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Abstract. Feistel constructions have been shown to be indifferentiable
from random permutations at STOC 2011. Whereas how to properly
mix the keys into an un-keyed Feistel construction without appealing to
domain separation technique to obtain a block cipher which is provably
secure against known-key and chosen-key attacks (or to obtain an ideal
cipher) remains an open problem. We study this, particularly the basic
structure of NSA’s SIMON family of block ciphers. SIMON family takes a
construction which has the subkey xored into a halve of the state at each
round. More clearly, at the i-th round, the state is updated according to

(xi, xi−1) 7→ (xi−1 ⊕ Fi(xi)⊕ ki, xi)

For such key-alternating Feistel ciphers, we show that 21 rounds are suf-
ficient to achieve indifferentiability from ideal ciphers with 2n-bit blocks
and n-bit keys, assuming the n-to-n-bit round functions F1, . . . , F21 to
be random and public and an identical user-provided n-bit key to be
applied at each round. This gives an answer to the question mentioned
before, which is the first to our knowledge.

Keywords: block cipher, ideal cipher, indifferentiability, key-alternating cipher,
Feistel cipher.

1 Introduction

Block ciphers, and the Security Notions Block ciphers are among the most
important primitives in cryptography. For a block cipher, the standard security
notion is the indistinguishability from a random permutation when the key is
fixed to some unknown random values. Such pseudorandomness captures the se-
curity in traditional single secret key setting. However, block ciphers find numer-
ous and essential uses beyond encryption. For instance, block ciphers have been
used to build construct hash functions and message authentication codes. These
applications require the security in the open key model, where the adversary

⋆ A preliminary version is to appear at TCC 2015.



knows or even chooses the keys. To assess such stronger-than-pseudorandomness
security, the indifferentiability framework has to be employed. As a generaliza-
tion of the indistinguishability notion, the indifferentiability framework provides
a formal way to assess the security of idealized constructions. It can be used
to evaluate the “closeness” of a block cipher construction to an ideal cipher3.
Despite the uninstantiability of idealized primitives [12,25,9], such indifferentia-
bility proofs are widely believed to be able to show the nonexistence of generic
attacks which do not exploit the inner details of the implementations of the
underlying building blocks.

Feistel Constructions Existing block cipher designs can be roughly split into
two families, namely Feistel-based ciphers and substitution-permutation net-
works (SPNs). Starting from the seminal Luby-Rackoff paper [22], Feistel con-
structions have been extensively studied. Most of the provable security works fall
in the Luby-Rackoff framework [22], in which the round functions are idealized
as being uniformly random and secret. Such works covered indistinguishabil-
ity/provable security in the single secret key model (e.g. [26,24,27]), provable
security in the open key model (Mandal et al. [23] and Andreeva et al. [3]), and
provable security under related-key attacks (Manuel et al. [5]). A recent series of
works studied the indifferentiability from random permutations of Luby-Rackoff
construction, including the works of Coron et al. [14], Seurin [31], and Holen-
stein et al. [17], and the number of rounds required was finally fixed to 14 by
Holenstein et al. [17].

Our Problem: How to Mix the Key into Feistel. In this paper, we con-
sider the problem that how to mix the key material into a Feistel construction
by a popular approach to obtain a block cipher indifferentiable from an ideal
cipher. Since an un-keyed Feistel construction is indifferentiable from a random
permutation, a Feistel-based cipher indifferentiable from an ideal cipher can be
trivially obtained through domain separation. However, such a result tells us
nothing about how to concretely mix the keys into the state – in fact, none of
the works mentioned before addressed this problem. To our knowledge, domain
separation technique is seldom used in existing block cipher designs. Existing
designs usually inserts keys via efficient group operations, e.g. xor and modular
addition; therefore, this problem has practical meanings.

A natural candidate solution to this problem is the construction called key-
alternating Feistel cipher (KAF for short) analyzed by Lampe et al. [21]. The
KAF cipher they considered has the round keys xored before each round function,
as depicted in Fig. 1 (right). Lampe et al. studied the indistinguishability of
KAF in a setting where the underlying round functions are random and public
(in contrast to the Luby-Rackoff setting) and the round keys are fixed and secret;
this is also the only provable security work on KAF.

However, due to the well known complementation property, there exist ob-
stacles when trying to achieve an indifferentiability proof for KAF (detailed

3 See Sect. 2 for the formal definitions of indifferentiability and the ideal cipher model.
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discussions are deferred to the full version). This motivates us to turn to an-
other candidate construction, which has the round key xored into the halve of
the state after the round functions. Due to the similarity between the two con-
structions, we denote the latter construction by KAF ∗ to follow the convention
of Lampe et al. while making a distinction. For KAF ∗, the 2n-bit intermediate
state si is split to two halves, i.e. si = (xi+1, xi) where i ∈ {0, 1, . . . , r}, and at
the i-th round, the state value is updated according to

(xi, xi−1) 7→ (xi−1 ⊕ Fi(xi)⊕ ki, xi),

as depicted in Fig. 1 (right). KAF ∗ can be seen as the basic structure of NSA’s
SIMON family of block ciphers.

Clearly, the proof for KAF ∗ with no cryptographically strong assumptions
about the key derivation functions is more attractive, since such key deriva-
tions are more relevant to practice than random oracle modeled ones. Whereas
KAF ∗ with independent round keys cannot resist related-key attacks (the case
is similar to Even-Mansour ciphers). Hence we consider KAF ∗ with an identical
user-provided n-bit key applied at each round, and call such ciphers single-key
KAF ∗ (SKAF ∗ for short). The 21-round SKAF ∗ is depicted in Fig. 2. With
the discussions above, we focus on the question that whether it is possible for
SKAF ∗ with sufficiently many rounds to be indifferentiable from ideal ciphers.

Our Results. We show 21-round SKAF ∗ to be indifferentiable from ideal
ciphers, thus giving a solution to the problem how to mix keys into Feistel in
the open-key model.
Theorem The 21-round key-alternating Feistel cipher SKAF ∗

21 with all round
functions F = (F1, . . . , F21) being 21 independent n-to-n-bit random functions
and an identical (user-provided) n-bit key k applied at each round is indifferen-
tiable from an ideal cipher with 2n-bit blocks and n-bit keys.
To our knowledge, this paper is the first to study how to properly mix the keys
into Feistel in the open key model. It is also the first to study the indifferentia-
bility/provable security of key-alternating Feistel ciphers – in particular, with
no key derivation – in the open key model.

xi

F

xi−1

ki

xi+1 xi

xi

F

xi−1ki

xi+1 xi

Fig. 1. Mixing the key into: (left) the input of the round function – KAF; (right) the
halve of the state after the round function – KAF ∗.

From a practical point of view, our results suggest a possible choice to re-
sist complementing attack and its extensions (see [7]) when designing Feistel
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ciphers4. KAF with random oracle modeled key derivation functions may also
have such resistance. However, practical key derivation algorithms are usually
designed to be “lightweight” and moderately complex, and KAF with such mod-
erately complex key derivations may still be attacked in hash mode (the example
is Camellia, in [7]). Hence we think our results have its own advantage. Mean-
while, since publicly released in June 2013, the SIMON family of block ciphers [6]
designed by NSA has attracted considerable attention due to its simple struc-
ture, high flexibility, and remarkable performance [4,8,1,32,11]. SIMON family is
based on KAF ∗. Our results may be seen as a first step towards understanding
the underlying reasons.
Remark. We heavily borrow the techniques used by Holenstein et al. [17] and
Lampe et al. [20] (see the next paragraph). We stress that our main constructions
consist of the indifferentiability result for KAF ∗ and the analyzes of KAF ∗.

Overview of Techniques We reuse and adapt the simulation via chain-completion
technique introduced by Coron et al. [14], while the overall framework is very
close to that used by Holenstein et al. [17] and Lampe et al. [20]. This framework
consists of constructing a simulator which works by detecting and completing
partial chains created by the queries of the distinguisher. To ensure consistency
in the answers while avoiding exponentially many chain completions, each of
the rounds in the construction is assigned a unique and specific role needed in
the proof, including chain detection, uniformness ensuring, and chain adapta-
tion (see Fig. 2). By this, the simulator first detects new partial chains when
the associated values have “filled” the chain detection zone; then fills in the
corresponding computation path by both querying the ideal primitive and sim-
ulating the other necessary function values, until only the values of the round
functions in the chain adaptation zone remain (possibly) undefined; and finally
defines these values to complete the whole path so that the answers of the ideal
primitive are consistent with the function values simulated by the simulator.

Adaptations in this Work. To fit into the SKAF ∗ context, the framework
has to be adapted. Note that in the SKAF ∗ context, each complete chain cor-
responds to a unique pair of input and output of the ideal cipher E which has
n-bit keys and 2n-bit blocks; therefore the entropy of each chain is 3n bits, and
it is necessary and sufficient to uniquely specify a chain by the queries to 3 round
functions (recall that for un-keyed Feistel, the entropy of each chain is only 2n
bits). Another consequence of this property is that in the SKAF ∗ context, two
different chains may collide at two successive rounds, i.e. for two different chains
(x0, x1, . . .) and (x′

0, x
′
1, . . .), it may hold that xj = x′

j ∧ xj+1 = x′
j+1 for some

j. As a comparison, consider the un-keyed Feistel context: in this context, for
two different chains, it is impossible to find j such that xj = x′

j ∧ xj+1 = x′
j+1,

otherwise we will have xi = x′
i for any i and the two chains are not different.

4 This idea is not new, as it has been used by XTEA [10]. However, this paper provides
the first security proof.
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With these in mind, we introduce the following adaptations: first, we increase
the number of rounds used for chain detection to 3, so that given the queries xi,
xi+1, and xi+2 to these round functions, a chain can be uniquely specified with
an associated key k = xi ⊕ Fi+1(xi+1)⊕ xi+2, after which it is possible to move
forward and backward along the computation path (and do some “completion”).

Second, we increase the number of rounds used to ensure randomness. Sur-
rounding each adaptation zone with 2 always-randomly-defined buffer rounds is
a key point of this framework. The buffer rounds are expected to protect the
adaptation zone in the sense that the simulator does not define the values in the
2 buffer rounds while completing other chains. This idea works well in previous
contexts. However, in the SKAF ∗ context, if we continue working with 2 buffer
rounds, then since two different chains are possible to collide at two successive
rounds, such an expectation may be broken; more clearly, when a chain is to
be adapted, the corresponding function values in the buffer rounds may have
been defined (this can be shown by a simple operation sequence with only 5
queries; see Appendix A). In such a case, we find it not easy to achieve a proof.
To get rid of this, we increase the number of buffer rounds to 4 – more clearly, 2
buffer rounds at each side of each adaptation zone (and in total 8 for the whole
construction). We then prove that unless an improbable event happens, the sim-
ulator does not define the function values in the buffer rounds exactly next to
the adaptation zones when completing other chains, and then all chains can be
correctly adapted.5

Another evidence for the necessity of increasing the number of buffer rounds
is that they actually play an important role in the proof (see Lemma 17).

At last, to show the indistinguishability of the systems, we combine the ran-
domness mapping argument [17] (RMA for short) and its relaxed version [2]
(RRMA for short). This allows us to bypass the intermediate system composed
of the idealized construction and the simulator.

Organization Sect. 2 presents the formal definitions of the ideal cipher model
and the indifferentiability notion. Sect. 3 makes discussions on KAF. Sect. 4
contains the main theorem. Sect. 5 presents the simulator. Finally, Sect. 6 gives
the proof. Some additional notations will be introduced later, when necessary.

2 Preliminaries

The Ideal Cipher Model (ICM) The ICM is a widespread model in which
all parties have access to a random primitive called ideal cipher E : {0, 1}n ×
{0, 1}κ → {0, 1}n, which is taken randomly from the set of (2n!)2

k

block ci-
phers with key space {0, 1}κ and plaintext and ciphertext space {0, 1}n. ICM
finds enormous applications, for instance, the analysis of blockcipher based hash
functions (e.g. [13]).

5 An alternative interpretation of this dual-buffer strategy is that we use an outer buffer
and an inner buffer, and we expect the outer buffer to protect the inner buffer, and
the latter further protect the adaptation zone.
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The Indifferentiability Framework The indifferentiability framework was
introduced by Maurer, Renner, and Holenstein, at TCC 2004 [25]. It is applicable
in settings where the underlying primitives and parameters are exposed to the
adversary. Briefly speaking, for a construction CG from an idealized primitive
G (hopefully simpler), if CG is indifferentiable from another ideal primitive T ,
then CG can safely replace T in most “natural” settings6 . A formal definition is
recalled as follows.

Definition 1. A primitive CG with oracle access to an ideal primitive G is said
to be statistically and strongly (q, σ, ε)-indifferentiable from an ideal primitive T
if there exists a simulator ST s.t. S makes at most σ queries to T , and for any
distinguisher D which issues at most q queries, it holds that∣∣∣Pr[DCG ,G = 1]− Pr[DT ,ST

= 1]
∣∣∣ < ε

Since then, indifferentiability framework has been applied to various construc-
tions, including variants of Merkle-Damg̊ard [13], sponge construction, Feis-
tel [14,17], and iteratated Even-Mansour ciphers [2,20].

3 KAF Ciphers, and Obstacles in Its Indifferentiability
Proof

Consider the Feistel ciphers of which the pseudorandom round functions are of
the form Fi(x⊕ki), where ki is the round key and Fi is a random function. More
clearly, at the i-th round, the state is updated according to

(xi, xi−1) 7→ (xi−1 ⊕ Fi(xi ⊕ ki), xi)

where xi and xi−1 are respectively the left and right n-bit halves of the state,
and ki is an n-bit round key (Fig. 1 (left)). This construction was named key-
alternating Feistel cipher by Lampe and Seurin, since it can also be seen as a
key-alternating cipher with two-round Feistel-based permutations. Throughout
this paper, we refer to this construction by KAF. KAF seems to be the “most
natural” solution to the problem how to mix key into Feistel. As to existing
designs, many notable block ciphers can be seen as the variant of KAF:

– DES: although it has an expansion function before the key xoring;
– GOST: although it inserts keys via modular addition instead of xor;

Possibly because it is actually used in block cipher constructions and it is “natu-
ral”, KAF has received considerable attention. Previous works focus on known-
key attacks [19,30,29], complementing (related-key) attacks [7], and generic at-
tacks [18,33,16], and the provable security of KAF in the single secret key set-
ting [21].

6 Restrictions on the indifferentiability composition theorem have been exhibited
in [28,15]. However, indifferentiability has been sufficient in most “natural” settings
(see [15]).
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Although works well in the single secret key setting, there exist obstacles
when trying to achieve an indifferentiability proof for KAF: first, due to the
complementation property (e.g. DES)

E(x, k) = E(x, k),

KAF ciphers without key derivation functions are vulnerable to related-key dis-
tinguishing attack, thus not indifferentiable from ideal ciphers.

Second, when appealing to key derivation functions modeled as random ora-
cles, there still exist obstacles. According to the works of Biryukov et al. [7],
KAF with as many as two random-oracle-derived keys alternatively applied
at each round is still vulnerable to a relaxed complementing attack : the at-
tacker asks the key derivation oracle for two arbitrary keys (k11, k

1
2) := KD(K1)

and (k21, k
2
2) := KD(K2) and let δ1 = k11 ⊕ k21, δ2 = k12 ⊕ k22, then for plain-

text pairs of the form ((x0, x1), (x0 ⊕ δ2, x1 ⊕ δ1)), with probability 1 we have
KAFr((x0, x1),K

1)⊕KAFr((x0 ⊕ δ2, x1 ⊕ δ1),K
2) = (δ1, δ2) when the number

of rounds r is odd ((δ2, δ1) when r is even).
We conjecture that indifferentiability may be achieved on KAF with key

derivation of form (k1, k2, k3) = KD(K) and the three keys cyclicly applied at
each round; or, on KAF with key derivation of form (k1, k2) = KD(K) and the
two keys applied in the order k1, k2, k2, k1 repeatedly. Whereas: first, the proof
still seems difficult; second, such results impose strong constraints on the key
derivation; third, such a key derivation model seems to be intricate, unnatural,
and unreasonable. All the discussions above motivate us to turn to KAF ∗.

4 Indifferentiability for 21-round Single-Key KAF ∗

The main theorem is presented as follows.

Theorem 1. For any q, the 21-round single-key key-alternating Feistel cipher
SKAF ∗

21 with all round functions F = (F1, . . . , F21) being 21 independent n-
to-n-bit random functions and an identical (user-provided) n-bit key k applied
at each round is strongly and statistically (q, σ, ε)-indifferentiable from an ideal
cipher E with 2n-bit blocks and n-bit keys, where

σ = 211 · q9 and ε ≤ 219 · q15

22n
+

2222 · q30

2n
+

234 · q6

22n
= O(

q30

2n
).

To prove Theorem 1 we firstly describe a simulator S which mimics the
behaviors of the random functions F, then bound the complexity of S and
prove the indistinguishability of the simulated world Σ1(E,S) and the real world
Σ2(SKAF ∗

21,F).

5 The Simulator

We first provide a high-level description of S, then present the pseudocode to
illustrate it more clearly.
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To simplify the proof, we take a strategy introduced by Holenstein et al. [17],
that is, making the randomness taken by the simulator S, the cipher E (in the
simulated world), and the random functions F (in the real world) explicit as ran-
dom tapes. The simulator’s random tape is an array of tables φ = (φ1, . . . , φ21),
where each φi maps entries x ∈ {0, 1}n to uniform and independent values in
{0, 1}n. The cipher’s random tape is a table η which encodes an ideal cipher
with 2n-bit blocks and n-bit keys. More clearly, η is selected uniformly at ran-
dom from all tables with the property of mapping entries (δ, k, z) ∈ {+,−} ×
{0, 1}n × {0, 1}2n to uniform values z

′ ∈ {0, 1}2n such that η(+, k, z) = z
′
iff.

η(−, k, z′
) = z. The random functions F have access to the array of tables

f = (f1, . . . , f21) where each fi maps entries x ∈ {0, 1}n to uniform and inde-
pendent values in {0, 1}n. We denote the constructions/primitives which take
randomness from the tapes φ, η, and f by S(φ), E(η), and F(f) respectively.
Among the three, E(η) and F(f) simply relay the values in η and f ; for complete-
ness we provide implementations for them, in Sect. 5.2. As argued by Andreeva
et al. [2], such a strategy does not reduce the validity of the simulating, since
access to such tapes can be efficiently simulated by uniformly sampling.

5.1 High-level Description of the Simulator

S(φ) provides an interface S(φ).F (i, x) to the distinguisher for querying the
simulated random function Fi on value x, where i ∈ {1, . . . , 21} and x ∈ {0, 1}n.
For each i, the simulator maintains a hash table Gi that has entries in the form of
pairs (x, y), which denote pairs of inputs and outputs of S(φ).F (i, x). Denote the
fact that x is a preimage in the table Gi by x ∈ Gi, and Gi(x) the corresponding
image when x ∈ Gi.

Receiving a query S(φ).F (i, x), S(φ) looks in Gi, returns Gi(x) if x ∈ Gi.
Otherwise S(φ) accesses the tap φi to draw the answer φi(x) and adds the entry
(x, φi(x)) to Gi, and then, if i belongs to the set {3, 10, 11, 12, 19}, the chain
detection mechanism and subsequent chain completion mechanism of S(φ) will
be triggered. These two mechanisms help in ensuring that the answers of the
random functions simulated by S(φ) are consistent with the answers of the ideal
cipher E(η). Depending on i, there are three case:

1. when i = 3, for each newly generated tuple (x1, x2, x3, x20, x21) ∈ G1 ×
G2 × G3 × G20 × G21, the simulator computes k := x1 ⊕ G2(x2) ⊕ x3,
x0 := x2 ⊕ G1(x1) ⊕ k, and x22 := x20 ⊕ G21(x21) ⊕ k. It then calls an
inner procedure S(φ).Check((x1, x0), (x22, x21), k), which checks whether
E(η).Enc(k, (x1, x0)) = (x22, x21) (i.e. η(+, k, (x1, x0)) = (x22, x21)) holds,
and returns true if so. Whenever this call returns true, the simulator en-
queues a 5-tuple (x1, x2, x3, 1, 6) into a queue ChainQueue. In the 5-tuple,
the 4-th value 1 informs S(φ) that the first value of the tuple is x1, and the
last value 6 informs S(φ) that when completing the chain (x1, x2, x3, 1), it
should set entries in G6 and G7 to “adapt” the chain and ensure consistency.

2. when i = 19, the case is similar to the previous one by symmetry: for each
newly generated tuple (x1, x2, x19, x20, x21) ∈ G1 × G2 × G19 × G20 × G21,
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the simulator computes k := x19 ⊕ G20(x20) ⊕ x21, x0 := x2 ⊕ G1(x1) ⊕ k,
x22 := x20 ⊕ G21(x21) ⊕ k, and x3 := x1 ⊕ G2(x2) ⊕ k, makes a call to
S(φ).Check((x1, x0), (x22, x21), k), and enqueues the 5-tuple (x1, x2, x3, 1, 15)
into ChainQueue whenever this call returns true.

3. when i ∈ {10, 11, 12}, for each newly generated tuple (x10, x11, x12) ∈ G10×
G11 × G12, the simulator enqueues the 5-tuple (x10, x11, x12, 10, l) into the
queue ChainQueue, where l = 6 if i = 10 or 11, and l = 15 if i = 12. The
sketch of the whole strategy is illustrated in Fig. 2.

After having enqueued the newly generated tuples, S(φ) immediately takes the
tuples out of ChainQueue and completes the associated partial chains. More
clearly, S(φ) maintains a set CompletedSet for the chains it has completed.
For each chain C dequeued from the queue, if C /∈ CompletedSet (i.e. C has
not been completed), S(φ) completes it, by evaluating in the corresponding
SKAF ∗ computation path both forward and backward (defining the necessary
but undefined Gi(xi) values), and querying E.Enc or E.Dec once to “wrap”
around, until it reaches the value xl (when moving forward) and xl+1 (when
moving backward). Then S(φ) “adapts” the entries by defining Gl(xl) := xl−1⊕
xl+1 ⊕ k and Gl+1(xl+1) := xl ⊕ xl+2 ⊕ k to make the entire computation chain
consistent with the answers of E(η). This defining action may overwrite values in
Gl or Gl+1 if xl ∈ Gl or xl+1 ∈ Gl+1 before it happens, however we will show the
probability to be negligible. S(φ) then adds (x1, x2, x3, 1) and (x10, x11, x12, 10)
to CompletedSet, where the two chains correspond to C.

During the completion, the values in Gj newly defined by S(φ) also trig-
ger the chain detection mechanism and chain completion mechanism when j ∈
{3, 10, 11, 12, 19}. S(φ) hence keeps dequeuing and completing until ChainQueue
is empty again. S(φ) finally returns Gi(x) as the answer to the initial query.

5.2 Formal Description of the Simulator

A formal description of the simulator S(φ) in pseudocode is presented as fol-

lows. A slightly different simulator S̃(φ) will be introduced later (see Sect. 6.1).
For this, when a line has a boxed statement next to it, S(φ) uses the original

statement, while S̃(φ) uses the boxed one.

1: Simulator S(φ): Simulator S̃(φ):

2: Variables
3: hash tables {Gi} = (G1, . . . , G21), initially empty
4: queue ChainQueue, initially empty
5: set CompletedSet, initially empty

The procedure F (i, x) provides an interface to the distinguisher.
6: public procedure F (i, x)
7: y := F inner(i, x)
8: while ChainQueue ̸= ∅ do
9: (xj , xj+1, xj+2, j, l) := ChainQueue.Dequeue()

10: if (xj , xj+1, xj+2, j, l) /∈ CompletedSet then // Complete the chain
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11: k := xj ⊕Gj+1(xj+1)⊕ xj+2

12: (xl−4, xl−3, xl−2, l − 4) := EvalForward(xj , xj+1, xj+2, j, l − 4)
13: (xl+3, xl+4, xl+5, l + 3) := EvalBackward(xj , xj+1, xj+2, j, l + 3)
14: Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l)
15: (x1, x2, x3, 1) := EvalForward(xj , xj+1, xj+2, j, 1)
16: (x10, x11, x12, 10) := EvalForward(x1, x2, x3, 1, 10)
17: CompletedSet := CompletedSet ∪ {(x1, x2, x3, 1), (x10, x11, x12, 10)}
18: return y

The procedure Adapt adapts the values by randomly setting the neces-
sary but “missed” entries and then adding entries to Gl and Gl+1 to make
the chain match the computation.

19: private procedure Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l)
20: k := xl−4 ⊕Gl−3(xl−3)⊕ xl−2

21: yl−2 := F inner(l − 2, xl−2)
22: xl−1 := xl−3 ⊕ yl−2 ⊕ k
23: yl−1 := F inner(l − 1, xl−1)
24: xl := xl−2 ⊕ yl−1 ⊕ k
25: yl+3 := F inner(l + 3, xl+3)
26: xl+2 := xl+4 ⊕ yl+3 ⊕ k
27: yl+2 := F inner(l + 2, xl+2)
28: xl+1 := xl+3 ⊕ yl+2 ⊕ k
29: ForceV al(xl, xl−1 ⊕ xl+1 ⊕ k, l)
30: ForceV al(xl+1, xl ⊕ xl+2 ⊕ k, l + 1)
31: private procedure ForceV al(x, y, l)
32: Gl(x) := y // May overwrite the entry Gl(x)

The procedure F inner draws answers from the table Gi, or the tape φi if
the answers have not been defined in Gi, and enqueue chains when necessary.

33: private procedure F inner(i, x)
34: if x /∈ Gi then
35: Gi(x) := φi(x)
36: if i ∈ {3, 10, 11, 12, 19} then
37: EnqueueNewChains(i, x)
38: return Gi(x)

The procedure EnqueueNewChains enqueues newly generated partial
chains.

39: private procedure EnqueueNewChains(i, x)
40: if i = 3 then
41: for all (x1, x2, x3, x20, x21) ∈ G1 ×G2 × {x} ×G20 ×G21 then
42: k := x1 ⊕G2(x2)⊕ x3

43: chk pa := ((x1, G1(x1)⊕ x2 ⊕ k), (x20 ⊕G21(x21)⊕ k, x21), k)

44: flag := Check(chk pa) flag := Ẽ.Check(chk pa)

45: if flag = true then
46: ChainQueue.Enqueue(x1, x2, x3, 1, 6)
47: else if i = 19 then
48: for all (x1, x2, x19, x20, x21) ∈ G1 ×G2 × {x} ×G20 ×G21 do
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49: k := x19 ⊕G20(x20)⊕ x21

50: chk pa := ((x1, G1(x1)⊕ x2 ⊕ k), (x20 ⊕G21(x21)⊕ k, x21), k)

51: flag := Check(chk pa) flag := Ẽ.Check(chk pa)

52: if flag = true then
53: x3 := x1 ⊕G2(x2)⊕ k
54: ChainQueue.Enqueue(x1, x2, x3, 1, 15)
55: else if i = 10 then
56: for all (x10, x11, x12) ∈ {x} ×G11 ×G12 do
57: ChainQueue.Enqueue(x10, x11, x12, 10, 6)
58: else if i = 11 then
59: for all (x10, x11, x12) ∈ G10 × {x} ×G12 do
60: ChainQueue.Enqueue(x10, x11, x12, 10, 6)
61: else if i = 12 then
62: for all (x10, x11, x12) ∈ G10 ×G11 × {x} do
63: ChainQueue.Enqueue(x10, x11, x12, 10, 15)

The Check procedure queries E to verify whether the inputs are valid
pairs of plaintext and ciphertext of E. Note that S̃ does not own Check
procedure; instead S̃ calls the Check procedure of a modified cipher Ẽ, as
described in the boxed statements in the code section before.

64: private procedure Check(x, y, k) // S̃ does not own such a procedure
65: return E.Enc(k, x) = y

The procedures EvalForward (and EvalBackward, resp.) takes a par-
tial chain (xj , xj+1, xj+2, j) as input, and evaluate forward (and backward,
resp.) in SKAF ∗ until obtaining the tuple (xl, xl+1, xl+2) of input values for
Gl, Gl+1, and Gl+2 for specified l.

66: private procedure EvalForward(xj , xj+1, xj+2, j, l)
67: k := xj ⊕Gj+1(xj+1)⊕ xj+2 // By construction xj+1 ∈ Gj+1 holds
68: while j ̸= l do
69: if j = 20 then

70: (x1, x0) := E.Dec(k, (x22, x21)) (x1, x0) := Ẽ.Dec(k, (x22, x21))

71: x2 := x0 ⊕ F inner(1, x1)⊕ k
72: j := 0
73: else
74: xj+3 := xj+1 ⊕ F inner(j + 2, xj+2)⊕ k
75: j := j + 1
76: return (xl, xl+1, xl+2, l)
77: private procedure EvalBackward(xj , xj+1, xj+2, j, l)
78: k := xj ⊕Gj+1(xj+1)⊕ xj+2

79: while j ̸= l do
80: if j = 0 then

81: (x22, x21) := E.Enc(k, (x1, x0)) (x22, x21) := Ẽ.Enc(k, (x1, x0))

82: x20 := x22 ⊕ F inner(21, x21)⊕ k
83: j := 20
84: else
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85: xj−1 := xj+1 ⊕ F inner(j, xj)⊕ k
86: j := j − 1
87: return (xl, xl+1, xl+2, l)

As mentioned before, E(η) and F(f) simply relay the values in η and f ; but
for completeness, we provide the codes of them.

1: Ideal cipher E(η):
2: public procedure Enc(k, x)
3: return η(+, k, x)
4: public procedure Dec(k, x)
5: return η(−, k, x)
1: Random functions F(f):
2: public procedure F (i, x)
3: return fi(x)

6 Proof of the Indifferentiability

Denote by Σ1(E(η),S(φ)) the simulated system composed of the ideal cipher E
with tape η and the simulator S with tape φ, and denote by Σ2(SKAF ∗

21,F(f))
the real system composed of SKAF ∗

21 and the random functions F(f). Then,
for any fixed, deterministic, and computationally unbounded distinguisher D,
we show the following two to establish the indifferentiability:

(i) Σ1(E(η),S(φ)) and Σ2(SKAF ∗
21,F(f)) are indistinguishable.

(ii) With overwhelmingly large probability, S(φ) runs in polynomial time.

6.1 Intermediate System Σ
′

1, and Proof Sketch

For further simplicity, we introduce an intermediate system Σ
′

1(Ẽ(η), S̃(φ)),

which consists of a modified ideal cipher Ẽ(η) and a slightly modified simu-

lator S̃(φ). Ẽ(η) maintains a table E to keep track of the past queries, which

contains entries of the form ((+, k, x), y) and ((−, k, y), x). Ẽ(η) provides an ad-
ditional interface Check(x, y, k). Once being queried on Enc(k, x) or Dec(k, y),

Ẽ(η) adds the corresponding entries of η to E and returns them as answers.

Once being called on Check(x, y, k), Ẽ(η) looks in the table E to check whether

E(+, k, x) = y and returns the answer. More clearly, Ẽ(η) is implemented as
follows:

1: Modified ideal cipher Ẽ(η):
2: Variables
3: hash table E, initially empty
4: end variables
5: public procedure Enc(k, x)
6: if (+, k, x) /∈ E then
7: y := η(+, k, x)
8: E(+, k, x) := y

9: E(−, k, y) := x
10: end if
11: return E(+, k, x)
12: end procedure
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13: public procedure Dec(k, y)
14: if (−, k, y) /∈ E then
15: x := η(−, k, y)
16: E(−, k, y) := x

17: E(+, k, x) := y
18: end if
19: return E(−, k, y)
20: end procedure

21: public procedure Check(x, y, k)
22: if (+, k, x) ∈ E then
23: return E(+, k, x) = y
24: else
25: return false
26: end if
27: end procedure

By construction and the fact that η encodes an ideal cipher, it can be easily seen
that Ẽ(η).E always defines a partial cipher before or after any call to Enc or

Dec, i.e. for all k, x, y ∈ {0, 1}n, (+, k, x) ∈ Ẽ(η).E and Ẽ(η).E(+, k, x) = y iff.

(−, k, y) ∈ Ẽ(η).E and Ẽ(η).E(−, k, y) = x. We use |Ẽ(η).E+| and |Ẽ(η).E−|
to denote the number of entries in Ẽ(η).E of the form ((+, ·, ·), ·) and ((−, ·, ·), ·)
respectively. By above, |Ẽ(η).E| = 2 · |Ẽ(η).E+| = 2 · |Ẽ(η).E−| holds at any
point when every call to Enc or Dec has been answered.

On the other hand, the differences between S̃(φ) and S(φ) (in Σ1) are cap-
tured by the boxed statements in the pseudocode in Sect. 5.2. They mainly
consist of two aspects:

– the cipher they query: S̃(φ) queries Ẽ(η) while S queries E(η);

– the owner of the Check procedure: S̃(φ) calls Ẽ(η).Check while S(φ) calls
S(φ).Check;

The three systems are depicted in Fig. 3. For simplicity we introduce addi-
tional notations Σ1(η, φ), Σ

′
1(η, φ), and Σ2(f), among which Σ1(η, φ) is short

for Σ1(E(η),S(φ)), Σ′
1(η, φ) is short for Σ

′

1(Ẽ(η), S̃(φ)), and Σ2(f) is short for
Σ2(SKAF ∗

21,F(f)). Furthermore, for α = (η, φ), Σ′
1(α) is short for Σ

′
1(η, φ).

Then the proof of indifferentiability is divided into two stages:

– First, we specify bad events in the Check procedure in Σ1, which capture the
essential differences between Σ1 and Σ

′

1. Then for any distinguisher which
issues at most q queries, we upper bound the probability of the bad events

to 219·q15
22n (in the proof of Lemma 5); and upper bound the advantage of

distinguishing Σ1 and Σ
′

1 to 219·q15
22n (Lemma 5) and the complexity of S in

Σ1 to no more than 2 · (10q3)3 ≤ 211 · q9 queries (Lemma 6).

– Second, we specify bad events relevant to ForceV al procedure overwriting
entries, bound the probability of such events, and finally use a relaxed ran-
domness mapping argument to upper bound the advantage of distinguishing

Σ
′

1 and Σ2 to 2222·q30
2n + 234·q6

22n (Lemma 25).

Gathering these yields Theorem 1.
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6.2 Bounding the Complexity of S̃(φ) in Σ
′

1

In this section we show that the simulator S̃(φ) in Σ
′

1 runs in polynomial time.
The technique used in this section (and Sect. 6.3) is originally introduced by
Coron et al. [14] (also used by Holenstein et al. [17] and Lampe et al. [20]).

Lemma 1. During any execution DΣ
′
1(Ẽ(η),S̃(φ)), after the q-th query made by

D is answered, S̃(φ) dequeues at most q times a tuple of the form (x1, x2, x3, 1, l)
for which (x1, x2, x3, 1) /∈ CompletedSet.

Proof. We will show that each such dequeuing action corresponds to a distinct
call to Ẽ(η).Enc(k, x) or Ẽ(η).Dec(k, y) previously made by D.

Consider such a dequeuing action and let (x1, x2, x3, 1, l) be the tuple de-
queued for which (x1, x2, x3, 1) /∈ CompletedSet. By construction, (x1, x2, x3, 1, l)
can be enqueued only when (x1, x2, x3, x20, x21) or (x1, x2, x19, x20, x21) is de-

tected and the call Ẽ(η).Check((x1, x0), (x22, x21), k) returns true, and the lat-

ter happens only when the entry ((+, k, (x1, x0)), (x22, x21)) has been in Ẽ(η).E.

Hence each such dequeuing corresponds to an entry in Ẽ(η).E.
On the other hand, if two chains C = (x1, x2, x3, 1) and C ′ = (x′

1, x
′
2, x

′
3, 1)

dequeued correspond to the same call to Ẽ(η).Check, then we must have xi = x′
i

for i = 1, 2, 3, and C = C ′. In this case, C will be added to CompletedSet since
its first completion, and it will not be C /∈ CompletedSet when C is dequeued
again. Hence each such dequeuing corresponds to a unique entry ((+, k, x), y)

in Ẽ(η).E. This entry must have been added during a query issued by D, since

S̃(φ) makes such queries only when it is completing a chain, and after this
completion, the chain (x1, x2, x3, 1) will be added into CompletedSet, and it
cannot be (x1, x2, x3, 1) /∈ CompletedSet when it is dequeued again.

Hence, each such dequeuing action corresponds to a call to Ẽ(η).Enc or

Ẽ(η).Dec made by D, and cannot occur more than q times. ⊓⊔

Lemma 2. During any execution DΣ1(Ẽ(η),S̃(φ)), after the q-th query made by
D is answered:

– for i ∈ {1, 2, . . . , 21} and δ ∈ {+,−}, |Gi| ≤ 10q3, and |Ẽ.Eδ| ≤ 10q3;

– S̃ issues at most 2 · (10q3)5 queries to Ẽ.Check;

Proof. The proof is similar to Lemma 2 in [20], while the results are different.
First, |G10|, |G11|, and |G12| are at most 2q: entries can only be added to

these three tables when D issues a query to F (i, x) with i = 10, 11, or 12, or

when S̃ completes a chain (x1, x2, x3, 1, l). The former occurs at most q times,
while the latter occurs at most q times by Lemma 1, hence the bound is 2q, and
S̃ completes at most |G10| · |G11| · |G12| ≤ 8q3 chains of form (x10, x11, x12, 10, l).

Second, for any i ∈ {1, . . . , 21}, |Gi| can only be enlarged by at most 1

when: the distinguisher calls S̃.F (i, x); a chain (x1, x2, x3, 1, l) is completed; or
a chain (x10, x11, x12, 10, l) is completed. The first case occurs at most q times,

15



the second at most q times, while the last at most 8q3 times. Hence in total the
bound is 2q + 8q3 ≤ 10q3.

Then, by construction, each query to either Ẽ.Enc or Ẽ.Dec increases both
|Ẽ.E+| and |Ẽ.E−| by at most 1. Such queries may be issued by D or S̃. The
former is at most q, while the latter only happens during completion of a chain,
thus at most q + 8q3. Hence the bound is q + q + (8q3) ≤ 10q3. Finally, the

number of queries to Ẽ.Check made by S̃(φ) is bounded by |G1| · |G2| · |G3| ·
|G20| · |G21|+ |G1| · |G2| · |G19| · |G20| · |G21| ≤ 2 · (10q3)5. ⊓⊔

6.3 Indistinguishability of Σ1 and Σ
′

1

The proof of indistinguishability of Σ1 and Σ
′

1 is presented in this section. It
consists of specifying the bad events in Σ1, showing the two systems to have
exactly same behaviors given that the bad events do not happen, and upper
bounding the complexity of S in Σ1.

Bad Event BadCheck Since we have made the randomness taken by Σ1 ex-
plicit, the only essential difference between Σ1 and Σ

′

1 lies in the Check proce-

dure: in Σ
′

1, the return value of a call Ẽ(η).Check(x, y, k) depends on the content

of the table Ẽ(η).E, while in Σ1 the return value of S(φ).Check(x, y, k) actually
depends on a much larger table η. For this, we define a bad event BadCheck:
consider a pair of random tapes (η, φ), BadCheck happens during the execution
DΣ1(E(η),S(φ)) if ∃(x, y, k) s.t. all the following hold:

(i) S(φ) makes a call Check(x, y, k);
(ii) η(+, k, x) = y.
(iii) Before the call in (i), neither E(η).Enc(k, x) nor E(η).Dec(k, y) has been

issued.

Note that such a call Check(x, y, k) returns true if being made in Σ1(E(η),S(φ)),

while returns false if being made in Σ
′

1(Ẽ(η), S̃(φ)); this is the main idea of
BadCheck. We now bound the probability that BadCheck happens in a fixed
number of calls to S(φ).Check.

Lemma 3. Fix a point in DΣ1(E(η),S(φ)). Suppose up to this point, S(φ).Check
is called q′1 times, while E(η).Enc and E(η).Dec are queried q′2 times in total.
Then the probability that BadCheck happens before this point is upper bounded

to
2q′1
22n .

Proof. Consider a call S(φ).Check(x, y, k). Since neither E(η).Enc(k, x) nor
E(η).Dec(k, y) has been issued before this call, y is a 2n-bit “fresh” value. Since η
encodes a random permutation for each k, we have Pr[η(+, k, x) = y] ≤ 1

22n−q′2
.

And since the number of queries to Check is at most q′1, in total the probability

is
q′1

22n−q′2
. Assuming q′2 < 22n

2 , we have Pr[BadCheck] ≤ 2·q′1
22n . ⊓⊔
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Σ1 with No BadCheck in the First 2 ·(10q3)5 Calls to Check: Indistin-
guishable from Σ

′

1 Consider Σ1(E(η),S(φ)). Instead of the Check procedure
in S(φ), we can imagine that E(η) has a procedure which is implemented exactly
as S(φ), and at line 44 and line 51, S(φ) calls E(η).Check instead of S(φ).Check.
This “imagined” Simg(φ) (can be obtained by excluding the implementation of

Check from S(φ) and letting it call E(η).Check) and S̃(φ) are the same except
that they query different ciphers. By this, for the two systems (D,Simg(φ)) and

(D, S̃(φ)), if all the return values of the procedures Enc, Dec, F , and Check
equal correspondingly, then they two will have the same behaviors. To formally
described these, we use the notion transcript. For a Σ1-execution DΣ1(E(η),S(φ)),
the transcript of D∪S is a sequence composed of all the following query answer
pairs generated during the execution:

(i) all the Dec, Check, and φ queries issued by D and S(φ), and the corre-
sponding answers (the φ queries are issued to the tape φ);

(ii) all the Enc queries issued outside the Check procedure by D and S(φ),
and the corresponding answers;

On the other hand, for a Σ′
1-execution DΣ

′
1(Ẽ(η),S̃(φ)), the transcript of D ∪ S̃

is a sequence composed of all the queries to Enc, Dec, Check, and φ generated
by D and S̃(φ), and the corresponding answers.

Then, the following lemma claims that the transcripts of DΣ1(E(η),S(φ)) and

DΣ
′
1(Ẽ(η),S̃(φ)) are equal if in DΣ1(E(η),S(φ)), BadCheck does not happen in a

sufficiently long period. This lemma is the core of this section.

Lemma 4. Consider two executions DΣ1(E(η),S(φ)) and DΣ
′
1(Ẽ(η),S̃(φ)). Assume

that Ẽ(η).Check receives N calls during DΣ
′
1(Ẽ(η),S̃(φ)). Then if BadCheck

does not happen in the first N calls to S(φ).Check during DΣ1(E(η),S(φ)), the

transcript of D ∪ S in DΣ1(E(η),S(φ)) is the same as the transcript of D ∪ S̃ in

DΣ
′
1(Ẽ(η),S̃(φ)), and DΣ1(E(η),S(φ)) = DΣ

′
1(Ẽ(η),S̃(φ)).

Proof. We proceed by induction on the sequence of queries ofD∪S (D∪S̃, resp.)
to (E(η), φ) ((Ẽ(η), φ), resp.). Assume that the sequence of queries and answers
is the same in the two systems up to some point in the executions, and consider
the next query issued by D ∪ S or D ∪ S̃. According to the discussions before
(about S̃ and Simg), this query is the same in both systems. We now argue the
corresponding answers are the same. For this, we distinguish the following cases
depending on the query:

– if the query is to Enc, Dec, or φ, then the answers are clearly the same since
the same tape tuple (η, φ) is used in the two systems.

– if the query is to Check, then by the assumptions that Ẽ(η).Check receives

N calls during DΣ
′
1(Ẽ(η),S̃(φ)) and BadCheck does not happen in the first

N calls to S(φ).Check during DΣ1(E(η),S(φ)), the answers are the same.

These show that the transcripts in the two systems are the same. Moreover,
these also show that the transcripts of queries and answers of D are the same
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in both the systems. Since D is deterministic, DΣ1(E(η),S(φ)) = DΣ
′
1(Ẽ(η),S̃(φ))

holds. ⊓⊔

We are now ready to bound the advantage of distinguishing Σ1 and Σ′
1:

Lemma 5. For any distinguisher D which issues at most q queries, we have:∣∣∣Pr[DΣ1(E(η),S(φ)) = 1]− Pr[DΣ
′
1(Ẽ(η),S̃(φ)) = 1]

∣∣∣ ≤ 219 · q15

22n
.

Proof. Consider a pair (η, φ). Assume that during DΣ
′
1(Ẽ(η),S̃(φ)), Ẽ(η).Check

is called q′1 times. Then by Lemma 3, during DΣ1(E(η),S(φ)), the probability that

BadCheck occurs in the first q′1 calls to S(φ).Check is at most
2q′1
22n . By Lemma

2, q′1 ≤ 2 · (10q3)5, hence

Pr(η,φ)[BadCheck occurs during DΣ1(E(η),S(φ))] ≤ 2 · 2 · (10q3)5

22n
≤ 219 · q15

22n

and by Lemma 4 we know if BadCheck does not happen in all these calls,

DΣ1(E(η),S(φ)) = DΣ
′
1(Ẽ(η),S̃(φ)). Hence∣∣∣Pr[DΣ1(E(η),S(φ)) = 1]− Pr[DΣ

′
1(Ẽ(η),S̃(φ)) = 1]

∣∣∣
≤Pr(η,φ)[D

Σ1(E(η),S(φ)) ̸= DΣ
′
1(Ẽ(η),S̃(φ))]

≤Pr(η,φ)[BadCheck occurs during DΣ1(E(η),S(φ))] ≤ 219 · q15

22n

as claimed. ⊓⊔

Bounding the Complexity of S The discussions above enable us to upper
bound the complexity of S in Σ1(E(η),S(φ)) for most cases.

Lemma 6. For any distinguisher D which issues no more than q queries, with

probability no less than 1− 219·q15
22n , S(φ) issues no more than 211 · q9 queries to

E(η) during execution DΣ1(E(η),S(φ)).

Proof. S(φ) issues at most |G1| · |G2| · |G3|+ |G19| · |G20| · |G21| queries to E(η).

By Lemma 4, with probability at least 1 − 219·q15
22n , the transcript of D ∪ S in

DΣ1(E(η),S(φ)) is the same as the transcript of D∪ S̃ in DΣ
′
1(Ẽ(η),S̃(φ)); therefore,

with probability at least 1− 219·q15
22n , the bounds on the size of the tables (Lemma

2) holds in DΣ1(E(η),S(φ)). Therefore the bound is 2 · (10q3)3 ≤ 211 · q9. ⊓⊔

6.4 Indistinguishability of Σ
′

1 and Σ2

In this section we use a relaxed randomness mapping argument to upper bound
the advantage of distinguishing Σ

′

1 and Σ2. We recall the principle first.

18



The Relaxed Randomness Mapping Argument: Principle Since D is
deterministic, each tuple of random tapes (η, φ) uniquely determines a Σ

′

1-

execution. However duringDΣ
′
1(η,φ), certain entries in (η, φ) may not be accessed

and will not affect the execution. The entries of (η, φ) that are accessed during

DΣ
′
1(η,φ) compose footprint (see Sect. 6.4 for a more formal definition). Hence

there is a bijection between the possible value of the footprint and the transcript

of DΣ
′
1(η,φ). Then the core idea of upper bounding |Pr[DΣ2 = 1]−Pr[DΣ

′
1 = 1]|

by relaxed randomness mapping argument is exhibiting a bijection τ between
some of the footprints of (η, φ) and f such that (i) τ maps Σ

′

1 executions to Σ2

executions that look exactly same in the view of D; (ii) τ maps Σ
′

1 executions to
Σ2 executions of nearly equal probability; (iii) the domain of τ represents most

of the probability mass of all the possible footprints of DΣ
′
1(η,φ).

Our novelties In the previous proof of Andreeva et al. [2], the map linked the
intermediate system G2 and G3, where G2 was composed of the target idealized
primitive and the simulator, and G3 was composed of the proved construction
and the simulator. Moreover, both the preimages and the images of the map are
footprints of the two systems respectively (in [2] the two systems were G2 and
G3). After bounding the advantage of distinguishing G2 and G3, Andreeva et
al. used a quite standard step to further transit to the real system G4. Whereas
we notice that it is not necessary to keep G3 (the system composed of the
proved construction and the simulator): if we define the image of the map as the
exact copies of the tables generated by G2 (the system composed of the target
idealized primitive and the simulator) and serve such partial random tapes to
the underlying building block in the real system G4, then the map can directly
link G2 and G4. As mentioned in Introduction, such a trick allows us to bypass
an intermediate system (such a system was also used in [17] and [20]) and achieve
the proof within only three systems.

Following the above, we first specify the domain of the map, then define the
map and complete the proof.

Specifying the Domain: Bad Event BadHit To specify the domain of the
map, we shall be aware of which tapes (η, φ) are able to induce executions same
as those induced by f (from the viewpoint of D). Consider Σ′

1 and Σ2. In the

former, the answers to F -queries are simulated by S̃(φ), and when S̃(φ) is forced
to overwrite some entries (in {Gi}), the consistency in the answers will be broken.
Whereas such inconsistency never appears in Σ2: this forms the difference.

Consider the Σ′
1 executions during which S̃ does not overwrite any entry.

The footprints of the random tapes inducing such “non-overwriting” executions
will be taken as the domain of the map (later we will show that such “non-
overwriting” Σ′

1 executions behave the same as the Σ2 executions in the view
of D; see Lemma 20). Following the RRMA methodology, we shall show that
most of the probability mass of all the possible Σ′

1 executions are such “non-
overwriting” executions; for this, we first define a bad event BadHit, then show
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that BadHit happens with negligible probability, and finally show that during
a Σ′

1-execution, if BadHit does not happen, then S̃ does not overwrite.

The Bad Event BadHit, and the Probability To define BadHit, we take the

methodology introduced by Lampe and Seurin [20]. In DΣ
′
1(Ẽ(η),S̃(φ)), for each

random tape accessing action, we define the history H as the set of all n-bit
strings extracted from the entries in the table Ẽ(η).E and {Gi} just before this
action. More clearly:

– In table Ẽ(η).E, for any entry ((·, k, x), y), H includes five n-bit values k,
xL, xR, yL, yR, where xL and xR (yL and yR) are the left and right n-bit
halves of x (y, resp.).

– For each i ∈ {1, . . . , 21}, for any entry (x, y) in Gi, H includes two n-bit
values x and y.

– The parameters passed to the calls which triggers the random tape access-
ing actions are also included, i.e. for calls to F inner(i, x), x is included in

H immediately after the call is made, while for calls to Ẽ.Enc(k,m) (and
Dec(k,m)), k, mL, and mR are all included in H immediately after the call
is made, where mL and mR are the left and right n-bit halves of m.

Then we define the bad event BadHit:

Definition 2. The bad event BadHit happens if when the simulator read an
entry from the random tape, either of the following two happens:

– If the entry x = (xL, xR) is a 2n-bit value read from η, then either xL or xR

equals the bitwise xor of 9 or less values in the history H;
– If the entry y is an n-bit value read from φ, then y equals the bitwise xor of

9 or less values in H.

Based on the upper bounds on the size of the tables in DΣ
′
1(Ẽ(η),S̃(φ)), we

upper bound the probability of BadHit.

Lemma 7. For any distinguisher D which issues at most q queries, the prob-
ability (over the random choice of η and φ) that event BadHit happens in

DΣ
′
1(Ẽ(η),S̃(φ)) can be upper bounded as

Pr[BadHit] ≤ 288 · q30

2n

Proof. According to Lemma 2, |Ẽ(η).E+| ≤ 10q3, and |Gi| ≤ 10q3. By the

definition of H, each entry of Ẽ(η).E+ adds 5 values to H7, while each entry of
Gi adds 2 values. Hence |H| ≤ 5 · 10q3 + 2 · 21 · 10q3 = 470q3. Then:

– for each query to F inner which triggers φi tape accessing action, since values

in φi are random, the probability that BadHit occurs is at most (470q3)9

2n ;

7 The values added by Ẽ(η).E− are the same as Ẽ(η).E+.
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– for each query to Ẽ(η).Enc or Ẽ(η).Dec which triggers η tape accessing
action, since η encodes an ideal cipher, the probability that BadHit occurs

is at most Pr[yL
$←− {0, 1}n : BadHit occurs on yL] + Pr[yR

$←− {0, 1}n :

BadHit occurs on yR], and is upper bounded to 2·(470q3)9
2n ;

Then the probability that BadHit happens in no more than 21 ·10q3 φ tape

accessing actions is upper bounded to (21·10q3)·(470q3)9
2n , while that in no more

than 10q3 η tape accessing is upper bounded to (10q3)·2·(470q3)9
2n . In total it is

Pr[BadHit] ≤ 21 · 10q3 · (470q3)9

2n
+

10q3 · 2 · (470q3)9

2n

≤ 288 · q30

2n

as claimed. ⊓⊔

The executions DΣ
′
1(Ẽ(η),S̃(φ)) during which BadHit does not happen are

called good executions. The next section shows that during good executions,
S̃(φ) never overwrites entries.

Good Executions: No Overwriting We first introduce necessary notions,
then show a series of lemmas which finally establishes the claim of non-overwriting.

Necessary Notions and Functions Most of the notions used in this section are
borrowed from [17] (some of them are redefined to fit into the SKAF ∗

21 context).
For SKAF ∗

21, the partial chain is defined as a 4-tuple (xi, xi+1, xi+2, i) where
xi, xi+1, xi+2 ∈ {0, 1}n and i ∈ {0, . . . , 20}. The associated key is k = xi ⊕
Gi+1(xi+1) ⊕ xi+2 if xi+1 ∈ Gi+1. Further denote C[1] = xi, C[2] = xi+1,

C[3] = xi+2, C[4] = i. Given hash tables G1, . . . , G21 and Ẽ(η).E at some point

in the execution DΣ
′
1(Ẽ(η),S̃(φ)), we (re)define helper functions next and prev

which take a partial chain C as input and return the partial chain obtained by
moving respectively one step forward or backward in SKAF ∗

21, or empty value ⊥
when some necessary values (in tables Gi or Ẽ(η).E) have not been defined. We
also borrow (and redefine) the helper functions val+l and val−l to help probe in
the computation path; and a function k which returns the associated key value
if the value can be calculated, or ⊥ otherwise.

1: function next(xi, xi+1, xi+2, i)
2: if xi+1 /∈ Gi+1 then
3: return ⊥
4: end if
5: k := xi ⊕Gi+1(xi+1)⊕ xi+2

6: if i < 20 then
7: if xi+2 /∈ Gi+2 then
8: return ⊥
9: end if
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10: xi+3 := xi+1 ⊕Gi+2(xi+2)⊕ k
11: return (xi+1, xi+2, xi+3, i+ 1)
12: else
13: if (−, k, (x22, x21)) /∈ E then
14: return ⊥
15: end if
16: (x1, x0) := E(−, k, (x22, x21))
17: if x1 /∈ G1 then
18: return ⊥
19: else
20: x2 := x0 ⊕G1(x1)⊕ k
21: return (x0, x1, x2, 0)
22: end if
23: end if
24: end function

1: function prev(xi, xi+1, xi+2, i)
2: if xi+1 /∈ Gi+1 then
3: return ⊥
4: end if
5: k := xi ⊕Gi+1(xi+1)⊕ xi+2

6: if i > 0 then
7: if xi /∈ Gi then
8: return ⊥
9: end if

10: xi−1 := xi+1 ⊕Gi(xi)⊕ k
11: return (xi−1, xi, xi+1, i− 1)
12: else
13: if (+, k, (x1, x0)) /∈ E then
14: return ⊥
15: end if
16: (x22, x21) := E(+, k, (x1, x0))
17: if x21 /∈ G21 then
18: return ⊥
19: else
20: x20 := x22 ⊕G21(x21)⊕ k
21: return (x20, x21, x22, 20)
22: end if
23: end if
24: end function

1: function val+l (C)
2: if l ≥ 2 then
3: while (C ̸= ⊥) ∧ (C[4] /∈ {l − 2, l − 1, l}) do
4: C := next(C)
5: end while
6: if C = ⊥ then
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7: return ⊥
8: else
9: return C[(l − C[4] + 1)]

10: end if
11: else
12: // l = 0 or 1
13: while (C ̸= ⊥) ∧ (C[4] ̸= 20) do
14: C := next(C)
15: end while
16: if C = ⊥ then
17: return ⊥
18: else if (−, k(C), (C[3], C[2])) /∈ E then
19: return ⊥
20: else
21: (v[1], v[0]) := E(−, k(C), (C[3], C[2]))
22: return v[l]
23: end if
24: end if
25: end function

1: function val−l (C)
2: if l ≤ 20 then
3: while (C ̸= ⊥) ∧ (C[4] /∈ {l − 2, l − 1, l}) do
4: C := prev(C)
5: end while
6: if C = ⊥ then
7: return ⊥
8: else
9: return C[(l − C[4] + 1)]

10: end if
11: else
12: // l = 21 or 22
13: while (C ̸= ⊥) ∧ (C[4] ̸= 0) do
14: C := prev(C)
15: end while
16: if C = ⊥ then
17: return ⊥
18: else if (+, k(C), (C[2], C[1])) /∈ E then
19: return ⊥
20: else
21: (v[22], v[21]) := E(+, k(C), (C[2], C[1]))
22: return v[l]
23: end if
24: end if
25: end function

1: function k(xj , xj+1, xj+2, j)
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2: if xj+1 /∈ Gj+1 then
3: return ⊥
4: else
5: return xj ⊕Gj+1(xj+1)⊕ xj+2

6: end if
7: end function

Notations prevj and nextj are used to denote the j-th functional power of
prev and next respectively. To make the functional powers well-defined, we define
prev(⊥) = ⊥ and next(⊥) = ⊥8. Then we define equivalent and table-defined
partial chains (the two notions are actually borrowed from [17,20]):

Definition 3. Two partial chains C and D are equivalent if C = D, or for
some 1 ≤ j ≤ 20, C = nextj(D) or C = prevj(D). Denote it by C ≡ D.

Definition 4. For the hash tables G1, . . . , G21, and Ẽ(η).E at some point in

the execution of DΣ
′
1(Ẽ(η),S̃(φ)), a partial chain C = (xi, xi+1, xi+2, i) is said to

be table-defined if next(C) ̸= ⊥ and prev(C) ̸= ⊥.

Note that when i ∈ {1, . . . , 19}, C = (xi, xi+1, xi+2, i) being table-defined
implies xi ∈ Gi, xi+1 ∈ Gi+1, and xi+2 ∈ Gi+2, i.e. all the three values involved
in C have been in the history H of the execution. When i = 0 (= 20, resp.), it
means that (x1, x0) ((x22, x21), resp.) has been in table E, which also implies
that all the three values involved in C have been in H.

We call a call to Adapt safe, if during the Adapt procedure, the function
values in at least one of the two buffer rounds l − 2 and l − 1 (l + 2 and l + 3,
resp.) has not been defined and can be freely set to fresh random values. This
is more involved than the analogue in [20]. For simplicity, we will call such a
condition safe Adapt call condition in the following sections.

Definition 5. A call to Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l) is called safe
if the following holds before the call: 9

(((xl−2 /∈ Gl−2) ∨ (xl−2 ∈ Gl−2 ∧ xl−3 ⊕Gl−2(xl−2)⊕ k(B) /∈ Gl−1))

∧((xl+3 /∈ Gl+3) ∨ (xl+3 ∈ Gl+3 ∧ xl+4 ⊕Gl+3(xl+3)⊕ k(D) /∈ Gl+2))),

where B = (xl−4, xl−3, xl−2, l − 4) and D = (xl+3, xl+4, xl+5, l + 3).

Definition 6. A call to ForceV al(x, y, l) is called non-overwriting if x /∈ Gl

before the call.

Two notions key-defined and key-undefined are introduced to reveal whether
the associated key of a partial chain can be calculated from the tables.

Definition 7. A partial chain C = (xj , xj+1, xj+2, j) is called key-defined if
xj+1 ∈ Gj+1; otherwise is called key-undefined.

8 This makes the definition well-defined. However this actually has no additional in-
fluence on the subsequent proof.

9 By construction, when Adapt is called, k(B) ̸= ⊥ and k(D) ̸= ⊥ must hold.
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Note that:

– For a partial chain C, k(C) ̸= ⊥ if and only if C is key-defined.
– Each table-defined chain is also key-defined.

Good Executions: Properties In this section we show some properties that are
helpful for the proof of our main goal, i.e. S̃(φ) never overwrites entries. Most of
the properties are very close to those of un-keyed Feistel construction (exhibited
in [17]). We list the main differences as follows:

(i) Our Lemma 8 focus on key-defined chains, which is a new notion in this
work;

(ii) Our Lemma 11 concerns with two round values instead of only one in the
previous works. This is due to the n bits increment in the entropy of the
chain;

(iii) Due to the increment in the number of buffer rounds, Lemma 12 and Lemma
14 are slightly different from their previous analogues;

(iv) to tackle the chains which were key-undefined before being enqueued, we
add a lemma: Lemma 16.

(v) at last, the idea to achieve the proof of Lemma 17 is also affected by the
increment in the number of buffer rounds.

As to the question why almost all the analyzes focus on key-defined chains,
the reasons are two-fold:

(i) The core of the analyzes is on the chains that are enqueued and completed
by the simulator. Most of these chains have been key-defined right before the
calls to F inner which trigger them to be enqueued. The only exception is the
case when a chain (x10, x11, x12, 10) is enqueued by a call to F inner(11, x11);
such chains are captured by the set KUDCS (see page 32), and separately
analyzed in Lemma 16.

(ii) For a chain C = (xi, xi+1, xi+2, i), the three values k(C), val−i−1(C), and

val+i+3(C) all depend on Gi+1(xi+1). The absence of Gi+1(xi+1) limits the
influence of C to a very restricted extent (see Lemma 26 in the Appendix).

After highlighting the main differences, we present the lemmas themselves.
First, in the good executions, the key-defined chains behave quite similar to the
partial chains analyzed by Holenstein et al.: the random tape accessing and the
subsequent entry setting actions can only extend them one round each time.

Lemma 8. The following hold in a good execution DΣ
′
1(Ẽ(η),S̃(φ)):

(i) For any key-defined partial chain C, if next(C) = ⊥ before a random tape

accessing and subsequent entry setting action on either Ẽ(η).E or {Gi}, then
if C is table-defined after the action, it holds that next2(C) = ⊥.

(ii) For any key-defined partial chain C, if prev(C) = ⊥ before a random tape

accessing and subsequent entry setting action on either Ẽ(η).E or {Gi}, then
if C is table-defined after the action, it holds that prev2(C) = ⊥.
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(iii) For any key-defined partial chain C and each δ ∈ {+,−}, a random tape
accessing and entry setting action Gj(xj) := φj(xj) can only change at most
one of the values valδi (C); and if such change happens, then:

– the value is changed from ⊥ to some non-empty values.
– if δ = +, i = j + 1; if δ = −, i = j − 1.
– valδj (C) = xj before the assignment.

– after the action, if C is table-defined, then valδi (C) /∈ Gi.

Proof. We prove the propositions one-by-one.

(i) Suppose C = (xl, xl+1, xl+2, l), and assume otherwise, i.e. next(next(C)) ̸=
⊥. Depending on l, we distinguish two cases:

– l < 20: in this case, before the action, from next(C) = ⊥ and C was
key-defined we know xl+2 /∈ Gl+2. Since C turns to be table-defined
after the action, the action must be Gl+2(xl+2) := φl+2(xl+2). Then if
next(next(C)) ̸= ⊥ holds after the action, it must fall in one of the
following two cases:

(a) when l ≤ 19, we have

xl+3 = xl+1 ⊕ φl+2(xl+2)⊕ k(C)

= xl+1 ⊕ φl+2(xl+2)⊕ xl ⊕Gl+1(xl+1)⊕ xl+2 ∈ Gl+3,

which means the value read from φ equals xor of 5 values in H:
φl+2(xl+2) = xl+1 ⊕ xl ⊕Gl+1(xl+1)⊕ xl+2 ⊕ xl+3.

(b) when l = 19, we have (−, k(C), (x22, x21)) ∈ E (and x22 ∈ H) for
x22 = x20⊕G21(x21)⊕k(C), which (also) means the value read from
φ equals xor of 5 values in H: φ21(x21) = x20 ⊕ x19 ⊕ G20(x20) ⊕
x21 ⊕ x22.

Both of the two contradict the assumption that BadHit does not occur.
– l = 20 (C = (x20, x21, x22, 20)): in this case, the assumption that before

the action next(C) = ⊥ while after the action C turns to be table-
defined and next(next(C)) ̸= ⊥ means, before the action, exactly one of
the following two holds:

(a) (−, k(C), (x22, x21)) /∈ E
(b) (−, k(C), (x22, x21)) ∈ E∧x1 /∈ G1 for (x1, x0) = E(−, k(C), (x22, x21))

while after the action, all the following three hold:

• (−, k(C), (x22, x21)) ∈ E (by C being table-defined)
• for (x1, x0) = E(−, k(C), (x22, x21)), x1 ∈ G1 (by C being table-
defined and next(next(C)) ̸= ⊥)
• x2 ∈ G2 for x2 = x0 ⊕G1(x1)⊕ k(C) (by next(next(C)) ̸= ⊥)

We exclude the possibility for each case:

(a) the first case: (−, k(C), (x22, x21)) /∈ E before the action, and the ac-
tion is E(−, k(C), (x22, x21)) := η(−, k(C), (x22, x21)). In such case,
since x1 ∈ G1 after the action, the value m read from η satisfies
mL = x1 which has been in H, a contradiction.
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(b) the second case: x1 /∈ G1 before the action, and the action isG1(x1) :=
φ1(x1). In such case, after the action we have x2 = x0 ⊕ φ1(x1) ⊕
k(C) ∈ G2, hence φ1(x1) = x0 ⊕ (x20 ⊕ G21(x21) ⊕ x22) ⊕ x2, a
contradiction.

(ii) The proof is similar to (i) by symmetry.
(iii) By construction, the action Gj(xj) := φj(xj) never overwrites entries in

the tables. Hence val+i (C) or val−i (C) can only change from ⊥ to non-
empty values. Let yj = φj(xj), and wlog consider the case when val+i (C)
changes. According to the implementation of function val+i , before the action
Gj(xj) := yj , val

+
i (C) = ⊥ might be due to either of the following two:

(a) for some 1 ≤ l ≤ 21, val+l (C) ̸= ⊥ ∧ val+l (C) /∈ Gl, and calculating
val+i (C) requires val+l (C) ∈ Gl;

(b) val+22(C) ̸= ⊥ ∧ val+21(C) ̸= ⊥ ∧ (−, k(C), (val+22(C), val+21(C))) /∈ E;
In the second case, Gj(xj) := yj will not affect val+i (C) since after the
action, (−, k(C), (val+22(C), val+21(C))) /∈ E still holds. In the first case we
argue j = l = i− 1 ∧ val+j (C) = xj to hold:

(a) if j ̸= l ∨ (j = l ∧ val+j (C) ̸= xj), then Gj(xj) := yj will not affect

val+i (C) since after the action, val+l (C) /∈ Gl still holds;
(b) if j = l < i− 2, then val+j+2(C) = xj ⊕Gj+1(val

+
j+1(C))⊕ (val+j−1(C)⊕

yj⊕val+j+1(C)) must be either ⊥ (when val+j+1(C) /∈ Gj+1) or non-empty
value which has not been in Gj+2 (to avoid BadHit). Since j + 2 < i,
this implies val+i (C) = ⊥ after the action – val+i (C) does not change;

(c) if j = l = i− 2, for val+i (C) = val+i−2(C)⊕Gi−1(val
+
i−1(C))⊕ k(C) ̸= ⊥

to hold after the action, val+i−1(C) ∈ Gi−1 must hold before the ac-

tion. In such case, if C = (val+i−3(C), val+i−2(C), val+i−1(C), i − 3), then
C is key-undefined before the action, contradicting the assumption; let
C∗ = (val+i−4(C), val+i−3(C), val+i−2(C), i − 4), if C = prevs(C∗) for
some s ≥ 0, then next(C∗) = ⊥ before the action while after the
action, either next(C∗) = ⊥ (when val+i−3(C) /∈ Gi−3) which contra-

dicts the assumption that val+i (C) changes, or next2(C∗) ̸= ⊥ (when
val+i−3(C) ∈ Gi−3/C

∗ is key-defined) which contradicts proposition (i).

We then show the uniqueness. Let C
′
= (val+i−3(C), val+i−2(C), val+i−1(C), i−

3). By discussions above we know C
′
must have been key-defined before the

action. Wlog, for some i′ ≥ i + 1, suppose val+i′ (C) also changes from ⊥
to non-empty values. Then next(C

′
) = ⊥ before Gj(xj) := φj(xj) while

next2(C
′
) ̸= ⊥ after Gj(xj) := φj(xj), contradicting proposition (i).

Finally, if val+i (C) ∈ Gi after the action, then next(C
′
) = ⊥ before the

action while next2(C
′
) ̸= ⊥ after the action, contradicting proposition (i).

Hence we establish the claim for val+i (C). The reasoning for val−i (C) is
similar by symmetry. ⊓⊔

The next lemma presents basic properties of the equivalence relation ≡.

Lemma 9. During a good execution DΣ
′
1(Ẽ(η),S̃(φ)), at any point such that all

the previous calls to ForceV al were non-overwriting, the following hold:
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(i) For any two partial chains C and D, next(C) = D ⇔ prev(D) = C.
(ii) The relation ≡ between partial chains is an equivalence relation.
(iii) If two table-defined partial chains C and D are equivalent at this point, then

there exists a sequence of table-defined chains C1, . . . , Cr(r ≥ 1) s.t.

– C = C1 and D = Cr, or C = Cr and D = C1.
– Ci = next(Ci−1) and Ci−1 = prev(Ci).

Proof. (i) By construction, only ForceV al can overwrite entries. Since all are
assumed to be non-overwriting, both evaluating SKAF ∗ one step forward
or backward and evaluating E.Enc or E.Dec are bijective and (i) holds.

(ii) Due to (i), ≡ is symmetric, and by definition it is reflexive and transitive.
(iii) By definition we know D = nextj(C) or D = prevj(C) for some j. In

the former case the chain sequence is C1 = C, C2 = next(C), ..., Ci =
nexti−1(C), ..., Cr = D where r = j + 1; in the latter case it is similar by
symmetry. Clearly, all the chains are table-defined. ⊓⊔

Then we show the invariance of the equivalence relation for chains before and
after the tape accessing and entry setting action.

Lemma 10. Consider a good execution DΣ
′
1(Ẽ(η),S̃(φ)). Let C and D be two

table-defined chains at some point in DΣ
′
1(Ẽ(η),S̃(φ)) such that all the previous

calls to ForceV al were non-overwriting. Assume a tape accessing and entry set-
ting action happens after this point, then the equivalence of C and D is invariant
before and after this action.

Proof. If C ≡ D before the action, then the chain sequence linked C and D is
invariant before and after the action since no entry is overwritten, and C ≡ D
after the action. On the other hand if sequence C1, . . . , Cr links C and D after
the action while next(Cj) = prev(Cj+1) = ⊥ before the action, then D being
table-defined before the action implies j + 1 < r. In this case, next(Cj) = ⊥
before the action while next(Cj) ̸= ⊥ ∧ next2(Cj) ̸= ⊥ after the action, which
contradicts Lemma 8 (i). Hence C ≡ D before the action. ⊓⊔

The following lemma shows that two inequivalent chains cannot collide at
two consecutive rounds when they are extended by the random tape accessing
and entry setting actions.

Lemma 11. Fix a point in a good execution DΣ
′
1(Ẽ(η),S̃(φ)) and suppose all calls

to ForceV al to be non-overwriting up to this point. Assume that a random tape
accessing and entry setting action Gi(xi) := φi(xi) happens right after this point,
then for any two key-defined partial chains C and D, any l ∈ {3, . . . , 19}, and
any δ ∈ {+,−}, the following four cannot be simultaneously fulfilled:

(i) before the action, C is not equivalent to D;
(ii) before the action, valδl (C) = ⊥ or valδl (D) = ⊥;
(iii) after the action, C and D are table-defined;
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(iv) after the action, (valδl (C) = valδl (D) ̸= ⊥)∧(valδl−1(C)⊕k(C) = valδl−1(D)⊕
k(D)) when δ = +, or (valδl (C) = valδl (D) ̸= ⊥) ∧ (valδl+1(C) ⊕ k(C) =

valδl+1(D)⊕ k(D)) when δ = −;

Proof. Towards a contradiction assume all the four statements to hold after an
action Gi(xi) := φi(xi) for two partial chains C and D, some l ∈ {1, . . . , 21}, and
δ = +. Let yi = φi(xi), and wlog assume val+l (C) = ⊥ before the action. Then
since the two chains are key-defined before the action and val+l (C) is changed
from ⊥ to non-empty values by the action, by Lemma 8 (iii), i = l − 1, and
val+i (C) = xi must hold before the action. We distinguish two cases:

– val+i+1(D) = ⊥ before the action. Then val+i (D) = xi must hold before
the action. Let (xi−2, xi−1, xi, i−2) = nextj1(C) and (x′

i−2, x
′
i−1, xi, i−2) =

nextj2(D) for sufficiently large j1 and j2. If val
+
i+1(C) = val+i+1(D) = xi+1 ̸=

⊥ holds after the action, then after the action we have xi−1 ⊕ Gi(xi) ⊕
k(C) = x′

i−1 ⊕Gi(xi)⊕ k(D), which implies xi−1 ⊕ k(C) = x′
i−1 ⊕ k(D) to

hold before the action. Note that xi−1 = x′
i−1 cannot hold, since otherwise

(xi−1, xi, xi+1, i − 1) = (x′
i−1, xi, xi+1, i − 1) and C ≡ D which contradicts

the assumption that C is not equivalent to D before the action. Therefore
k(C) = xi−1 ⊕Gi(xi)⊕ xi+1 ̸= x′

i−1 ⊕Gi(xi)⊕ xi+1 = k(D), and

val+l−1(C)⊕ k(C) = xi ⊕ k(C) ̸= xi ⊕ k(D) = val+l−1(D)⊕ k(D).

This implies that the four statements cannot simultaneously hold.
– val+i+1(D) ̸= ⊥ before the action. Then val+i (C) ̸= val+i (D) must hold, oth-

erwise val+i+1(C) ̸= ⊥. Let (xi−2, xi−1, xi, i−2) = nextj1(C) and (x′
i−2, x

′
i−1,

xi, i−2) = nextj2(D) for sufficiently large j1 and j2. Since D is table-defined
after the entry setting action on Gi(xi), D must have been table-defined be-
fore the action. Further since val+l (C) = val+l (D) ≠ ⊥ after the action, we
have xi−1 ⊕ yi ⊕ k(C) = xi−1 ⊕ φi(xi)⊕ k(C) = x′

i−1 ⊕Gi(x
′
i)⊕ k(D), i.e.

φi(xi) = xi−1⊕xi−2⊕Gi−1(xi−1)⊕xi⊕x′
i−1⊕Gi(x

′
i)⊕x′

i−2⊕Gi−1(x
′
i−1)⊕xi,

BadHit happens.

The reasoning for δ = − is similar by symmetry. ⊓⊔

The following lemma claims that if all the previous calls to ForveV al were
non-overwriting, then the calls to ForceV al triggered by safe calls to Adapt do
not affect the values in previously defined chains, nor the equivalence relation.

Lemma 12. Consider a safe call Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l) in a

good execution DΣ
′
1(Ẽ(η),S̃(φ)), and suppose all the previous calls to Adapt to be

safe, then:

(i) Right before the subsequent call to F inner(l − 1, xl−1), xl−1 /∈ Gl−1; right
before the subsequent call to F inner(l + 2, xl+2), xl+2 /∈ Gl+2;

(ii) The subsequent calls to ForceV al are non-overwriting.
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(iii) If a chain C is table-defined before this call to Adapt and is not equivalent
to the chain which is being completed, then for any i ∈ {1, . . . , 21}, val+i (C)
and val−i (C) are invariant before and after both calls to ForceV al.

(iv) If two chains C and D are table-defined before this call to Adapt, then the
equivalence of C and D is invariant before and after the subsequent calls to
ForceV al.

Proof. Denote the chain being completed by Ccomplete. Then, for proposition (i),
consider xl−1. Since the call to Adapt is safe, before the Adapt either xl−2 /∈ Gl−2

or xl−2 ∈ Gl−2 ∧ xl−1 /∈ Gl−1 holds. If the latter holds, then clearly proposition
(i) holds. If the former holds, then action Gl−2(xl−2) := φl−2(xl−2) must happen
during the call to F inner(l − 2, xl−2). Before this action, xl−4 ∈ Gl−4, xl−3 ∈
Gl−3, and next(xl−4, xl−3, xl−2, l − 4) = ⊥, hence by Lemma 8 (i), after this
action we have next2(xl−4, xl−3, xl−2, l − 4) = ⊥ and xl−1 /∈ Gl−1. Utilizing
Lemma 8 (ii), and by symmetry we achieve the proof of xl+2 /∈ Gl+2.

Gathering proposition (i) and Lemma 8 (i), (ii) yields xl /∈ Gl and xl+1 /∈
Gl+1 before the call to ForceV al. Therefore proposition (ii) holds.

For proposition (iii), consider a chain C = (xj , xj+1, xj+2, j) which is table-
defined before the call to Adapt. Let B = (xl−4, xl−3, xl−2, l − 4) and D =
(xl+3, xl+4, xl+5, l + 3). Then B ≡ D ≡ Ccomplete while C cannot be equivalent
to them by assumption. Suppose val+i (C) is changed by the subsequent calls to
ForceV al. Then val+l (C) = xl or val+l+1(C) = xl+1 must hold before the calls

to ForceV al, for the value of val+i (C) to change.
We first assume val+l (C) = xl right before the two calls to ForceV al. For

each of the following cases, we exclude the possibility:

(i) Before the call to Adapt, val+l (C) ̸= ⊥. Then val+l (C) can be written
as xor of five values extracted from the history: val+l (C) = val+l−2(C) ⊕
Gl−1(val

+
l−1(C))⊕ xj ⊕Gj+1(xj+1)⊕ xj+2. By proposition (i), xl−1 /∈ Gl−1

before yl−1 := F inner(l − 1, xl−1) is executed, therefore the value xl cal-
culated by xl := xl−2 ⊕ φl−1(xl−1) ⊕ k(B) cannot equal val+l (C) unless
φl−1(xl−1) = (val+l−2(C) ⊕ Gl−1(val

+
l−1(C)) ⊕ xj ⊕ Gj+1(xj+1) ⊕ xj+2) ⊕

(xl−2 ⊕ xl−4 ⊕Gl−3(xl−3)⊕ xl−2) and BadHit happens.
(ii) Before the call to Adapt, val+l (C) = ⊥. We further distinguish two cases

depending on val+l−2(C) before the call to Adapt:

(a) val+l−2(C) ∈ Gl−2 while val+l−1(C) /∈ Gl−1: then val+l−1(C) = xl−1

must hold when yl−1 := F inner(l − 1, xl−1) is executed, otherwise when
ForceV al is called, val+l (C) = ⊥ ̸= xl. Then, before the call to Adapt:
– if xl−2 /∈ Gl−2, then val+l−1(C) = xl−1 cannot hold when yl−1 :=

F inner(l − 1, xl−1) is executed unless φl−2(xl−2) = (val+l−3(C) ⊕
Gl−2(val

+
l−2(C))⊕xj⊕Gj+1(xj+1)⊕xj+2)⊕(xl−3⊕xl−4⊕Gl−3(xl−3)⊕

xl−2) and BadHit happens.
– if xl−2 ∈ Gl−2 while xl−1 /∈ Gl−1, the call to Adapt must set

Gl−1(val
+
l−1(C)) besides Gl−1(xl−1) to make val+l (C) = xl ̸= ⊥

before the call to ForceV al. This means, before the call to Adapt:
i. val+l−1(C) = xl−1 holds;
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ii. val+l (C) = val+l (B) immediately holds after Gl−1(xl−1) is de-
fined;

These imply the following two to hold simultaneously:
i. val+l−3(C) ⊕ Gl−2(val

+
l−2(C)) ⊕ (val+l−2(C) ⊕ Gl−3(val

+
l−3(C)) ⊕

val+l−4(C)) = xl−3 ⊕Gl−2(xl−2)⊕ (xl−4 ⊕Gl−3(xl−3)⊕ xl−2);

ii. xl−2 ⊕ (xl−4 ⊕ Gl−3(xl−3) ⊕ xl−2) = val+l−2(C) ⊕ (val+l−2(C) ⊕
Gl−3(val

+
l−3(C))⊕ val+l−4(C));

Therefore all the following 6 values have been in {Gi} before the call
to Adapt: val+l−4(C), val+l−3(C), val+l−2(C) (by C being table-defined
before the call), xl−4, xl−3, and xl−2. By construction we know all
the entries in Gl−4, Gl−3, and Gl−2 are defined to random values
drew from the tapes (none of the 3 rounds l− 4, l− 3 and l− 2 is in
adaptation zone), consequently among them six, the last one added
to {Gi} implies BadHit, and it is impossible for this case to occur.

(b) val+l−2(C) /∈ Gl−2 (which means val+l−1(C) = ⊥): in such case the

call to Adapt must define Gl−2(val
+
l−2(C)) and Gl−1(val

+
l−1(C)) besides

Gl−2(xl−2) and Gl−1(xl−1) to lead to val+l (C) ̸= ⊥. Then val+l (C) =
val+l (B) = xl is impossible since C is not equivalent to B.

We then assume val+l+1(C) = xl+1 just before the second call to ForceV al. By

the discussions above, we have: before the call to Adapt, val+l (C) ∈ Gl must
hold, otherwise val+l (C) /∈ Gl is kept till the second call to ForceV al, which
implies val+l+1(C) = ⊥ ̸= xl+1, a contradiction. Then val+l+1(C) can be written

as xor of five values in the history: val+l+1(C) = val+l−1(C)⊕Gl(val
+
l (C))⊕xj ⊕

Gj+1(xj+1) ⊕ xj+2; and, by proposition (i) we know val+l+1(C) = xl+1 cannot

hold before the second call to ForceV al, otherwise the call F inner(l + 2, xl+2)
triggers BadHit, i.e. φl+2(xl+2) = val+l−1(C)⊕Gl(val

+
l (C))⊕xj⊕Gj+1(xj+1)⊕

xj+2 ⊕ xl+3 ⊕ xl+2 ⊕Gl+3(xl+3)⊕ xl+4.
The reasoning for val−i (C) is similar. These establish proposition (iii).
For proposition (iv), let C andD be two chains which are table-defined before

the Adapt. If C ≡ D ≡ Ccompleted before the call to ForceV al, then clearly C ≡
D ≡ Ccompleted after the call since no entry is overwritten; and the proposition
that if C ≡ D ≡ Ccompleted after the call to ForceV al then C ≡ D ≡ Ccompleted

before the call is also trivial. If C and D are not equivalent to Ccompleted, then by
proposition (iii) the values valδi (C) and valδi (D) are invariant before and after
the calls to ForceV al, C ≡ D before ForceV al implies C ≡ D after ForceV al
meanwhile C ≡ D after ForceV al only if C ≡ D before ForceV al. ⊓⊔

Given that no entry is overwritten, a chain dequeued form the queue will not
be completed if some chain equivalent to it has been completed.

Lemma 13. Assume that at a fixed point in a good execution DΣ
′
1(Ẽ(η),S̃(φ)), a

chain C is dequeued such that C /∈ CompletedSet and all calls to Adapt were safe
up to the point C is dequeued. Then when C was enqueued, no chain equivalent
to C has been enqueued.
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Proof. Towards a contradiction assume a chain D ≡ C has been enqueued before
C was enqueued. Since BadHit is assumed to be absent, and all the previous
calls to ForceV al are assumed to be safe, by Lemma 10 and Lemma 12 (iv), D ≡
C till C is dequeued. Hence when C is dequeued, D must have been dequeued
and completed, and the completion of D must have added C to CompletedSet.
This contradicts the assumption C /∈ CompletedSet when C is dequeued. ⊓⊔

Lemma 14. Consider a good execution DΣ
′
1(Ẽ(η),S̃(φ)). Let C be a chain which

is dequeued and to be adapted at position l s.t. C /∈ CompletedSet. Then the
subsequent call to Adapt is safe, if the following holds when C is dequeued:

(((val+l−2(C) /∈ Gl−2) ∨ (val+l−2(C) ∈ Gl−2 ∧ val+l−1(C) /∈ Gl−1))

∧((val−l+3(C) /∈ Gl+3) ∨ (val−l+3(C) ∈ Gl+3 ∧ val−l+2(C) /∈ Gl+2))).

Proof. The aim is to show the safe Adapt call condition to hold right before
the call Adapt(xl−4, xl−3, xl−2, xl+3, xl+4, xl+5, l). Wlog we show this for “xl−2

side”. By construction, C = (xi, xi+1, xi+2, i) must be key-defined since being
enqueued. Then, when C is enqueued,

(i) if val+l−2(C) = ⊥, then by Lemma 8 (iii), val+l−2(C) can only change from
⊥ to some non-empty values during the random tape accessing and entry
setting action on Gl−3 which occurs in the procedure EvalForward(C, l−2),
and by Lemma 8 (i), val+l−2(C) /∈ Gl−2 immediately holds after this action;

(ii) if val+l−2(C) ̸= ⊥ ∧ val+l−2(C) /∈ Gl−2 (i.e. val+l−1(C) = ⊥), then xl−2 =

val+l−2(C) /∈ Gl−2 keeps holding till Adapt is called;

(iii) if val+l−2(C) ∈ Gl−2∧val+l−1(C) /∈ Gl−1, then xl−1 = val+l−1(C) /∈ Gl−1 keeps
holding till Adapt is called;

By discussions above, the safe Adapt call condition holds before Adapt. ⊓⊔

For the following discussions, we introduce a tuple set KUDCS10, as the set
of 5-tuples (x10, x11, x12, 10, 6) which are enqueued by calls to F inner(11, x11).
As mentioned before, the tuples in this set are special in the sense that before
they are enqueued, the partial chains correspond to them were key-undefined.

Then, the following lemmas show that the assumptions of Lemma 14 hold in
a good execution: Lemma 15 shows them to hold before the chains are enqueued,
Lemma 17 shows them to hold till the chains are dequeued, while Lemma 16 is
a helper lemma for Lemma 17.

Lemma 15. Consider a good execution DΣ
′
1(Ẽ(η),S̃(φ)). Let C be a partial chain

which is enqueued at some time and to be adapted at position l. Suppose that no
chain equivalent to C was enqueued before C is enqueued. Then:

(i) val+l−2(C) = ⊥ and val−l+3(C) = ⊥ before the call to F inner(i, x) which led
to C being enqueued.

10 The term is short for key-undefined chain set.
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(ii) right after C is enqueued, val+l−2(C) /∈ Gl−2 ∧ val−l+3(C) /∈ Gl+3.

Proof. The two propositions will be argued simultaneously. First, consider the
case l = 6. For the following three cases:

(i) C = (x1, x2, x3, 1, 6) is enqueued by a call to F inner(3, x3): clearly before this
call, val+4 (C) = ⊥. Assume val−9 (C) ̸= ⊥, then val−10(C) ∈ G10, val

−
11(C) ∈

G11, val
−
12(C) ∈ G12, and (val−10(C), val−11(C), val−12(C), 10) would be a chain

which is equivalent to C and has been enqueued before C is enqueued. This
contradicts the assumption.
After the action G3(x3) := φ3(x3) triggered by F inner(3, x3), by Lemma 8
(iii) we have val+4 (C) /∈ G4. Moreover val−9 (C) = ⊥ /∈ G9 keeps holding.

(ii) C = (x10, x11, x12, 10, 6) is enqueued by a call to F inner(10, x10): clearly
val−9 (C) = ⊥ before it. Assume val+4 (C) ̸= ⊥, then let (x0, x1, x2, x3, x19,
x20, x21, x22) = (val+0 (C), val+1 (C), val+2 (C), val+3 (C), val−19(C), val−20(C),
val−21(C), val−22(C)). All these 8 values must be non-empty values, since oth-
erwise val+4 (C) = ⊥. Then at some point in the execution, all the 7 values
G1(x1),G2(x2),G3(x3),G19(x19),G20(x20),G21(x21), and E(−, k, (x22, x21))
have been added to corresponding tables. Among them, consider the last
added one. It must have been G3(x3) := φ3(x3) or G19(x19) := φ19(x19)
because:

(a) it cannot be an action happened on table E, since otherwise prev(x0, x1, x2, 0) =
⊥ before the action while prev2(x0, x1, x2, 0) ̸= ⊥ after the action (con-
tradicting Lemma 8 (ii)).

(b) it cannot be G1(x1) := φ1(x1) or G2(x2) := φ2(x2) since otherwise
val+4 (x19, x20, x21, 19) changes (contradicting Lemma 8 (iii)).

(c) it cannot be G20(x20) := φ20(x20) or G21(x21) := φ21(x21) since other-
wise val−18(x1, x2, x3, 1) changes (contradicting Lemma 8 (iii)).

Hence the last action (on round 3 or 19) will trigger the chain detection
and completion process and add C to CompletedSet, which contradicts the
assumption.
In this case, after C is enqueued, val−9 (C) /∈ G9 immediately holds by Lemma
8 (iii), while val+4 (C) = ⊥ /∈ G4 keeps holding.

(iii) C = (x10, x11, x12, 10, 6) is enqueued by a call to F inner(11, x11): in this case,
before C is enqueued, C is key-undefined, and val−9 (C) = ⊥ and val+13(C) =
⊥ hold. Furthermore, val−9 (C) /∈ G9 and val+13(C) /∈ G13 immediately hold
after C is enqueued, otherwise BadHit happens e.g. if val−9 (C) = x9 ∈ G9

then φ11(x11) = x9 ⊕ x11 ⊕ G10(x10) ⊕ x10 ⊕ x12. val
+
13(C) /∈ G13 further

implies val+4 (C) = ⊥ /∈ G4.

For l = 15, it is similar by symmetry, except for excluding case (iii). ⊓⊔

Lemma 16. Consider a good execution DΣ
′
1(Ẽ(η),S̃(φ)). Let C = (x10, x11, x12, 10, 6) ∈

KUDCS be a partial chain which is enqueued at some time such that no chain
equivalent to C was enqueued before C is enqueued. Then for any chain D which
is dequeued before C is dequeued, the following two hold;
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(i) it cannot be val+4 (C) ̸= ⊥ ∧ val+4 (C) = val+4 (D) ∧ val+3 (C) ⊕ k(C) =
val+3 (D)⊕ k(D);

(ii) it cannot be val−9 (C) ̸= ⊥ ∧ val−9 (C) = val−9 (D) ∧ val−10(C) ⊕ k(C) =
val−10(D)⊕ k(D);

In other words, C and D cannot collide at both round 4 and round 5; C and D
cannot collide at both round 8 and round 9.

Proof. By the assumption, D must have been enqueued before C is enqueued.
Consider proposition (i). After the call to F inner(11, x11) which led to C being
enqueued, we have:

(i) val+4 (C) = ⊥ (follows from Lemma 15);
(ii) C is table-defined, and D is equivalent to some table-defined chain Dtd, since

they have been enqueued (hence C and Dtd are also key-defined).

After this point in the execution, since C has been table-define, val+4 (C) can
only be changed to non-empty by the tape reading and entry setting actions (by
Lemma 12 (iii)) on {Gi} (by Lemma 8 (iii)). Then proposition (i) is established
by Lemma 11 (note that valδi (D) = valδi (Dtd)).

Consider proposition (ii). After the call to F inner(11, x11), we have:

(i) val−9 (C) ̸= ⊥ ∧ val−9 (C) /∈ G9 (also follows from Lemma 15);
(ii) C and Dtd (D ≡ Dtd) are table-defined/key-defined;

Depending on val−9 (D), we distinguish the following cases. First, if val−9 (D) ̸=
⊥ before the call to F inner(11, x11), then D must have been enqueued before
this call11. By this, for some sufficiently large j, we have (x′

10, x
′
11, x

′
12, 10) =

prevj(D) where all the three values have been in corresponding tables and x′
11 ̸=

x11. Then after the call, val−9 (C) = val−9 (D) is not possible since it implies
BadHit.

Second, if val−9 (D) = ⊥ before and after the call to F inner(11, x11), then sim-
ilarly to the argument for proposition (i), val−9 (C) ̸= ⊥∧ val−9 (C) = val−9 (D) ∧
val−10(C)⊕ k(C) = val−10(D)⊕ k(D) cannot be simultaneously fulfilled.

Finally, if val−9 (D) = ⊥ before the call to F inner(11, x11) while val
−
9 (D) ̸= ⊥

after it, then the only possible case is D = (x′
10, x11, x

′
12, 10) and D was also

enqueued by the call to F inner(11, x11). In this case, assume that val−9 (C) ̸=
⊥ ∧ val−9 (C) = val−9 (D) ∧ val−10(C) ⊕ k(C) = val−10(D) ⊕ k(D) simultaneously
hold; then it necessarily be x12 = x′

12 and G10(x10) ⊕ x10 = G10(x
′
10) ⊕ x′

10.
By construction, G10(x10) and G10(x

′
10) are defined to be φ10(x10) and φ10(x

′
10)

respectively (since the 10-th round is not in the adaptation zone), hence the one
defined later implies BadHit.

Having excluded all possibilities, we establish proposition (ii). ⊓⊔

Lemma 17. In a good execution DΣ
′
1(Ẽ(η),S̃(φ)), all calls to Adapt are safe.

11 When D = (x′
10, x

′
11, x

′
12, 10), the claim follows from Lemma 15 (i); when D =

(x′
1, x

′
2, x

′
3, 1), the claim follows from the assumption that D is enqueued earlier

than C.
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Proof. Suppose that the lemma does not hold, and let C be the first chain for
which it fails. Clearly C /∈ CompletedSet when C is dequeued, and since all
calls to Adapt before C is dequeued were safe, by Lemma 13 we know when C
was enqueued, no chain equivalent to C had been enqueued. Hence, Lemma 15
implies that val+l−2(C) /∈ Gl−2∧val+l+3(C) /∈ Gl+3 immediately holds after C was

enqueued. We show that when C is dequeued, val+l−1(C) /∈ Gl−1 ∧ val+l+2(C) /∈
Gl+2; this implies the conclusion by Lemma 14. Wlog consider val+l−2(C) and

val+l−1(C). If val+l−2(C) = ⊥ after C was enqueued, we show that val+l−2(C) =

xl−2 /∈ Gl−2 immediately holds after val+l−2(C) ̸= ⊥ holds. Consider the last

table entry setting action before val+l−2(C) ̸= ⊥ holds. Recall that C has been
equivalent to a table-defined chain Ctd since being enqueued; then by Lemma 12
(iii), val+l−2(C) = val+l−2(Ctd) cannot be changed by previous calls to ForceV al.
Hence it was changed by a tape accessing and entry setting action, and we have
val+l−2(C) = xl−2 /∈ Gl−2 after this action (Lemma 8 (iii)).

Now assume val+l−1(C) ∈ Gl−1 when C is dequeued. Then during the period
between the point C was enqueued and the point C is dequeued, the following
two actions must have been induced by the completion of some other chains D:

(i) Gl−2(val
+
l−2(C))(= Gl−2(xl−2)) was defined;

(ii) after action (i), Gl−1(val
+
l−1(C)) was defined;

We show it to be impossible to show val+l−1(C) /∈ Gl−1 to hold when C is
dequeued. If the two happen, then for (either of) them two to be defined during
the completion of D, we must have val+l−2(D) = val+l−2(C) or val+l−1(D) =

val+l−1(C). We then show that for a chain D which is completed in this period,

– during the completion of D, if val+l−2(C) = val+l−2(D), then val+l−1(C) ̸=
val+l−1(D) (hence Gl−1(val

+
l−1(C)) cannot be defined).

– during the completion ofD,Gl−1(val
+
l−1(C)) can be defined only if val+l−2(C) =

val+l−2(D) (val+l−1(C) = val+l−1(D)⇒ val+l−2(C) = val+l−2(D)).

Gathering the two claims yields that Gl−1(val
+
l−1(C)) cannot be defined during

this period and the call to Adapt will be safe.
For the first claim, assume otherwise, i.e. val+l−2(D) = val+l−2(C), and right

after Gl−2(val
+
l−2(D)) was defined, val+l−1(D) = val+l−1(C) holds. This means

that before Gl−2(val
+
l−2(D)) was defined, the following two hold:

(i) val+l−2(D) = val+l−2(C) ̸= ⊥
(ii) val+l−3(D)⊕ k(D) = val+l−3(C)⊕ k(C)

Consider the last table entry setting action before the above two hold. After
this action, we have val+l−2(D) ̸= ⊥ and val+l−2(C) ̸= ⊥; then after this action,
C must have been enqueued (because by Lemma 15 (i), before C is enqueued,
val+l−2(C) shall be ⊥), and D has been enqueued even earlier, hence C and D
are equivalent to some table-defined chains Ctd and Dtd respectively. Then, if
C ∈ KUDCS, a contradiction is directly reached by Lemma 16; if C /∈ KUDCS,
for the action, we exclude possibility for each case:
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(i) This cannot be a tape accessing and table entry setting action on {Gi}.
To illustrate this, assume otherwise. Then this action must be the one or
posterior to the one which leads to C being enqueued, and the following four
hold simultaneously, which contradicts Lemma 11:
– before the action, both Ctd and Dtd are key-defined. Ctd is key-defined

because C /∈ KUDCS. Dtd is key-defined because D is assumed to be
enqueued before C is enqueued, and: (a) if D is enqueued before the call
to F inner which triggers C to be enqueued, then Dtd clearly has been
key-defined before the action we focus on; (b) if D and C are enqueued
by the same call to F inner, then it cannot be D ∈ KUDCS, hence Dtd

is key-defined.
– before the action, Ctd is not equivalent to Dtd;
– before the action, val+l−2(Ctd) = ⊥ or val+l−2(Dtd) = ⊥, and this action

affects one (or both) of them.
– after the action, Ctd and Dtd are table-defined;
– after the action, val+l−2(Dtd) = val+l−2(Ctd) ̸= ⊥ and val+l−3(Dtd) +

k(Dtd) = val+l−3(Ctd) + k(Ctd);
(ii) This cannot be an entry setting action on E, since such actions cannot change

val+l−2(Ctd) nor val
+
l−2(Dtd) (by Lemma 8 (iii));

(iii) This cannot have been because of a previous call to ForceV al. For this,
assume otherwise; as already discussed before, after this call to ForceV al,
C and D are enqueued and equivalent to some table-defined chains Ctd and
Dtd respectively. Then it must be either of the following two cases:
(a) C has been enqueued before this call to ForceV al. Then by Lemma 12

(iii), none of the previous calls to ForceV al affects val+i (D) = val+i (Dtd)
and val+i (C) = val+i (Ctd), a contradiction.

(b) C is enqueued by this call to ForceV al. This is impossible.

Hence the first claim holds.
For the second claim, assume otherwise, then we know that before the entry

setting action on Gl−1(val
+
l−1(C)), the following two hold:

(i) val+l−2(C) ∈ Gl−2, val
+
l−2(D) ∈ Gl−2, and val+l−2(C) ̸= val+l−2(D)

(ii) val+l−1(C) = val+l−1(D) /∈ Gl−1

Consider the last table entry setting action before the above two hold. By Lemma
15 (ii), val+l−2(C) /∈ Gl−2 immediately holds after C is enqueued; hence this ac-
tion must happen after C is enqueued, and C, D (enqueued earlier that C)
must have been equivalent to some table-defined chains Ctd and Dtd respec-
tively, as discussed before. Then, since none of the previous calls to ForceV al
affects val+i (D) = val+i (Dtd) and val+i (C) = val+i (Ctd) (by Lemma 12 (iii)),
the last action before the above two hold must be a tape accessing and en-
try setting action. Moreover, since val+l−2(Ctd) /∈ Gl−2 and Ctd is table-defined

(and val+l−2(Dtd) /∈ Gl−2 and Dtd is table-defined) immediately hold after C

(D, resp.) is enqueued, and then this action changed val+l−1(Ctd)(= val+l−1(C))

and val+l−1(Dtd)(= val+l−1(D)) from ⊥ to non-empty values, this action must
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have been a defining action on either Gl−2(val
+
l−2(Ctd)) or Gl−2(val

+
l−2(Dtd)) (by

Lemma 8 (iii)). However neither is possible: wlog assume it to beGl−2(val
+
l−2(Ctd)) :=

φl−2(val
+
l−2(Ctd)), then after this action, the following holds (by val+l−1(Ctd) =

val+l−1(Dtd) /∈ Gl−1):

val+l−3(Ctd)⊕ φl−2(val
+
l−2(Ctd))⊕ k(Ctd)

=val+l−3(Dtd)⊕Gl−2(val
+
l−2(Dtd))⊕ k(Dtd)

Suppose Ctd = (ci, ci+1, ci+2, i) and Dtd = (dj , dj+1, dj+2, j), then we have

φl−2(val
+
l−2(Ctd)) = val+l−3(Ctd)⊕ ci ⊕Gi+1(ci+1)⊕ ci+2

⊕ val+l−3(Dtd)⊕Gl−2(val
+
l−2(Dtd))⊕ dj ⊕Gj+1(dj+1)⊕ dj+2

which implies an occurrence ofBadHit. Therefore the claim thatGl−1(val
+
l−1(C))

(= Gl−1(val
+
l−1(Ctd))) can be defined only if val+l−2(C) = val+l−2(D) holds.

Having excluded all possibilities we show val+l−1(C) /∈ Gl−1 to hold when C

is dequeued. The reasoning for val+l+1(C) /∈ Gl+1 is similar by symmetry. Hence
the subsequent call to Adapt will be safe. ⊓⊔

Lemma 18. In a good execution DΣ
′
1(Ẽ(η),S̃(φ)), all calls to ForceV al are non-

overwriting.

Proof. Gathering Lemma 17 and Lemma 12 (ii) yields this lemma. ⊓⊔

Randomness Mapping Argument: Defining the Map Since we have fin-
ished the argument that the domain of the map covers overwhelmingly many
Σ′

1 executions, we are now ready to define the map itself. We introduce some
necessary notions first.

Basic Notions For any distinguisher D, we define a distinguisher D which
runs D and then emulates a call to EvalForward(xR, xL, xR ⊕ F (1, xL) ⊕
k, 0, 20) (EvalBackward(yL ⊕ F (21, yR)⊕ k, yR, yL, 20, 0), resp.) for all queries

Ẽ.Enc(k, (xL, xR)) (Ẽ.Dec(k, (yL, yR)), resp.) made by D during the execution,
and outputs the output of D. Clearly when D makes no more than q queries, D
makes no more than 22q queries, and has exactly the same advantage as D in
distinguishing Σ

′

1 and Σ2. We call D the distinguisher which completes all chains
corresponding to D. Then, with respect to a fixed D and the corresponding D,
we introduce the following notions. Some of them are similar to those in [2].

– a tuple of random tapes (η, φ) = (η, (φ1, . . . , φ21)) for Σ
′

1 is called a Σ
′

1-tuple;
– a tuple of random tapes f = (f1, . . . , f21) for Σ2 is called Σ2-tuple;
– R

′

1 (R2, resp.) is the set of all Σ
′

1-tuples (Σ2-tuples, resp.);

– a Σ
′

1-tuple is called good if during the execution D
Σ

′
1(Ẽ(η),S̃(φ))

, S̃(φ) does
not overwrite any entry12;

12 Note that BadHit does happen during D
Σ

′
1(Ẽ(η),S̃(φ))

is only a necessary condition
for (η, φ) to be not good.
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– Rgood
1 ⊆ R

′

1 is the set of all good Σ
′

1-tuples with respect to D;

– partial Σ
′

1-tuple: random tapes obtained by arbitrarily setting some entries
φi(x) or entry pairs (η(+, k, x), η(−, k, η(+, k, x))) to ⊥ in a Σ

′

1-tuple (η, φ),
while keeping the property η(δ, k, z) = z

′ ̸= ⊥ iff. η(δ, k, z
′
) = z ̸= ⊥;

– Rpartial
1 : the set of all partial Σ

′

1-tuples;

– partial Σ2-tuple: obtained by arbitrarily setting some entries fi(x) to ⊥ in

a Σ2-tuple f . Rpartial
2 is the set of all partial Σ2-tuples;

– For f ∈ Rpartial
2 , denote the number of pairs (i, x) s.t. fi(x) ̸= ⊥ by |f |;

– footprint of a random Σ
′

1-tuple (η, φ): the partial tuple obtained by

(i) for any i ∈ {1, . . . , 21} and any x ∈ {0, 1}n, setting φi(x) to ⊥, if φi(x)

is not accessed during D
Σ

′
1(Ẽ(η),S(φ))

;

(ii) for any z ∈ {0, 1}2n and any k ∈ {0, 1}n, setting both η(+, k, z) and
η(−, k, η(+, k, z)) to ⊥, if neither η(+, k, z) nor η(−, k, η(+, k, z)) is ac-

cessed during D
Σ

′
1(Ẽ(η),S(φ))

;

– the set of Σ
′

1-footprints is denoted by Rfoot
1 , and the set of footprints of good

tuples (η, φ) is denoted by Rgood−f
1 ;

– FootPrint((η, φ), D) denotes the footprint of (η, φ) with respect to D;

For f = (f1, . . . , f21) ∈ R2 and u = (f ′
1, . . . , f

′
21) ∈ Rpartial

2 , denote by f ∼= u
the fact that for any i ∈ {1, . . . , 21} and any x ∈ {0, 1}n, if f ′

i(x) ̸= ⊥, then
fi(x) = f ′

i(x). Briefly speaking, f ∼= u means that f agrees with u on all the
non-empty entries.

Defining the Map The map is

τ : Rgood−f
1 → Rpartial

2 .

Let α := (η, φ) ∈ Rgood−f
1 . We define τ(α) = f = (f1, . . . , f21) according

to the tables (Ẽ(η).E,G1, . . . , G21) standing at the end of the execution of

D
Σ

′
1(Ẽ(η),S̃(φ))

: for all i ∈ {1, . . . , 21} and x ∈ Gi, fi(x) := Gi(x); for all

i ∈ {1, . . . , 21} and x /∈ Gi, fi(x) := ⊥. Since α is a footprint, D
Σ

′
1(Ẽ(η),S̃(φ))

is

well-defined, and τ is also well-defined. Denote the range of τ by τ(Rgood−f
1 ).

Completing the RRMA With respect to D, we have the following lemmas.

Lemma 19. Consider (η, φ) ∈ Rgood
1 , and suppose that Ẽ(η).Enc(k, x), resp.

Ẽ(η).Dec(k, y) is queried during D
Σ

′
1(η,φ)

. Then, at the end of the execution

D
Σ

′
1(η,φ)

, it holds that Ẽ(η).E(+, k, x) = (val+22(xR, xL, x
′, 0), val+21(xR, xL, x

′, 0)),

resp. Ẽ(η).E(−, k, y) = (val−1 (y
′, yR, yL, 20), val

−
0 (y

′, yR, yL, 20)), where x′ =
xR ⊕G1(xL)⊕ k and y′ = yL ⊕G21(yR)⊕ k.
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Proof. S̃(φ) queries Ẽ(η) only when it is completing a chain, hence if the query

Ẽ(η).Enc(k, x) is made by S̃(φ), then the equality holds right after the com-

pletion of the chain, and will keep holding till the end since (η, φ) ∈ Rgood
1

and no entry will be overwritten during D
Σ

′
1(η,φ)

. On the other hand, if the
query is issued by D, then since D completes all chains, it must emulate a
call to EvalForward(xR, xL, x

′, 0, 20) where x′ = xR ⊕ F (1, xL) ⊕ k, and at
some point it must query F (10, val+10(xR, xL, x

′, 0)), F (11, val+11(xR, xL, x
′, 0))

and F (12, val+12(xR, xL, x
′, 0)), among which the last one will trigger the chain

completion. After the completion, the equality holds, and will also keep holding
till the end. The case of Ẽ(η).Dec(k, y) is similar by symmetry. ⊓⊔

Lemma 20. For any α ∈ Rgood−f
1 , the transcript of the sequence of queries and

answers of D in D
Σ

′
1(α) is the same as the transcript of the sequence of queries

and answers of D in D
Σ2(τ(α))

, and D
Σ

′
1(α) = D

Σ2(τ(α))
.

Proof. Let α = (η, φ) ∈ Rgood−f
1 and let β = τ(α) = (f1, . . . , f21) ∈ Rpartial

2 . By
definition of τ , f1, . . . , f21 are copies of the tables G1, . . . , G21 standing at the

end of the execution D
Σ

′
1(α). To show the transcripts to be the same, we proceed

by induction on the sequence of queries of D to (Ẽ(η), S̃(φ)) or (SKAF ∗
21,F(β)).

Assume that the sequence of queries and answers is the same in the two systems
up to some point in the executions, and consider the next query issued by D.
Since D is deterministic, this query is the same in both systems. We now argue
the D receives the same answer. For the following cases:

– If the query is to F (i, x), then since α ∈ Rgood−f
1 , S̃(φ).F (i, x) = Gi(x) =

fi(x) holds, i.e. the answers received by D are the same in both the systems;

– If the query is to Enc(k, (xL, xR)), then since α ∈ Rgood−f
1 , with respect

to {Gi}, Ẽ(η).Enc(k, x) = (val+22(xR, xL, x
′, 0), val+21(xR, xL, x

′, 0)) follows
from Lemma 19 (where x′ = xR⊕G1(xL)⊕k). Since all the values in {Gi} are
transferred to β by τ , SKAF ∗

21.Enc(k, x) = (val+22(xR, xL, x
′′, 0), val+21(xR, xL, x

′′, 0)) =

Ẽ.Enc(k, x) holds where x′′ = xR ⊕ f1(xL)⊕ k = x′; hence in this case, the
answers are the same;

– The case when the procedure field is Dec is similar to Enc by symmetry;

Therefore the transcript of the sequence of queries and answers of D in the two

systems are the same, and D
Σ

′
1(α) = D

Σ2(τ(α))
since D is deterministic. ⊓⊔

Lemma 20 also shows that for any v ∈ τ(Rgood−f
1 ), D

Σ2(v)
is well-defined,

i.e. during D
Σ2(v)

, F(v) will not access the empty entries in v.

Lemma 21. τ : Rgood−f
1 → Rpartial

2 is one-to-one.

Proof. Towards a contradiction, assume that there exist α, α
′ ∈ Rgood−f

1 s.t.

α ̸= α
′
while τ(α) = τ(α

′
) = (f1, . . . , f21). Let α = (η, φ), α

′
= (η

′
, φ

′
), {Gi}
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be the tables standing at the end of D
Σ

′
1(α), and {G′

i} be those standing at the

end of D
Σ

′
1(α

′
)
. By the definition of τ , τ(α) = (f1, . . . , f21) copies the tables of

S̃; hence {Gi} and {G
′

i} are exactly the same, by τ(α
′
) = τ(α). Denote this fact

by {Gi} ≡ {G
′

i}.
We argue the transcripts (see Sect. 6.3 for the formal definition) of queries

and answers of D ∪ S̃ in Σ
′

1(α) and Σ
′

1(α
′) to be the same, which implies that

the zones of α and α
′
accessed during the executions are exactly the same, and

α = α
′
by the definition of footprint. Similarly to Lemma 4, assume that during

the two executions, the transcripts attained so far are the same. Since both D
and S̃ are deterministic, the next query is the same. Consider this query:

– If the query is to φ, Enc, or Dec, following the same line as the proof of
Lemma 20 and by {Gi} ≡ {G

′

i}, the answers obtained are equal.

– When the query is to Check, the answers depend on the tables Ẽ(η).E and

Ẽ(η
′
).E. Since the transcripts attained so far are assumed to be the same,

the two tables Ẽ(η).E and Ẽ(η
′
).E have exactly the same contents at this

point; this implies the return values of the two corresponding check calls to
be equal, i.e. the answers obtained are equal.

These conclude the proof. ⊓⊔

The following lemma links the randomness brought in by η tape accessing
actions in Σ

′

1 to that brought in by certain f tape accessing actions in Σ2.

Lemma 22. Consider (η, φ) ∈ Rgood−f
1 . Then during the execution D

Σ
′
1(Ẽ(η),S̃(φ))

,
the number of η tape accessing action equals the number of calls to Adapt.

Proof. During such an execution D
Σ

′
1(Ẽ(η),S̃(φ))

:

– Each call to Adapt corresponds to a distinct η tape accessing action, since
Ẽ(η) must be queried by S̃(φ) either during the procedure EvalForward
or during EvalBackward. These actions must be distinct since otherwise
different calls to Adapt correspond to a same plaintext-ciphertext-key tuple
of Ẽ(η), which implies some entries to be overwritten.

– Each η tape accessing action corresponds to a call to Adapt: if the action is
triggered by query (to Ẽ(η)) issued by S̃(φ), then clearly S̃(φ) is completing
a chain and will call Adapt soon; if the action is triggered by query issued
by D, then D will query the corresponding SKAF ∗

21 computation path, and
will reach the point when the 3 corresponding values x10, x11, and x12 are
all in the G tables. After this point a chain equivalent to (x10, x11, x12, 10)
must have been enqueued and has been adapted accordingly. ⊓⊔

Then we bound the probability ratio between partial tuples linked by τ .
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Lemma 23. Consider a fixed q′-query distinguisher D. Let u ∈ Rgood−f
1 . Then

for any randomly chosen tapes (η, φ) and f the following holds:

1− (10q′
3
)2

22n
≤ Pr[f ∼= τ(u)]

Pr[FootPrint((η, φ),D) = u]
≤ 1

Proof. Clearly FootPrint((η, φ), D) = u holds if D gets the same values for

each tape accessing action in D
Σ

′
1(Ẽ(η),S̃(φ))

and D
Σ

′
1(u). Let u = (η∗, φ∗), and

suppose that φ∗ tape was accessed i times while η∗ tape was accessed j times

during D
Σ

′
1(u). Since u ∈ Rgood−f

1 , by Lemma 22 each η∗ tape accessing action
corresponds to one call to Adapt/two n-bit “adapted” values in {Gi}. Hence at

the end of D
Σ

′
1(u), {Gi} contains i+ 2j entries; this implies |τ(u)| = i+ 2j, and

Pr[f ∼= τ(u)] = (2−n)i+2j .

On the other hand, inD
Σ

′
1(Ẽ(η),S̃(φ))

, for each η tape accessing action, we have
Pr[η(δ, x, k) = η∗(δ, x, k)] ∈ [ 1

22n−j ,
1

22n ] while for each φ tape accessing action

we have Pr[φ(x) = φ∗(x)] = 2−n. Hence Pr[f ∼= τ(u)] ≤ Pr[FootPrint((η, φ), D) =
u], and we have the following lower bound:

Pr[f ∼= τ(u)]

Pr[FootPrint((η, φ),D) = u]
≥ (2−n)i+2j

(2−n)i · ( 1
22n−j )

j
= (

22n − j

22n
)j

By Lemma 2 we have j ≤ 10q′
3
, hence the claim holds. ⊓⊔

Lemma 24.
∑

v∈R2∧D
Σ2(v)

=1
Prf [f = v] =

∑
u∈τ(Rgood−f

1 )∧D
Σ2(u)

=1
Prf [f ∼=

u].

Proof. To show the claim, we show that for each f ∈ R2:

(i) ∃v ∈ τ(Rgood−f
1 ) such that f ∼= v;

(ii) there exists at most one v ∈ τ(Rgood−f
1 ) such that f ∼= v;

For claim (i), consider the tape η which defines the input and output table of

the cipher SKAF
∗F(f)
21 . Then the preimage of v can be generated during the

execution D
Σ′

1(Ẽ(η),S̃(f))
(clearly (η, f) ∈ Rgood

1 , since the values defined by η
and f are consistent).

For claim (ii), assume otherwise, i.e. ∃u, u′ s.t. u ̸= u′, f ∼= u and f ∼= u′. Let
f = (f∗

1 , . . . , f
∗
21), u = (f1, . . . , f21), u

′ = (f ′
1, . . . , f

′
21), and let the preimages of u

and u′ be α = (η, φ) and α′ = (η′, φ′) respectively. Consider the two executions

D
Σ

′
1(α) and D

Σ
′
1(α

′)
, and let {Gi} and {G′

i} be the tables standing at the end
of them respectively. We show the two executions to be the same: for any query
F (i, x), the answers in them two are equal because, if the query F (i, x) is made,

then x ∈ Gi which implies fi(x), f
′
i(x) ̸= ⊥, and S̃(φ).F (i, x) = Gi(x) = fi(x) =

f∗
i (x) = f ′

i(x) = G′
i(x) = S̃(φ′).F (i, x). Following the same line as in the proof
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of Lemma 21 we see all the queries D ∪ S̃ in the two executions get exactly the
same answers and the transcripts of queries and answers of D ∪ S̃ in Σ′

1(α) and
Σ′

1(α
′) are the same, so that α = α′, and u = u′ follows from τ being one-to-one

(Lemma 21), a contradiction. Then claim (ii) holds, and we further have:

∑
v∈R2∧D

Σ2(v)
=1

Prf [f = v] =
∑

v∈R2∧D
Σ2(v)

=1∧∃u∈τ(Rgood−f
1 ) s.t. v∼=u

Prf [f = v]

=
∑

u∈τ(Rgood−f
1 )∧D

Σ2(u)
=1

[ ∑
v∈R2∧v∼=u

Prf [f = v]

]

=
∑

u∈τ(Rgood−f
1 )∧D

Σ2(u)
=1

Prf [f ∼= u]

as claimed. ⊓⊔

Now we are ready to bound the advantage of distinguishing Σ
′

1 and Σ2:

Lemma 25. For any distinguisher D which issues at most q queries, we have:∣∣∣Pr[DΣ
′
1 = 1]− Pr[DΣ2 = 1]

∣∣∣ ≤ 2222 · q30

2n
+

234 · q6

22n

Proof. Let D be the distinguisher which completes all chains corresponding to
D. Then D makes at most 22q queries, and by Lemma 7, we have13

Pr[D
Σ

′
1 = 1] ≤ Pr(η,φ)[(η, φ) ∈ Rgood

1 ∧D
Σ1

′(η,φ)
= 1] + Pr[(η, φ) /∈ Rgood

1 ]

≤
∑

u∈Rgood−f
1 ∧D

Σ
′
1(u)

=1

Pr(η,φ)[FootPrint((η, φ), D) = u] +
288 · (22q)30

2n

By Lemma 24 we have

Pr[D
Σ2

= 1] =
∑

v∈τ(Rgood−f
2 )∧D

Σ
′
2(v)

=1

Prf [f ∼= v]

Then, by Lemma 21 (τ is one-to-one) and Lemma 23, we have

(1− (10(22q)3)2

22n
) · Pr[(η, φ) ∈ Rgood

1 ∧D
Σ1

′

= 1]

≤Pr[D
Σ2

= 1] ≤ Pr[(η, φ) ∈ Rgood
1 ∧D

Σ1
′

= 1]

Thus ∣∣∣Pr[DΣ
′
1 = 1]− Pr[DΣ2 = 1]

∣∣∣ ≤ 288 · (22q)30

2n
+

100(22q)6

22n
.

Since D has exactly the same advantage as D, we reach the conclusion. ⊓⊔

13 Pr[(η, φ) /∈ Rgood
1 ] ≤ Pr[BadHit happens during D

Σ
′
1(η,φ)

] ≤ 288·(22q)30
2n
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sis, PhD thesis, Université de Versailles Saint-Quentin-en-Yvelines, France, 2009
(2009)

32. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation
and (related-key) differential characteristic search: Application to simon, present,
lblock, des(l) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.)
Advances in Cryptology – ASIACRYPT 2014, Lecture Notes in Computer Science,
vol. 8873, pp. 158–178. Springer Berlin Heidelberg (2014)

33. Todo, Y.: Upper bounds for the security of several feistel networks. In: Boyd, C.,
Simpson, L. (eds.) Information Security and Privacy, Lecture Notes in Computer
Science, vol. 7959, pp. 302–317. Springer Berlin Heidelberg (2013)

A Surrounding Each Adaptation Zone with Two Buffer
Rounds – the Broken Expectations

If we increase the number of rounds used for chain detection to 3, while continue
surrounding each adaptation zone with two buffer Rounds – exactly same as done
in the previous works [17,20] – then we are working on 3 + 1 + 2 + 1 + 3 + 1 +
2+ 1+ 3 = 17 rounds (SKAF ∗

17). For the modified simulator, the buffer rounds
are round 4, 7, 11, and 14, while the first adaptation zone consists of round 5
and 6, the second consists of round 12 and 13. Then the following operation
sequence shows that when a chain is to be adapted, the function values in the
buffer rounds next to the adaption zone may have been defined:

(i) arbitrarily chooses x3, x2, and x
′

2;
(ii) issues queries G2(x2) and G2(x

′

2) to the simulator;
(iii) arbitrarily chooses k and calculate k

′
:= k ⊕ x2 ⊕ x

′

2;
(iv) calculates x1 := x3 ⊕G2(x2)⊕ k and x

′

1 := x3 ⊕G2(x
′

2)⊕ k
′
;

(v) issues queries G1(x1) and G1(x
′

1);
(vi) issues queries G3(x3);

The last query G3(x3) enqueues two chains (x1, x2, x3, 1) and (x
′

1, x
′

2, x3, 1), and
whatever value is assigned to G3(x3), for the two chains we have x4 = x2 ⊕
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G3(x3) ⊕ k = x
′

2 ⊕ G3(x3) ⊕ k
′
= x

′

4. When the later one is dequeued, we
have x4 ∈ G4; this breaks the expectation that the simulator does not define
the values in the buffer rounds while completing other chains. The underlying
reason for this lies in the fact that in the SKAF ∗ context, it is possible to make
two different chains collide at two successive rounds (as already discussed in
Introduction). The operation sequence mentioned before indeed takes advantage
of this property.

However, we are not clear whether 17-round single-key SKAF ∗
17 can achieve

indifferentiability or not. In fact, we think SKAF ∗
17 may be proven to be indif-

ferentiable by some much more complex analysis.

B One Round of SIMON

Following the notation convention in the specification of SIMON [6], for k ∈
GF (2)n, the key-dependent SIMON2n round function is the two-stage Feistel
map Rk : GF (2)n ×GF (2)n → GF (2)n ×GF (2)n defined by

Rk(x, y) = (y ⊕ f(x)⊕ k, x)

where f(x) = (Sx&S8x)⊕S2x and k is the round key. The notation Sjx denotes
left circular shifting x by j bits. It is illustrated in Fig. 4 (left) (which is Figure
3.1 of the specification of SIMON [6]).

xr−1

F

xr

kr

xr+1 xr

xr−1xr

kr

xr+1 xr

S2

S8

S1

&

Fig. 4. One round of the SIMON family, and to the construction KAF ∗. In the figure,
Si denotes the operation of left circular shifting by i bits.

C On the Key-undefined Chains

As already mentioned in the main part, the influences of the key-undefined chains
are limited to a very small extent. This is formally captured by the lemma in this
section: when a chain turns from key-undefined to key-defined, the two “ends”
of the chain must be out of the tables.
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Lemma 26. Consider a random tape accessing and subsequent entry setting

action Gi(xi) := φi(xi) in a good execution DΣ
′
1(Ẽ(η),S̃(φ)), where i ∈ {2, . . . , 20}.

If a chain C is key-undefined before this action, while turns to table-defined after
this action, then this action can only change val−i−2(C) and val+i+2(C) from ⊥
to non-empty values.

Proof. By the assumptions of this lemma, before the action we must have C =
(xi−1, xi, xi+1) and xi−1 ∈ H ∧ xi+1 ∈ H.

Clearly, val−i−2(C) and val+i+2(C) are changed from ⊥ to non-empty values by
this action. We argue that the changes are limited to these two values to establish
the claim. We first argue that val+i+3(C) = ⊥ (when i ≤ 19) or val+0 (C) =

val+1 (C) = ⊥ (when i = 20) after the action; the reasoning for val−i−3(C) = ⊥
(when i ≥ 3) or val−22(C) = ⊥ (when i = 2) after the action is similar by
symmetry. Towards a contradiction, assume that val+i+3(C) ̸= ⊥ (when i ≤ 19)

or val+0 (C) ̸= ⊥ ∨ val+1 (C) ̸= ⊥ (when i = 20) after the action. Then:

– when i ≤ 19, val+i+3(C) ̸= ⊥ implies val+i+2(C) ∈ Gi+2 after the action;
hence BadHit happens during the action Gi(xi) := φi(xi), namely φi(xi) =
xi ⊕Gi+1(xi+1)⊕ xi−1 ⊕ xi+1 ⊕ val+i+2(C);

– when i = 20, val+0 (C) ̸= ⊥∨val+1 (C) ̸= ⊥ implies (−, k, (val+22(C), x21)) ∈ E
after the action, for some k ∈ {0, 1}n; hence BadHit happens during the
action G20(x20) := φ20(x20), namely φ20(x20) = k ⊕ x19 ⊕ x21;

Therefore val+i+3(C) = ⊥ (when i ≤ 19) or val+0 (C) = val+1 (C) = ⊥ (when
i = 20) after the action. These establish the claim. ⊓⊔
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