
Distributed Cryptography Based on the Proofs of Work

Abstract. Motivated by the recent success of Bitcoin we study the question of constructing distributed cryptographic
protocols in a fully peer-to-peer scenario (without any trusted setup) under the assumption that the adversary has limited
computing power. We propose a formal model for this scenario and then we construct the following protocols working in
it:

(i) a broadcast protocol secure under the assumption that the honest parties have computing power that is some non-
negligible fraction of computing power of the adversary (this fraction can be small, in particular it can be much less
than 1/2),

(ii) a protocol for identifying a set of parties such that the majority of them is honest, and every honest party belongs to
this set (this protocol works under the assumption that the majority of computing power is controlled by the honest
parties).

Our broadcast protocol can be used to generate an unpredictable beacon (that can later serve, e.g., as a genesis block for
a new cryptocurrency). The protocol from Point (ii) can be used to construct arbitrary multiparty computation protocols.
Our main tool for checking the computing power of the parties are the Proofs of Work (Dwork and Naor, CRYPTO 92).
Our broadcast protocol is built on top of the classical protocol of Dolev and Strong (SIAM J. on Comp. 1983). Although
our motivation is mostly theoretic, we believe that our ideas can lead to practical implementations (probably after some
optimizations and simplifications). We discuss some possible applications of our protocols at the end of the paper.

1 Introduction

Distributed cryptography is a term that refers to cryptographic protocols executed by a number of mutually dis-
trusting parties in order to achieve a common goal. One of the first primitives constructed in this area were the
broadcast protocols [44,23] using which a party P can send a message over a point-to-point network in such a
way that all the other parties will reach consensus about the value that was sent (even if P is malicious). Another
standard example are the secure multiparty computations (MPCs) [56,34,15,10], where the goal of the parties is to
simulate a trusted functionality. The MPCs turned out to be a very exciting theoretical topic. They have also found
some applications in practice (in particular they are used to perform the secure on-line auctions [13]). Despite
of this, the MPCs unfortunately still remain out of scope of interest for most of the security practitioners, who
are generally more focused on more basic cryptographic tools such as encryption, authentication or the digital
signature schemes.

One of very few examples of distributed cryptography techniques that attracted attention from general public
are the cryptographic currencies (also dubbed the cryptocurrencies), a fascinating recent concept whose popularity
exploded in the past 1-2 years. Historically the first, and the most prominent of them is the Bitcoin, introduced
in 2008 by an anonymous developer using a pseudonym “Satoshi Nakamoto” [49]. Other examples include the
Litecoin [52], Peercoin [43], and dozens of other so-called “Altcoins” (see, e.g., [1] for a list of them). Although
initially these currencies were used mostly by a limited group enthusiasts, they quickly gained noticeable attention
among the general public, and their economic importance has been rapidly growing — the current capitalization of
Bitcoin is around 5 billion USD, and the average number of transactions per day is well above 50.000. Admittedly,
this currency is not yet widely accepted by the merchants, but this situation is likely to change in close future.
Indeed, recently some major US companies like Amazon [38], Dish Network [32], eBay and PayPal [37] expressed
their interest in adopting Bitcoin.

The enormous success of Bitcoin was widely covered by the media (see e.g. [28,2,51,45,48]) and attracted
the attention of several governing bodies and legislatures, including the US Senate [45]. Even the chairman of the
US Federal Reserve, Ben Bernanke, gave Bitcoin a cautious support stating in his letter to the US senators that
it “may hold long-term promise, particularly if the innovations promote a faster, more secure and more efficient
payment system” [53]. A similar support to Bitcoin was recently expressed by the UK financial regulator FCA
[40]. According the Google Trends website the term “Bitcoin” is currently searched more often on Google than
the terms “cryptography”, “Snowden”, and “encryption” combined. Hence, it is not an exaggeration to say that
Bitcoin is one of the most widely discussed cryptographic technologies that are currently in use.

The cryptocurrencies, unlike the cryptographic payment systems (e.g. [16]), are “independent” currencies
whose exchange rate fluctuates freely. They owe their popularity mostly to the fact that they have no central
authority, and hence it is infeasible for anyone to take control over the system, “print” the money (to generate
inflation), or shut the entire system down. The money is transferred directly between the parties — they do not
have to trust any third party for this. Bitcoin works as a peer-to-peer network in which the participants jointly
emulate the central server that controls the correctness of transactions, in particular: it ensures that there was no
“double spending”, i.e., a given coin was not spent twice by the same party.

Although the idea of multiple users jointly “emulating a digital currency” sounds like a special case of the
MPCs, the creators of Bitcoin did not directly use the tools developed in this area, and it is not clear even to
which extend they were familiar with this literature (in particular, Nakamoto [49] did not cite any of MPC papers
in his work). Nevertheless, at the first sight, there are some resemblances between these areas. In particular: the
Bitcoin system works under the assumption that the majority of computing power in the system is operated by the
honest users (we write more on this below), while the classical results from the MPC literature state that in general
constructing MPC protocols is possible when the majority of the users is honest.

At a closer look, however, it becomes clear that there are some important differences between both areas. In
particular the main reason why the MPCs cannot be used directly to construct the cryptocurrencies is that the
scenarios in which these protocols are used are fundamentally different. The MPCs are always supposed to be
executed by a fixed (and known in advance) set of parties, out of which some may be honestly following the
protocol, and some other ones may be corrupt (i.e. controlled by the adversary). In the most standard case the
number of misbehaving parties is bounded by some threshold parameter t. This can be generalized in several
ways. For example, instead of assuming a bound on the number of malicious parties one can specify a family of
sets of potentially malicious parties (the so-called adversary structures [41]). Up to our knowledge, however, until
now all these generalizations use a notion of a “party” as a separate and well-defined entity that is either corrupt
or honest.1

The model for the cryptocurrencies is very different, as they are supposed to work in a purely peer-to-peer
environment, and hence the notion of a “party” becomes less clear. This is because they are constructed with a
minimal trusted setup (as we explain in a moment the only “trusted setup” in Bitcoin was the generation of an
unpredictable “genesis block”), and in particular they do not rely on any PKI, or any type of a trusted authority
that would, e.g., “register” the users. Therefore the adversary can always launch a so-called Sybil attack [24] by
creating a large number k of “virtual” parties that remain under his control. In this way, even if in reality he is just
a single entity, from the point of view of the other participants he will control a large number of parties. In some
sense the cryptocurrencies lift the “lack of trust” assumption to a whole new level, by considering the situation
when it is not even clear who is a “party”. The Bitcoin system overcomes this problem in the following way: the
honest majority is defined in terms of the “majority of computing power”. This is achieved by having all the honest
participants to constantly prove that they devote certain computing power to the system, via the so-called “Proofs
of Work” (PoWs) [25,26].

The high level goal for this work is to bridge the gap between these two areas In particular, we propose a
formal model for the peer-to-peer communication and the Proofs of Work concept used in Bitcoin. We also show
how some standard primitives from the distributed computation, like broadcast and MPCs, can be implemented
in this model. Our protocols do not require any trusted setup assumptions, unlike Bitcoin that assumes a trusted
generation of an unpredictable “genesis block” (we explain this below). Besides of being of general interest,
our work is motivated twofold. Firstly, recently discovered weaknesses of Bitcoin [30,8] come, in our opinion,
partially from the lack of a formal framework for this system. Our work can be viewed as a step towards better
understanding of this model. Secondly, we believe that the “PoW-based distributed cryptography” can find several
other applications in the peer-to-peer networks (we describe some of them). In particular, as the Bitcoin example
shows, the “lack of trusted setup” can be very attractive to users2. In fact, there are already some ongoing efforts

1 A mixed case when an honest party can leak some information to the adversary was also considered in a sequence of works on the
leakage-resilient MPCs [14,22,11].

2 Actually, probably one of the reasons why the MPCs are not widely used in practice is that the typical users do not see a fundamental
difference between assuming a trusted setup and delegating the whole computation to a trusted third party.

2

to use the Bitcoin paradigm for other purposes than the cryptocurrencies, (e.g. the “Adept” system developed by
IBM employees [39]). We also believe that our protocols can potentially lead to improved constructions of new
cryptocurrencies. We would like to stress however, that this is not the main goal of our work. Before describing
our contribution in more detail we provide a brief introduction to Bitcoin.

A short introduction to Bitcoin. The PoWs that Bitcoin uses are based on computing the value of a hash function
H (more concretely:H is the SHA256 function) on multiple inputs. Therefore the “computing power” is measured
in terms of the speed at which a given party can compute a certain hash function. This speed is called a hashrate.
Currently almost all of the computing power in Bitcoin comes from dedicated hardware, as computing SHA256
in software is too inefficient. Bitcoin contains incentives for the users to contribute their computing power to
the system. We do not describe them here (the reader may find a description of this incentive system, e.g., in
[49,12,3]). The same idea is used in several other cryptocurrencies like Litecoin [52] (that, instead of SHA256,
uses a hash function Script whose computation cannot be made faster by using hardware devices), or Peercoin
[43] (in combination with the so-called “Proof of Stake” which we will not describe here).

The “trusted functionality” that the parties emulate is simply a public ledger on which the parties can post their
transactions. From the security perspective the Bitcoin ledger is very similar to a broadcast channel: every party
should be able to broadcast some value to all the other parties (i.e.: post it on the ledger) and in case a malicious
party posts several different values, the honest participants should be able to reach a consensus about which of
them is accepted as a valid one. One additional property (compared to the standard broadcast definition) that the
Bitcoin ledger has is the public verifiability, which in particular means that the parties that joined the system long
time after a given value v was posted can verify that v appeared on the ledger.

We do not describe here the exact syntax of the Bitcoin transactions, as it is not relevant to this paper. The
Bitcoin ledger is implemented in the following clever way. The users maintain a chain of blocks. The first block
B0, called the genesis block, was generated by the designers of the system in January 2009 (this is the only “trusted
setup” that is required in Bitcoin, however, as we describe later, some heuristic methods were applied to prove that
B0 was generated honestly). Each new block Bi contains a list Ti of new transactions, the hash of the previous
block H(Bi−1), and some random salt R. The key point is that not every R works for given Ti and H(Bi−1). In
fact, the system is designed in such a way that it is moderately hard to find a valid R. Technically it is done be
requiring that the binary representation of the hash of (Ti||H(Bi−1)||R) starts with a certain number m of zeros
(the procedure of extending the chain is called mining, and the machines performing it are called miners). The
hardness of finding the right R depends of course on m, and this parameter is periodically adjusted to the current
computing power of the participants in such a way that the extension happens an average each 10 minutes.

The idea of the block chain is that the longest chain C is accepted as the proper one. If some transaction is
contained in a block Bi and there are several new blocks on top of it, then it is infeasible for an adversary with less
than a half of the total computing power of the Bitcoin network to revert it — he would have to mine a new chain
C ′ bifurcating from C at block Bi−1 (or earlier), and C ′ would have to be longer than C. The difficulty of that
grows exponentially with number of new blocks on top of Bi. In practice the transactions need 10 to 20 minutes
(i.e. 1-2 new blocks) for reasonably strong confirmation and 60 minutes (6 blocks) for almost absolute certainty
that they are irreversible.

To sum up, when a user wants to post a transaction on the network, he sends it to other nodes. The receivers
validate this transaction and add it to the block they are mining. When some node solves the mining problem, it
broadcasts the new block Bi to the network. Nodes obtain a new block, check if the transactions are correct, that
it contains the hash of the previous block Bi−1 and that H(Bi) starts with an appropriate number of zeros. If yes,
then they accept it and start mining on top of it. Presence of the transaction in the block is a confirmation of this
transaction, but some users may choose to wait for several blocks on top of it to get more assurance.

In [49] it was claimed that this system is secure as long as the majority of computing power is controlled by
the honest users. In other words: in order to break the system, the adversary needs to control machines whose total
computing power is comparable with the combined computing power of all the other participants of the protocol.
Unfortunately, no proof of this statement, or even a formal security definition was provided. In our opinion, this is
one of the main weaknesses of Bitcoin. We discuss it in the next section.

3

Lack of security proof and the dishonest minority attacks on Bitcoin. While the hard-core cryptography part
(like the choice of the signature schemes and the hash functions) in the most popular cryptocurrency systems looks
perfectly sound, what seems much less understood is the system of maintaining the trusted ledger. This is not just
a theoretical weakness. In fact, recently in a very interesting paper Ittay Eyal and Emin Gun Sirer [30] have shown
that Nakamoto’s claim that no dishonest majority can break the system is false. We will not present their attack
(called the “selfish mining”) in detail here, as it depends on Bitcoin incentive mechanism that we do not describe
in this paper. Let us only say that from a very high level view their strategy for the dishonest minority is to keep
the newly mined blocks secret, and to send them over the network only if certain conditions are satisfied.

One may argue, that performing such attacks by miners is financially irrational, because such attacks can
be easily noticed, what would cause a collapse in the Bitcoin price and subsequently would make mining less
profitable. Even if this argument is sound, it shows that we need some additional assumptions to make Bitcoin
secure, other than “the majority is honest”, what was claimed in the original Nakamoto’s paper.

Another claim from the original work of Nakamoto, which turned out not to be completely true is that a
probability of reverting a transaction in a block on top of which there are n other blocks decreases exponentially
with n. Surprisingly, Lear Bahack [8] has recently shown that this claim is no longer true if we consider the
difficulty adjustment algorithm, which is used in Bitcoin to gradually make mining new blocks more difficult as
the total computational power of all miners grows. In his paper Bahack shows than an adversary can discard a
block on any depth with a probability 1 regardless of his computational power if he is willing to wait long enough.
An interesting survey of the known strategies for dishonest miners and their discussion can be found in [21].

In our opinion all of these weakness could have been avoided (or at least they could be known in advance) if
Bitcoin came with a formal model and mathematically proven security. Unfortunately, it was not the case. This
was probably partly due to the fact that designing a complete model for cryptocurrencies is a challenging and
ambitious project. For example such a model should take into account the incentive system for mining, and hence
should include elements of the rational cryptography framework [42,36,33].

The “genesis block” generation. One a more theoretical side, what may be considered unsatisfactory is the fact
that the Bitcoin genesis block B0, announced by Satoshi Nakamoto on January 3, 2009, was generated using
heuristic methods. More concretely, in order to prove that he did not know B0 earlier, he included the text The
Times 03/Jan/2009 Chancellor on brink of second bailout for banks in B0 (taken from the front page of the
London Times on that day). The unpredictability of B0 is important for Bitcoin to work properly, as otherwise
a “malicious Satoshi Nakamoto” A that knew B0 beforehand could start the mining process much earlier, and
publish an alternative block chain at some later point. Since he would have more time to work on his chain, it
would be longer than the “official” chain, even if A controls only a small fraction of the total computing power.
Admittedly, its now practically certain that no attack like this was performed, and that B0 was generated honestly,
as it is highly unlikely that any A invested more computing power in Bitcoin mining than all the other miners
combined, even if A started the mining process long before January 3, 2009.

However, if we want to use the Bitcoin paradigm for some other purpose (including starting a new currency),
it may be desirable to have an automatic and non-heuristic method of generating unpredictable strings of bits. The
problem of generating such random beacons [50] has been studied in the literature for a long time. Informally:
a random beacon scheme is a method (possibly involving a trusted party) of generating uniformly random (or
indistinguishable from random) strings that are unknown before the moment of their generation. The beacons have
found a number of applications in cryptography and information security, including the secure contract signing
protocols [50,29], voting schemes [47], or zero-knowledge protocols [6,35]. Note that for Bitcoin we actually
need something weaker than uniformity of the B0, namely it is enough that B0 is hard to predict for the adversary.
However, constructing such a weaker “unpredictable” beacon does not seem to be much easier than constructing a
uniform beacon (at least in the random oracle model, where uniformness can be simply obtained by hashing). Note
that a random beacon is a stronger concept than the common reference string frequently used in cryptography, as
it has to be unpredictable before it was generated (for every instance of the protocol using it).

Constructing random beacons is generally hard. Known practical solutions are usually based on a trusted third
party (like the servers www.random.org and beacon.nist.gov). Since we do not want to base the security of our

4

http://www.random.org/
https://beacon.nist.gov

protocols on trusted third parties thus using such services is not an option for our applications. Another method
is to use public data available on the Internet, e.g. the financial data [17] (the Bitcoin genesis block generation
can also be viewed as an example of this method). Using publicly-available data makes more sense, but also this
reduces the overall security of the constructed system. For example, in any automated solution the financial data
would need to come from a trusted third party that would need to certify that the data was correct. The same
problem applies to most of other data of this type (like using a sentence from a newspaper article).

One could also consider using the Bitcoin blocks as such beacons (in fact recently some on-line lotteries
started using them for this purpose). Treating Bitcoin blocks as a source of randomness can make sense for some
applications, even for running new cryptocurrencies, e.g., a genesis block for a new currency can be based on
some Bitcoin block. This solution is not fully satisfactory from a theoretical point of view since it suffers from a
“chicken or egg problem”: to create a cryptocurrency one needs to assume that another cryptocurrency is already
running. Also, from the practical point of view it has some weaknesses. In particular, as described above, Bitcoin
is not fully secure, and moreover one of the attacks described in the literature [30] is based on the strategy of
withholding blocks. Associating some external (possibly financial) incentive for publishing only blocks that satisfy
certain properties, can additionally change the economical model of Bitcoin, and needs to be taken into account
when the security of the whole system is considered3.

Our contribution. The discussion above clearly indicates that the cryptocurrencies need solid theoretical founda-
tions. Motivated by this we initiate a formal study of the distributed peer-to-peer cryptography based on the Proofs
of Work. From the theory perspective the first most natural questions in this field is what is the right model for
communication and computation in this scenario? And then, is it possible to construct in this model some basic
primitives from the distributed cryptography area, like: (a) broadcast, (b) unpredictable beacon generation, or (c)
general secure multiparty computations? We propose such a model (in Section 3). Our model does not assume
any trusted setup (in particular: we do not assume any trusted beacon generation). Then, in Section 6 we answer
the questions (a)-(c) positively. To describe our results in more detail let n denote the number of honest parties,
let π be the computing power of each honest party (for simplicity we assume that all the honest parties have the
same computing power), let πmax be the maximal computing power of the adversary, and let πA ≤ πmax be the
actual computing power of the adversary. Of course in general it is better to have protocols depending on πA, not
on πmax. On the other hand, sometimes the dependence from πmax is unavoidable, as the participants need to have
some rough estimate on the power of the adversary (e.g. it clear that it is hard to construct any protocol when π
is negligible compared to πmax). Note that also Bitcoin started with some arbitrary assumption on the computing
power of the participant (this was reflected by setting the initial “mining difficulty” to 232 hash computations).
Our contribution is as follows.

1. We construct a broadcast protocol secure against any πmax, working in time linear in πmax/π (in Section 6.2).
Using this protocol as a subroutine we later (in Section 7.2) construct a scheme for an unpredictable beacon
generation.

2. Using the broadcast protocol from the previous point, we construct (in Section 6.3) a protocol for identifying a
setK of parties such that the majority of them is honest, and every honest party belongs to this set. The protocol
also works in time πmax/π. It requires an assumption that n ≥ dπA/πe. Since the parties are identified by their
public keys, this allows them to execute any standard MPC protocol that works under the assumption that the
majority of the participants in honest (we argue about it in Section 7.1).

One technical problem that we need to address is that, since we work in a purely peer-to-peer model, an adversary
can always launch a Denial of Service Attack, by “flooding” the honest parties with his messages, hence forcing
them to work forever. Thus, in order for the protocols to terminate in a finite time we also need some mild upper
bound θ on the number of messages that the adversary can send (much greater than what the honest parties will
send). We write more on this in Section 3.4. Although our motivation is mostly theoretic, we believe that our ideas

3 Actually, this is one of the reasons why modeling and proving Bitcoin’s security is so hard: one would need to also consider these type
of “environmental conditions” to model the whole economic system accurately.

5

can lead to practical implementations (probably after some optimizations and simplifications). We discuss some
possible applications of our protocols in Section 7.

2 Preliminaries

Signature schemes. We recall here the definition of the signature schemes. This is done for the reference, as
some of our protocol definitions can be viewed as extensions of this standard definitions. A signature scheme
is a tuple of poly-time randomized algorithms (Gen,Sign,Vrfy) where Gen is a key generation algorithm that
takes as input a security parameter 1κ ∈ N and produces as output a key pair (pk, sk) ∈ {0, 1}∗ × {0, 1}∗. The
signing algorithm Sign takes as input the private key sk and a message m ∈ {0, 1}∗ and produces as output a
signature σ = Sign(sk,m), and the verification algorithm Vrfy takes as input the public key pk, a message m
and a signature σ ∈ {0, 1}∗ and produces as output a bit Vrfy(pk,m, σ) ∈ {true, false}. We require that always
Vrfy(pk,Sign(sk,m),m) = true. The security of the signature scheme is defined by the following game played
be a poly-time adversary A (for some fixed 1κ): (1) let (pk, sk) ← Gen(1κ), (2) the adversary A learns 1κ and
pk, (2) the adversary can apply a chosen-message attack, i.e., he can adaptively specify a sequence of messages
m1, . . . ,ma and learn Sign(sk,mi) for each mi, and (3) the adversary produces a pair (m̂, σ̂). We say that A
won if Vrfy(pk, m̂, σ̂) = true and m̂ 6∈ {m1, . . . ,ma}. We say that (Gen, Sign,Vrfy) is secure if for every A the
probability that A wins is negligible in κ.

Random oracle model. We model the hash functions as random oracles [9]. It will be convenient to assume that
our algorithms have access to a family H = {Hλ}λ∈Λ of random oracles, where the finite set Λ will be fixed
for every input size of a given algorithm (and, in particular |Λ| will never be larger than the running time of the
algorithm). Clearly one random oracle is enough to simulate the existence of such a family (as λ can be treated
simply as an additional argument). Without loss of generality assume that every algorithm A that we consider
never queries each random oracle Hλ on the same input more than once. The hash functions that we use often take
inputs from the set {0, 1}κ × {0, 1}κ ∪ {0, 1}κ (for some natural parameter κ). In this case we will denote each
individual hash function as Hκ

λ , and the family {Hκ
λ}λ∈Λ of such functions as Hκ. Some additional machinery

needed for analyzing the random oracles appears in Appendix A.

Binary trees. A (binary) tree is a finite set T ⊂ {0, 1}∗ that is prefix-closed (i.e.: for every x ∈ T every prefix
of x is also in T). We say that a tree T ′ is a sub-tree of T if T ′ ⊆ T . Every element x ∈ T is called a node and
its length |x| is called its depth. The depth of the tree T is equal to the maximal depth of its nodes. The size of
the tree T is equal to |T |. The empty string ε is called the root of T . For every x ∈ T the elements x||0 ∈ T and
x||1 ∈ T will be called the left (resp.: right) child of x (where “||” denotes concatenation. Moreover x||0 and x||1
will be called siblings (of each other). A node without children in T will be called a leaf. A path is a set of nodes
v1, . . . , vi such that each vi+1 is a child of vi. Sometimes it will be useful we to fix an ordering 2 on the nodes
of a binary tree. We will assume that if v0, v1 are nodes of the same depth then 2 is the lexicographic order, and
otherwise v0 2 v1 if and only if the depth of v0 is smaller or equal to the depth of v1. A tree T is called complete
if every leaf x ∈ T has the same depth d. It is easy to see that in this case d has to be equal to log2(|T |+1). A tree
is almost complete if every leaf x ∈ T has depth either blog2(|T |+ 1)c or dlog2(|T |+ 1)e (hence every almost
complete tree of size 2i − 1, for a natural i, is complete). It is easy to see that every almost complete tree of size
t has exactly dt/2e leaves. To make the almost complete tree unique for every tree size t we assume that all the
leafs of length dlog2(|T |+ 1)e are always “shifted to the left”, i.e., for every node λ ∈ T all the other nodes that
are smaller according to the 2 ordering are also in T . A labelled binary tree is a pair (T, f), where T is a binary
tree and f is a labelling function of a type T → X (for some set X of labels). In this case f(λ) (for λ ∈ T) will
be called a label of the node λ. We will often abuse the notation and use T also as the labelling function (i.e. T (λ)
will denote the label of λ).

3 Model

In this section we present our model for reasoning about computing power and the peer-to-peer protocols.

6

3.1 Modeling hashrate

Since in general proving lower bounds on the computational hardness is very difficult, we make some simplifying
assumptions about our model. In particular, following a long line of previous works both in theory and in the
systems community (see e.g. [26,49,7]), we establish the lower bounds on computational difficulty by counting
the number of times a given algorithm calls some random oracle. We will use the random oracle family Hκ =
{Hκ

λ}λ∈Λ defined in Section 2, where κ is a security parameter. This will be anHκ-model. Note that the input and
output size of each Hκ

λ is fixed for every value of the parameter κ. Hence assuming that each invocation of such a
function takes some fixed unit of time is realistic.

Our protocols are executed by a number of devices and attacked by one device controlled by an adversary A,
each running some code represented as a Turing machine. Everything happens in real time (see Section 3.2).
The exact way in which time is measured is not important, but it is useful to fix a unit of time ∆ (think of it
as 1 minute, say). Each device D that participates in our protocols will able to perform some fixed number π
of queries to Hκ in time ∆. The parameter π is called the hashrate of D (per time ∆ in the Hk-model). The
other steps of the algorithms do not count as far as the hashrate is considered (they will count, however, when we
measure the efficiency of our protocols, see paragraph Computational complexity in Section 3.2). This includes
also calls to other random oracles. This assumption is made to keep the model as simple as possible. It should be
straightforward that in our protocols we do not abuse this assumption, and in on any reasonable architecture the
time needed for computingHκ’s would be the dominating factor during the Proofs of Work 5.1. In particular: any
other random oracles will be invoked a much smaller number of times than Hκ. Note that, even if this number
were comparable, one could still makeHκ evaluate much longer than any other hash function F , e.g., by defining
Hκ to be equal to multiple iterations of F .

3.2 Multiparty protocols

Unlike in the traditional MPC settings, in our case the number of parties executing the protocol is not known
in advance (even to the parties executing it). Because of this it makes no sense to specify a protocol by a finite
sequence (M1, . . . ,Mn) of Turing machines. Instead, we will simply assume that there is one Turing machine
whose code Π will be executed by each party participating in the protocol (think of it as many independent
executions of the same program). This, of course, does no mean that these parties have identical behavior, since
their actions depend also on their inputs and random coins. Another unusual property of our model is that there is
no concept of “corrupting a party”. Since we are in the peer-to-peer scenario without any trusted setup, thus the
parties have no way to check the integrity of the messages. Hence, we can simply assume that the adversary is an
external entity and give him full access to the communication channels. This is clearly as powerful as assuming
that some parties may be corrupt, but it makes the model cleaner. Let us stress that whenever we use the term
“party” it means an honest party, since there are no “corrupt” parties in the system.

Formally, a multiparty protocol (in the Hκ-model) is an a randomized algorithm described as an interactive
Turing machine Π with access to the random oraclesHκ (see Sect. 3.1), and possibly some other random oracles.
The algorithm Π will be run in n copies (for some parameter n ∈ N) on devices P1, . . . , Pn called the (honest)
parties. Each device will have a hashrate π per time ∆ in theHκ-model.4 Each Pi gets as input her own identifier
i and the security parameter 1κ. Moreover Pi can take an input xi ∈ {0, 1}∗ and produce an output yi ∈ {0, 1}∗.
The protocol is attacked by an adversary A which is also a Turing machine that can the same random oracles as
the parties and is run on a device with hashrate at most πA. The number n will not be given as input to the honest
parties, but it will be known by the adversary. In other words: the protocol should work in the same way for any
n. On the other hand: each Pi will get as input her own hashrate π and the upper bound πmax on the total hashrate
of the participants of the protocol (both the honest parties and the adversary). The running time of Pi can depend

4 Note that we assume that all the honest devices have identical hashrate. This is done only to make the exposition simpler. Our protocols
easily generalize to the case when each party has a device with hashrate πi and the πi’s are distinct. Note also that if a party has a
hashrate tπ (for natural t) then we can as well think about her as of t parties of hashrate π each. Making it formal would require
changing the definition of the “honest majority” in the MPCs (e.g. in Section 6.3) to include also “weights” of the parties.

7

on these parameters. Note that n · π + πA ≤ πmax, but this inequality may be sharp, and even n · π + πA � πmax

is possible, as, e.g., the adversary can use much less hashrate than the maximal amount that he is allowed to5.
Since we do not assume any trusted set-up (like a PKI or shared private keys) modeling the communication

between the parties is a bit tricky. We assume that the parties have access to a public channel C which allows
every party and the adversary to post a message on it. One can think of C as being implemented using some
standard (cryptographically insecure) “network broadcast protocol” like the one in Bitcoin [55]. The contents of C
is publicly available. The messagem sent in time t by some Pi is guaranteed to arrive to Pj within time t′ such that
t′− t ≤ ∆. Note that some assumption of this type needs to be made, as if the messages can be delayed arbitrarily
then there is little hope to measure the hashrate reliably. Also observe that we have to assume that the messages
always reach their destinations, as otherwise an honest party could be “cut of” the network. Similar assumptions
are made (implicitly) in Bitcoin. Obviously without assumptions like this, Bitcoin would be easy to attack (e.g. if
the miners cannot send messages to each other reliably then it is easy to make a “fork” in the blockchain).

We give to the adversary full access to C: he learns (without any delay) every message that is sent through C,
and he can insert messages into it. The adversary may decide that the messages inserted into C by him arrive only
to a certain subset of the parties (he also has a full control over the timing when they arrive). The only restriction
is that he cannot erase or modify the messages that were sent by the other parties (but he can delay them for time
at most ∆). For simplicity we assume that every Pi that posts a message through C attaches his identifier i to it. Of
course it should not be understood as any type of a cryptographically-strong message authentication (in particular:
A can also post messages “in the name of Pi”).

To keep the model simple we will assume that the parties have perfectly synchronized clocks. This assumption
could be easily relaxed by assuming that clocks can differ by a small amount of time δ, and our protocols would
also be secure in this model6

Computational complexity We will also measure the running time of our algorithms in the standard complexity-
theoretic way. In order to avoid confusion with the notion of the real time (introduced in Section 3.1), we always
use the term “time complexity” in this context. More precisely we say that a an execution of an algorithm has time
complexity n if a Turing machine executes it in n steps. Each random oracle call (to Hκ or to some other oracle)
counts as one step. It will be important to assume that the adversary’s computational complexity is poly-time,
since otherwise he could query the random oracles Hκ on all possible inputs before the protocol starts or break
the underlying cryptographic primitives (like the signature schemes that we use frequently in our protocols).

Communication and message complexity Our main measure of communication complexity is based on the
public channel C. We say that an execution of a protocol Π has communication complexity γ for a party Pi if
the total number of bits that the party Pi sends is γ. Similarly, the communication complexity of the adversary
A attacking a protocol Π is the total number bits that A sends over the channels. We also define the message
complexity of an execution of a protocol Π for a party Pi as the total number of messages the party Pi sends, and
analogously the message complexity of the adversaryA attacking a protocolΠ as the number of messages that the
adversary sends. The notion of a message complexity will be useful when we will be reasoning about the denial
of service attacks, since arguably in many cases it is easier for an adversary to send say 1 message of size 1MB
than 1 million messages of 1 byte size, e.g. if each message requires starting a new IP session. We explain this in
more detail in Section 3.4.

3.3 The bilateral communication model

The reader may object that this way of measuring the communication complexity ignores that fact that sending
messages over C may be expensive, as the messages on C have to arrive to every party in the system. What
sometimes might be more realistic is to measure the communication complexity by looking at messages sent

5 In particular it is important to stress that the assumption that the majority of the computing power is honest means that n · π > πA, and
not, as one might think, n · π > πmax/2.

6 This is because one can think of δ as being “counted into” the time ∆ that it takes for the messages to arrive to all receivers.

8

directly between the parties. Such an approach would take into account differences between the costs of sending
a message to one party and sending it to a large number of parties. We propose the following model for this.
Each party Pi is able to send messages either through C, or directly to some other party Pj . Since the number n
of parties is unknown to Pi, hence in principle j can be any natural number. Therefore in our protocols we will
always assume that Pi replies to a message of Pj that was earlier sent through C (remember that we assumed that
Pj’s identifier j is attached to every such message, and hence it will be known to Pi). The security properties of the
direct channel between Pi and Pj are exactly like C, i.e., A can listen to it, insert his own messages and delay the
messages by time at most ∆. Of course A can create a “fake identity” Pk and hence provoke Pi to send messages
to a non-existing Pk.

We say that an execution of a protocolΠ has communication complexity γ for a party Pi in the bilateral model
if the total number of bits that the party Pi sends is γ. The message complexity of an execution of a protocol Π for
a party Pi is the total number of messages that the party Pi sends. In all the cases above the messages sent over
C count n times (where n is the number of honest parties). These notions extend naturally to the communication
and message complexities of the adversary in the bilateral model.

3.4 Resistance to the denial of service attacks

As already mentioned in the introduction, in general a complete prevention of the denial of service attacks against
fully distributed peer-to-peer protocols seems very hard. Since we do not assume any trusted set-up phase, hence
from the theoretical point of view the adversary is indistinguishable from the honest users, and hence he can
always initiate a connection with an honest user forcing it to perform some work. Even if this work can be done
very efficiently, it still costs some effort (e.g. it requires the user to verify a PoW solution), and hence it allows a
powerful (yet poly-time bounded) adversary to force each party to work for a very long amount of time, and in
particular to exceed some given deadline for communicating with the other parties. Since any PoW-based protocol
inherently needs to have such deadlines, thus we need to somehow restrict the power of adversary. We do it in the
following way. First of all, we assume that if a message m sent to Pi is longer than the protocols specifies then Pi
can discard it without processing it.7 Secondly, we assume that there is a total bound θ on the number of messages
that the participants can send during each interval ∆. Since this includes also the messages sent by the honest
parties, thus the bound on the number of messages that the adversaryA sends will be slightly more restrictive, but
from practical point of view (since the honest parties send very few messages) it is approximately equal to θ. This
bound can be very generous, and, moreover it will be much larger than the number of messages sent by the honest
users8. In practice such a bound could be enforced using some ad-hoc methods. For example each party could
limit the number of messages it can receive from a given IP address. Although from the theoretical perspective
no heuristic method is fully satisfactory, in practice they seem to work. For example Bitcoin seems to resist pretty
well the DoS attacks thanks to over 30 ad-hoc methods of mitigating them (see [54]). Hence, we believe that some
bound on θ is reasonable to assume (and, as argued above, seems necessary). We will use this bound in a weak
way, in particular the number of messages sent by the honest parties will not depend on it, and the communication
complexity will (for any practical choice of parameters) be linear in θ for every party (in other words: by sending
θ messages the adversary can force an honest party to send one long message of length O(θ)). The real time of the
execution of the protocol can depend on θ. Formally it is a linear dependence (again: this since to be unavoidable,
since every message that is sent to an honest party Pi forces Pi to do some non-trivial work). Fortunately, the
constant of this linear function will be really small. For example, in the RankedKeys (Figure 3, Page 15) the time
each round takes (in the “key ranking phase”) will be ∆ + θ · timeV/π, where timeV is small. Observe that, e.q,
θ/π = 1 if the adversary can send the messages at the same speed as the honest party can compute theHκ queries,
hence it is very reasonable to assume that θ/π < 1.

7 Discarding incorrect messages is actually a standard assumption in the distributed cryptography. Here we want to state it explicitly to
make it clear that the processing time of too long messages does not count into the computing steps of the users.

8 This is important, since otherwise we could trivialize the problem by asking each user to prove that he is honest by sending a large
number of messages.

9

4 Security definitions

In this section we present the security definitions of our main constructions. We start with the broadcast protocol,
which is defined as follows.

Definition 1. Consider a multi-party protocol Π in the Hκ-model. Let (P1, . . . , Pn) denote the honest parties
executing Π , each of them having a device with hashrate π > 0 per time ∆ in the Hκ-model. Each Pi takes
as input xi ∈ {0, 1}κ, and it produces as output a set Yi ∈ {0, 1}κ. The protocol Π is called a πmax-secure
broadcast protocol if it terminates is some finite time and for any poly-time adversaryA whose device has hashrate
πA < πmax and who attacks this protocol (in the model from Section. 3.2) the following conditions hold (except
with probability negligible in κ):

Consistency: All sets Yi are equal, i.e.: Y1 = · · · = Yn. Call this set Y .
Validity: For every i ∈ {1, . . . , n} we have xi ∈ Y .
Bounded creation of inputs: The size of Y is at most n+ dπA/πe.

Note that we do not require any lower bound on π other than 0. In practice, however, running this protocol will
make sense only for π being a noticeable fraction of πmax, since the running time of our protocol is linear in
πmax/π. This protocol is implemented in Section 6.2 (it is denoted RankedBroadcast).

The second main primitive that we construct is a protocol allowing the parties to agree on a set of parties, such
that it is guaranteed that the majority of the parties in this set is honest. Formally, this will mean that the parties
output a setK of public keys such that n of these keys “belong” to the honest party (pki belongs to Pi if she knows
the secret key ski corresponding to pki), and the set of the remaining keys is of size less than n. Obviously, this is
possible to construct only if the majority of the computing power is honest, which will be formally expressed as
dπA/πe < n. Each secret key ski corresponding to pki’s needs to be secret after executing the protocol (also with
respect to all the parties other than Pi). This is formalized by requiring the protocol is a secure key-generation
protocol for some signature scheme Σ.

Definition 2. LetΣ = (Gen,Sign,Vrfy) be a signature scheme and let ` ∈ N be an arbitrary parameter. Consider
a multi-party protocol Π in the Hκ-model. Let (P1, . . . , Pn) denote the honest parties executing Π , each of them
having a device with hashrate π per time ∆ in theHκ-model. Each Pi takes as input a security parameter 1κ, and
it produces as output a tuple (ski, pki,Ki), where (ski, pki) ∈ {0, 1}∗ × {0, 1}∗ is called a (private key, public
key) pair of Pi, and the finite set Ki ⊂ {0, 1}∗ will be some set of public keys.

The protocol Π is called an honest majority Σ-key generation protocol for Σ if it terminates in finite time and
for any poly-time adversary A whose device has hashrate πA and who attacks this protocol (in the model from
Section. 3.2) the following conditions hold, provided that dπA/πe < n:

Key-generation: Π is a key-generation algorithm for every Pi, by which we mean the following. First of all, for
every i = 1, . . . , n and every m ∈ {0, 1}∗ we have that Vrfy(pki, Sign(ski,m)) = true. Moreover ski can be
securely used for signing messages in the following sense. Suppose the adversaryA learns the entire informa-
tion received by all the parties except of some Pi, and later A engages in the “chosen message attack” (see
Sect. 2) against an oracle that signs messages with key ski. Then any such A has negligible (in κ) probability
of forging a valid (under key pki) signature on a fresh message.

Consistency The sets Ki that were produced by the honest parties are identical. Let K := K1(= K2 = · · · =
Kn).

Validity: for every i it is the case that pki ∈ K.
Bounded generation of identities: The size ofK is at most n+ dπA/πe (hence the adversary “controls” at most
dπA/πe identities).

5 Ingredients

Merkle trees. We use a standard cryptographic tool called the Merkle trees [46]. Take any κ ∈ N, c ∈ {0, 1}κ
and β ∈ N. Let Λt be an almost complete binary tree of size t = 2β (cf. Section 2). Let Hκ be a family of hash

10

functions defined in Section 2, i.e.: {Hκ
λ}λ∈Λt , where eachHκ

λ is of a type {0, 1}∗×({0, 1}∗∪{0, 1}κ×{0, 1}κ)→
{0, 1}κ. Define a function MHashH : ({0, 1}κ)β → {0, 1}κ as on Figure 5.1.

The Merkle trees are useful since they allow for very efficient proofs that a given value vi was used to calculate
r = MHashH

κ
(v1, . . . , vβ). To be more precise, there exists a procedure MProofH (described on Figure 5.1)

that on input (v1, . . . , vβ) ∈ ({0, 1}κ)β outputs a certificate M′ that proves that vi was used to calculate r =
MHash(v1, . . . , vβ). The certificateM′ is a labelled subtree ofM induced by i. Such a proof can be verified by
a procedure MVrfyH

κ
(described on Figure 5.1) that takes as input vi ∈ {0, 1}κ, i ∈ {1, . . . , β}, r ∈ {0, 1}κ and

a labelled treeM and outputs true if the labeling ofM is correct. We clearly have that MVrfyH
κ
(vi, i, r,M′) is

equal to true if r = MHash(v1, . . . , vβ) andM′ = MProof((v1, . . . , vβ), i). It is easy to see that the following
holds (the proof of this lemma appears in Appendix B).

Lemma 1. Consider any algorithmA running at most t̂. The algorithmA gets as input (v1, . . . , vβ) ∈ ({0, 1}κ)β
and then it outputs r ∈ {0, 1}κ, i ∈ {1, . . . , β}, and a treeM′. Suppose that it happened that MVrfyH

κ
(vi, i, r,M′) =

true. Then with probability at least 3t̂2 ·2−κ before the algorithmA produced w he made all the queries to theHκ
oracles that are needed by the verification algorithm MVrfyH

κ
(vi, i, p, w) (in particular: he queried Hκ

λi
on vi).

5.1 Proofs-of-Work

Function MHashH
κ

:

On input (v1, . . . , vβ) the function MHashH
κ

first recursively labels the tree Λt (denote the resulting labelled almost complete
binary tree asMH

κ

c) and then outputs the root of this tree. This is done as follows.

1. Let λ1 2 · · · 2 λβ be the leaves ofMH
κ

c . Each leaf λi is labelled with vi.
2. If a node λ has one child, and this child is labelled with v then letMH

κ

c (λ) := Hλ(v).
3. If a node λ has two children λ||0 and λ||1 and their respective labels are v and w then letMH

κ

c (λ) := Hλ(v, w).
4. Output the label of the root ofMH

κ

c .

Function MProofH
κ

:

On input (v1, . . . , vβ) ∈ ({0, 1}κ)β and i ∈ {1, . . . , β} outputs a labelled binary treeM′ that is a sub-tree ofMH
κ

c constructed
as follows:

1. Run MHashH
κ

(v1, . . . , vβ). LetMH
κ

c be the output of this function (in many casesMH
κ

c will be already stored in user’s
memory, and hence there will be no need to compute it),

2. Define Λ′ := {(λ||j) ∈ MH
κ

c : λ is a prefix of λi and j ∈ {0, 1}} ∪ {ε}. In other words, Λ′ is a subtree of Λ induced by λi
(i.e. containing a path from λi to the root, together with all the children od the nodes on this path).

3. LetM′ be the tree labelled likeMH
κ

c , but containing only nodes from Λ′.

Function MVrfyH
κ

Take as input vi ∈ {0, 1}κ, i ∈ {1, . . . , β}, r ∈ {0, 1}κ and a labelled treeM′, and output true if the labeling ofM′ is correct.
More precisely, it outputs true if the following conditions hold:

1. the leaf λi has label vi inM′,
2. every non-leaf node λ inM′ is labelled by the appropriate hash of its children,
3. the root ofM′ is labelled with r.

Otherwise it outputs false.

Fig. 1. The MHashH
κ
,MProofH

κ
and MVrfyH

κ
functions.

A natural way to prevent the adversary from launching Sybil attacks is to require some computational work from
each party in order to establish an identity. This is verified using so-called Proofs of Work. A Proof-of-Work (PoW)
scheme [25] is a pair of randomized algorithms: a prover P and a verifier V, working in theHκ-model (cf. Section

11

3.1), where κ is a security parameter. The algorithm P takes as input a challenge c ∈ {0, 1}κ and produces as
output a solution s ∈ {0, 1}∗. The algorithm V takes as input (c, s) and outputs true or false. We require that for
every c ∈ {0, 1}∗ and d ∈ N it is that case that V(c,P(c)) = true.

We say that a PoW (P,V) has prover complexity t (in theHκ-model) if on every input c ∈ {0, 1}∗ the prover P
makes at most t queries to the oracles inHκ. We say that (P,V) has verifier complexity t′ (in theHκ-model) if for
every c ∈ {0, 1}∗ the verifier V makes at most t′ queries to the oracles inHκ. Defining security is a little bit tricky,
since we need to consider also the malicious provers that can spend considerable amount of computational effort
before they get the challenge c. We will therefore have two parameters: t̂0, t̂1 ∈ N, where t̂0 will be the bound on
the total time that a malicious prover has, and t̂1 ≤ t̂0 will be the bound on the time that a malicious prover got
after he learned c. Consider the following game between a malicious prover P̂ and a verifier V: (1) P̂ adaptively
queries the oracles Hκ on the inputs of his choice, (2) P̂ receives c ← {0, 1}κ, (3) P̂ again adaptively queries the
oracles Hκ on the inputs of his choice, (4) P̂ sends a value s ∈ {0, 1}∗ to V. We say that P̂ won if V(c, s) = true.
We say that (P,V) is (t̂0, t̂1)-secure with ε-error (in the Hκ-model) if for every c ∈ {0, 1}∗ and every malicious
prover P̂ that runs makes in total at most t̂0 queries toHκ in the game above, and at most t̂1 queries after receiving
c we have that P

(
P̂(c) wins the game

)
≤ ε. It will also be useful to use the asymptotic variant of this notion

(where κ is the security parameter). Consider a family {(Pκ,Vκ)}∞κ=1. We will say that it is t̂1-secure if for every
polynomial t̂0 there exists a negligible ε such that (Pκ,Vκ) is (t̂0(κ), t̂1)-secure in theHκ model with error ε(κ).

An example of a PoW scheme The PoW scheme used in Bitcoin is based on finding inputs for a hash function
that produce an output starting with a certain number of zeros. We cannot use this PoW here, since the variance
of the computational effort needed to solve it is to high: a lucky solver can solve the Bitcoin PoW much quicker
than an unlucky one. Instead, we use a PoW based on the Merkle trees and a variant of the Fiat-Shamir transform
[31]: a prover first constructs a Merkle tree with leaves depending on the challenge c, and then hashes (using some
hash function G) the value r in the root of this tree to obtain indices of α leaves µ1, . . . , µα in the tree (for some
parameter α). Finally, he sends r, the labels on the leaves µ1, . . . , µα together with the Merkle Proofs that the
these leaves are correct. We later prove that a malicious prover that did not compute sufficiently large part of the
Merkle tree cannot reply to all of these queries correctly with non-negligible probability. Similar techniques were
already used in [18,27,5]

Prover Pκ,αt :

On input c ∈ {0, 1}κ the prover Pκ,αt executes the following steps.

1. Compute r = MHashH
κ

(Hκ
λ1
(c), . . . , Hκ

λβ
(c)).

2. Let (µ1, . . . , µα) := G(r).
3. For every i = 1 to α computeM′i := MProofH

κ

((µ1, . . . , µα), i). For efficiency reasons we assume that the treeMH
κ

c was
not erased after Step 1, and hence each invocation of MProofH

κ

does not need to recompute it.
4. Output (M′1, . . . ,M′α, r).

Verifier Vκ,αt :

On input (c, (M1, . . . ,Mα, r)) the verifier Vκ,αt does the following:

1. Let (µ1, . . . , µα) := G(r).
2. For every i = 1 to α run MVrfy(Hκ

µi(c)). If in all the cases the output is true then output true. Otherwise output false

Fig. 2. A PoW scheme (Pκ,αt ,Vκ,αt).

We now define our PoW scheme (Pκ,αt ,Vκ,αt) that is secure in the Hκ model, for any natural parameters κ, α
and t. Let β := bt/2c and let λ1, . . . , λβ be the leaves of an almost complete binary tree of size t. Suppose
G : {0, 1}κ → {1, . . . , β}α is a hash function modeled as a random oracle. Note that we do not count the calls to

12

G in the hashrate of the devices. This is ok since the calls toHκ will dominate (cf. Section 3.1). Our PoW scheme
is presented on Figure 2. It is easy to that the following holds (the proof appears in Appendix C).

Lemma 2. The prover complexity of (Pκ,αt ,Vκ,αt) is t and its verifier complexity is α · dlog2 te.

The security of (Pκ,αt ,Vκ,αt) is proven in the following lemma (whose proof is moved to Appendix D).

Lemma 3. The PoW scheme (Pκ,αt ,Vκ,αt) is (t̂0, t̂1)-secure with error t̂1((t̂1 + 1)/t)α + (3t̂20 + 1) · 2−κ.

It will be sometimes convenient to use one security parameter κ instead of κ and α. Denote (PTreeκt ,VTree
κ
t) :=

(Pκ,κt ,Vκ,κt).The following fact can be easily derived from Lemma 3.

Corollary 1. For every function t : N → N we have that (PTreeκt ,VTree
κ
t) has prover complexity t and verifier

complexity dκ log te. Moreover the family {(PTreeκt ,VTreeκt)}∞κ=1 is ξt-secure for every constant ξ ∈ [0, 1).

6 Constructions

We are now ready to present the constructions of the protocols specified in Section 4. Our protocols will be
based on the PoW described in Section 5.1. One of the main challenges will be to prevent the adversary from
precomputing the solutions to PoW, as given enough time every puzzle can be solved even by a device with a very
small hashrate. Hence, each honest party Pi can accept a PoW proof only if it is computed on some string that
contains a freshly generated challenge c. Since we work in a completely distributed scenario, and in particular we
do not want to assume existence of a trusted beacon, thus the only way a Pi can be sure that a challenge c was
fresh is that she generated it herself at some recent moment in the past (and, say, sent it to all the other parties).

This problem was already considered in [4], where the following solution was proposed. At the beginning
of the protocol each party Pi creates a fresh (public key, secret key) pair (pki, ski) (we will call the public keys
identities) and sends to all other parties a random challenge ci. Then, each party computes a Proof of Work on her
public key and all received challenges. Finally, each party sends her public key with a Proof of Work to all other
parties. Moreover, whenever a party receives a message with a given key for the first time, than it forwards it to
all other parties. An honest party Pi accepts only these public keys which: (1) she received before some agreed
deadline, and (2) are accompanied with a Proof of Work containing her challenge ci. It is clear that each honest
party accepts a public key of each other honest party and that after this process an adversary can not control a
higher fraction of all identities that his fraction of the computational power. Hence, it may seem that the parties
can later execute protocols assuming channels that are authenticated with the secret keys of corresponding to these
identities.

Unfortunately there is a problem with this solution. Namely it is easy to see that the adversary can cause
a situation where some of his identities will be accepted by some honest parties and not accepted by some other
honest parties. This discrepancy can come from two reasons: (1) some messages could be received by some honest
parties before deadline and by some other after it, and (2) a Proof of Work can containing challenges of some of
the honest parties, but not all.

It is relatively easy to see that nevertheless the above protocol can be used to achieve Byzantine agreement
(and hence the broadcast protocol), under the assumption that the honest parties computing power is more than
(2/3) · πmax, where πmax is a total bound on the computing power of all the participants (honest parties and the
adversary). This is because in this case it is guaranteed that there exists a set P ′ of identities such that all of them
are controlled by the honest parties, and |P| is of size at least 2/3 of the total size of identities accepted by the
honest parties. Therefore the parties could execute a classical Byzantine agreement protocol, which is secure if
more than 2/3 of the parties are honest (each party will simply ignore the messages signed by keys that she does
not recognize).

It is a natural question whether we can achieve Byzantine agreement and broadcast without this assumption.
In the rest of this section we answer this question affirmatively. Our presentation is organized as follows. First, in
Section 6.1 we show a protocol that we call the “ranked key generation protocol”. Then we show how to use it
to construct a broadcast protocol (in Section 6.2). Finally, in Section 6.3 we show how to use these protocols to
construct a protocol for identifying a group of parties with honest majority (note that this is defined relative to the

13

real hashrate πA of the adversary, not relative to his maximal possible hashrate πmax as in the solution described
above).

6.1 Ranked key sets

The main idea behind our protocol is that parties assign ranks to the keys they have received. If a key was received
before the deadline and the corresponding proof contains the appropriate challenge, then the key is assigned a rank
0. In particular, keys belonging to honest parties are always assigned a rank 0. The rank bigger than 0 means that
the key was received with some discrepancy from the protocol (e.g. it was received slightly after the deadline) and
the bigger the rank is, the bigger this discrepancy was. More precisely each party Pi computes a function ranki
from the set of keys she knows Ki into the set {0, . . . , `} for some parameter `. Note that this protocol bares some
similarities with the “proxcast” protocol of Considine et al [19]. The formal definition follows.

Definition 3. LetΣ = (Gen,Sign,Vrfy) be a signature scheme and let ` ∈ N be an arbitrary parameter. Consider
a multi-party protocol Π in the Hκ-model. Let (P1, . . . , Pn) denote the honest parties executing Π , each of them
having a device with hashrate π per time ∆ in theHκ-model. Each Pi takes as input a security parameter 1κ, and
it produces as output a tuple (ski, pki,Ki, ranki), where (ski, pki) ∈ {0, 1}∗ × {0, 1}∗ is called a (private key,
public key) pair of Pi, the finite set Ki ⊂ {0, 1}∗ will be some set of public keys, and ranki : Ki → {0, . . . , `}
will be called a key-ranking function (of Pi). We will say that an identity pk was created during the execution Π
if pk ∈ Ki for at least one honest Pi (regardless of the value of ranki(pk)).

The protocol Π is called a πA-secure `-ranked Σ-key generation protocol if for any poly-time adversary
A whose device has hashrate πA and who attacks this protocol (in the model from Section. 3.2) the following
conditions hold:

Key-generation: Π is a key-generation algorithm for every Pi in the same sense as in Definition 2.
Bounded creation of identities: We require that the number of created identities is at most n + dπA/πe except

with probability negligible in κ.
Validity: for every i it is the case that {pk1, . . . , pkn} ⊆ Ki and for every j ∈ {1, . . . , n} we have that

ranki(pkj) = 0,
Consistency: for every i ∈ {1, . . . , n} and every k ∈ Ki if ranki(k) < ` then for every j ∈ {1, . . . , n} we have

that k ∈ Kj and rankj(k) ≤ ranki(k) + 1.

Our construction of a ranked key generation protocol RankedKeys is presented on Figure 3. The protocol
RankedKeys work in the Hκ-model. It also uses another hash function F : {0, 1}∗ → {0, 1}κ that is mod-
eled as a random oracle, but its computation does not count into the hashrate. It uses a Proof of Work scheme
(P,V) with prover time timeP and verifier time timeV. We will later instantiate this PoW scheme with the scheme
(PTree,VTree) from Section 5.1. The parameter ` is equal to πmax/π.

Let us present some intuitions behind our protocol. First, recall that the problem with the protocol from [4]
(described at the beginning of this section) was that some public keys could be recognized only by a subset of the
honest parties. A key could be dropped because: (1) it was received too late; or (2) the corresponding proof did
not contained the appropriate challenge. Informally, the idea behind the RankedKeys protocol is to make these
conditions more granular. If we forget about the PoWs, and look only at the time constrains then our protocol
could be described as follows: keys received with a delay at most ∆ are assigned rank 0, keys received in time at
most 2∆ are assigned rank 1, and so on. Since we instruct every honest party to forward to everybody all the keys
that she receives, hence if a key receives rank k from some honest party, then he receives rank at most k + 1 from
all the other honest parties.

If we also consider the PoWs then the description of the protocol becomes a bit more complicated. The
RankedKeys protocol consists of 3 phases. We now sketch them informally. The “challenges phase” is divided into
` + 2 rounds, each of them taking time ∆. At the beginning of the first round each Pi generates his challenge ci
randomly and sends it to all the other parties. Then, in each kth round each Pi collects the messages aki,1, . . . , a

k
i,m

sent to him in the previous round, concatenates then into Aki = (aki,1, . . . , a
k
i,m), hashes them, and sends the result

F (Aki) to all the other parties.

14

Let a ≺ (b1, . . . , bm) denote the fact that a = bi for some i. We say that the string b dependents on a if there
exists a sequence a = v1, . . . , vm = b, such that for every 1 ≤ i < m, it holds that F (vi) ≺ vi+1.The idea behind
this notion is that b could not have been predicted before a was revealed, because b is created using a series of
concatenations and queries to the random oracle starting from the string a. Note that in particular F (Aki) depends
on F (Ak−1j) for any honest Pi, Pj and 1 ≤ k ≤ ` and hence F (Akj) depends on ci for any honest Pi, Pj and an
arbitrary 1 ≤ k ≤ `+ 1.

Then, during the “Proof of Work” phase each honest party Pi draws a random key pair (ski, pki) and creates a
proof of work9 P(F (pki||s`+1

i), where s`+1
i is a concatenation of the challenges of level ` of all parties. Then, she

sends her public key together with the proof to all the other parties.

The challenges phase

This phase consists of `+ 2 rounds, each lasting exactly one interval ∆ of real time:

– Round 0: Each party Pi draws a random challenge ci ← {0, 1}κ and sends his challenge message of level 0 equal to
(Challenge0, c0i) to all parties (including herself).

– For k = 1 to ` + 1 in round k each party Pi does the following. It waits for the messages of a form (Challengek−1, a)
that were sent in the previous round (note that some of them might have already arrived earlier, but, by our assump-
tions they are all guaranteed to arrive before round k ends). Of course if the adversary does not perform any attack
then there will be exactly n such messages (one from every party), but in general there can be much more of them. Let
(Challengek−1, aki,1), . . . , (Challenge

k−1, aki,m) be all messages received by Pi. Denote Aki = (a1, . . . , am). Then Pi sends
(Challengek, F (Aki)) to all parties (this is not needed in the last rounds, i.e., when k = `+ 1).

The Proof of Work phase

This phase takes real time timeP/π. Each party Pi performs the following.

1. Generate a fresh key pair (ski, pki) ← Gen(1k) and compute Soli = P(F (pki, A
`+2
i)) (recall that A`+2

i contains all the
challenges that Pi received in the last round of the “challenges phase”).

2. Send to all the other parties a message (Key0, pki, A
`+2
i , Soli). This message contains Pi’s public key pki, the sequence A`+2

i

of challenges that he received in the last round of the “challenges phase”, and a Proof of Work Soli. The reason why she sends
the entire A`+2

i , instead of F (pki, A
`+2
i), is that in this way every other party will be able check if her challenge was used as

an input to F when F (pki, A
`+2
i) was computed (this check will be performed in the next phase).

The key ranking phase

This phase consists of `+ 1 rounds, each lasting real time ∆+ (θ · timeV)/π. During these rounds each party Pi constructs set Ki
of ranked keys, together with a ranking function ranki : Ki → {0, . . . , `} (the later a key is added toKi the higher will be its rank).
Initially all Ki’s are empty.

– Round 0: Each party Pi waits for time∆ for message of the form (Key0, pk, B`+2, Sol) received in the “proof-of-work”. Then,
for each such message she checks the following conditions:
• Sol is a correct PoW solution for the challenge F (pk, B`+2), i.e., if V(F (pk, B`+2), Sol) = true,
• F (A`+1

i) appears in B`+2, i.e., F (A`+1
i) ≺ B`+2.

If both of these conditions hold then Pi accepts the key pk with rank 0, i.e., Pi adds pk to the set Ki and sets ranki(pk) := 0.
Moreover Pi notifies all the other parties about this fact by sending to every other party a message (Key1, pk, A`+1

i , B`+2, Sol).
– For k = 1 to ` in round k each party Pi does the following. It waits for messages of a form (Keyk, pk, B`+2−k, . . . , B`+2, Sol).

After time ∆ passed Pi stops listening and for each received message she checks the following conditions:
• the key pk has not been yet added to Ki, i.e.: pk 6∈ Ki
• Sol is a correct PoW solution for the challenge F (pk, B`+2), i.e., if V(F (pk, B`+2),Sol) = true,
• F (A`+1−k

i) ≺ B`+2−k and for every i = `+ 2− k to `+ 2 it holds that F (Bi) ≺ Bi+1,
If all of these conditions hold then Pi accepts the key pk with rank k, i.e., Pi adds pk to the set Ki and sets
ranki(pk) := k. Moreover Pi notifies all the other parties about this fact by sending to every other party a message
(Keyk, pk, A`+1−k

i , B`+2−k, . . . , B`+2, Sol).

At the end of the protocol each party Pi outputs (ski, pki,Ki, ranki).

Fig. 3. The RankedKeys protocol.
9 The reason why we hash the input before computing a PoW is that the PoW definition requires that the challenges are random.

15

Later, during the “key ranking phase” the parties receive the public keys of the other parties and assign them
ranks. To assign the public key pk rank k the party Pi requires that she receives it in the kth round in this phase
and that it is accompanied with a proof P(F (pki||s)) for some string s, which depends on F (A`+1−k

i). Such
a proof could not been precomputed, because F (A`+1−k

i) depends on c0i , which was drawn randomly by Pi at
the beginning of the protocol and hence could not been predicted before the execution of the protocol. If those
conditions are met, than Pi forwards the message with the key to the other parties. This message will be accepted
by other parties, because it will be received by them in the (k+ 1)-st interval of this phase and because s depends
on F (A`+1−k

i), which depends on F (A`+ki) for any honest Pj . In the effect, all other honest parties, which have
not yet assigned pk a rank will assign it a rank k + 1.

Let RankedKeysκ denote the RankedKeys scheme instantiated with the PoW scheme (PTreeκtimeP
,VTreeκtimeP

)
(from Section 5.1), where timeP := κ2 · (`+2)∆ · π. Note that therefore timeV := κ log timeP. We now have the
following fact whose proof appears in Appendix E.

Lemma 4. Assume the total hashrate of all the participants is at most πmax, the hashrate of each honest party
if π, and the adversary can not send more than (θ − n) messages in every interval ∆ (where n is the number of
honest parties). Then the RankedKeysκ protocol is a πA-secure `-ranked key generation protocol, for ` = πmax/π,
whose total execution takes real time ∆(2`+ 3) + timeP + (`+ 1)(θ · timeV)/π.

As already mentioned in Section 3.4 if we assume that the number θ − n of messages that adversary can send in
time ∆ is not higher than the number of hashes than an honest party computes in the same time interval, then the
execution time becomes ∆(2`+ 3) + timeP + (`+ 1)timeV.

Communication and message complexities in the public channel model. Before we provide an efficiency
analysis of the RankedKeysκ scheme let us optimize it a bit10. First of all, observe that the only reason why
(Keyk, pk, A`+1−k

i , B`+2−k, . . . , B`+2, Sol) is sent at the end of each round of the “key ranking phase” is that the
parties need to be able to check in the next round that F (A`+1−k

i) ≺ B`+2−k, and F (B`+1−i) ≺ B`+2−i (for
i = k−1 down to 0). An obvious way to optimize it is to use the Merkle Trees (see Section 5) in the following way.
Instead of using a hash function F we use MHash, and then instead of sending A`+1−κ

i , B`+2−k, . . . , B`+2 we
send A`+1−κ

i ,MHash(B`+2−k), . . . ,MHash(B`+2) together with the Merkle proofs that F (A`+1−κ
i) was used to

compute the hash MHash(B`+2−k) and that MHash(B`+1−i) was used to compute MHash(B`+2−i) (for i = k−1
down to 0). These proofs can be checked efficiently using the MVrfy procedure. The security of such improved
protocol easily follows from Lemma 1 (that states that no poly-time adversary can “fake” a Merkle proof with non-
negligible probability). Since the length of each Merkle proof is at most logarithmic in the length of its input, hence
the total length of every message sent by each Pi in one round of the “key ranking phase” is at most θ + ` log θ
(since the number of the messages sent by all the parties in each interval is at most θ). Therefore, altogether, the
communication complexity of each party in the “key ranking phase” is O(`(θ + ` log θ)κ). It is also easy to see
that the communication complexity of each party in the “challenges phase” is (` + 2) · κ, and in the “Proof of
Work” phase it is O(θ + κ). Therefore the total communication complexity of each party is O(`(θ + ` log θ)κ).
Clearly the message complexity of every party in the protocol RankedKeysκ is equal to the total number of rounds
in all the phases, which is equal to 2`+ 3 = O(`).

Communication and message complexities in the bilateral channels model. Recall that in the bilateral chan-
nels model we assume unreliable channels between the parties and measure the communication and message
complexities by counting the total number sent over the channels. Of course, every protocol secure in the public
key model can be run also in the bilateral model, by telling each party to send through the bilateral channels all
the messages that normally she would send over C. This, however, would result in the communication complexity
multiplied by n (since each channel counts now separately). Fortunately, in case of our protocol we can do some-
thing more clever. Note that in the “key ranking phase” the goal of sending the A`+1−k

i vectors is to allow each

10 The reason why the first version of the protocol was presented without these optimizations was that we think that would make the
protocol harder to understand.

16

party to check that here challenge (that is an element of A`+1−k
i) was used to compute F (A`+1−k

i). In the bilateral
channels model we can modify this by using once again the Merkle trees: each Pi sends to each Pj a Merkle hash
MHash(A`+1−k

i) together with a proof that Pj’s challenge F (A`−kj) was used to compute it. Later, Pj can easily
verify it using the MVrfy procedure. Hence, the communication complexity becomes O(`n(` log θ)κ). Obviously,
the message complexity is O(n`).

6.2 The RankedBroadcast protocol
The reason why ranked key sets are useful is that they allow to construct a reliable broadcast protocol, which is
secure against an adversary that has an arbitrary hashrate. The only assumption that we need to make is that the
total hashrate in the system is bounded by some πmax and the adversary cannot send more than θ − n messages
in one interval (for some parameter θ). Our protocol, denoted RankedBroadcastκ, works in time that is linear
in ` = πmax/π, where π is the hashrate of the honest parties. It is based on a classical authenticated Byzantine
agreement by Dolev and Strong [23] (and is similar to the technique used to construct broadcast from a proxcast
protocol [19]). The protocol works as follows. First the parties execute the RankedKeysκ protocol with parameters
π, πmax and θ, built on top of a signature scheme (Gen,Sign,Vrfy). For convenience assume that every signature
σ contains information identifying the public key that was used to compute it. Let (ski, pki,Ki, ranki) be the
output of each Pi after this protocol ends (recall that (ski, pki) is her key pair, Ki is the set of public keys that
she accepted, ranki is the key ranking function). Then, each party Pd executes the procedure RankedBroadcastκd
depicted on Fig. 4 (this happens in parallel for every d). During the execution each party Pi maintains a set Zdi
initialized with ∅. The output of each party is equal to the set of outputs v of each RankedBroadcastκd protocol
such that v 6= ⊥.

The protocol consists of `+ 1 rounds, each lasting one interval ∆:

– Round 0: The dealer Pd sends to every other party the message (xd, Signskd(xd, pkd)), where xd is his input that he wants to
broadcast.

– Round k, for 1 ≤ k ≤ `: Each party except of the dealer Pd waits for the messages of the form
(v,Signpkpka1

(v, pkd), . . . , Signpkpkak
(v, pkd)). Such a message is accepted by Pi if:

(1) all signatures are valid and are corresponding to different public keys,
(2) pka1 = pkd,
(3) pkaj ∈ Ki and ranki(pkaj) ≤ k for 1 ≤ j ≤ k, and
(4) v 6∈ Zdi and |Zdi | < 2.
If a message is accepted then Pi adds v to her set Zdi and if k < ` she sends a message
(v,Signpkpka1

(v, pkd), . . . , Signpkak
(v, pkd), Signpki(v, pkd)) to all other parties.

At the end of the protocol Pi outputs v ∈ Zdi if |Zdi | = 1 and ⊥ otherwise.

Fig. 4. The RankedBroadcastκd protocol.

The security of this protocol is proven in the following lemma, whose proof appears in Appendix F

Lemma 5. The RankedBroadcast protocol is a πmax-secure broadcast protocol.

Note that resistance of RankedBroadcastκd to the DoS attacks comes from the fact that the parties are only
accepting one message per round for each recognized identity (and there are at most ` such identities). It is also
easy to see that (both in the public channel model and in the bilateral channels model) the communication and
message complexities of the RankedBroadcastκ protocol are dominated by the execution of RankedKeysκ, and
hence asymptotically these complexities are as in case of the RankedKeysκ.

6.3 A group with an honest majority
We now show how to use the protocols from the previous sections to construct an honest majority generation pro-
tocol. The protocol is depicted on Figure 5. We now have the following fact whose proof appears in Appendix G.

17

Lemma 6. The HonestMajκ protocol is an honest majority Σ-key generation algorithm.

1. The parties Pi execute the RankedKeysκ protocol. Let (ski, pki,Ki, ranki) be the output of each Pi. Let K0
i denote the set of

keys k such that ranki(k) = 0.
2. The parties execute the RankedBroadcastκ protocol with the input of each Pi being K0

i . Note that from the properties of the
broadcast protocol the output of every party is identical. Let {X1, . . . ,Xm} be the family of sets that the parties receive as the
output of this protocol.

3. Define K := {x : k belongs to more than m/2 sets X1, . . . ,Xm}
4. Output K

Fig. 5. The HonestMajκ protocol.

7 Applications

7.1 Multiparty computation protocols with honest majority of computing power

As already mentioned before, we can use the HonestMaj protocol from Section 6.3 to establish a group of parties
that can later perform the MPC protocols. This is possible, since the HonestMaj protocol identifies the parties by
the set of their public keys. It is well-known, that given such a trusted set-up the parties can emulate any trusted
functionality [34], provided that the majority of them is honest (which is the case here). Such a trusted functionality
can be anything that the parties find useful. For example it can a procedure for generating a uniformly random
beacon, or a system for maintaining a trusted server (a discussion board, say) in the peer-to-peer network. It
could also potentially be used for the “Internet of things” applications, e.g., to replace the blockchain paradigm
in the “Adept” technology [39]. In principle it can also lead to creations a new digital currencies (we discuss it in
Section 7.3).

7.2 Unpredictable beacon generation without honest majority of computing power

The RankedBroadcast protocols can also be used to produce unpredictable beacons even if there is no honest
majority of computing power in the system. This is done in the following straightforward way. First, each party Pi
draws at random a string si ← {0, 1}κ. Then, the parties P1, . . . , Pn execute the RankedBroadcast protocol with
inputs s1, . . . , sn respectively. Let s′1, . . . , s

′
m′ be the result. The parties compute the value of the beacon as a hash

H(s′1, . . . , s
′
m′). Note that obviously, the adversary can influence the result of this computation by adding some si

that he controls. He can even do it after he learns the inputs of all the other honest parties. However, it is easy to
see that ifH is modeled as a random oracle, then a poly-time limited adversary cannot makeH(s′1, . . . , s

′
m′) equal

to some value chosen by him in advance (except with negligible probability). Hence, the value of the beacon is
unpredictable. This is, of course, a weaker property than the uniformity, but it still suffices for several applications
(e.g. it is ok to use this value as a genesis block for a new cryptocurrency).

7.3 Provably secure cryptocurrencies?

It might be tempting to say that the honest majority created by the HonestMaj protocol can be used to construct
a new cryptocurrency. In the simplest case, the parties selected by this procedure would simply emulate a trusted
ledger, but also more general functionalities could be emulated. This would have the following advantages over the
blockchain-based systems: (1) possibly quicker transaction confirmation times (no need to wait for new blocks),
(2) security proof (which is especially important given the recent attacks on Bitcoin described in the introduction).
We think it is an interesting option to explore, but we leave it as future work, since to fully solve this problem a
good economic model for the cryptocurrencies is needed (and we are not aware of such a model). Below we only
state some simple ideas and observations that can be used in such constructions.

One way of implementing a new currency using our methods would be as follows. Assume that the “honest
majority group” is selected once a day (using the HonestMaj protocol). The parties that constitute this group are

18

responsible for recording all the transactions. Independent of this, they also participate in a process of selecting of a
new group for the next day. Once such a group is selected it identifies itself with a public key (whose corresponding
private key is shared over all parties). Then the parties from the previous group sign a statement that the “passes”
the control over the currency to the new group.

One thing that we need to consider here is the public verifiability of the history of transactions. Currently
Bitcoin is designed in such a way that every new user can decide himself which chain is the proper one (assuming
he knows the genesis block). The protocols that we propose in this paper provide assurance of correctness only
to the players that were active during the execution of these protocols. This problem could be dealt with in the
following way: a new user of the system waits for 1 day before deciding which group to trust (so that he can be
sure that the “majority group” was selected honestly). The reader may object that in this case the adversary can
break the system if he gets control over large computing power for a short period of time only. We want to stress
that Bitcoin also suffers from this problem (as pointed out in [20]).

References

1. Crypto-currency market capitalizations. coinmarketcap.com/, Accessed on 27.05.2014.
2. Marc Andreessen. Why Bitcoin Matters, Jan 2013. The New York Times, dealbook.nytimes.com/2014/01/21/why-bitcoin-matters,

accessed on 26.01.2014.
3. M. Andrychowicz, S. Dziembowski, D. Malinowski, and Ł. Mazurek. Secure Multiparty Computations on Bitcoin, 2013. 35th IEEE

Symposium on Security and Privacy (Oakland) 2014.
4. James Aspnes, Collin Jackson, and Arvind Krishnamurthy. Exposing computationally-challenged byzantine impostors. Department

of Computer Science, Yale University, New Haven, CT, Tech. Rep, 2005.
5. Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of space: When space is of the essence. Cryptology

ePrint Archive, Report 2013/805, 2013. http://eprint.iacr.org/2013/805.
6. L Babai. Trading group theory for randomness. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing,

STOC ’85, pages 421–429, New York, NY, USA, 1985. ACM.
7. Adam Back. Hashcash - a denial of service counter-measure, 2002. technical report.
8. Lear Bahack. Theoretical bitcoin attacks with less than half of the computational power (draft). arXiv preprint arXiv:1312.7013,

2013.
9. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In V. Ashby, editor,

ACM CCS 93, pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.
10. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed

computation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 1–10, New York,
NY, USA, 1988. ACM.

11. Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols. In Ronald Cramer, editor, TCC 2012, volume
7194 of LNCS, pages 266–284, Taormina, Sicily, Italy, March 19–21, 2012. Springer, Berlin, Germany.

12. Bitcoin. Wiki. en.bitcoin.it/wiki/.
13. Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen,

Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multiparty computation goes
live. In Roger Dingledine and Philippe Golle, editors, FC 2009, volume 5628 of LNCS, pages 325–343, Accra Beach, Barbados,
February 23–26, 2009. Springer, Berlin, Germany.

14. Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai. Multiparty computation secure against continual memory
leakage. In Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 1235–1254, New York, NY, USA, May 19–22,
2012. ACM Press.

15. David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure protocols. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, STOC ’88, pages 11–19, New York, NY, USA, 1988. ACM.

16. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of
LNCS, pages 319–327, Santa Barbara, CA, USA, August 21–25, 1988. Springer, Berlin, Germany.

17. Jeremy Clark and Urs Hengartner. On the use of financial data as a random beacon. Cryptology ePrint Archive, Report 2010/361,
2010. http://eprint.iacr.org/2010/361.

18. Fabien Coelho. An (almost) constant-effort solution-verification proof-of-work protocol based on merkle trees. In Progress in Cryp-
tology - AFRICACRYPT 2008, First International Conference on Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008.
Proceedings, volume 5023, pages 80–93. Springer, 2008.

19. Jeffrey Considine, Matthias Fitzi, Matthew K. Franklin, Leonid A. Levin, Ueli M. Maurer, and David Metcalf. Byzantine agreement
given partial broadcast. Journal of Cryptology, 18(3):191–217, July 2005.

20. Nicolas T. Courtois. On the longest chain rule and programmed self-destruction of crypto currencies. CoRR, abs/1405.0534, 2014.
21. Nicolas T Courtois and Lear Bahack. On subversive miner strategies and block withholding attack in bitcoin digital currency. arXiv

preprint arXiv:1402.1718, 2014.

19

http://coinmarketcap.com/
http://dealbook.nytimes.com/2014/01/21/why-bitcoin-matters/
http://eprint.iacr.org/2013/805
http://en.bitcoin.it/wiki/
http://eprint.iacr.org/2010/361

22. Ivan Damgård, Carmit Hazay, and Arpita Patra. Leakage resilient secure two-party computation. Cryptology ePrint Archive, Report
2011/256, 2011. http://eprint.iacr.org/2011/256.

23. Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM Journal on Computing, 12(4):656–
666, 1983.

24. John R. Douceur. The sybil attack. In Revised Papers from the First International Workshop on Peer-to-Peer Systems, IPTPS ’01,
pages 251–260, London, UK, UK, 2002. Springer-Verlag.

25. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F. Brickell, editor, CRYPTO’92, volume
740 of LNCS, pages 139–147, Santa Barbara, CA, USA, August 16–20, 1992. Springer, Berlin, Germany.

26. Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 37–54, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Berlin, Germany.

27. Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs of space. Cryptology ePrint Archive,
Report 2013/796, 2013. http://eprint.iacr.org/2013/796.

28. The Economist. The Economist explains: How does Bitcoin work?, Apr 2013. www.economist.com/blogs/economist-
explains/2013/04/economist-explains-how-does-bitcoin-work, accessed on 26.01.2014.

29. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages 205–210, Santa Barbara, CA, USA, 1982. Plenum Press, New York, USA.

30. Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. arXiv preprint arXiv:1311.0243, 2013.
31. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In Andrew M. Odlyzko,

editor, CRYPTO’86, volume 263 of LNCS, pages 186–194, Santa Barbara, CA, USA, August 1986. Springer, Berlin, Germany.
32. Stephen Foley. Dish network signs up to accepting bitcoin, May 2014. Financial Times, www.ft.com/intl/cms/s/0/3a22880c-e742-

11e3-88be-00144feabdc0.html.
33. Juan A. Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Rational protocol design: Cryptography against

incentive-driven adversaries. In 54th FOCS, pages 648–657, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society
Press.

34. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. STOC, 1987.
35. S Goldwasser and M Sipser. Private coins versus public coins in interactive proof systems. In Proceedings of the Eighteenth Annual

ACM Symposium on Theory of Computing, STOC ’86, pages 59–68, New York, NY, USA, 1986. ACM.
36. S. Dov Gordon and Jonathan Katz. Rational secret sharing, revisited. In Roberto De Prisco and Moti Yung, editors, SCN 06, volume

4116 of LNCS, pages 229–241, Maiori, Italy, September 6–8, 2006. Springer, Berlin, Germany.
37. Keith Griffith. ebay is considering integrating bitcoin into paypal, May 2014. Business Insider, www.businessinsider.com/ebay-is-

considering-integrating-bitcoin-into-paypal-2014-5.
38. Nermin Hajdarbegovic. Amazon awarded bitcoin-related cloud computing patent, May 2014. CoinDesk, www.coindesk.com/amazon-

awarded-bitcoin-related-cloud-computing-patent.
39. Nermin Hajdarbegovic. Ibm sees role for block chain in internet of things. Coindesk Magazine, September 2014.

www.coindesk.com/ibm-sees-role-block-chain-internet-things.
40. Nermin Hajdarbegovic. Uk financial regulator’s new initiative encourages bitcoin innovation, Jun 2014. The Wall Street Journal,

www.coindesk.com/uk-financial-conduct-authority-fca-launches-bitcoin-initiative.
41. Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect multiparty computation. Journal of

Cryptology, 13(1):31–60, 2000.
42. Sergei Izmalkov, Silvio Micali, and Matt Lepinski. Rational secure computation and ideal mechanism design. In 46th FOCS, pages

585–595, Pittsburgh, PA, USA, October 23–25, 2005. IEEE Computer Society Press.
43. Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. .
44. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–

401, July 1982.
45. Timothy B. Lee. Here’s how bitcoin charmed washington, Nov 2013. The Washington Post, www.washingtonpost.com/blogs/the-

switch/wp/2013/11/21/heres-how-bitcoin-charmed-washington, accessed on 26.01.2014.
46. Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl Pomerance, editor, CRYPTO’87, volume

293 of LNCS, pages 369–378, Santa Barbara, CA, USA, August 16–20, 1987. Springer, Berlin, Germany.
47. Tal Moran and Moni Naor. Split-ballot voting: everlasting privacy with distributed trust. In Peng Ning, Sabrina De Capitani di

Vimercati, and Paul F. Syverson, editors, ACM CCS 07, pages 246–255, Alexandria, Virginia, USA, October 28–31, 2007. ACM
Press.

48. David Z. Morris. Bitcoin is not just digital currency. It’s Napster for finance, Jan 2014. CNN Money,
finance.fortune.cnn.com/2014/01/21/bitcoin-platform, accessed on 26.01.2014.

49. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted, 1(2012):28, 2008.
50. Michael O. Rabin. Transaction protection by beacons. Journal of Computer and System Sciences, 27(2):256 – 267, 1983.
51. Reuven Cohen. Global Bitcoin Computing Power Now 256 Times Faster Than Top 500 Supercomputers, Combined!, Nov

2013. Forbes, www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-
supercomputers-combined/.

52. Bitcoin Talk. [ann] litecoin - a lite version of bitcoin. launched! bitcointalk.org/index.php?topic=47417.0, Accessed on 27.05.2014.
53. Ryan Tracy. Authorities see worth of bitcoin, Nov 2013. The Wall Street Journal, on-

line.wsj.com/news/articles/SB10001424052702304439804579205740125297358.
54. Bitcoin Wiki. Denial of service (dos) attacks. en.bitcoin.it/wiki/Weaknesses , Accessed on 26.09.2014.
55. Bitcoin Wiki. Network. en.bitcoin.it/wiki/Network, Accessed on 26.09.2014.
56. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages 160–164, Chicago, Illinois,

November 3–5, 1982. IEEE Computer Society Press.

20

http://eprint.iacr.org/2011/256
http://eprint.iacr.org/2013/796
http://www.economist.com/blogs/economist-explains/2013/04/economist-explains-how-does-bitcoin-work
http://www.economist.com/blogs/economist-explains/2013/04/economist-explains-how-does-bitcoin-work
http://www.ft.com/intl/cms/s/0/3a22880c-e742-11e3-88be-00144feabdc0.html
http://www.ft.com/intl/cms/s/0/3a22880c-e742-11e3-88be-00144feabdc0.html
http://www.businessinsider.com/ebay-is-considering-integrating-bitcoin-into-paypal-2014-5/
http://www.businessinsider.com/ebay-is-considering-integrating-bitcoin-into-paypal-2014-5/
http://www.coindesk.com/amazon-awarded-bitcoin-related-cloud-computing-patent/
http://www.coindesk.com/amazon-awarded-bitcoin-related-cloud-computing-patent/
http://www.coindesk.com/ibm-sees-role-block-chain-internet-things/
http://www.coindesk.com/uk-financial-conduct-authority-fca-launches-bitcoin-initiative/
http://peercoin.net/assets/paper/peercoin-paper.pdf
http://www.washingtonpost.com/blogs/the-switch/wp/2013/11/21/heres-how-bitcoin-charmed-washington/
http://www.washingtonpost.com/blogs/the-switch/wp/2013/11/21/heres-how-bitcoin-charmed-washington/
http://finance.fortune.cnn.com/2014/01/21/bitcoin-platform/
http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/
http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/
https://bitcointalk.org/index.php?topic=47417.0
http://online.wsj.com/news/articles/SB10001424052702304439804579205740125297358
http://online.wsj.com/news/articles/SB10001424052702304439804579205740125297358
https://en.bitcoin.it/wiki/Weaknesses#Denial_of_Service_.28DoS.29_attacks
https://en.bitcoin.it/wiki/Network

A Additional machinery for the random oracle model

Consider an algorithm A running in time t̂ and look at his calls to the random oracles inHκ during his execution.
Call an execution canonical if it never happened that a malicious prover “guessed” an output of any random
oracle. More formally, an execution is canonical if for every λ ∈ Λ and every call q to Hκ

λ equal to (w, v) ∈
{0, 1}κ × {0, 1}κ or w ∈ {0, 1}κ it is never the case that A receives v or w from Hκ

λ′ (for some possibly different
λ′ ∈ Λ) after he issues q . We now have the following.

Lemma 7. For every A running in time t̂ the probability that the execution of A is not canonical is at most
2t̂2 · 2−κ.

Proof. Consider a value u ∈ {0, 1}κ that A received from any Hλ′ on some query q. Since we assumed that A
never queries Hλ′ more than once on q, thus before A received H(q), it appeared uniform to him. Therefore the
probability that A earlier queried H on u, (w, u) or (u,w) (for some w ∈ {0, 1}κ) is at most 2t̂ · 2−κ. Since A
issues at most t̂ oracle queries hence (by the union bound) we get that the probability that the execution of A is
not canonical is at most 2t̂2 · 2−κ. ut

Suppose every Hλ is of a type H : {0, 1}∗ → {0, 1}κ. Call an execution collision-free if it never happened that
there were two different calls q and q′ to Hλ (for some λ ∈ Λ) such that Hλ(q) = Hλ(q

′).

Lemma 8. For every A running in time t̂ the probability that the execution of A is not collision-free is at most
t̂2 · 2−κ.

Proof. For every output w of Hλ the probability that it was output already to some earlier call is at most t̂ · 2−κ.
Thus, the probability that this happens for some output w is at most t̂2 · 2−κ. ut

B Proof of Lemma 1

Proof. Without loss of generality assume that A also queries the oracle on r. Now, suppose his execution was
canonical and collision-free. This means that he also had to query the oracle on both children of the root ofMHκc
(i.e. onMHκc (0),MHκc (1), and then, recursively, on children of every node on the path from the root to λi. Hence
in this caseAmade all the queries that are needed by the verification algorithm MVrfyH

κ
(vi, i, p, w). This finishes

the proof, since, by Lemmas 7 and 8 the probability that the execution was either not canonical or not collision-free
is at most 3t̂2 · 2−κ. ut

C Proof of Lemma 2

The prover complexity of (Pκ,αt ,Vκ,αt) is equal to the number of nodes of Merkleκt,c, and hence it is equal to t. The
verifier complexity is equal to the number of nodes in eachM′i times α, and hence it is equal to α · dlog2 te. ut

D Proof of Lemma 3

Consider a malicious prover P̂ running in total time t̂0 and in time t̂1 after he received some c ∈ {0, 1}κ, and look
at his calls to the random oracles during his execution. Consider the labeled tree M that P̂ sends to the verifier. Of
course, every “reasonable” P̂ would check himself the conditions that the verifier checks in Step 2, as otherwise
his probability of guessing the correct labels are very small. In the proof, however, we need to consider all possible
strategies of P̂, and hence we also need to take into account the case when he behaves in an unreasonable way.
To make it formal, we say that an execution of P̂ is normal if the tree T that he sends to V is such that during the
execution P̂ issued all the oracle queries that V issues in Step 2. We now have the following.

Lemma 9. If an execution of P̂ is not normal then the probability that V outputs true is at most 2−κ.

21

Proof. If P̂ never issued a query that will be issued during the verification process, then the only thing he can
do is try to guess it. Since the outputs of the random oracle are distributed uniformly, thus the probability that he
guesses correctly is at most 2−κ. Hence Lemma 9 is proven. ut

Lemma 10. Assume the execution of P̂ on some c ∈ {0, 1}k was canonical and collision-free (cf. Appendix A)
and normal. Then the probability that P̂(c) convinces the verifier V is at most t̂1((t̂1 + 1)/t)α.

Proof. Let Q denote the set of queries of a type (L,R) that P̂(c) ever made to the random oracle Hκ
ε (where ε is

the root of the tree). Clearly |Q| ≤ t̂1. Fix some q ∈ Q and define recursively a labeled binary tree U (of depth at
most dlog2 te) as follows:

– the root ε to U has a label Hκ(q),
– for every node of U with a label w:
• if during the execution there was a call (L,R) to Hκ

λ whose outcome was w then add to U nodes (λ||0)
and (λ||1) with labels L and R (resp.),
• if during the execution there was a call L to Hκ

λ whose outcome was w then add to U a nodes (λ||0) with
labels L.

Since we assumed that the execution is canonical and collision-free thus each value w appears at most once as an
output of an oracle. Therefore the binary tree U is defined uniquely for every q. Let Σ = {σ1, . . . , σm} denote the
leaves of U . Since U is a binary tree, hence its total number of nodes is at least equal to 2 ·m− 1. It is also easy
to see, that, since the execution is canonical, thus all the calls to Hκ that were issued during the construction of U
were made after P̂ learned c). Therefore the total number of nodes in U is at most t̂1, and thus we obtain:

m ≤ (t̂1 + 1)/2 (1)

The fixed query q ∈ Q also determines the input Hκ(q) to the oracle G, and, in turn, G’s output (λ1, . . . , λα) :=
G(Hκ(q)). For i = 1, . . . , d let Xi denote the event that λi ∈ Σ. Since the execution is canonical Σ had to be
chosen before the query q was sent to Hκ, and thus the choice of Σ is independent from (λ1, . . . , λα). Therefore
the events X q1 , . . . ,X

q
α are independent. Moreover, since the outputs of the random oracle are uniform, hence for

every i the probability of X qi is equal to the cardinality m of |Σ| divided by the total number dt/2e ≥ t + 1 of
leaves in Merkleκt,c. Therefore, by (1), it is at most (t̂1 + 1)/t. Let X q denote the event that for every i we have
λi ∈ Σ, i.e. X q := ∧αi=1X

q
i . From the independence of X qi ’s we get that

P (X q) ≤ ((t̂1 + 1)/t)α

Let X denote the sum of events X q over all q ∈ Q. There are clearly at most t̂1 such q’s. Therefore, from the
union bound we have P (X) = t̂1((t̂1 + 1)/t)α. If X did not happen then for every q ∈ Q the malicious prover
does not know the label of at least one leaf λi ∈ Hκ(q). Thus, since we assumed that the execution is normal,
he cannot send any tree T to V that would convince him. Hence the total probability of P̂ succeeding is at most
t̂1((t̂1 + 1)/t)α. This finishes the proof of Lemma 10. ut

We now go back to the proof of Lemma 3. Since, by Lemmas 7 and 8 (in Appendix A) and Lemma 9 the total
probability that an execution is either not normal or not collision-free or not cannonism is at most (3t̂2+1) ·2−κ. If
this did not happen, then by Lemma 10 the malicious prover convinces V with probability at most t̂1((t̂1+1)/t)α.
Altogether, this probability is bounded by (3t̂2 + 1) · 2−κ + t̂1((t̂1 + 1)/t)α. ut

E Proof of Lemma 4

First observe that the honest parties have enough time to perform all the computations that the protocol requires
them to perform. Clearly, this is true for the “challenges” and the “Proof of Work” phases. To see why it holds
for the “key ranking phase” observe that the honest parties send exactly n messages in each round, and therefore
altogether there are θ messages delivered to each party in every interval. Therefore each party has to compute at

22

most θ times the V function, which altogether takes θ · timeV steps, which take real time (θ · timeV)/π. This is
exactly the time we have given to every Pi to compute it.

The key generation property is satisfied trivially since the secret keys ski of the honest parties are never used in
the protocol. It is also easy to see that if two parties Pi and Pj are honest then the message (Key0, pki, A

`+2
i ,Soli)

will always be accepted in interval 0 of the “key ranking” phase, and hence the validity property holds.

To see why the consistency property holds assume that k = ranki(pk) < ` for some pk. This means that
Pi received a message (Keyk, pk, B0, . . . , Bk+1,Sol) in interval k of the “key ranking” phase, and she accepted
this pk. Hence, she sent the message (Keyk+1, pk, A`+1, B1, . . . , Bk,Sol) to Pj , and it was received by Pj in the
(k+1)st interval of the key ranking phase. If Pj already accepted pk in some earlier interval then rankj(pk) ≤ k,
and hence we are done. Suppose it was not the case. Then Pj , in order to accept pk checks exactly the same
conditions as Pi plus the condition that F (A`+1−κ

j) ≺ A`+2−κ
i . It is easy to see that this condition has to hold,

since an honest Pi always adds the challenge F (A`+1−κ
j) (sent to him by an honest Pj in the “challenges phase”)

to A`+2−κ
i .

What remains is to prove the bounded creation of identities property. To see why it holds observe that each
party Pi accepts a public key pk if it comes with a proof of work computed on F (pk, Bk+1), and a sequence
B1, . . . , Bk+1, such that for every i we have F (Bi) ≺ Bi+1. Because of this, clearly, F (pk, Bk+1) is uni-
formly random to everybody (including the adversary) before a query B1 is made to F . Party Pi also checks
if F (A`+2−k

i) ≺ Bi, where F (A`+2−k
i) is Pi’s challenge from the (`+ 2− k)th interval. Since this challenge

needs to be a function of Pi’s’ challenge c0i from the 0th interval, hence before the protocol started it was uniform
from the point of view of the adversary. Hence, altogether, F (pk, Bk+1) was uniform from A’s point of view
before the protocol started. Hence, for each pk the adversary had to invest some number of computing steps, let I
denote the set of those pk’s where he worked for at least ξtimeP steps, where

ξ :=
1 + π/(2πA)

1 + π/πA
.

Since ξ is a constant and is smaller than 1, thus (by Corollary 1) with overwhelming probability he will only
manage to create to identities from the set I . Hence, what remains is to give a bound on |I|. Let us look at the total
time T that the execution of the protocol takes. The “challenges phase” takes (`+2)∆ time. The “proof-of-work”
phase takes timeP/π time, and the “key ranking phase” takes (`+1)(∆+(θ · timeV)/π) time. Summing it up we
obtain

T ≤ (`+ 2)∆+ timeP/π + (`+ 2)(∆+ (θ · timeV)/π)

= timeP/(κ
2π) + timeP/π + timeP/(κ

2π) + (`+ 2) · θ · timeV/π (2)

= (1 + 2/κ2) · timeP/π + (`+ 2) · θ · timeV/π

= (1 + 2/κ2) · timeP/π + (timeP/(κ
2 ·∆ · π)) · θ · timeV/π (3)

=
timeP
π
·
(
1 +

2 + θ · timeV/(∆ · π)
κ2

)
=

timeP
π
·
(
1 +

2

κ2
+
θ · log timeP
κ ·∆ · π︸ ︷︷ ︸

ε(κ):=

)
(4)

=
timeP
π
· (1 + ε(κ)), (5)

23

where (2) and (3) come from the fact that timeP = κ2 · (`+ 2) ·∆ · π, and (4) comes from the fact that timeV =
κ log timeP. We get that

|I| ≤ timeP · πA
π

· (1 + ε(κ))/(ξ · timeP) (6)

=
πA
π
· (1 + ε(κ)) · 1 + π/πA

1 + π/(2πA)
(7)

=
(πA
π

+ 1
)
· 1 + ε(κ)

1 + π/(2πA)
. (8)

Since log timeP = 2 log κ + log(` + 2) + log π thus ε(κ) → 0. Hence for sufficiently large κ the value of (8) is
smaller than πA/π + 1, and hence, since it is an integer, it has to be at most dπA/πe. ut

F Proof of Lemma 5

We consider the execution of each RankedBroadcastκ(d) separately. The “validity” property follows simply from
the description of the protocol. Each honest party Pi receives in the first round the message (v,Signpkd(v, pkd)),
so she sets Zdi = {v}, where v is the value the dealer wants to broadcast. Note that an honest party will never
accept a message with a different value, because the value has to be signed by the dealer, what implies that at the
end of the protocol Zdi = {v} for each honest Pi and hence each honest party outputs v.

To prove the “consistency” consider for a moment a slightly simplified version of the RankedBroadcast pro-
tocol, namely one with the condition |Zdi | < 2 omitted. We will now prove that in this simplified version at the
end of the protocol it holds that Zdi = Zdj for any two honest Pi, Pj at the end of the protocol. To this end consider
an arbitrary v ∈ Zdi . We will prove that v ∈ Zdj . Suppose that Pi added v to Zdi during kth round. Consider two
cases:

– k < `. It means that Pi sent a message

(v,Signpka1
(v, pkd), . . . ,Signpkak

(v, pkd),Signpki(v, pkd))

to Pj at the end of kth round and it was received by Pj in the (k + 1)st round. Pj will accept this message as
all conditions are satisfied (or it already had been that v ∈ Zdj), namely:
• Conditions (1)) and (2)) are trivially satisfied.
• It holds that ranki(aq) < k for any 1 ≤ q ≤ k, because otherwise Pi would have not accepted the message

containing the value v in the k-th round. Therefore, from the definition of ranked key sets we have that
rankj(aq) < k + 1 for any 1 ≤ q ≤ k. Moreover, rankj(pki) = 0, because Pi is honest. Hence, condition
(3)) is satisfied.
• If the condition (4)), namely v 6∈ Zdj is not satisfied than we already have that v ∈ Zdj .

Hence, either Pj accepted this message and added v to Zdj at (k + 1)-st round or it was already true that
v ∈ Zdj .

– k = `. It means that Pi received a message with a signatures of ` different parties on the value v. Obviously
we can assume that at least one party is honest (as otherwise n = 0 and the protocol is secure trivially). Since
there are at most ` identities created by the RankedKeys protocol, thus at least one of these signatures comes
from an honest party. Therefore, this honest party added this value to her set in one of the previous rounds
and sent a message with the value v to all other parties. Note that messages sent by honest parties are always
accepted by other honest parties (cf. analysis from the previous point), so the message with this value was
accepted by all honest parties.

Hence, in both cases it is true that v ∈ Pj and therefore at the end of the protocol each party has the same value of
the set Zdi and outputs the same value.

The condition v ∈ Zdi is added to the RankedBroadcast protocol merely for the efficiency reasons, as it puts
down the number of the messages exchanges by the parties down to O(n2). Assume that at some point of the

24

protocol it holds that Zdi = {a, b} for some honest Pi and some a, b. Hence, Pi does not have to broadcast any
messages with values other than a and b, because already we know that during the execution of the protocol each
honest Pj will accept the message with values a and b unless it already had accepted some other two values.
Therefore, in this case each honest party outputs ⊥.

The “bounded creation of inputs” property comes from the “bounded creation of identities” property of the
RankedKeys protocol (as clearly the size of each Yi that is output by Pi cannot be larger than his set Ki).

ut

G Proof of Lemma 6

The “key-generation” property holds trivially since the secret keys ski are generated using Gen and are never used
for signing messages. The “consistency” property holds since the output of each Pi is a deterministic function of
K (that has the same value for every Pi).

Suppose n, π and πA are such that dπA/πe < n. Since the broadcast protocol has the “bounded creation of
inputs” property, thus m ≤ n+ dπA/πe. Hence n > m/2, and therefore if k ∈ K then for at least one Pi we have
rank(k) = 0. By the “bounded creation of identities” property of the RankedKeys protocol the set of such k’s is
at most n+ dπA/πe thus the HonestMajκ protocol satisfies “bounded generation of identities” property.

It is also easy to that every pki belongs to at least n sets in the family K (since rankj(k) = 0 for every Pj).
Since n > m/2 thus such pki ∈ K. This shows the “validity” property. ut

25

	Distributed Cryptography Based on the Proofs of Work
	-.8truecm

