block ciphers with key space {0, 1}κ and plaintext and ciphertext space {0, 1}n.
Such indifferentiability proofs eliminate the possibility of generic attacks which
do not exploit the weakness of the underlying building blocks.

Indifferentiability Framework The indifferentiability framework was intro-
duced in 2004[22]. Briefly speaking, for a construction CG from an idealized
primitive G (hopefully simpler), if CG is indifferentiable from another ideal
primitive T , then CG can safely replace T in “most” systems. A formal defini-
tion is recalled as follows.

Definition 1. A primitive CG with oracle access to an ideal primitive G is said
to be statistically and strongly (q, σ, ε)-indifferentiable from an ideal primitive T
if there exists a simulator ST s.t. S makes at most σ queries to T , and for any
distinguisher D which issues at most q queries, it holds that

|Pr[DCG,G = 1]− Pr[DT ,ST
= 1]| < ε

Since then, indifferentiability framework has been applied to various construc-
tions, including variants of Merkle-Damg̊ard, sponge construction, Feistel[13],
and iteratated Even-Mansour ciphers[2,17]. [17] showed the indifferentiability of
12-round iteratated Even-Mansour ciphers, assuming using twelve n-bit random
permutations and an identical user-provided n-bit key applied at each round;
this work is strongly relevant to ours.

Feistel Constructions, and Previous Works Feistel networks were first
seen commercially in Lucifer cipher designed in 1973, and have been used by a
large proportion of block ciphers since then. Starting from the seminal Luby-
Rackoff paper[19], Feistel constructions have been studied extensively. Most of
the works on provable security fall in Luby-Rackoff framework, in which the
round functions are idealized as being uniformly random and secret. A plenty of
earlier works studied the pseudorandomness of Feistel (variants) in Luby-Rackoff
setting, e.g. [23,21,24]; they reveal the security of Feistel-based ciphers in single
secret key setting.



As to provable security in known-key/related-key settings, [20] and [3] can be
seen as provable security of Feistel constructions with random round functions
in known-key setting, while [5] analyzed Feistel constructions with general keyed
round functions in related-key setting, and suggested achieving resistance against
related-key attacks by suitably reusing round keys.

As to indifferentiability (from random permutations), studies on the Feistel
constructions based on independent random round functions include [12], [27],
and [13], and the number of rounds required was finally fixed to 14[13]. By this,
a Feistel-based cipher indifferentiable from an ideal cipher is trivially obtained
through domain separation of the underlying random functions. However such
a result tells us nothing about how to concretely mix the keys into the state
– in fact, none of the works mentioned before studied this. Meanwhile, to our
knowledge, domain separation technique is seldom used in existent block cipher
designs (possibly due to the difficulties in designing secure compression functions
F : {0, 1}κ+n → {0, 1}n[29]). The most widely used key mixing operations are
efficient ones, include xoring, modular addition, etc. See the next paragraph for
some discussions.

Mixing Key into Feistel: Key-Alternating Feistel Ciphers, and Previ-
ous Works To mix the round keys into the state, we figure out three natural
approaches: mixing the key into the input of the round functions, mixing the
key into the halve of the state before the round functions, and mixing the key
into the halve of the state after the round functions. Among the three, the first
is the best studied to our knowledge, which consists of updating the state at the
i-th round according to

(xi−1, xi) 7→ (xi, xi−1 ⊕ Fi(xi ⊕ ki))

(assuming using xor as the mixing operation), where xi−1 and xi are respec-
tively the left and right n-bit halves of the state, and ki is an n-bit round key
(Fig. 1 (left)). Such ciphers are named Key-alternating Feistel Ciphers (KAF for
short) by Lampe et. al [18]. Notable instances include DES, Camellia; GOST and
CAST-128 (the latter two use modular addition/substraction to insert round
keys). Notable studies on concrete attacks against KAF and its variants in-
clude known-key attacks[15,26,25], complementing (related-key) attacks[7], and
generic attacks[14,29]. However researches on provable security of KAF are much
fewer compared with the counter part iterated Even-Mansour ciphers ([9,16,11]
studied pseudorandomness, [2,17] studied indifferentiability). We are only aware
of the work of Lampe et. al [18], which analyzed the pseudorandomness of KAF
in the setting where each round key is secret and each round function Fi is pub-
lic; this can be seen as the provable security of KAF in single secret key setting.
On the other hand, to out knowledge, the provable security of key-alternating
Feistel ciphers in known-key and chosen-key settings seems to remain unstudied.

Clearly, the provable security results on KAF without cryptographically
strong key derivation (or even without key derivation) are more attractive. But



unfortunately, due to the well known complementation property (e.g. DES)

E(x, k) = E(x, k),

KAF ciphers without key derivation functions are vulnerable to related-key dis-
tinguishing attack, thus not indifferentiable from ideal ciphers.

Appealing to key derivation functions modeled as random oracles is not a
perfect solution. As pointed out in [7], KAF with as many as two random-
oracle-derived keys alternatively applied at each round is still vulnerable to a
relaxed complementing attack : the attacker asks the key derivation oracle for two
arbitrary keys (k11, k

1
2) := KD(K1) and (k21, k

2
2) := KD(K2) and let δ1 = k11⊕k21,

δ2 = k12⊕k22, then for plaintext pairs of the form ((x0, x1), (x0⊕δ2, x1⊕δ1)), with
probability 1 we have KAFr((x0, x1),K

1)⊕KAFr((x0⊕δ2, x1⊕δ1),K2) = (δ1, δ2)
when the number of rounds r is odd ((δ2, δ1) when r is even). We conjecture
that indifferentiability may be achieved on KAF with key derivation of form
(k1, k2, k3) = KD(K) and the three keys cyclicly applied at each round; or, on
KAF with key derivation of form (k1, k2) = KD(K) and the two keys applied
in the order k1, k2, k2, k1 repeatedly. Whereas the proof still seems difficult. In
addition, such results impose strong constraints on the key derivation.

xi

F
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k

xi+1 xi

xi−1

F

xiki

xi xi+1

xi

F

xi−1

ki

xi+1 xi ⊕ ki

Fig. 1. Mixing the key into: (left) the input of the round function – KAF; (middle) the
halve of the state after the round function – KAF ∗. (right) the halve before the round
function.

KAF ∗ The problems with KAF motivate us to turn to the other two approaches.
First, consider mixing the key into the halve of the state after the round func-
tions. To make a distinction, we denote such constructions by KAF ∗, and call
KAF ∗ with an identical user-provided n-bit key applied at each round single-
key KAF ∗. For single-key KAF ∗, the 2n-bit intermediate state si is split to
two halves, i.e. si = (xi+1, xi) where i ∈ {0, 1, . . . , r}, and at the i-th round, the
state value is updated according to

(xi, xi−1) 7→ (xi−1 ⊕ Fi(xi)⊕ k, xi),

as depicted in Fig. 1 (middle). The whole construction (21-round variant) is
depicted in Fig. 2. Among existent designs, NSA’s SIMON family of block ciphers
is based on KAF ∗. XTEA can also be seen as a variant of KAF ∗. Hence studies
on KAF ∗ possess the practical meanings.



Links Between the Three Approaches There are weak links between the three
approaches. Such links exist in the sense that each of the three approaches can
be rewritten as variants (possibly with additional sub-keys xored into one halve
of the ciphertext) of the other two. On the other hand, we call such links weak
because they three actually have quite different properties, e.g. KAF with no
key derivation suffers from a very simple related attack, while KAF ∗ with no
key derivation is indifferentiable. Hence we think such links are less relevant to
the main result of this paper.

Although less relevant, we present them as follows. First, clearly, r-round
KAF ∗ can be rewritten as an r-round KAF variant with an un-keyed first round
and an additional subkey xored into one of the halves of the ciphertext (depend-
ing on whether r is even or odd). However written in such a form, the round key
array is much more complex than that of KAF ∗. For instance, single-key KAF ∗

with key k (the round key array is (k, k, k, . . .)) corresponds to KAF with the
round key array (0n, k, k, 0n, 0n, k, k, 0n, 0n, . . .) (k, k, 0n, 0n are cyclicly applied
from the second round till the end). Hence for simplicity, it is unnecessary to
rewrite the KAF ∗ under discussed to its equivalent KAF (variant) form.

Mixing the key into the halve of the state before the round functions consists
of updating states according to

(xi, xi−1) 7→ (xi−1 ⊕ Fi(xi ⊕ ki), xi ⊕ ki),

as depicted in Fig. 1 (right). Blowfish can be seen as a variant of this construction
(however it works with keyed round functions). One can easily see that this
approach is almost equivalent to KAF ∗: KAF ∗ can be rewritten as such a
construction with an un-keyed first round and an additional subkey xored into
the left halve of the ciphertext.

In a nutshell, we focus on KAF ∗ in this paper.

Our Contributions Although Feistel constructions have been shown to be
indifferentiable from random permutations[13], how to properly mix the keys
into a keyless Feistel construction without appealing to a trivial domain separa-
tion argument to obtain an ideal cipher/a block cipher provably secure against
known-key and chosen-key attacks remains an open question, which was men-
tioned by Lampe et. al in [17]. Moreover, since the indifferentiability of iterated
Even-Mansour ciphers has been shown[2,17], the analogues on key-alternating
Feistel ciphers attract attention. These two questions are in some sense the same,
that is, under which assumptions can we make key-alternating Feistel ciphers
– especially those without cryptographically strong assumptions about the key
derivation functions – indifferentiable from ideal ciphers. For single-key KAF ∗,
we show 21 rounds to be sufficient, thus giving an answer to this question:

Theorem The 21-round key-alternating Feistel cipher KAF ∗
21 with all round

functions F = (F1, . . . , F21) being 21 independent n-to-n-bit random functions
and an identical (user-provided) n-bit key k applied at each round is indifferen-
tiable from an ideal cipher with 2n-bit blocks and n-bit keys.



To our knowledge, for key-alternating Feistel ciphers – in particular, with no
key derivation – this paper is the first to study the indifferentiability/provable
security in the open key model.

From a practical point of view, our results reveal a possible choice to resist
complementing attack and its extensions[7] when designing Feistel ciphers. KAF
with random oracle modeled key derivation functions may also have such resis-
tance. However, practical key derivation algorithms are usually designed to be
“lightweight” and moderately complex, and KAF with such moderately complex
key derivations may still be attacked in hash mode (Camellia[7]). Hence we think
our results have its own interest. On the other hand, since publicly released in
June 2013, the SIMON family of block ciphers[6] designed by NSA has attracted
considerable attention due to its simple structure, high flexibility, and remark-
able performance[4,8,1,28,10]. SIMON family is based on KAF ∗ instead of the
more widely studied KAF. Our results reveal possible underlying reasons.

Our Techniques We reuse the framework(s) used in [13] and [17], with adapta-
tions. The framework consists of constructing simulator which works by detect-
ing and completing partial chains created by the queries of the distinguisher. To
ensure consistency in the answers while avoid exponentially many chain comple-
tions, each of the rounds in the construction is assigned a unique and specific role
needed in the proof, including chain detection, uniformness ensuring, and chain
adaptation (see Fig. 2). By this, the simulator first detects new partial chains
when the associated values have “filled” the chain detection zone; then fills in
the corresponding computation path by both querying the ideal primitive and
simulating the other necessary function values, until only the values of the round
functions in the chain adaptation zone remain (possibly) undefined; and finally
defines these values to complete the whole path so that the answers of the ideal
primitive are consistent with the function values simulated by the simulator.

To fit into the KAF ∗ context, the framework has to be adapted. Note that
KAF ∗ has the following property: given the queries to 3 consecutive round
functions, namely xi, xi+1, and xi+2, a full computation path can be specified
with the associated key k = xi ⊕ Fi+1(xi+1) ⊕ xi+2, after which it is possible
to move forward and backward along the path. On the other hand, for previous
studied constructions, two such queries are sufficient, e.g. for un-keyed Feistel,
two queries xi and xi+1 are sufficient to specify a path (exactly as done in [13]).
For this, we adapt the framework in two ways:

1. we increase the number of rounds used for chain detection to 3. The necessity
of such a change has been pointed out by Lampe et. al.

2. we increase the number of rounds used to ensure randomness. Surround-
ing each adaptation zone with 2 always-randomly-defined buffer rounds is a
key point of this framework. The buffer rounds are expected to protect the
adaptation zone in the sense that the simulator does not define the values in
the 2 buffer rounds while completing other chains. This idea works well in
previous contexts. However, in KAF ∗ context, if we continue working with
2 buffer rounds, then such an expectation may be broken, i.e. when a chain



is to be adapted, the corresponding function values in the buffer rounds may
have been defined (this can be shown by a simple operation sequence with
only 5 queries; see Appendix A). In such a case, we find it not easy to achieve
the proof. To get rid of this, we increase the number of buffer rounds to 4
– more clearly, 2 buffer rounds at each side of each adaptation zone (and in
total 8 for the whole construction). We then prove that unless an improba-
ble event happens, the simulator does not define the function values in the
buffer rounds exactly next to the adaptation zones when completing other
chains, and then all chains can be adapted freely.

To show the indistinguishability of the systems, we combine the randomness
mapping argument [13] (RMA for short) and its relaxed version[2] (RRMA for
short). This allows us to bypass the intermediate system composed of the ide-
alized construction and the simulator; such a system appeared in many existent
proofs.

Organization of this Paper Sect. 2 contains main theorem. Sect. 3 presents
the simulator. Finally, Sect. 4 gives the proof. Some additional notations will be
introduced later, when necessary.

2 Indifferentiability for 21-round Single-Key KAF ∗

The main theorem is presented as follows.

Theorem 1. For any q, the 21-round single-key key-alternating Feistel cipher
KAF ∗

21 with all round functions F = (F1, . . . , F21) being 21 independent n-to-n-
bit random functions and an identical (user-provided) n-bit key k applied at each
round is strongly and statistically (q, σ, ε)-indifferentiable from an ideal cipher E
with 2n-bit blocks and n-bit keys, where

σ = 211 · q9 and ε ≤ 219 · q15

22n
+

2222 · q30

2n
+

234 · q6

22n
= O(

q30

2n
).

To prove Theorem 1 we firstly describe a simulator S which mimics the
behaviors of the random functions F, then bound the complexity of S and
prove the indistinguishability of the simulated world Σ1(E,S) and the real world
Σ2(KAF ∗

21,F).

3 The Simulator

We first provide a high-level description of S, then present the pseudocode to
illustrate it more clearly.

To simplify the proof, we take a strategy introduced by Andreeva et. al [2],
that is, making the randomness taken by the simulator S, the cipher E (in the
simulated world), and the random functions F (in the real world) explicit as ran-
dom tapes. The simulator’s random tape is an array of tables φ = (φ1, . . . , φ21),



where each φi maps entries x ∈ {0, 1}n to uniform and independent values in
{0, 1}n. The cipher’s random tape is a table η which encodes an ideal cipher
with 2n-bit blocks and n-bit keys. More clearly, η is selected uniformly at ran-
dom from all tables with the property of mapping entries (δ, k, z) ∈ {+,−} ×
{0, 1}n × {0, 1}2n to uniform values z

′ ∈ {0, 1}2n such that η(+, k, z) = z
′
iff.

η(−, k, z′
) = z. The random functions F have access to the array of tables

π = (π1, . . . , π21) where each πi maps entries x ∈ {0, 1}n to uniform and inde-
pendent values in {0, 1}n. We denote the constructions/primitives which take
randomness from the tapes φ, η, and π by S(φ), E(η), and F(π) respectively.
Among the three, E(η) and F(π) simply take the corresponding values in η and
π as answers to queries; for completeness we provide implementations for them,
in Sect. 3.2. As argued in [2], such a strategy does not reduce the validness of the
simulating, since access to such tapes can be efficiently simulated by uniformly
sampling.

3.1 High-level Description of the Simulator

S(φ) provides an interface S(φ).F (i, x) to the distinguisher for querying the
simulated random function Fi on value x, where i ∈ {1, . . . , 21} and x ∈ {0, 1}n.
For each i, the simulator maintains a hash table Gi that has entries in the form of
pairs (x, y), which denote pairs of inputs and outputs of S(φ).F (i, x). Denote the
fact that x is a preimage in the table Gi by x ∈ Gi, and Gi(x) the corresponding
image when x ∈ Gi.

Receiving a query S(φ).F (i, x), S(φ) looks in Gi, returns Gi(x) if x ∈ Gi.
Otherwise S(φ) accesses the tap φi to draw the answer φi(x) and adds the entry
(x, φi(x)) to Gi, and then, if i belongs to the set {3, 10, 11, 12, 19}, the chain
detection mechanism and subsequent chain completion mechanism of S(φ) will
be triggered. These two mechanisms help in ensuring that the answers of the
random functions simulated by S(φ) are consistent with the answers of the ideal
cipher E(η). Depending on i, there are three case:

1. when i = 3, for each newly generated tuple (x1, x2, x3, x20, x21) ∈ G1 ×
G2 × G3 × G20 × G21, the simulator computes k := x1 ⊕ G2(x2) ⊕ x3,
x0 := x2 ⊕ G1(x1) ⊕ k, and x22 := x20 ⊕ G21(x21) ⊕ k. It then calls an
inner procedure S(φ).Check((x1, x0), (x22, x21), k), which checks whether
E(η).Enc((x1, x0), k) = (x22, x21) (i.e. η(+, k, (x1, x0)) = (x22, x21)) holds,
and returns true if so. Whenever this call returns true, the simulator en-
queues a 5-tuple (x1, x2, x3, 1, 6) into a queue ChainQueue. In the 5-tuple,
the 4-th value 1 informs S(φ) that the first value of the tuple is x1, and the
last value 6 informs S(φ) that when completing the chain (x1, x2, x3, 1), it
should set entries in G6 and G7 to “adapt” the chain and ensure consistency.

2. when i = 19, the case is similar to the previous one by symmetry: for each
newly generated tuple (x1, x2, x19, x20, x21) ∈ G1 × G2 × G19 × G20 × G21,
the simulator computes k := x19 ⊕ G20(x20) ⊕ x21, x0 := x2 ⊕ G1(x1) ⊕ k,
x22 := x20 ⊕ G21(x21) ⊕ k, and x3 := x1 ⊕ G2(x2) ⊕ k, makes a call to
S(φ).Check((x1, x0), (x22, x21), k), and enqueues the 5-tuple (x1, x2, x3, 1, 15)
into ChainQueue whenever this call returns true.



3. when i ∈ {10, 11, 12}, for each newly generated tuple (x10, x11, x12) ∈ G10×
G11 × G12, the simulator enqueues the 5-tuple (x10, x11, x12, 10, l) into the
queue ChainQueue, where l = 6 if i = 10 or 11, and l = 15 if i = 12. The
sketch of the whole strategy is illustrated in Fig. 2.

After having enqueued the newly generated tuples, S(φ) immediately takes the
tuples out of ChainQueue and completes the associated partial chains. More
clearly, S(φ) maintains a set CompletedSet for the chains it has completed.
For each chain C dequeued from the queue, if C /∈ CompletedSet (i.e. C has
not been completed), S(φ) completes it, by evaluating in the corresponding
KAF ∗ computation path both forward and backward (defining the necessary but
undefined Gi(xi) values), and querying E.Enc or E.Dec once to “wrap” around,
until it reaches the value xl (when moving forward) and xl+1 (when moving
backward). Then S(φ) “adapts” the entries by defining Gl(xl) := xl−1⊕xl+1⊕k
and Gl+1(xl+1) := xl⊕xl+2⊕k to make the entire computation chain consistent
with the answers of E(η). This defining action may overwrite values in Gl or
Gl+1 if xl ∈ Gl or xl+1 ∈ Gl+1 before it happens, however we will show the
probability to be negligible. S(φ) then adds (x1, x2, x3, 1) and (x10, x11, x12, 10)
to CompletedSet, where the two chains correspond to C.

During the completion, the values in Gj newly defined by S(φ) also trig-
ger the chain detection mechanism and chain completion mechanism when j ∈
{3, 10, 11, 12, 19}. S(φ) hence keeps dequeuing and completing until ChainQueue
is empty again. S(φ) finally returns Gi(x) as the answer to the initial query.

3.2 Formal Description of the Simulator

A formal description of the simulator S(φ) in pseudocode is presented as fol-

lows. A slightly different simulator S̃(φ) will be introduced later (see Sect. 4.1).
For this, when a line has a boxed statement next to it, S(φ) uses the original

statement, while S̃(φ) uses the boxed one.

1: Simulator S(φ): Simulator S̃(φ):

2: Variables
3: hash tables {Gi} = (G1, . . . , G21), initially empty
4: queue ChainQueue, initially empty
5: set CompletedSet, initially empty

The procedure F (i, x) provides an interface to the distinguisher.
6: public procedure F (i, x)
7: y := F inner(i, x)
8: while ChainQueue ̸= ∅ do
9: (xj , xj+1, xj+2, j, l) := ChainQueue.Dequeue()

10: if (xj , xj+1, xj+2, j, l) /∈ CompletedSet then // Complete the chain
11: k := xj ⊕Gj+1(xj+1)⊕ xj+2

12: (xl−4, xl−3, xl−2, l − 4) := EvalForward(xj , xj+1, xj+2, j, l − 4)
13: (xl+3, xl+4, xl+5, l + 3) := EvalBackward(xj , xj+1, xj+2, j, l + 3)
14: Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l)
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15: (x1, x2, x3, 1) := EvalForward(xj , xj+1, xj+2, j, 1)
16: (x10, x11, x12, 10) := EvalForward(x1, x2, x3, 1, 10)
17: CompletedSet := CompletedSet ∪ {(x1, x2, x3, 1), (x10, x11, x12, 10)}
18: return y

The procedure Adapt adapts the values by randomly setting the neces-
sary but “missed” entries and then adding entries to Gl and Gl+1 to make
the chain match the computation.

19: private procedure Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l)
20: k := xl−4 ⊕Gl−3(xl−3)⊕ xl−2

21: yl−2 := F inner(l − 2, xl−2)
22: xl−1 := xl−3 ⊕ yl−2 ⊕ k
23: yl−1 := F inner(l − 1, xl−1)
24: xl := xl−2 ⊕ yl−1 ⊕ k
25: yl+3 := F inner(l + 3, xl+3)
26: xl+2 := xl+4 ⊕ yl+3 ⊕ k
27: yl+2 := F inner(l + 2, xl+2)
28: xl+1 := xl+3 ⊕ yl+2 ⊕ k
29: ForceV al(xl, xl−1 ⊕ xl+1 ⊕ k, l)
30: ForceV al(xl+1, xl ⊕ xl+2 ⊕ k, l + 1)
31: private procedure ForceV al(x, y, l)
32: Gl(x) := y // May overwrite the entry Gl(x)

The procedure F inner draws answers from the table Gi, or the tape φi if
the answers have not been defined in Gi, and enqueue chains when necessary.

33: private procedure F inner(i, x)
34: if x /∈ Gi then
35: Gi(x) := φi(x)
36: if i ∈ {3, 10, 11, 12, 19} then
37: EnqueueNewChains(i, x)
38: return Gi(x)

The procedure EnqueueNewChains enqueues newly generated partial
chains.

39: private procedure EnqueueNewChains(i, x)
40: if i = 3 then
41: for all (x1, x2, x3, x20, x21) ∈ G1 ×G2 × {x} ×G20 ×G21 then
42: k := x1 ⊕G2(x2)⊕ x3

43: chk pa := ((x1, G1(x1)⊕ x2 ⊕ k), (x20 ⊕G21(x21)⊕ k, x21), k)

44: flag := Check(chk pa) flag := Ẽ.Check(chk pa)

45: if flag = true then
46: ChainQueue.Enqueue(x1, x2, x3, 1, 6)
47: else if i = 19 then
48: for all (x1, x2, x19, x20, x21) ∈ G1 ×G2 × {x} ×G20 ×G21 do
49: k := x19 ⊕G20(x20)⊕ x21

50: chk pa := ((x1, G1(x1)⊕ x2 ⊕ k), (x20 ⊕G21(x21)⊕ k, x21), k)

51: flag := Check(chk pa) flag := Ẽ.Check(chk pa)



52: if flag = true then
53: x3 := x1 ⊕G2(x2)⊕ k
54: ChainQueue.Enqueue(x1, x2, x3, 1, 15)
55: else if i = 10 then
56: for all (x10, x11, x12) ∈ {x} ×G11 ×G12 do
57: ChainQueue.Enqueue(x10, x11, x12, 10, 6)
58: else if i = 11 then
59: for all (x10, x11, x12) ∈ G10 × {x} ×G12 do
60: ChainQueue.Enqueue(x10, x11, x12, 10, 6)
61: else if i = 12 then
62: for all (x10, x11, x12) ∈ G10 ×G11 × {x} do
63: ChainQueue.Enqueue(x10, x11, x12, 10, 15)

The Check procedure queries E to verify whether the inputs are valid
pairs of plaintext and ciphertext of E. Note that S̃ does not own Check
procedure; instead S̃ calls the Check procedure of a modified cipher Ẽ, as
described in the boxed statements in the code section before.

64: private procedure Check(x, y, k) // S̃ does not own such a procedure
65: return E.Enc(x, k) = y

The procedures EvalForward (and EvalBackward, resp.) takes a par-
tial chain (xj , xj+1, xj+2, j) as input, and evaluate forward (and backward,
resp.) in KAF ∗ until obtaining the tuple (xl, xl+1, xl+2) of input values for
Gl, Gl+1, and Gl+2 for specified l.

66: private procedure EvalForward(xj , xj+1, xj+2, j, l)
67: k := xj ⊕Gj+1(xj+1)⊕ xj+2 // By construction xj+1 ∈ Gj+1 holds
68: while j ̸= l do
69: if j = 20 then

70: (x1, x0) := E.Dec((x22, x21), k) (x1, x0) := Ẽ.Dec((x22, x21), k)

71: x3 := x0 ⊕ F inner(1, x1)⊕ k
72: j := 0
73: else
74: xj+3 := xj+1 ⊕ F inner(j + 2, xj+2)⊕ k
75: j := j + 1
76: return (xl, xl+1, xl+2, l)
77: private procedure EvalBackward(xj , xj+1, xj+2, j, l)
78: k := xj ⊕Gj+1(xj+1)⊕ xj+2

79: while j ̸= l do
80: if j = 0 then

81: (x22, x21) := E.Enc((x1, x0), k) (x22, x21) := Ẽ.Enc((x1, x0), k)

82: x20 := x22 ⊕ F inner(21, x21)⊕ k
83: j := 20
84: else
85: xj−1 := xj+1 ⊕ F inner(j, xj)⊕ k
86: j := j − 1
87: return (xl, xl+1, xl+2, l)



As mentioned before, E(η) and F(π) simply take the corresponding values
in η and π as answers to queries; but for completeness, we provide the codes of
them.

1: Ideal cipher E(η):
2: public procedure Enc(x, k)
3: return η(+, k, x)
4: end procedure
5: public procedure Dec(y, k)
6: return η(−, k, y)
7: end procedure

1: Random functions F(π):
2: public procedure F (i, x)
3: return πi(x)
4: end procedure

4 Proof of the Indifferentiability

For any fixed, deterministic, and computationally unbounded distinguisher D,
we show the following two to establish the indifferentiability:

(i) The two systems Σ1(E(η),S(φ)) and Σ2(KAF ∗
21,F(π)) are indistinguish-

able.
(ii) The probability that S(φ) runs in polynomial time is overwhelming.

4.1 Intermediate System Σ
′

1, and Proof Sketch

For further simplicity, we introduce an intermediate system Σ
′

1(Ẽ(η), S̃(φ)),

which consists of a modified ideal cipher Ẽ(η) and a slightly modified simu-

lator S̃(φ). Ẽ(η) maintains a table E to keep track of the past queries, which

contains entries of the form ((+, k, x), y) and ((−, k, y), x). Ẽ(η) provides an ad-
ditional interface Check(x, y, k). Once being queried on Enc(x, k) or Dec(y, k),

Ẽ(η) adds the corresponding entries of η to E and returns them as answers.

Once being called on Check(x, y, k), Ẽ(η) looks in the table E to check whether

E(+, k, x) = y and returns the answer. More clearly, Ẽ(η) is implemented as
follows:

1: Modified ideal cipher Ẽ(η):
2: Variables
3: hash table E, initially empty
4: end variables
5: public procedure Enc(x, k)
6: if (+, k, x) /∈ E then
7: y := η(+, k, x)
8: E(+, k, x) := y
9: E(−, k, y) := x



10: end if
11: return E(+, k, x)
12: end procedure
13: public procedure Dec(y, k)
14: if (−, k, y) /∈ E then
15: x := η(−, k, y)
16: E(−, k, y) := x
17: E(+, k, x) := y
18: end if
19: return E(−, k, y)
20: end procedure
21: public procedure Check(x, y, k)
22: if (+, k, x) ∈ E then
23: return E(+, k, x) = y
24: else
25: return false
26: end if
27: end procedure

By construction and the fact that η encodes an ideal cipher, it can be easily seen
that Ẽ(η).E always defines a partial cipher before or after any call to Enc or

Dec, i.e. for all k, x, y ∈ {0, 1}n, (+, k, x) ∈ Ẽ(η).E and Ẽ(η).E(+, k, x) = y iff.

(−, k, y) ∈ Ẽ(η).E and Ẽ(η).E(−, k, y) = x. We use |Ẽ(η).E+| and |Ẽ(η).E−|
to denote the number of entries in Ẽ(η).E of form ((+, ·, ·), ·) and ((−, ·, ·), ·)
respectively. By above, |Ẽ(η).E| = 2 · |Ẽ(η).E+| = 2 · |Ẽ(η).E−| holds at any
point when every call to Enc or Dec has been answered.

On the other hand, the differences between S̃(φ) and S(φ) (in Σ1) are cap-
tured by the boxed statements in the pseudo codes in Sect. 3.2. They mainly
consist of two aspects:

– the cipher they query: S̃(φ) queries Ẽ(η) while S queries E(η);

– the owner of the Check procedure: S̃(φ) calls Ẽ(η).Check while S(φ) calls
S(φ).Check;

The three systems are depicted in Fig. 3. For simplicity we introduce addi-
tional notations Σ1(η, φ), Σ

′
1(η, φ), and Σ2(π), among which Σ1(η, φ) is short

for Σ1(E(η),S(φ)), Σ′
1(η, φ) is short for Σ

′

1(Ẽ(η), S̃(φ)), and Σ2(π) is short for
Σ2(KAF ∗

21,F(π)). Furthermore, for α = (η, φ), Σ′
1(α) is short for Σ

′
1(η, φ).

Then the proof of indifferentiability is divided into two stages:

– First, we specify bad events in the Check procedure in Σ1, which capture the
essential differences between Σ1 and Σ

′

1. Then for any distinguisher which
issues at most q queries, we upper bound the probability of the bad events

to 219·q15
22n (in the proof of Lemma 5); and upper bound the advantage of

distinguishing Σ1 and Σ
′

1 to 219·q15
22n (Lemma 5) and the complexity of S in

Σ1 to no more than 2 · (10q3)3 ≤ 211 · q9 queries (Lemma 6).



– Second, we specify bad events relevant to ForceV al procedure overwriting
entries, bound the probability of such events, and finally use a relaxed ran-
domness mapping argument to upper bound the advantage of distinguishing

Σ
′

1 and Σ2 to 2222·q30
2n + 234·q6

22n (Lemma 26).

Gathering these yields Theorem 1.

4.2 Bounding the Complexity of S̃(φ) in Σ
′

1

In this section we show that the simulator S̃(φ) in Σ
′

1 runs in polynomial time.
The underlying principle is similar to [13] and [17].

Lemma 1. During any execution DΣ
′
1(Ẽ(η),S̃(φ)), after the q-th query made by

D is answered, S̃(φ) dequeues at most q times a tuple of the form (x1, x2, x3, 1, l)
for which (x1, x2, x3, 1) /∈ CompletedSet.

Proof. We will show that each such dequeuing action corresponds to a distinct
call to Ẽ(η).Enc(x, k) or Ẽ(η).Dec(y, k) previously made by D.

Consider such a dequeuing action and let (x1, x2, x3, 1, l) be the tuple de-
queued for which (x1, x2, x3, 1) /∈ CompletedSet. By construction, (x1, x2, x3, 1, l)
can be enqueued only when (x1, x2, x3, x20, x21) or (x1, x2, x19, x20, x21) is de-

tected and the call Ẽ(η).Check((x1, x0), (x22, x21), k) returns true, and the lat-

ter happens only when the entry ((+, k, (x1, x0)), (x22, x21)) has been in Ẽ(η).E.

Hence each such dequeuing corresponds to an entry in Ẽ(η).E.
On the other hand, if two chains C = (x1, x2, x3, 1) and C ′ = (x′

1, x
′
2, x

′
3, 1)

dequeued correspond to the same call to Ẽ(η).Check, then we must have xi = x′
i

for i = 1, 2, 3, and C = C ′. In this case, C will be added to CompletedSet since
its first completion, and it will not be C /∈ CompletedSet when C is dequeued
again. Hence each such dequeuing corresponds to a unique entry ((+, k, x), y)

in Ẽ(η).E. This entry must have been added during a query issued by D, since

S̃(φ) makes such queries only when it is completing a chain, and after this
completion, the chain (x1, x2, x3, 1) will be added into CompletedSet, and it
cannot be (x1, x2, x3, 1) /∈ CompletedSet when it is dequeued again.

Hence, each such dequeuing action corresponds to a call to Ẽ(η).Enc or

Ẽ(η).Dec made by D, and cannot occur more than q times. ⊓⊔

Lemma 2. During any execution DΣ1(Ẽ(η),S̃(φ)), after the q-th query made by
D is answered:

– for i ∈ {1, 2, . . . , 21} and δ ∈ {+,−}, |Gi| ≤ 10q3, and |Ẽ.Eδ| ≤ 10q3;

– S̃ issues at most 2 · (10q3)5 queries to Ẽ.Check;

Proof. The proof is similar to Lemma 2 in [17], while the results are different.
First, |G10|, |G11|, and |G12| are at most 2q: entries can only be added to

these three tables when D issues a query to F (i, x) with i = 10, 11, or 12, or

when S̃ completes a chain (x1, x2, x3, 1, l). The former occurs at most q times,



while the latter occurs at most q times by Lemma 1, hence the bound is 2q, and
S̃ completes at most |G10| · |G11| · |G12| ≤ 8q3 chains of form (x10, x11, x12, 10, l).

Second, for any i ∈ {1, . . . , 21}, |Gi| can only be enlarged by at most 1

when: the distinguisher calls S̃.F (i, x); a chain (x1, x2, x3, 1, l) is completed; or
a chain (x10, x11, x12, 10, l) is completed. The first case occurs at most q times,
the second at most q times, while the last at most 8q3 times. Hence in total the
bound is 2q + 8q3 ≤ 10q3.

Then, by construction, each query to either Ẽ.Enc or Ẽ.Dec increases both
|Ẽ.E+| and |Ẽ.E−| by at most 1. Such queries may be issued by D or S̃. The
former is at most q, while the latter only happens during completion of a chain,
thus at most q + 8q3. Hence the bound is q + q + (8q3) ≤ 10q3. Finally, the

number of queries to Ẽ.Check made by S̃(φ) is bounded by |G1| · |G2| · |G3| ·
|G20| · |G21|+ |G1| · |G2| · |G19| · |G20| · |G21| ≤ 2 · (10q3)5. ⊓⊔

4.3 Indistinguishability of Σ1 and Σ
′

1

The proof of indistinguishability of Σ1 and Σ
′

1 is presented in this section. It
consists of specifying the bad events in Σ1, showing the two systems to have
exactly same behaviors given that the bad events do not happen, and upper
bounding the complexity of S in Σ1.

Bad Event BadCheck Since we have made the randomness taken by Σ1 ex-
plicit, the only essential difference between Σ1 and Σ

′

1 lies in the Check proce-

dure: in Σ
′

1, the return value of a call Ẽ(η).Check(x, y, k) depends on the content

of the table Ẽ(η).E, while in Σ1 the return value of S(φ).Check(x, y, k) actually
depends on a much larger table η. For this, we define a bad event BadCheck:
consider a pair of random tapes (η, φ), BadCheck happens during the execution
DΣ1(E(η),S(φ)) if ∃(x, y, k) s.t. all the following hold:

(i) S(φ) makes a call Check(x, y, k);

(ii) η(+, k, x) = y.

(iii) Before the call in (i), neither E(η).Enc(x, k) nor E(η).Dec(y, k) has been
issued.

Note that such a call Check(x, y, k) returns true if being made in Σ1(E(η),S(φ)),

while returns false if being made in Σ
′

1(Ẽ(η), S̃(φ)); this is the main idea of
BadCheck. We now bound the probability that BadCheck happens in a fixed
number of calls to S(φ).Check.

Lemma 3. Fix a point in DΣ1(E(η),S(φ)). Suppose up to this point, S(φ).Check

is called q′1 times, while E(η).Enc and E(η).Dec are queried q′2 < 22n

2 times in
total. Then the probability that BadCheck happens before this point is upper

bounded to
2q′1
22n .



Proof. Consider a call S(φ).Check(x, y, k). Since neither E(η).Enc(x, k) nor
E(η).Dec(y, k) has been issued before this call, y is a 2n-bit “fresh” value. Since η
encodes a random permutation for each k, we have Pr[η(+, k, x) = y] ≤ 1

22n−q′2
.

And since the number of queries to Check is at most q′1, in total the probability

is
q′1

22n−q′2
. Given q′2 < 22n

2 , we have Pr[BadCheck] ≤ 2·q′1
22n . ⊓⊔

Σ1 with No BadCheck in the First 2 · (10q3)5 Calls to Check: Indis-

tinguishable from Σ
′

1 The main idea is that S(φ) and S̃(φ) are the same
except for the “owner” of the procedures they called, including Enc, Dec, and
Check. If all the answers of these procedures are the same, then S(φ) and S̃(φ)
are expected to behave the same, and so are Σ1 and Σ′

1.
We illustrate it more formally. Consider Σ1(E(η),S(φ)). Instead of the Check

procedure in S(φ), we can imagine that E(η) has a procedure which is imple-
mented exactly as S(φ), and at line 44 and line 51, S(φ) calls E(η).Check instead
of S(φ).Check. This “imagined” Simg(φ) (can be obtained by excluding the im-
plementation of Check from S(φ) and letting it call E(η).Check) are the same

as S̃(φ) except that they query different ciphers. By this, for the two systems

(D,Simg(φ)) and (D, S̃(φ)), if all the return values of the procedures Enc, Dec,
F , and Check equal correspondingly, then they two will have the same behaviors.

To capture these ideas, we use the notion transcript. Back to theΣ1-executions.
For DΣ1(E(η),S(φ)), the transcript is a sequence composed of all the following
query answer pairs generated during the execution:

(i) all the Dec, Check, and F queries issued by D and S(φ), and the corre-
sponding answers;

(ii) all the Enc queries issued outside the Check procedure by D and S(φ)
(note that in the “imagined” system, the Enc queries issued inside the Check
procedure are made by the imagined cipher E(η), not by Simg(φ)), and the
corresponding answers;

and Transcript(·, ·) is the function which extracts such transcript. More clearly,

t = Transcript(D, Σ1(E(η),S(φ))) = (qa1, qa2, . . .),

for each i, qai is a 3-tuple (procedure, query, answer) where procedure ∈ {Enc,
Dec, F, Check} denotes the procedure being called, while query and answer
denote the corresponding query-answer pair.

While for Σ′
1-execution DΣ

′
1(Ẽ(η),S̃(φ)), the transcript is a sequence composed

of all the query-answer pairs generated by D and S̃(φ) during the execution, and
Transcript(·, ·) is the function which extracts such transcript

t
′
= Transcript(D, Σ

′

1(Ẽ(η), S̃(φ))) = (qa
′

1, qa
′

2, . . .).

For a finite transcript t, the length is the number of tuples in it, i.e. if t =
(qa1, . . . , qal), then the length of t is l. For t, its partial transcript tj is defined



as the sequence of the first j tuples, namely tj = (qa1, qa2, . . . , qaj)
3; similarly

for t
′

j . For a transcript t with length l and any i > l, denote qai = ⊥.
SinceD, S(φ), and S̃(φ) are all deterministic, there is a deterministic function

QA that takes the partial transcript (attained so far) as input and returns the
next query that will appear in DΣ1(E(η),S(φ)) (excluding the queries to E(η).Enc
issued inside the procedure S(φ).Check), and a similar deterministic function

Q′
A for DΣ

′
1(Ẽ(η),S̃(φ)). By discussions above, QA = Q′

A; hence we will only use
notation QA. Define QA(tl) as ⊥, if qal is the last tuple of t. Clearly QA(tl) = ⊥
if and only if the length of t is l.

Then, the following lemma claims that the transcripts of DΣ1(E(η),S(φ)) and

DΣ
′
1(Ẽ(η),S̃(φ)) are equal if in DΣ1(E(η),S(φ)), BadCheck does not happen in a

sufficiently long period. This lemma is the core of this section.

Lemma 4. Consider two executions DΣ1(E(η),S(φ)) and DΣ
′
1(Ẽ(η),S̃(φ)). Let t =

Transcript(D, Σ1(E(η),S(φ))), t
′
= Transcript(D, Σ

′

1(Ẽ(η), S̃(φ))), and sup-

pose Ẽ(η).Check receives N calls during DΣ
′
1(Ẽ(η),S̃(φ)). Then if BadCheck

does not happen in the first N calls to S(φ).Check during DΣ1(E(η),S(φ)), we
have:

(i) t = t
′
;

(ii) DΣ1(E(η),S(φ)) = DΣ
′
1(Ẽ(η),S̃(φ));

Proof. By Lemma 2 we know the length of t
′
is finite; suppose it to be l. For

proposition (i), towards a contradiction assume t ̸= t
′
, then there must exist

1 ≤ j ≤ l s.t. qai ̸= qa
′

i (qai may be ⊥, when the length of t is less than
l). However this is impossible: suppose j to be the smallest value such that
qaj ̸= qa

′

j . Then tj−1 = t
′

j−1 and QA(tj−1) = QA(t
′

j−1), which means that the

procedure fields and query fields of qaj and qa
′

j equal correspondingly. We show
the answer fields of them two to be equal to contradict the assumption. We
distinguish the following cases depending on the procedure field:

– if the procedure field is Enc or Dec, then clearly qaj = qa
′

j since E(η) and

Ẽ(η) draw randomness from the same source.

– if the procedure field is Check, then by the assumptions that Ẽ(η).Check

receives N calls during DΣ
′
1(Ẽ(η),S̃(φ)) and BadCheck does not happen in

the first N calls to S(φ).Check during DΣ1(E(η),S(φ)), qaj = qa
′

j .

– if the procedure field of qaj and qa
′

j items is F , then:

• if the answers are simply drawn from the tapes, then clearly qaj = qa
′

j ;
• if the answers are obtained through adaptations during completions of

some chains, then the answers depend on previous return values of Check
and previous answers to Enc, Dec, and F . Then the first such “adapted
answers” are equal since all the previous query-answer pairs are equal by
discussions above, and by an induction we know qaj = qa

′

j for all such
“adapted cases”.

3 Do not confuse tj with qaj .



These establish qaj = qa
′

j for any 1 ≤ j ≤ l. Hence tl = t
′

l, QA(tl) = QA(t
′

l) = ⊥,
the length of t is also l, and t = t

′
. Since D is deterministic, this immediately

implies proposition (ii). ⊓⊔

We are now ready to bound the advantage of distinguishing Σ1 and Σ′
1:

Lemma 5. For any distinguisher D which issues at most q queries, we have:

|Pr[DΣ1(E(η),S(φ)) = 1]− Pr[DΣ
′
1(Ẽ(η),S̃(φ)) = 1]| ≤ 219 · q15

22n
.

Proof. Consider the pair (η, φ). By Lemma 2 we know Ẽ(η).Check receives no

more than 2 · (10q3)5 calls during Σ
′

1(Ẽ(η), S̃(φ)), by Lemma 3 we know the
probability that BadCheck occurs in these calls is no more than

2q′1
22n

=
2 · 2 · (10q3)5

22n
≤ 219 · q15

22n

and by Lemma 4 we know if BadCheck does not happen in all these calls,

DΣ1(E(η),S(φ)) = DΣ
′
1(Ẽ(η),S̃(φ)). Hence

|Pr[DΣ1(E(η),S(φ)) = 1]− Pr[DΣ
′
1(Ẽ(η),S̃(φ)) = 1]|

≤|Prα[D
Σ1(α) = 1 ∧BadCheck occurs during DΣ1(α)]

− Prα[D
Σ

′
1(α) = 1 ∧BadCheck occurs during DΣ1(α)]|

+ |Prα[D
Σ1(α) = 1 ∧BadCheck does not occur during DΣ1(α)]

− Prα[D
Σ

′
1(α) = 1 ∧BadCheck does not occur during DΣ1(α)]|

(α = (η, φ))

=Prα[BadCheck occurs during DΣ1(α)] · |Pr[DΣ1(α) = 1]− Pr[DΣ
′
1(α) = 1]|

≤Prα[BadCheck occurs during DΣ1(α)]

≤219 · q15

22n

as claimed. ⊓⊔

Bounding the Complexity of S The discussions above enable us to upper
bound the complexity of S in Σ1(E(η),S(φ)) for most cases.

Lemma 6. For any distinguisher D which issues no more than q queries, with

probability no less than 1− 219·q15
22n , S(φ) issues no more than 211 · q9 queries to

E(η) during execution DΣ1(E(η),S(φ)).

Proof. S(φ) issues at most |G1| · |G2| · |G3|+ |G19| · |G20| · |G21| queries to E(η).

By Lemma 4, Transcript(D, Σ1(E(η),S(φ))) = Transcript(D, Σ
′

1(Ẽ(η), S̃(φ)))

holds with probability at least 1− 219·q15
22n ; this implies that with probability no

less than 1 − 219·q15
22n , the bounds on the size of the tables (Lemma 2) holds in

DΣ1(E(η),S(φ)). Therefore the bound is 2 · (10q3)3 ≤ 211 · q9. ⊓⊔



4.4 Indistinguishability of Σ
′

1 and Σ2

In this section we use a relaxed randomness mapping argument to upper bound
the advantage of distinguishing Σ

′

1 and Σ2. We recall the principle first.

The Relaxed Randomness Mapping Argument: Principle Since D is
deterministic, each tuple of random tapes (η, φ) uniquely determines a Σ

′

1-

execution. However during DΣ
′
1(η,φ), certain entries in (η, φ) may not be ac-

cessed and will not affect the execution. The entries of (η, φ) accessed during

DΣ
′
1(η,φ) compose footprint (see Sect. 4.4 for a more formal definition). Hence

there is a bijection between the possible value of the footprint and the transcript

of DΣ
′
1(η,φ).

Then the core idea of upper bounding Pr[DΣ2 = 1]−Pr[DΣ
′
1 = 1] by relaxed

randomness mapping argument is exhibiting a bijection τ between some of the
footprints of (η, φ) and π such that (i) τ maps Σ

′

1 executions to Σ2 executions
that look exactly same from the viewpoint of D; (ii) τ maps Σ

′

1 executions to
Σ2 executions of nearly equal probability; (iii) the domain of τ represents most

of the probability mass of all the possible footprints of DΣ
′
1(η,φ). A difference

between our argument and the previous work[2] is, in the previous work, the
images of the map are all footprints of the tapes used in the target system (G3,
in [2]), while in our argument, the range of the map is merely a subset of the
partial tapes used in the second system.

Following the above, we first specify the domain of the map, then define the
map and complete the proof.

Specifying the Domain: Bad Event BadHit To specify the domain of
the map, we shall be aware of which tapes (η, φ) are able to induce executions
same as those induced by π (from the viewpoint of D). Consider Σ′

1 and Σ2. In

the former, the answers to F -queries are simulated by S̃(φ), and when S̃(φ) is
forced to overwrite some entries (in {Gi}), the consistency in the answers will be
broken. On the other hand, such inconsistency never appears in Σ2: this forms
the difference.

To specify the “consistent” Σ′
1-executions, we define an additional bad event

BadHit, then show that if BadHit does not happen, S̃(φ) will not overwrite
any entries, and Σ

′

1 has the same behaviors as Σ2 in the view ofD. The footprints
of the random tapes inducing such executions (during which BadHit does not
happen) will be taken as the domain of the map.

To define BadHit, we take the methodology introduced by Lampe et. al [17].

In Σ
′

1(Ẽ(η), S̃(φ)), for each random tape accessing action, we define the history

H as the set of all n-bit strings extracted from the entries in the table Ẽ(η).E
and {Gi} just before this action. More clearly:

– In table Ẽ(η).E, for any entry ((·, k, x), y), H includes five n-bit values k,
xL, xR, yL, yR, where xL and xR (yL and yR) are the left and right n-bit
halves of x (y, resp.).



– For each i ∈ {1, . . . , 21}, for any entry (x, y) in Gi, H includes two n-bit
values x and y.

– The parameters passed to the calls which triggers the random tape accessing
actions are also included, i.e. for calls to Gi(x), x is included in H immedi-

ately after the call is made, while for calls to Ẽ.Enc(m, k) (and Dec(m, k)),
k, mL, and mR are all included in H immediately after the call is made,
where mL and mR are the left and right n-bit halves of m.

Then we define the bad event BadHit:

Definition 2. The bad event BadHit happens if when the simulator read an
entry from the random tape, either of the following two happens:

– If the entry x = (xL, xR) is a 2n-bit value read from η, then either xL or xR

equals the bitwise xor of 9 or less values in the history H;
– If the entry y is an n-bit value read from φ, then y equals the bitwise xor of

9 or less values in H.

Probability of BadHit Based on the upper bounds on the size of the tables in
Σ

′

1(Ẽ(η), S̃(φ)), we upper bound the probability of BadHit.

Lemma 7. For any distinguisher D which issues at most q queries, the prob-
ability (over the random choice of η and φ) that event BadHit happens in

DΣ
′
1(Ẽ(η),S̃(φ)) can be upper bounded as

Pr[BadHit] ≤ 288 · q30

2n

Proof. According to Lemma 2, |Ẽ(η).E+| ≤ 10q3, and |Gi| ≤ 10q3. By definition

of H, each entry of Ẽ(η).E+ adds 5 values to H4, while each entry of Gi adds 2
values. Hence |H| ≤ 5 · 10q3 + 2 · 21 · 10q3 = 470q3. Then:

– for each query to Fi which triggers φi tape accessing action, since values in

φi are random, the probability that BadHit occurs is at most (470q3)9

2n ;

– for each query to Ẽ(η).Enc or Ẽ(η).Dec which triggers η tape accessing
action, since η encodes an ideal cipher, the probability that BadHit occurs

is at most Pr[yL
$←− {0, 1}n : BadHit occurs on yL] + Pr[yR

$←− {0, 1}n :

BadHit occurs on yR], and is upper bounded to 2·(470q3)9
2n ;

Then the probability that BadHit happens in no more than 21 ·10q3 φ tape

accessing actions is upper bounded to (21·10q3)·(470q3)9
2n , while that in no more

than 10q3 η tape accessing is upper bounded to (10q3)·2·(470q3)9
2n . In total it is

Pr[BadHit] ≤ 21 · 10q3 · (470q3)9

2n
+

10q3 · 2 · (470q3)9

2n

≤ 288 · q30

2n

as claimed. ⊓⊔
4 The values added by Ẽ(η).E− are the same as Ẽ(η).E+.



The executions DΣ
′
1(Ẽ(η),S̃(φ)) during which BadHit does not happen are

called good executions. The next section shows that during good executions,
S̃(φ) never overwrites entries.

Good Executions: No Overwriting We first introduce necessary notions,
then show a series of lemmas which finally establishes the claim of non-overwriting.

Necessary Notions and Functions For KAF ∗
21, the partial chain is defined as a

4-tuple (xi, xi+1, xi+2, i) where xi, xi+1, xi+2 ∈ {0, 1}n and i ∈ {0, . . . , 20}. The
associated key is k = xi ⊕ Gi+1(xi+1) ⊕ xi+2 if xi+1 ∈ Gi+1. Further denote
C[1] = xi, C[2] = xi+1, C[3] = xi+2, C[4] = i. Given hash tables G1, . . . , G21

and Ẽ(η).E at some point in the execution DΣ
′
1(Ẽ(η),S̃(φ)), we define helper

functions next and prev which take a partial chain C as input and return the
partial chain obtained by moving respectively one step forward or backward in
KAF ∗

21, or empty value ⊥ when some necessary values (in tables Gi or Ẽ(η).E)
have not been defined. We also introduce the helper functions val+l and val−l
to help probe in the computation path; and a function k which returns the
associated key value if the value can be calculated, or ⊥ otherwise.

1: function next(xi, xi+1, xi+2, i)
2: if xi+1 /∈ Gi+1 then
3: return ⊥
4: end if
5: k := xi ⊕Gi+1(xi+1)⊕ xi+2

6: if i < 20 then
7: if xi+2 /∈ Gi+2 then
8: return ⊥
9: end if

10: xi+3 := xi+1 ⊕Gi+2(xi+2)⊕ k
11: return (xi+1, xi+2, xi+3, i+ 1)
12: else
13: if (−, k, (x22, x21)) /∈ E then
14: return ⊥
15: end if
16: (x1, x0) := E(−, k, (x22, x21))
17: if x1 /∈ G1 then
18: return ⊥
19: else
20: x2 := x0 ⊕G1(x1)⊕ k
21: return (x0, x1, x2, 0)
22: end if
23: end if
24: end function

1: function prev(xi, xi+1, xi+2, i)
2: if xi+1 /∈ Gi+1 then
3: return ⊥



4: end if
5: k := xi ⊕Gi+1(xi+1)⊕ xi+2

6: if i > 0 then
7: if xi /∈ Gi then
8: return ⊥
9: end if

10: xi−1 := xi+1 ⊕Gi(xi)⊕ k
11: return (xi−1, xi, xi+1, i− 1)
12: else
13: if (+, k, (x1, x0)) /∈ E then
14: return ⊥
15: end if
16: (x22, x21) := E(+, k, (x1, x0))
17: if x21 /∈ G21 then
18: return ⊥
19: else
20: x20 := x22 ⊕G21(x21)⊕ k
21: return (x20, x21, x22, 20)
22: end if
23: end if
24: end function

1: function val+l (C)
2: if l ≥ 2 then
3: while (C ̸= ⊥) ∧ (C[4] /∈ {l − 2, l − 1, l}) do
4: C := next(C)
5: end while
6: if C = ⊥ then
7: return ⊥
8: else
9: return C[(l − C[4] + 1)]

10: end if
11: else
12: // l = 0 or 1
13: while (C ̸= ⊥) ∧ (C[4] ̸= 20) do
14: C := next(C)
15: end while
16: if C = ⊥ then
17: return ⊥
18: else if (−, k(C), (C[3], C[2])) /∈ E then
19: return ⊥
20: else
21: (v[1], v[0]) := E(−, k(C), (C[3], C[2]))
22: return v[l]
23: end if
24: end if



25: end function

1: function val−l (C)
2: if l ≤ 20 then
3: while (C ̸= ⊥) ∧ (C[4] /∈ {l − 2, l − 1, l}) do
4: C := prev(C)
5: end while
6: if C = ⊥ then
7: return ⊥
8: else
9: return C[(l − C[4] + 1)]

10: end if
11: else
12: // l = 21 or 22
13: while (C ̸= ⊥) ∧ (C[4] ̸= 0) do
14: C := prev(C)
15: end while
16: if C = ⊥ then
17: return ⊥
18: else if (+, k(C), (C[2], C[1])) /∈ E then
19: return ⊥
20: else
21: (v[22], v[21]) := E(+, k(C), (C[2], C[1]))
22: return v[l]
23: end if
24: end if
25: end function

1: function k(xj , xj+1, xj+2, j)
2: if xj+1 /∈ Gj+1 then
3: return ⊥
4: else
5: return xj ⊕Gj+1(xj+1)⊕ xj+2

6: end if
7: end function

Notations prevj and nextj are used to denote the j-th functional power of
prev and next respectively. To make the functional powers well-defined, we define
prev(⊥) = ⊥ and next(⊥) = ⊥5. Then we introduce the notions of equivalent
and table-defined partial chains:

Definition 3. Two partial chains C and D are equivalent if C = D, or for
some 1 ≤ j ≤ 20, C = nextj(D) or C = prevj(D). Denote it by C ≡ D.

5 This makes the definition well-defined. However this actually has no additional in-
fluence on the subsequent proof.



Definition 4. For the hash tables G1, . . . , G21, and Ẽ(η).E at some point in

the execution of DΣ
′
1(Ẽ(η),S̃(φ)), a partial chain C = (xi, xi+1, xi+2, i) is said to

be table-defined if next(C) ̸= ⊥ and prev(C) ̸= ⊥.

Note that when i ∈ {1, . . . , 19}, C = (xi, xi+1, xi+2, i) being table-defined
implies xi ∈ Gi, xi+1 ∈ Gi+1, and xi+2 ∈ Gi+2, i.e. all the three values involved
in C have been in the history H of the execution. When i = 0 (= 20, resp.), it
means that (x1, x0) ((x22, x21), resp.) has been in table E, which also implies
that all the three values involved in C have been in H.

We call a call to Adapt safe, if during the Adapt procedure, the function
values in at least one of the two buffer rounds l − 2 and l − 1 (l + 2 and l + 3,
resp.) has not been defined and can be freely set to fresh random values. This
is more involved than the analogue in [17]. For simplicity, we will call such a
condition safe Adapt call condition in the following sections.

Definition 5. A call to Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l) is called safe
if the following holds before the call: 6

(((xl−2 /∈ Gl−2) ∨ (xl−2 ∈ Gl−2 ∧ xl−3 ⊕Gl−2(xl−2)⊕ k(B) /∈ Gl−1))

∧((xl+3 /∈ Gl+3) ∨ (xl+3 ∈ Gl+3 ∧ xl+4 ⊕Gl+3(xl+3)⊕ k(D) /∈ Gl+2))),

where B = (xl−4, xl−3, xl−2, l − 4) and D = (xl+3, xl+4, xl+5, l + 3).

Definition 6. A call to ForceV al(x, y, l) is called non-overwriting if x /∈ Gl

before the call.

Two notions key-defined and key-undefined are introduced to reveal whether
the associated key of a partial chain can be calculated from the tables.

Definition 7. A partial chain C = (xj , xj+1, xj+2, j) is called key-defined if
xj+1 ∈ Gj+1; otherwise is called key-undefined.

Note that:

– For a partial chain C, k(C) ̸= ⊥ if and only if C is key-defined.
– Each chain dequeued from ChainQueue is key-defined, and is equivalent to

a table-defined chain.
– Each table-defined chain is also key-defined.

Good Executions: Properties In this section we show some properties that are
helpful for the proof of our main goal, i.e. S̃(φ) never overwrites entries. The
following lemma presents some basic properties of the random tape accessing
and the subsequent entry setting actions in good executions:

Lemma 8. The following hold in a good execution DΣ
′
1(Ẽ(η),S̃(φ)):

6 By construction, when Adapt is called, k(B) ̸= ⊥ and k(D) ̸= ⊥ must hold.



(i) For any key-defined partial chain C, if next(C) = ⊥ before a random tape

accessing and subsequent entry setting action on either Ẽ(η).E or {Gi}, then
if C is table-defined after the action, it holds that next2(C) = ⊥.

(ii) For any key-defined partial chain C, if prev(C) = ⊥ before a random tape

accessing and subsequent entry setting action on either Ẽ(η).E or {Gi}, then
if C is table-defined after the action, it holds that prev2(C) = ⊥.

(iii) For any key-defined partial chain C and each δ ∈ {+,−}, a random tape
accessing and entry setting action Gj(xj) := φj(xj) can only change at most
one of the values valδi (C); and if such change happens, then:
– the value is changed from ⊥ to some non-empty values.
– if δ = +, i = j + 1; if δ = −, i = j − 1.
– valδj (C) = xj before the assignment.

– after the action, if C is table-defined, then valδi (C) /∈ Gi.

Proof. We prove the propositions one-by-one.

(i) Suppose C = (xl, xl+1, xl+2, l), and assume otherwise, i.e. next(next(C)) ̸=
⊥. Depending on l, we distinguish two cases:
– l < 20: in this case, before the action, from next(C) = ⊥ and C was

key-defined we know xl+2 /∈ Gl+2. Since C turns to be table-defined
after the action, the action must be Gl+2(xl+2) := φl+2(xl+2). Then if
next(next(C)) ̸= ⊥ holds after the action, it must fall in one of the
following two cases:
(a) when l ≤ 19, we have

xl+3 = xl+1 ⊕ φl+2(xl+2)⊕ k(C)

= xl+1 ⊕ φl+2(xl+2)⊕ xl ⊕Gl+1(xl+1)⊕ xl+2 ∈ Gl+3,

which means the value read from φ equals xor of 5 values in H:
φl+2(xl+2) = xl+1 ⊕ xl ⊕Gl+1(xl+1)⊕ xl+2 ⊕ xl+3.

(b) when l = 19, we have (−, k(C), (x22, x21)) ∈ E (and x22 ∈ H) for
x22 = x20⊕G21(x21)⊕k(C), which (also) means the value read from
φ equals xor of 5 values in H: φ21(x21) = x20 ⊕ x19 ⊕ G20(x20) ⊕
x21 ⊕ x22.

Both of the two contradict the assumption that BadHit does not occur.
– l = 20 (C = (x20, x21, x22, 20)): in this case, the assumption that before

the action next(C) = ⊥ while after the action C turns to be table-
defined and next(next(C)) ̸= ⊥ means, before the action, exactly one of
the following two holds:
(a) (−, k(C), (x22, x21)) /∈ E
(b) (−, k(C), (x22, x21)) ∈ E∧x1 /∈ G1 for (x1, x0) = E(−, k(C), (x22, x21))
while after the action, all the following three hold:
• (−, k(C), (x22, x21)) ∈ E (by C being table-defined)
• for (x1, x0) = E(−, k(C), (x22, x21)), x1 ∈ G1 (by C being table-
defined and next(next(C)) ̸= ⊥)
• x2 ∈ G2 for x2 = x0 ⊕G1(x1)⊕ k(C) (by next(next(C)) ̸= ⊥)



We exclude the possibility for each case:
(a) the first case: (−, k(C), (x22, x21)) /∈ E before the action, and the ac-

tion is E(−, k(C), (x22, x21)) := η(−, k(C), (x22, x21)). In such case,
since x1 ∈ G1 after the action, the value m read from η satisfies
mL = x1 which has been in H, a contradiction.

(b) the second case: x1 /∈ G1 before the action, and the action isG1(x1) :=
φ1(x1). In such case, after the action we have x2 = x0 ⊕ φ1(x1) ⊕
k(C) ∈ G2, hence φ1(x1) = x0 ⊕ (x20 ⊕ G21(x21) ⊕ x22) ⊕ x2, a
contradiction.

(ii) The proof is similar to (i) by symmetry.
(iii) By construction, the action Gj(xj) := φj(xj) never overwrites entries in

the tables. Hence val+i (C) or val−i (C) can only change from ⊥ to non-
empty values. Let yj = φj(xj), and wlog consider the case when val+i (C)
changes. According to the implementation of function val+i , before the action
Gj(xj) := yj , val

+
i (C) = ⊥ might be due to either of the following two:

(a) for some 1 ≤ l ≤ 21, val+l (C) ̸= ⊥ ∧ val+l (C) /∈ Gl, and calculating
val+i (C) requires val+l (C) ∈ Gl;

(b) val+22(C) ̸= ⊥ ∧ val+21(C) ̸= ⊥ ∧ (−, k(C), (val+22(C), val+21(C))) /∈ E;
In the second case, Gj(xj) := yj will not affect val+i (C) since after the
action, (−, k(C), (val+22(C), val+21(C))) /∈ E still holds. In the first case we
argue j = l = i− 1 ∧ val+j (C) = xj to hold:

(a) if j ̸= l ∨ (j = l ∧ val+j (C) ̸= xj), then Gj(xj) := yj will not affect

val+i (C) since after the action, val+l (C) /∈ Gl still holds;
(b) if j = l < i− 2, then val+j+2(C) = xj ⊕Gj+1(val

+
j+1(C))⊕ (val+j−1(C)⊕

yj⊕val+j+1(C)) must be either ⊥ (when val+j+1(C) /∈ Gj+1) or non-empty
value which has not been in Gj+2 (to avoid BadHit). Since j + 2 < i,
this implies val+i (C) = ⊥ after the action – val+i (C) does not change;

(c) if j = l = i− 2, for val+i (C) = val+i−2(C)⊕Gi−1(val
+
i−1(C))⊕ k(C) ̸= ⊥

to hold after the action, val+i−1(C) ∈ Gi−1 must hold before the ac-

tion. In such case, if C = (val+i−3(C), val+i−2(C), val+i−1(C), i − 3), then
C is key-undefined before the action, contradicting the assumption; let
C∗ = (val+i−4(C), val+i−3(C), val+i−2(C), i − 4), if C = prevs(C∗) for
some s ≥ 0, then next(C∗) = ⊥ before the action while after the
action, either next(C∗) = ⊥ (when val+i−3(C) /∈ Gi−3) which contra-

dicts the assumption that val+i (C) changes, or next2(C∗) ̸= ⊥ (when
val+i−3(C) ∈ Gi−3/C

∗ is key-defined) which contradicts proposition (i).

We then show the uniqueness. Let C
′
= (val+i−3(C), val+i−2(C), val+i−1(C), i−

3). By discussions above we know C
′
must have been key-defined before the

action. Wlog, for some i′ ≥ i + 1, suppose val+i′ (C) also changes from ⊥
to non-empty values. Then next(C

′
) = ⊥ before Gj(xj) := φj(xj) while

next2(C
′
) ̸= ⊥ after Gj(xj) := φj(xj), contradicting proposition (i).

Finally, if val+i (C) ∈ Gi after the action, then next(C
′
) = ⊥ before the

action while next2(C
′
) ̸= ⊥ after the action, contradicting proposition (i).

Hence we establish the claim for val+i (C). The reasoning for val−i (C) is
similar by symmetry. ⊓⊔



The next lemma claims that when a chain turns from key-undefined to key-
defined, the two “ends” of the chain must be out of the tables.

Lemma 9. Consider a random tape accessing and subsequent entry setting ac-

tion Gi(xi) := φi(xi) in a good execution DΣ
′
1(Ẽ(η),S̃(φ)), where i ∈ {2, . . . , 20}.

If a chain C is key-undefined before this action, while turns to table-defined after
this action, then this action can only change val−i−2(C) and val+i+2(C) from ⊥
to non-empty values.

Proof. By the assumptions of this lemma, before the action we must have C =
(xi−1, xi, xi+1) and xi−1 ∈ H ∧ xi+1 ∈ H.

Clearly, val−i−2(C) and val+i+2(C) are changed from ⊥ to non-empty values by
this action. We argue that the changes are limited to these two values to establish
the claim. We first argue that val+i+3(C) = ⊥ (when i ≤ 19) or val+0 (C) =

val+1 (C) = ⊥ (when i = 20) after the action; the reasoning for val−i−3(C) = ⊥
(when i ≥ 3) or val−22(C) = ⊥ (when i = 2) after the action is similar by
symmetry. Towards a contradiction, assume that val+i+3(C) ̸= ⊥ (when i ≤ 19)

or val+0 (C) ̸= ⊥ ∨ val+1 (C) ̸= ⊥ (when i = 20) after the action. Then:

– when i ≤ 19, val+i+3(C) ̸= ⊥ implies val+i+2(C) ∈ Gi+2 after the action;
hence BadHit happens during the action Gi(xi) := φi(xi), namely φi(xi) =
xi ⊕Gi+1(xi+1)⊕ xi−1 ⊕ xi+1 ⊕ val+i+2(C);

– when i = 20, val+0 (C) ̸= ⊥∨val+1 (C) ̸= ⊥ implies (−, k, (val+22(C), x21)) ∈ E
after the action, for some k ∈ {0, 1}n; hence BadHit happens during the
action G20(x20) := φ20(x20), namely φ20(x20) = k ⊕ x19 ⊕ x21;

Therefore val+i+3(C) = ⊥ (when i ≤ 19) or val+0 (C) = val+1 (C) = ⊥ (when
i = 20) after the action. These establish the claim. ⊓⊔

The next lemma presents basic properties of the equivalence relation ≡.

Lemma 10. During a good execution DΣ
′
1(Ẽ(η),S̃(φ)), at any point such that all

the previous calls to ForceV al were non-overwriting, the following hold:

(i) For any two partial chains C and D, next(C) = D ⇔ prev(D) = C.
(ii) The relation ≡ between partial chains is an equivalence relation.
(iii) If two table-defined partial chains C and D are equivalent at this point, then

there exists a sequence of table-defined chains C1, . . . , Cr(r ≥ 1) s.t.
– C = C1 and D = Cr, or C = Cr and D = C1.
– Ci = next(Ci−1) and Ci−1 = prev(Ci).

Proof. (i) By construction, only ForceV al can overwrite entries. Since all are
assumed to be non-overwriting, both evaluating KAF ∗ one step forward or
backward and evaluating E.Enc or E.Dec are bijective and (i) holds.

(ii) Due to (i), ≡ is symmetric, and by definition it is reflexive and transitive.
(iii) By definition we know D = nextj(C) or D = prevj(C) for some j. In

the former case the chain sequence is C1 = C, C2 = next(C), ..., Ci =
nexti−1(C), ..., Cr = D where r = j + 1; in the latter case it is similar by
symmetry. Obviously, all the chains are table-defined. ⊓⊔



Then we show the invariance of the equivalence relation for chains before and
after the tape accessing and entry setting action.

Lemma 11. Consider a good execution DΣ
′
1(Ẽ(η),S̃(φ)). Let C and D be two

table-defined chains at some point in DΣ
′
1(Ẽ(η),S̃(φ)) such that all the previous

calls to ForceV al were non-overwriting. Assume a tape accessing and entry set-
ting action happens after this point, then the equivalence of C and D is invariant
before and after this action.

Proof. If C ≡ D before the action, then the chain sequence linked C and D is
invariant before and after the action since no entry is overwritten, and C ≡ D
after the action. On the other hand if sequence C1, . . . , Cr links C and D after
the action while next(Cj) = prev(Cj+1) = ⊥ before the action, then D being
table-defined before the action implies j + 1 < r. In this case, next(Cj) = ⊥
before the action while next(Cj) ̸= ⊥ ∧ next2(Cj) ̸= ⊥ after the action, which
contradicts Lemma 8 (i). Hence C ≡ D before the action. ⊓⊔

The following lemma shows that two inequivalent chains cannot collide at
two consecutive rounds when they are extended by the random tape accessing
and entry setting actions.

Lemma 12. Fix a point in a good execution DΣ
′
1(Ẽ(η),S̃(φ)) and suppose all calls

to ForceV al to be non-overwriting up to this point. Assume a random tape
accessing and entry setting action Gi(xi) := φi(xi) happens right after this point,
then for any two partial chains C and D, any l ∈ {1, . . . , 21}, and any δ ∈
{+,−}, the following four cannot be simultaneously fulfilled:

(i) before the action, C is not equivalent to D;
(ii) before the action, valδl (C) = ⊥ or valδl (D) = ⊥;
(iii) after the action, C and D are table-defined;
(iv) after the action, (valδl (C) = valδl (D) ̸= ⊥)∧(valδl−1(C)⊕k(C) = valδl−1(D)⊕

k(D)) when δ = +, or (valδl (C) = valδl (D) ̸= ⊥) ∧ (valδl+1(C) ⊕ k(C) =

valδl+1(D)⊕ k(D)) when δ = −;

Proof. Towards a contradiction assume all the four statements to hold after an
action Gi(xi) := φi(xi) for two partial chains C and D, and some l ∈ {1, . . . , 21}.
Let yi = φi(xi).

First, consider the case where both C andD are key-defined before the action.
Wlog assume δ = +, and val+l (C) = ⊥ before the action. Then since val+l (C) is
changed from ⊥ to non-empty values by the action, by Lemma 8 (iii), i = l− 1,
and val+i (C) = xi must hold before the action. We distinguish two cases:

– val+i+1(D) = ⊥ before the action. Then val+i (D) = xi must hold before
the action. Let (xi−2, xi−1, xi, i−2) = nextj1(C) and (x′

i−2, x
′
i−1, xi, i−2) =

nextj2(D) for sufficiently large j1 and j2. If val
+
i+1(C) = val+i+1(D) = xi+1 ̸=

⊥ holds after the action, then after the action we have xi−1 ⊕ Gi(xi) ⊕
k(C) = x′

i−1 ⊕Gi(xi)⊕ k(D), which implies xi−1 ⊕ k(C) = x′
i−1 ⊕ k(D) to



hold before the action. Note that xi−1 = x′
i−1 cannot hold, since otherwise

(xi−1, xi, xi+1, i − 1) = (x′
i−1, xi, xi+1, i − 1) and C ≡ D which contradicts

the assumption that C is not equivalent to D before the action. Therefore
k(C) = xi−1 ⊕Gi(xi)⊕ xi+1 ̸= x′

i−1 ⊕Gi(xi)⊕ xi+1 = k(D), and

val+l−1(C)⊕ k(C) = xi ⊕ k(C) ̸= xi ⊕ k(D) = val+l−1(D)⊕ k(D).

This implies that the four statements cannot simultaneously hold.
– val+i+1(D) ̸= ⊥ before the action. Then val+i (C) ̸= val+i (D) must hold, oth-

erwise val+i+1(C) ̸= ⊥. Let (xi−2, xi−1, xi, i−2) = nextj1(C) and (x′
i−2, x

′
i−1,

xi, i−2) = nextj2(D) for sufficiently large j1 and j2. Since D is table-defined
after the entry setting action on Gi(xi), D must have been table-defined be-
fore the action. Further since val+l (C) = val+l (D) ≠ ⊥ after the action, we
have xi−1 ⊕ yi ⊕ k(C) = xi−1 ⊕ φi(xi)⊕ k(C) = x′

i−1 ⊕Gi(x
′
i)⊕ k(D), i.e.

φi(xi) = xi−1⊕xi−2⊕Gi−1(xi−1)⊕xi⊕x′
i−1⊕Gi(x

′
i)⊕x′

i−2⊕Gi−1(x
′
i−1)⊕xi,

BadHit happens.

In this case, the reasoning for δ = − is similar by symmetry.
Second, consider the case where C or D (or both) is key-undefined. Assume

C to be key-undefined before the action yi = φi(xi). Then it must be C =
(xi−1, xi, xi+1, i − 1), and l = i + 2 or l = i − 2 (the latter two comes from
Lemma 9). Let (x′

i−1, x
′
i, x

′
i+1, i− 1) = nextj(D) for sufficiently large j. If both

of the following two hold:

– D is table-defined after the action yi = φi(xi);
– x′

i ̸= xi;

Then after the action, neither val+i+2(C) = val+i+2(D) nor val−i−2(C) = val−i−2(D)

holds, otherwiseBadHit happens, e.g. if val+i+2(C) = val+i+2(D) after the action,
then φi(xi) = xi⊕Gi+1(xi+1)⊕xi−1⊕xi+1⊕x′

i⊕Gi+1(x
′
i+1)⊕x′

i−1⊕Gi(x
′
i)⊕x′

i+1

(note that val+i+2(D) ̸= ⊥ after the action implies (x′
i−1, x

′
i, x

′
i+1, i − 1) to be

table-defined before the action).
By this, in this case, it must be x′

i = xi, and D is also key-undefined before
the action (more clearly, D = (x′

i−1, xi, x
′
i+1, i − 1)). Then neither for δ = +

nor for δ = − can proposition (iv) hold. For instance, for the case δ = +, if
(val+l (C) = val+l (D) ̸= ⊥) ∧ (val+l−1(C) ⊕ k(C) = val+l−1(D) ⊕ k(D)), then we
can derive the following two equalities:

– Gi+1(xi+1)⊕ xi−1 ⊕ xi+1 = Gi+1(x
′
i+1)⊕ x′

i−1 ⊕ x′
i+1;

– xi−1 = x′
i−1;

They two further imply Gi+1(xi+1) ⊕ xi+1 = Gi+1(x
′
i+1) ⊕ x′

i+1; hence among
the two entries Gi+1(xi+1) and Gi+1(x

′
i+1) (xi+1 ̸= x′

i+1 since C and D are
inequivalent), the one defined later implies the occurrence of BadHit. ⊓⊔

The following lemma claims that if all the previous calls to ForveV al were
non-overwriting, then the calls to ForceV al triggered by safe calls to Adapt do
not affect the values in previously defined chains, nor the equivalence relation.



Lemma 13. Consider a safe call Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l) in a

good execution DΣ
′
1(Ẽ(η),S̃(φ)), and suppose all the previous calls to Adapt to be

safe, then:

(i) Right before the subsequent call to F inner(l − 1, xl−1), xl−1 /∈ Gl−1; right
before the subsequent call to F inner(l + 2, xl+2), xl+2 /∈ Gl+2;

(ii) The subsequent calls to ForceV al are non-overwriting.

(iii) If a chain C is table-defined before this call to Adapt and is not equivalent
to the chain which is being completed, then for any i ∈ {1, . . . , 21}, val+i (C)
and val−i (C) are invariant before and after both calls to ForceV al.

(iv) If two chains C and D are table-defined before this call to Adapt, then the
equivalence of C and D is invariant before and after the subsequent calls to
ForceV al.

Proof. Denote the chain being completed by Ccomplete. Then, for proposition (i),
consider xl−1. Since the call to Adapt is safe, before the Adapt either xl−2 /∈ Gl−2

or xl−2 ∈ Gl−2 ∧ xl−1 /∈ Gl−1 holds. If the latter holds, then clearly proposition
(i) holds. If the former holds, then action Gl−2(xl−2) := φl−2(xl−2) must happen
during the call to F inner(l − 2, xl−2). Before this action, xl−4 ∈ Gl−4, xl−3 ∈
Gl−3, and next(xl−4, xl−3, xl−2, l − 4) = ⊥, hence by Lemma 8 (i), after this
action we have next2(xl−4, xl−3, xl−2, l − 4) = ⊥ and xl−1 /∈ Gl−1. Utilizing
Lemma 8 (ii), and by symmetry we achieve the proof of xl+2 /∈ Gl+2.

Gathering proposition (i) and Lemma 8 (i), (ii) yields xl /∈ Gl and xl+1 /∈
Gl+1 before the call to ForceV al. Therefore proposition (ii) holds.

For proposition (iii), consider a chain C = (xj , xj+1, xj+2, j) which is table-
defined before the call to Adapt. Let B = (xl−4, xl−3, xl−2, l − 4) and D =
(xl+3, xl+4, xl+5, l + 3). Then B ≡ D ≡ Ccomplete while C cannot be equivalent
to them by assumption. Suppose val+i (C) is changed by the subsequent calls to
ForceV al. Then val+l (C) = xl or val+l+1(C) = xl+1 must hold before the calls

to ForceV al, for the value of val+i (C) to change.

We first assume val+l (C) = xl just before the two calls to ForceV al. For
each of the following cases, we exclude the possibility:

(i) Before the call to Adapt, val+l (C) ̸= ⊥. Then val+l (C) can be written
as xor of five values extracted from the history: val+l (C) = val+l−2(C) ⊕
Gl−1(val

+
l−1(C))⊕ xj ⊕Gj+1(xj+1)⊕ xj+2. By proposition (i), xl−1 /∈ Gl−1

before yl−1 := F inner(l − 1, xl−1) is executed, therefore the value xl cal-
culated by xl := xl−2 ⊕ φl−1(xl−1) ⊕ k(B) cannot equal val+l (C) unless
φl−1(xl−1) = (val+l−2(C) ⊕ Gl−1(val

+
l−1(C)) ⊕ xj ⊕ Gj+1(xj+1) ⊕ xj+2) ⊕

(xl−2 ⊕ xl−4 ⊕Gl−3(xl−3)⊕ xl−2) and BadHit happens.

(ii) Before the call to Adapt, val+l (C) = ⊥. We further distinguish two cases
depending on val+l−2(C) before the call to Adapt:

(a) val+l−2(C) ∈ Gl−2 while val+l−1(C) /∈ Gl−1: then val+l−1(C) = xl−1

must hold when yl−1 := F inner(l − 1, xl−1) is executed, otherwise when
ForceV al is called, val+l (C) = ⊥ ̸= xl. Then, before the call to Adapt:



– if xl−2 /∈ Gl−2, then val+l−1(C) = xl−1 cannot hold when yl−1 :=

F inner(l − 1, xl−1) is executed unless φl−2(xl−2) = (val+l−3(C) ⊕
Gl−2(val

+
l−2(C))⊕xj⊕Gj+1(xj+1)⊕xj+2)⊕(xl−3⊕xl−4⊕Gl−3(xl−3)⊕

xl−2) and BadHit happens.
– if xl−2 ∈ Gl−2 while xl−1 /∈ Gl−1, the call to Adapt must set

Gl−1(val
+
l−1(C)) besides Gl−1(xl−1) to make val+l (C) = xl ̸= ⊥

before the call to ForceV al. This means, before the call to Adapt:
i. val+l−1(C) = xl−1 holds;

ii. val+l (C) = val+l (B) immediately holds after Gl−1(xl−1) is de-
fined;

These imply the following two to hold simultaneously:
i. val+l−3(C) ⊕ Gl−2(val

+
l−2(C)) ⊕ (val+l−2(C) ⊕ Gl−3(val

+
l−3(C)) ⊕

val+l−4(C)) = xl−3 ⊕Gl−2(xl−2)⊕ (xl−4 ⊕Gl−3(xl−3)⊕ xl−2);

ii. xl−2 ⊕ (xl−4 ⊕ Gl−3(xl−3) ⊕ xl−2) = val+l−2(C) ⊕ (val+l−2(C) ⊕
Gl−3(val

+
l−3(C))⊕ val+l−4(C));

Therefore all the following 6 values have been in {Gi} before the call
to Adapt: val+l−4(C), val+l−3(C), val+l−2(C) (by C being table-defined
before the call), xl−4, xl−3, and xl−2. By construction we know all
the entries in Gl−4, Gl−3, and Gl−2 are defined to random values
drew from the tapes (none of the 3 rounds l− 4, l− 3 and l− 2 is in
adaptation zone), consequently among them six, the last one added
to {Gi} implies BadHit, and it is impossible for this case to occur.

(b) val+l−2(C) /∈ Gl−2 (which means val+l−1(C) = ⊥): in such case the

call to Adapt must define Gl−2(val
+
l−2(C)) and Gl−1(val

+
l−1(C)) besides

Gl−2(xl−2) and Gl−1(xl−1) to lead to val+l (C) ̸= ⊥. Then val+l (C) =
val+l (B) = xl is impossible since C is not equivalent to B.

We then assume val+l+1(C) = xl+1 just before the second call to ForceV al. By

the discussions above, we have: before the call to Adapt, val+l (C) ∈ Gl must
hold, otherwise val+l (C) /∈ Gl is kept till the second call to ForceV al, which
implies val+l+1(C) = ⊥ ̸= xl+1, a contradiction. Then val+l+1(C) can be written

as xor of five values in the history: val+l+1(C) = val+l−1(C)⊕Gl(val
+
l (C))⊕xj ⊕

Gj+1(xj+1) ⊕ xj+2; and, by proposition (i) we know val+l+1(C) = xl+1 cannot

hold before the second call to ForceV al, otherwise the call F inner(l + 2, xl+2)
triggers BadHit, i.e. φl+2(xl+2) = val+l−1(C)⊕Gl(val

+
l (C))⊕xj⊕Gj+1(xj+1)⊕

xj+2 ⊕ xl+3 ⊕ xl+2 ⊕Gl+3(xl+3)⊕ xl+4.
The reasoning for val−i (C) is similar. These establish proposition (iii).
For proposition (iv), let C andD be two chains which are table-defined before

the Adapt. If C ≡ D ≡ Ccompleted before the call to ForceV al, then clearly C ≡
D ≡ Ccompleted after the call since no entry is overwritten; and the proposition
that if C ≡ D ≡ Ccompleted after the call to ForceV al then C ≡ D ≡ Ccompleted

before the call is also trivial. If C and D are not equivalent to Ccompleted, then by
proposition (iii) the values valδi (C) and valδi (D) are invariant before and after
the calls to ForceV al, C ≡ D before ForceV al implies C ≡ D after ForceV al
meanwhile C ≡ D after ForceV al only if C ≡ D before ForceV al. ⊓⊔



Given that no entry is overwritten, a chain dequeued form the queue will not
be completed if some chain equivalent to it has been completed.

Lemma 14. Assume at a fixed point in a good execution DΣ
′
1(Ẽ(η),S̃(φ)), a chain

C is dequeued such that C /∈ CompletedSet and all calls to Adapt were safe up
to the point C is dequeued. Then when C was enqueued, no chain equivalent to
C has been enqueued.

Proof. Towards a contradiction assume a chain D ≡ C has been enqueued before
C was enqueued. Since BadHit is assumed to be absent, and all the previous
calls to ForceV al are assumed to be safe, by Lemma 11 and Lemma 13 (iv), D ≡
C till C is dequeued. Hence when C is dequeued, D must have been dequeued
and completed, and the completion of D must have added C to CompletedSet.
This contradicts the assumption C /∈ CompletedSet when C is dequeued. ⊓⊔

Lemma 15. Consider a good execution DΣ
′
1(Ẽ(η),S̃(φ)). Let C be a chain which

is dequeued and to be adapted at position l s.t. C /∈ CompletedSet. Then the
subsequent call to Adapt is safe, if the following holds when C is dequeued:

(((val+l−2(C) /∈ Gl−2) ∨ (val+l−2(C) ∈ Gl−2 ∧ val+l−1(C) /∈ Gl−1))

∧((val−l+3(C) /∈ Gl+3) ∨ (val−l+3(C) ∈ Gl+3 ∧ val−l+2(C) /∈ Gl+2))).

Proof. The aim is to show the safe Adapt call condition to hold right before
the call Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l). Wlog we show this for “xl−2

side”. By construction, C = (xi, xi+1, xi+2, i) must be key-defined since being
enqueued. Then, when C is enqueued,

(i) if val+l−2(C) = ⊥, then by Lemma 8 (iii), val+l−2(C) can only change from
⊥ to some non-empty values during the random tape accessing and entry
setting action on Gl−3 which occurs in the procedure EvalForward(C, l−2),
and by Lemma 8 (i), val+l−2(C) /∈ Gl−2 immediately holds after this action;

(ii) if val+l−2(C) ̸= ⊥ ∧ val+l−2(C) /∈ Gl−2 (i.e. val+l−1(C) = ⊥), then xl−2 =

val+l−2(C) /∈ Gl−2 keeps holding till Adapt is called;

(iii) if val+l−2(C) ∈ Gl−2∧val+l−1(C) /∈ Gl−1, then xl−1 = val+l−1(C) /∈ Gl−1 keeps
holding till Adapt is called;

By discussions above, the safe Adapt call condition holds before Adapt. ⊓⊔

The following two lemmas show that the assumptions of Lemma 15 hold in a
good execution. Lemma 16 shows them to hold before the chains are enqueued,
while Lemma 17 shows them to hold till the chains are dequeued.

Lemma 16. Consider a good execution DΣ
′
1(Ẽ(η),S̃(φ)). Let C be a partial chain

which is enqueued at some time and to be adapted at position l. Suppose that no
chain equivalent to C was enqueued before C is enqueued. Then:

(i) val+l−2(C) = ⊥ and val−l+3(C) = ⊥ before the call to F inner(i, x) which led
to C being enqueued.



(ii) right after C is enqueued, val+l−2(C) /∈ Gl−2 ∧ val−l+3(C) /∈ Gl+3.

Proof. The two propositions will be argued simultaneously. First, consider the
case l = 6. For the following three cases:

(i) C = (x1, x2, x3, 1, 6) is enqueued by a call to F inner(3, x3): clearly before this
call, val+4 (C) = ⊥. Assume val−9 (C) ̸= ⊥, then val−10(C) ∈ G10, val

−
11(C) ∈

G11, val
−
12(C) ∈ G12, and (val−10(C), val−11(C), val−12(C), 10) would be a chain

which is equivalent to C and has been enqueued before C is enqueued. This
contradicts the assumption.
After the action G3(x3) := φ3(x3) triggered by F inner(3, x3), by Lemma 8
(iii) we have val+4 (C) /∈ G4. Moreover val−9 (C) = ⊥ /∈ G9 keeps holding.

(ii) C = (x10, x11, x12, 10, 6) is enqueued by a call to F inner(10, x10): clearly
val−9 (C) = ⊥ before it. Assume val+4 (C) ̸= ⊥, then let (x0, x1, x2, x3, x19,
x20, x21, x22) = (val+0 (C), val+1 (C), val+2 (C), val+3 (C), val−19(C), val−20(C),
val−21(C), val−22(C)). All these 8 values must be non-empty values, since oth-
erwise val+4 (C) = ⊥. Then at some point in the execution, all the 7 values
G1(x1),G2(x2),G3(x3),G19(x19),G20(x20),G21(x21), and E(−, k, (x22, x21))
have been added to corresponding tables. Among them, consider the last
added one. It must have been G3(x3) := φ3(x3) or G19(x19) := φ19(x19)
because:
(a) it cannot be an action happened on table E, since otherwise prev(x0, x1, x2, 0) =
⊥ before the action while prev2(x0, x1, x2, 0) ̸= ⊥ after the action (con-
tradicting Lemma 8 (ii)).

(b) it cannot be G1(x1) := φ1(x1) or G2(x2) := φ2(x2) since otherwise
val+4 (x19, x20, x21, 19) changes (contradicting Lemma 8 (iii)).

(c) it cannot be G20(x20) := φ20(x20) or G21(x21) := φ21(x21) since other-
wise val−18(x1, x2, x3, 1) changes (contradicting Lemma 8 (iii)).

Hence the last action (on round 3 or 19) will trigger the chain detection
and completion process and add C to CompletedSet, which contradicts the
assumption.
In this case, after C is enqueued, val−9 (C) /∈ G9 immediately holds by Lemma
8 (iii), while val+4 (C) = ⊥ /∈ G4 keeps holding.

(iii) C = (x10, x11, x12, 10, 6) is enqueued by a call to F inner(11, x11): in this case,
the call to F inner(11, x11) turns C from key-undefined to key-defined ; then
clearly val−9 (C) = ⊥ and val+13(C) = ⊥ hold before C is enqueued, while
by Lemma 9 we know val−9 (C) /∈ G9 and val+13(C) /∈ G13 immediately hold
after C is enqueued. val+13(C) /∈ G13 further implies val+4 (C) = ⊥ /∈ G4.

For l = 15, it is similar by symmetry, except for excluding case (iii). ⊓⊔

Lemma 17. In a good execution DΣ
′
1(Ẽ(η),S̃(φ)), all calls to Adapt are safe.

Proof. Suppose the lemma does not hold, and let C be the first chain for which it
fails. Clearly C /∈ CompletedSet when C is dequeued, and since all calls to Adapt
before C is dequeued were safe, by Lemma 14 we know when C was enqueued,
no chain equivalent to C had been enqueued. Hence, Lemma 16 implies that



val+l−2(C) /∈ Gl−2 ∧ val+l+3(C) /∈ Gl+3 immediately holds after C was enqueued.

We show that when C is dequeued, val+l−1(C) /∈ Gl−1 ∧ val+l+2(C) /∈ Gl+2; this

implies the conclusion by Lemma 15. Wlog consider val+l−2(C) and val+l−1(C). If

val+l−2(C) = ⊥ after C was enqueued, we show that val+l−2(C) = xl−2 /∈ Gl−2

immediately holds after val+l−2(C) ̸= ⊥ holds. Consider the last table entry

setting action before val+l−2(C) ̸= ⊥ holds. Recall that C has been equivalent
to a table-defined chain Ctd since being enqueued; then by Lemma 13 (iii),
val+l−2(C) = val+l−2(Ctd) cannot be changed by previous calls to ForceV al.
Hence it was changed by a tape accessing and entry setting action, and we
have val+l−2(C) = xl−2 /∈ Gl−2 after this action (Lemma 8 (iii)).

Now assume val+l−1(C) ∈ Gl−1 when C is dequeued. Then during the period
between the point C was enqueued and the point C is dequeued, the following
two actions must have been induced by the completion of some other chains D:

(i) Gl−2(val
+
l−2(C))(= Gl−2(xl−2)) was defined;

(ii) after action (i), Gl−1(val
+
l−1(C)) was defined;

We show it to be impossible to show val+l−1(C) /∈ Gl−1 to hold when C is
dequeued. If the two happen, then for (either of) them two to be defined during
the completion of D, we must have val+l−2(D) = val+l−2(C) or val+l−1(D) =

val+l−1(C). We then show that for a chain D which is completed in this period,

– during the completion of D, if val+l−2(C) = val+l−2(D), then val+l−1(C) ̸=
val+l−1(D) (hence Gl−1(val

+
l−1(C)) cannot be defined).

– during the completion ofD,Gl−1(val
+
l−1(C)) can be defined only if val+l−2(C) =

val+l−2(D) (val+l−1(C) = val+l−1(D)⇒ val+l−2(C) = val+l−2(D)).

Gathering the two claims yields that Gl−1(val
+
l−1(C)) cannot be defined during

this period and the call to Adapt will be safe.
For the first claim, assume otherwise, i.e. val+l−2(D) = val+l−2(C), and right

after Gl−2(val
+
l−2(D)) was defined, val+l−1(D) = val+l−1(C) holds. This means

that before Gl−2(val
+
l−2(D)) was defined, the following two hold:

(i) val+l−2(D) = val+l−2(C) ̸= ⊥
(ii) val+l−3(D)⊕ k(D) = val+l−3(C)⊕ k(C)

Consider the last table entry setting action before the above two hold. After
this action, we have val+l−2(D) ̸= ⊥ and val+l−2(C) ̸= ⊥; then after this action,
C must have been enqueued (because by Lemma 16 (i), before C is enqueued,
val+l−2(C) shall be ⊥), and D has been enqueued even earlier, hence C and D
are equivalent to some table-defined chains Ctd and Dtd respectively. Then, for
this action, we exclude each possibility:

(i) This cannot be a tape accessing and table entry setting action. To illustrate
this, assume otherwise. Then the following four hold simultaneously, which
contradicts Lemma 12:



– before the action, Ctd is not equivalent to Dtd;
– before the action, val+l−2(Ctd) = ⊥ or val+l−2(Dtd) = ⊥ (otherwise the in-

equality val+l−2(Dtd) ̸= val+l−2(Ctd) cannot be changed and val+l−2(Dtd) =

val+l−2(Ctd) cannot hold);
– after the action, Ctd and Dtd are table-defined;
– after the action, val+l−2(Dtd) = val+l−2(Ctd) ̸= ⊥ and val+l−3(Dtd) +

k(Dtd) = val+l−3(Ctd) + k(Ctd);
(ii) This cannot be a previous call to ForceV al since both Ctd and Dtd must

be inequivalent to the chains completed before, and by Lemma 13 (iii),
val+l−2(D) = val+l−2(Dtd) and val+l−2(C) = val+l−2(Ctd) are invariant before
and after any previous call to ForceV al;

Hence the first claim holds.
For the second claim, assume otherwise, then we know that before the entry

setting action on Gl−1(val
+
l−1(C)), the following two hold:

(i) val+l−2(C) ∈ Gl−2, val
+
l−2(D) ∈ Gl−2, and val+l−2(C) ̸= val+l−2(D)

(ii) val+l−1(C) = val+l−1(D) /∈ Gl−1

Consider the last table entry setting action before the above two hold. By Lemma
16 (ii), val+l−2(C) /∈ Gl−2 immediately holds after C is enqueued; hence this ac-
tion must happen after C is enqueued, and C, D (enqueued earlier that C)
must have been equivalent to some table-defined chains Ctd and Dtd respec-
tively, as discussed before. Then, since none of the previous calls to ForceV al
affects val+i (D) = val+i (Dtd) and val+i (C) = val+i (Ctd) (by Lemma 13 (iii)),
the last action before the above two hold must be a tape accessing and en-
try setting action. Moreover, since val+l−2(Ctd) /∈ Gl−2 and Ctd is table-defined

(and val+l−2(Dtd) /∈ Gl−2 and Dtd is table-defined) immediately hold after C

(D, resp.) is enqueued, and then this action changed val+l−1(Ctd)(= val+l−1(C))

and val+l−1(Dtd)(= val+l−1(D)) from ⊥ to non-empty values, this action must

have been a defining action on either Gl−2(val
+
l−2(Ctd)) or Gl−2(val

+
l−2(Dtd)) (by

Lemma 8 (iii)). However neither is possible: wlog assume it to beGl−2(val
+
l−2(Ctd)) :=

φl−2(val
+
l−2(Ctd)), then after this action, the following holds (by val+l−1(Ctd) =

val+l−1(Dtd) /∈ Gl−1):

val+l−3(Ctd)⊕ φl−2(val
+
l−2(Ctd))⊕ k(Ctd)

=val+l−3(Dtd)⊕Gl−2(val
+
l−2(Dtd))⊕ k(Dtd)

Suppose Ctd = (ci, ci+1, ci+2, i) and Dtd = (dj , dj+1, dj+2, j), then we have

φl−2(val
+
l−2(Ctd)) = val+l−3(Ctd)⊕ ci ⊕Gi+1(ci+1)⊕ ci+2

⊕ val+l−3(Dtd)⊕Gl−2(val
+
l−2(Dtd))⊕ dj ⊕Gj+1(dj+1)⊕ dj+2

which implies an occurrence ofBadHit. Therefore the claim thatGl−1(val
+
l−1(C))

(= Gl−1(val
+
l−1(Ctd))) can be defined only if val+l−2(C) = val+l−2(D).



Having excluded all possibilities we show val+l−1(C) /∈ Gl−1 to hold when C

is dequeued. The reasoning for val+l+1(C) /∈ Gl+1 is similar by symmetry. Hence
the subsequent call to Adapt will be safe. ⊓⊔

Lemma 18. In a good execution DΣ
′
1(Ẽ(η),S̃(φ)), all calls to ForceV al are non-

overwriting.

Proof. Gathering Lemma 17 and Lemma 13 (ii) yields this lemma. ⊓⊔

Randomness Mapping Argument: Defining the Map Having specified

the good executions DΣ
′
1(Ẽ(η),S̃(φ)), we are now ready to define the map itself.

We introduce some necessary notions first.

Basic Notions For any distinguisher D, we define a distinguisher D which
runs D and then emulates a call to EvalForward(xR, xL, xR ⊕ F (1, xL) ⊕
k, 0, 20) (EvalBackward(yL ⊕ F (21, yR)⊕ k, yR, yL, 20, 0), resp.) for all queries

Ẽ.Enc((xL, xR), k) (Ẽ.Dec((yL, yR), k), resp.) made by D during the execution,
and outputs the output of D. Clearly when D makes no more than q queries, D
makes no more than 22q queries, and has exactly the same advantage as D in
distinguishing Σ

′

1 and Σ2. We call D the distinguisher which completes all chains
corresponding to D. Then, with respect to a fixed D and the corresponding D,
we introduce the following notions. Some of them are similar to those in [2].

– a tuple of random tapes (η, φ) = (η, (φ1, . . . , φ21)) for Σ
′

1 is called a Σ
′

1-tuple;
– a tuple of random tapes π = (π1, . . . , π21) for Σ2 is called Σ2-tuple;
– R

′

1 (R2, resp.) is the set of all Σ
′

1-tuples (Σ2-tuples, resp.);

– a Σ
′

1-tuple is called good if the execution D
Σ

′
1(Ẽ(η),S(φ))

is good;

– Rgood
1 ⊆ R

′

1 is the set of all good Σ
′

1-tuples with respect to D;

– partial Σ
′

1-tuple: random tapes obtained by arbitrarily setting some entries
φi(x) or entry pairs (η(+, k, x), η(−, k, η(+, k, x))) to ⊥ in a Σ

′

1-tuple (η, φ),
while keeping the property η(δ, k, z) = z

′ ̸= ⊥ iff. η(δ, k, z
′
) = z ̸= ⊥;

– Rpartial
1 : the set of all partial Σ

′

1-tuples;
– partial Σ2-tuple: obtained by arbitrarily setting some entries πi(x) to ⊥ in

a Σ2-tuple π. Rpartial
2 is the set of all partial Σ2-tuples;

– For π ∈ Rpartial
2 , denote the number of pairs (i, x) s.t. πi(x) ̸= ⊥ by |π|;

– footprint of a random Σ
′

1-tuple (η, φ): the partial tuple obtained by
(i) for any i ∈ {1, . . . , 21} and any x ∈ {0, 1}n, setting φi(x) to ⊥, if φi(x)

is not accessed during D
Σ

′
1(Ẽ(η),S(φ))

;
(ii) for any z ∈ {0, 1}2n and any k ∈ {0, 1}n, setting both η(+, k, z) and

η(−, k, η(+, k, z)) to ⊥, if neither η(+, k, z) nor η(−, k, η(+, k, z)) is ac-

cessed during D
Σ

′
1(Ẽ(η),S(φ))

;
– the set of Σ

′

1-footprints is denoted by Rfoot
1 , and the set of footprints of good

tuples (η, φ) is denoted by Rgood−f
1 ;

– FootPrint((η, φ), D) denotes the footprint of (η, φ) with respect to D;



For π = (π1, . . . , π21) ∈ R2 and u = (π′
1, . . . , π

′
21) ∈ Rpartial

2 , denote by π ∼= u
the fact that for any i ∈ {1, . . . , 21} and any x ∈ {0, 1}n, if π′

i(x) ̸= ⊥, then
πi(x) = π′

i(x). Briefly speaking, π ∼= u means that π agrees with u on all the
non-empty entries.

Defining the Map The map is

τ : Rgood−f
1 → Rpartial

2 .

Let α := (η, φ) ∈ Rgood−f
1 . We define τ(α) = π = (π1, . . . , π21) according

to the tables (Ẽ(η).E,G1, . . . , G21) standing at the end of the execution of

D
Σ

′
1(Ẽ(η),S̃(φ))

: for all i ∈ {1, . . . , 21} and x ∈ Gi, πi(x) := Gi(x); for all

i ∈ {1, . . . , 21} and x /∈ Gi, πi(x) := ⊥. Since α is a footprint, D
Σ

′
1(Ẽ(η),S̃(φ))

is

well-defined, and τ is also well-defined. Denote the range of τ by τ(Rgood−f
1 ).

Completing the RRMA We utilize the notion of transcript again. However,
in some of the proofs we are only interested in the query-answer pairs gener-
ated by D; this is different from Sect. 4.3. To make a distinction, we define the
sequence composed of such pairs as D-transcript, that is, dt = (dqa1, dqa2, . . .).
Each dqai is a 3-tuple dqai = (procedure, query, answer), where procedure ∈
{Enc,Dec, F}. We also denote the function which extracts the D-transcript by
DTranscript(·, ·), define the length of a finite D-transcript as the number of
tuples in it, and define the partial D-transcript dtj as the sequence of the first j
tuples. Note that both transcript and D-transcript will be used in this section.

Then with respect to D, we have the following lemmas.

Lemma 19. Suppose that Ẽ(η).Enc(x, k), resp. Ẽ(η).Dec(y, k) is queried dur-

ing a good execution D
Σ

′
1(η,φ)

. Then, at the end of the execution D
Σ

′
1(η,φ)

,
it holds that Ẽ(η).E(+, k, x) = (val+22(xR, xL, x

′, 0), val+21(xR, xL, x
′, 0)), resp.

Ẽ(η).E(−, k, y) = (val−1 (y
′, yR, yL, 20), val

−
0 (y

′, yR, yL, 20)), where x′ = xR ⊕
G1(xL)⊕ k and y′ = yL ⊕G21(yR)⊕ k.

Proof. S̃(φ) queries Ẽ(η) only when it is completing a chain, hence if the query

Ẽ(η).Enc(x, k) is made by S̃(φ), then the equality holds right after the com-
pletion of the chain, and will keep holding till the end since no entry will
be overwritten during a good execution. On the other hand, if the query is
issued by D, then since D completes all chains, it must emulate a call to
EvalForward(xR, xL, x

′, 0, 20) where x′ = xR ⊕ F (1, xL) ⊕ k, and at some
point it must query F (10, val+10(xR, xL, x

′, 0)), F (11, val+11(xR, xL, x
′, 0)) and

F (12, val+12(xR, xL, x
′, 0)), among which the last one will trigger the chain com-

pletion. After the completion, the equality holds, and will also keep holding till
the end. The case of Ẽ(η).Dec(y, k) is similar by symmetry. ⊓⊔

Lemma 20. It holds DTranscript(D,Σ
′

1(α)) = DTranscript(D,Σ2(τ(α))) and

D
Σ

′
1(α) = D

Σ2(τ(α))
, if α ∈ Rgood−f

1 .



Proof. Let α = (η, φ) ∈ Rgood−f
1 and let β = τ(α) = (π1, . . . , π21) ∈ Rpartial

2 . By
definition of τ , π1, . . . , π21 are copies of the tables G1, . . . , G21 standing at the

end of the executionD
Σ

′
1(α). SinceD is deterministic, there exists a deterministic

function Q∗
A (use notation Q∗

A to make a distinction from QA used in Sect. 4.3)
which takes the partial D-transcript as input and returns the next query of D.

Denote the D-transcripts by dt
′
= DTranscript(D,Σ

′

1(α)) = (dqa
′

1, dqa
′

2, . . .)
and dt = DTranscript(D,Σ2(τ(α))) = (dqa1, dqa2, . . .). By Lemma 2 we know
dt

′
is finite; suppose its length to be l

′
. We show dt

′ ̸= dt to be impossible:
if dt

′ ̸= dt, then there must exist 1 ≤ j ≤ l
′
s.t. dqai ̸= dqa

′

i (dqai may be

⊥, when the length of dt is less than l
′
). However this is impossible: suppose

j to be the smallest value such that dqa
′

j ̸= dqaj . Then dt
′

j−1 = dtj−1 and

Q∗
A(dt

′

j−1) = Q∗
A(dtj−1), and these means that the procedure fields and query

fields of dqa
′

j and dqaj equal correspondingly. We now argue the answer fields
of them to be equal to make a contradiction. We distinguish the following cases:

– If the procedure field is F and the query is (i, x), then by construction we
know the answer field of dqa

′

j equals the value of Gi(x) after this query is

answered. Since α ∈ Rgood−f
1 , Gi(x) will not be overwritten during the whole

lifetime of D
Σ

′
1(α), and the answer field of dqa

′

j equals the value of Gi(x)

standing at the end of D
Σ

′
1(α). By the definition of τ we have Gi(x) = πi(x),

hence the answer fields of dqa
′

j and dqaj are equal, and dqa
′

j = dqaj ;
– If the procedure field is Enc and the query is (x, k) = ((xL, xR), k), by

Lemma 19 we have Ẽ.Enc(x, k) = (val+22(xR, xL, x
′, 0), val+21(xR, xL, x

′, 0))

where x′ = xR ⊕ G1(xL) ⊕ k. By the assumption that α ∈ Rgood−f
1 , all the

values necessary for calculating val+22(xR, xL, x
′, 0) and val+21(xR, xL, x

′, 0))

are kept in {Gi} till the end of D
Σ1(η,φ)

, and then transferred to β by
τ , hence KAF ∗

21.Enc(x, k) = (val+22(xR, xL, x
′′, 0), val+21(xR, xL, x

′′, 0)) =

Ẽ.Enc(x, k) where x′′ = xR ⊕ π1(xL)⊕ k = x′, and dqa
′

j = dqaj ;
– The case when the procedure field is Dec is similar to Enc by symmetry;

Therefore dqa
′

j = dqaj for any 1 ≤ j ≤ l
′
, dt

′

l′
= dtl′ , Q

∗
A(dt

′

l′
) = Q∗

A(dtl′ ) = ⊥,

the length of dt is also l
′
, and dt

′
= dt. This further implies D

Σ
′
1(α) = D

Σ2(τ(α))
.
⊓⊔

Lemma 20 also shows that for any v ∈ τ(Rgood−f
1 ), D

Σ2(v)
is well-defined,

i.e. during D
Σ2(v)

, F(v) will not access the empty entries in v.

Lemma 21. τ : Rgood−f
1 → Rpartial

2 is one-to-one.

Proof. Towards a contradiction, assume there exists α, α
′ ∈ Rgood−f

1 s.t. α ̸= α
′

while τ(α) = τ(α
′
) = (π1, . . . , π21). Let α = (η, φ), α

′
= (η

′
, φ

′
), {Gi} be the

tables standing at the end of D
Σ

′
1(α), and {G′

i} be those standing at the end

of D
Σ

′
1(α

′
)
. By the definition of τ , τ(α) = (π1, . . . , π21) are copies of the tables



{Gi} standing at the end of D
Σ

′
1(α); hence {Gi} and {G

′

i} are exactly the same,

by τ(α
′
) = τ(α). Denote this fact by {Gi} ≡ {G

′

i}.
We argue Transcript(D,Σ

′

1(α)) = Transcript(D,Σ
′

1(α
′
)) to hold, which

implies that the execution processes of D
Σ

′
1(α) and D

Σ
′
1(α

′
)
are same, and, each

time a tape accessing action happens in D
Σ

′
1(α), a same tape accessing action

must happens in D
Σ

′
1(α

′
)
, and the two values read must be equal. This means

that the zones of α and α
′
accessed during the executions are exactly the same,

and α = α
′
by the definition of footprint.

Denote the transcripts by t = Transcript(D,Σ
′

1(α)) = (qa1, qa2, . . .) and
t
′
= Transcript(D,Σ

′

1(α
′
)) = (qa

′

1, qa
′

2, . . .). By Lemma 2 we know t is finite;

suppose its length to be l. Since both D and S̃ are deterministic, there is a deter-
ministic function QA that determines the next query from the partial transcript
attained so far (we use notation QA because the distinguisher is replaced by D
compared with Sect. 5). Then if t ̸= t

′
, there must exist 1 ≤ j ≤ l s.t. qaj ̸= qa

′

j .
We show this to be impossible: suppose j to be the smallest value such that
qaj ̸= qa

′

j . Then tj−1 = t
′

j−1 and QA(tj−1) = QA(t
′

j−1), which means that the

procedure and query fields of qaj and qa
′

j equal correspondingly. We show their
answer fields to be equal to contradict the assumption. For the following cases:

– When the procedure field of qaj and qa
′

j is F , Enc, or Dec, following the

same line as the proof of Lemma 20 and by {Gi} ≡ {G
′

i}, the answer fields
are equal. The difference between this proof and that of Lemma 20 is that
in this proof, the queries are not necessarily issued by D; however this has
no essential influence on the equality.

– The last case is when the procedure field of qaj and qa
′

j is Check. In this

case, the answer fields depend on the tables Ẽ(η).E and Ẽ(η
′
).E. By con-

struction we know Ẽ(η).E (Ẽ(η
′
).E, resp.) can be enlarged only if Ẽ(η).Enc

or Ẽ(η).Dec (Ẽ(η
′
).Enc or Ẽ(η

′
).Dec, resp.) is queried. By assumption we

know tj−1 = t
′

j−1, hence before the j-th query is made, each (δ, k, z) queried

in D
Σ

′
1(α) is also queried in D

Σ
′
1(α

′
)
, and they get same answers. Therefore

when the j-th query is made, the two tables Ẽ(η).E and Ẽ(η
′
).E have ex-

actly same contents. This implies the return values of the two corresponding
check calls to be equal, i.e. the answer fields are equal.

Hence qai = qa
′

i for any 1 ≤ i ≤ l, tl = t
′

l, QA(tl) = QA(t
′

l) = ⊥, the length of

t
′
is also l, and t = t

′
, a contradiction. This concludes the proof. ⊓⊔

The following lemma links the randomness brought in by η tape accessing
actions in Σ

′

1 to that brought in by certain π tape accessing actions in Σ2.

Lemma 22. During a good execution D
Σ

′
1(Ẽ(η),S̃(φ))

, the number of η tape ac-
cessing action equals the number of calls to Adapt.

Proof. During a good execution D
Σ

′
1(Ẽ(η),S̃(φ))

:



– Each call to Adapt corresponds to a distinct η tape accessing action, since
Ẽ(η) must be queried by S̃(φ) either during the procedure EvalForward
or during EvalBackward. These actions must be distinct since otherwise
different calls to Adapt correspond to a same plaintext-ciphertext-key tuple
of Ẽ(η), which implies some entries to be overwritten.

– Each η tape accessing action corresponds to a call to Adapt: if the action is
triggered by query (to Ẽ(η)) issued by S̃(φ), then clearly S̃(φ) is completing
a chain and will call Adapt soon; if the action is triggered by query issued
by D, then D will query the corresponding KAF ∗

21 computation path, and
will reach the point when the 3 corresponding values x10, x11, and x12 are
all in the G tables. After this point a chain equivalent to (x10, x11, x12, 10)
must have been enqueued and has been adapted accordingly. ⊓⊔

Then we bound the probability ratio between partial tuples linked by τ .

Lemma 23. Consider a fixed q′-query distinguisher D. Let u ∈ Rgood−f
1 . Then

for any randomly chosen tapes (η, φ) and π the following holds:

Pr[π ∼= τ(u)]

Pr[FootPrint((η, φ),D) = u]
≥ 1− (10q′

3
)2

22n

Proof. Clearly FootPrint((η, φ),D) = u holds if D gets same values for each

tape accessing action inD
Σ

′
1(Ẽ(η),S̃(φ))

andD
Σ

′
1(u). Let u = (η∗, φ∗), and suppose

φ∗ tape was accessed i times while η∗ tape was accessed j times during D
Σ

′
1(u).

Since D
Σ

′
1(u) is good, by Lemma 22 each η∗ tape accessing action corresponds

to one call to Adapt/two n-bit “adapted” values in {Gi}. Hence at the end of

D
Σ

′
1(u), {Gi} contains i + 2j entries; this implies |τ(u)| = i + 2j, and Pr[π ∼=

τ(u)] = (2−n)i+2j .

On the other hand, in D
Σ

′
1(Ẽ(η),S̃(φ))

, for each η tape accessing action, we
have Pr[η(δ, x, k) = η∗(δ, x, k)] ∈ [ 1

22n−j ,
1

22n ] while for each φ tape accessing

action we have Pr[φ(x) = φ∗(x)] = 2−n. Hence we lower bound the ratio as

Pr[π ∼= τ(u)]

Pr[FootPrint((η, φ), D) = u]
≥ (2−n)i+2j

(2−n)i · ( 1
22n−j )

j

= (
22n − j

22n
)j

By Lemma 2 we have j ≤ 10q′
3
, hence

Pr[π ∼= τ(u)]

Pr[FootPrint((η, φ),D) = u]
≥ 1− (10q′

3
)2

22n

as claimed. ⊓⊔



Lemma 24.
∑

v∈R2∧D
Σ2(v)

=1
Prπ[π = v] ≥

∑
u∈τ(Rgood−f

1 )∧D
Σ2(u)

=1
Prπ[π ∼=

u].

Proof. To show the claim, we show that R2 can be partitioned such that each
subset corresponds to at most one u ∈ τ(Rgood−f

1 ); more clearly, for any v ∈ R2,

there exists at most one u ∈ τ(Rgood−f
1 ) s.t. v ∼= u. Assume otherwise, i.e. ∃u, u′

s.t. u ̸= u′, v ∼= u and v ∼= u′. Let v = (πv
1 , . . . , π

v
21), u = (π1, . . . , π21), u

′ =
(π′

1, . . . , π
′
21), and let the preimages of u and u′ be α = (η, φ) and α′ = (η′, φ′)

respectively. Consider the two executions D
Σ

′
1(α) and D

Σ
′
1(α

′)
, and let {Gi} and

{G′
i} be the tables standing at the end of them respectively. We show the two ex-

ecutions to be the same: for any query F (i, x), the answers in them two are equal
because, if the query F (i, x) is made, then x ∈ Gi which implies πi(x), π

′
i(x) ̸= ⊥,

and S̃(φ).F (i, x) = Gi(x) = πi(x) = πv
i (x) = π′

i(x) = G′
i(x) = S̃(φ′).F (i, x).

Following the same line as in the proof of Lemma 21 we see all the queries
in the two executions get exactly same answers and Transcript(D,Σ

′

1(α)) =
Transcript(D,Σ

′

1(α
′)). Hence α = α′, and this implies u = u′ by τ being one-

to-one (Lemma 21), contradicting the assumption. Then we have:

∑
v∈R2∧D

Σ2(v)
=1

Prπ[π = v] ≥
∑

v∈R2∧D
Σ2(v)

=1∧∃u∈τ(Rgood−f
1 ) s.t. v∼=u

Prπ[π = v]

=
∑

u∈τ(Rgood−f
1 )∧D

Σ2(u)
=1

[ ∑
v∈R2∧v∼=u

Prπ[π = v]

]

=
∑

u∈τ(Rgood−f
1 )∧D

Σ2(u)
=1

Prπ[π ∼= u]

as claimed. ⊓⊔

The next lemma bounds the ratio between the probabilities that D outputs
1 in the two systems.

Lemma 25. For any deterministic q′-query distinguisher D, we have

Prπ[D
Σ2(KAF∗

21,F(π))
= 1]

Pr(η,φ)[(η, φ) is good ∧D
Σ

′
1(Ẽ(η),S̃(φ))

= 1]
≥ 1− (10q′

3
)2

22n

Proof. Given that the output of D is kept under τ (Lemma 20), τ is one-to-one
(Lemma 21), the inequality in Lemma 24, and the upper bound of the ratio



(Lemma 23), we have:

Prπ[D
Σ2(KAF∗

21,F(π))
= 1]

Pr(η,φ)[(η, φ) is good ∧D
Σ

′
1(Ẽ(η),S̃(φ))

= 1]

=

∑
v∈R2∧D

Σ2(v)
=1

Prπ[π = v]∑
u∈Rgood−f

1 ∧D
Σ

′
1(u)

=1
Pr(η,φ)[FootPrint((η, φ), D) = u]

≥

∑
v∈τ(Rgood−f

1 )∧D
Σ2(v)

=1
Prπ[π ∼= v]∑

u∈Rgood−f
1 ∧D

Σ
′
1(u)

=1
Pr(η,φ)[FootPrint((η, φ), D) = u]

=
∑

u∈Rgood−f
1 ∧D

Σ
′
1(u)

=1

Prπ[π ∼= τ(u)]

Pr(η,φ)[FootPrint((η, φ), D) = u]

≥
∑

u∈Rgood−f
1 ∧D

Σ
′
1(u)

=1

(1− (10q′3)2

22n )Pr(η,φ)[FootPrint((η, φ),D) = u]

Pr(η,φ)[FootPrint((η, φ),D) = u]

=(1− (10q′
3
)2

22n
)

∑
u∈Rgood−f

1 ∧D
Σ

′
1(u)

=1

Pr(η,φ)[FootPrint((η, φ), D) = u]

Pr(η,φ)[FootPrint((η, φ), D) = u]

=1− (10q′
3
)2

22n

as claimed. ⊓⊔

Now we are ready to bound the advantage of distinguishing Σ
′

1 and Σ2:

Lemma 26. For any distinguisher D which issues at most q queries, we have:

Pr[DΣ
′
1 = 1]− Pr[DΣ2 = 1] ≤ 2222 · q30

2n
+

234 · q6

22n

Proof. Let D be the distinguisher which completes all chains corresponding to
D. Then D makes at most 22q queries, and by Lemma 7 we have

Pr[D
Σ

′
1 = 1] ≤ Pr[D

Σ
′
1 is good ∧D

Σ1
′

= 1] + Pr[BadHit happens in D
Σ

′
1 ]

≤ Pr[D
Σ

′
1 is good ∧D

Σ1
′

= 1] +
288 · (22q)30

2n

By Lemma 25 we have

Pr[D
Σ2

= 1] ≥ (1− (10(22q)3)2

22n
) · Pr[D

Σ
′
1 is good ∧D

Σ
′
1 = 1]

≥ Pr[D
Σ

′
1 is good ∧D

Σ
′
1 = 1]− (10(22q)3)2

22n
.



Thus

Pr[D
Σ

′
1 = 1]− Pr[D

Σ2
= 1] ≤ 288 · (22q)30

2n
+

100(22q)6

22n
.

Since D has exactly the same advantage as D, we reach the conclusion. ⊓⊔
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A Surrounding Each Adaptation Zone with Two Buffer
Rounds – the Broken Expectations

If we increase the number of rounds used for chain detection to 3, while continue
surrounding each adaptation zone with two buffer Rounds – exactly same as the
previous works[13,17] – then we are working on 3+1+2+1+3+1+2+1+3 = 17
rounds (KAF ∗

17). For the modified simulator., the buffer rounds are round 4, 7,
11, and 14, while the first adaptation zone consists of round 5 and 6, the second
consists of round 12 and 13. Then the following operation sequence shows that
when a chain is to be adapted, the function values in the buffer rounds next to
the adaption zone may have been defined:

(i) arbitrarily chooses x3, x2, and x
′

2;
(ii) issues queries G2(x2) and G2(x

′

2) to the simulator;
(iii) arbitrarily chooses k and calculate k

′
:= k ⊕ x2 ⊕ x

′

2;
(iv) calculates x1 := x3 ⊕G2(x2)⊕ k and x

′

1 := x3 ⊕G2(x
′

2)⊕ k
′
;

(v) issues queries G1(x1) and G1(x
′

1);
(vi) issues queries G3(x3);

The last query G3(x3) enqueues two chains (x1, x2, x3, 1) and (x
′

1, x
′

2, x3, 1), and
whatever value is assigned to G3(x3), for the two chains we have x4 = x2 ⊕
G3(x3)⊕ k = x

′

2 ⊕G3(x3)⊕ k
′
= x

′

4. When the later one is dequeued, we have
x4 ∈ G4; this breaks the expectation that the simulator does not define the values
in the buffer rounds while completing other chains.

The underlying reason for this lies in the difference between the chains in
un-keyed Feistel and the chains in KAF ∗. In un-keyed Feistel construction (and
single-key Even-Mansour), two different computation paths cannot collide on
two successive rounds; more clearly, in un-keyed Feistel, for two different com-
putation paths (x0, x1, . . .) and (x′

0, x
′
1, . . .), it is impossible to find j such that

xj = x′
j ∧ xj+1 = x′

j+1 (otherwise we will have xi = x′
i for any i, and the two

paths are not different). On the other hand, in KAF ∗, it is possible to make
two different computation paths collide on two successive rounds. In fact, the
operation sequence mentioned before takes advantage of this property.

However, we are not clear whether 17-round single-key KAF ∗
17 can achieve

indifferentiability or not. In fact, we think KAF ∗
17 may be proven to be indiffer-

entiable by some much more complex analysis.
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