Verifiable Random Functions from Weaker Assumptions

Tibor Jager
Horst Görtz Institute for IT Security
Ruhr-University Bochum
tibor.jager@rub.de

Abstract

Constructing a verifiable random function (VRF) with large input space and full adaptive security from a static complexity assumption, like decisional Diffie-Hellman for instance, has proven to be a challenging task. To date it is not even clear that such a VRF exists. Most known constructions either allow only a small input space of polynomially-bounded size, or do not achieve full adaptive security under a static complexity assumption.

The only known constructions without these restrictions are based on non-static, so-called " q-type" assumptions, which are parametrized by an integer q. Since q-type assumptions get stronger with larger q, it is desirable to have q as small as possible. In current constructions q is a polynomial (Hohenberger and Waters, Eurocrypt 2010) or at least linear (Boneh et al., CCS 2010) in the security parameter.

We construct a relatively simple and efficient verifiable random function, based on a q-type assumption where q is only logarithmic in the security parameter. We also describe a verifiable unpredictable function from a similar, but weaker assumption. Both constructions have full adaptive security and large input spaces.

1 Introduction

Verifiable random functions. Verifiable random functions can be seen as the public-key equivalent of pseudorandom functions. Each function $V_{s k}$ is associated with a secret key $s k$ and a corresponding public verification key $v k$. Given $s k$, an element X from the domain of $V_{s k}$, and $Y=V_{s k}(X)$, is possible to create a non-interactive, publicly verifiable proof π that Y was computed correctly. For security, unique provability is required. This means that for each X only one unique value Y such that the statement " $Y=V_{s k}(X)$ " can be proven may exist. Note that unique provability is a very strong requirement: not even the party that creates $s k$ (possibly maliciously) may be able to create fake proofs. These additional features should not affect the pseudorandomness of the function on other inputs.

Their strong properties make VRFs useful for applications like resettable zero-knowledge proofs [MR01], lottery systems [MR02], transaction escrow schemes [JS04], updatable zero-knowledge databases [Lis05], or e-cash [ASM07, BCKL09].

The difficulty of constructing VRFs. In particular the unique provability requirement makes it very difficult to construct verifiable random functions. For instance, the natural attempt of combining a pseudorandom function with a non-interactive zero-knowledge proof system fails, since zero-knowledge proofs are inherently simulatable, which contradicts uniqueness. More generally, any reduction which attempts to prove pseudorandomness of a candidate construction faces the following problem.

- On the one hand, the reduction must be able to compute the unique function value $Y:=V_{s k}(X)$ for preimages X selected by the attacker, along with a proof of correctness π. Due to the unique provability, there exists only one unique value Y such that the statement " $Y=V_{s k}(X)$ " can be proven, thus the reduction is not able to "lie" by outputting false values \tilde{Y}.
Note that this stands in contrast to typical reductions for pseudorandom functions, like the NaorReingold construction [NR97] for instance, where due to the absence of proofs the reduction may be able to output incorrect values.
- On the other hand, the reduction must not be able to compute $Y^{*}:=V_{s k}\left(X^{*}\right)$ for a particular X^{*}, as it must be able to use an attacker that distinguishes Y^{*} from random to break a complexity assumption.

Most previous works [MRV99, Lys02, Dod03, DY05, ACF09] constructed VRFs with only small input spaces of polynomially-bounded size. ${ }^{1}$ The only two exceptions are due to Hohenberger and Waters [HW10] and Boneh et al. [BMR10], who constructed verifiable random functions with full adaptive security that allow an input space of exponential size.

VRFs with large input spaces. Hohenberger and Waters [HW10] provided the first fully-secure VRF with exponential-size input space. Security is proven under a q-type assumption, where an algorithm receives as input a list of group elements

$$
\left(g, h, g^{x}, \ldots, g^{x^{q-1}}, g^{x^{q-1}}, \ldots, g^{x^{2 q}}, T\right) \in \mathbb{G}^{2 q+1} \times \mathbb{G}_{T}
$$

where $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$ is a bilinear map. The assumption is that no efficient algorithm is able to distinguish $T=e(g, h)^{x^{\ell}}$ from a random group element with probability significantly better than $1 / 2$. The proof given in [HW10] requires that $q=\Theta(Q \cdot k)$, where k is the security parameter and Q is the number of function evaluations $V_{s k}(X)$ queried by the attacker in the security experiment. Note that in particular Q can be very large, as it is only bounded by a polynomial in the security parameter.

The construction of Boneh et al. [BMR10] is based on the assumption where the algorithm receives as input a list of group elements

$$
\left(g, h, g^{x}, \ldots, g^{x^{q}}, T\right) \in \mathbb{G}^{q+2} \times \mathbb{G}_{T}
$$

and the algorithm has to distinguish $T=e(g, h)^{1 / x}$ from random. The proof in [BMR10] requires $q=$ $\Theta(k)$. Is it possible to construct VRFs with large input and full adaptive security from weaker q-type assumptions?

Our contribution. We construct verifiable random functions with exponential-size input space, full adaptive security, and based on a q-type assumptions for very small q. More precisely, $q=O(\log (Q / \delta))=$ $O(\log k)$ depends only logarithmically on the product of the number Q of function evaluations queried by the attacker and the inverse of the advantage δ of the attacker, which is a polynomial in the security parameter. We also construct a verifiable unpredictable function, which in combination with a Goldreich-Levin hard-core predicate [GL89] also gives rise to a VRF [MRV99].

In terms of efficiency, our constructions are slightly less efficient than (but within the same order of magnitude as) the constructions of Lysyanskaya [Lys02], Hohenberger and Waters [HW10], and Abdalla et al. [ACF09], and Boneh et al. [BMR10].

[^0]As a technical tool, we introduce the notion of balanced admissible hash functions (balanced AHFs), which are standard admissible hash functions [BB04] with an extra property (cf. Section 4.1 and the explanations therein), and may be useful for applications beyond VRFs. We show how to construct balanced AHFs from codes with suitable minimal distance.

Our approach. Let $\mathbb{G}, \mathbb{G}_{T}$ be groups with bilinear map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$, and let $C:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ be a hash function. We construct a VRF with domain $\{0,1\}^{k}$ and range \mathbb{G}_{T}. The verification key of our VRF consists of C along with $2 n+2$ random elements of \mathbb{G}

$$
v k=\left(g, h,\left(h_{i, j}\right)_{(i, j) \in[n] \times\{0,1\}}\right)
$$

The secret key consists of the discrete logarithms $\alpha_{i, j}$ such that $g^{\alpha_{i, j}}=h_{i, j}$ for $(i, j) \in[n] \times\{0,1\}$.
The function is evaluated on input $X \in\{0,1\}^{k}$ by first computing the hash $\left(C_{1}, \ldots, C_{n}\right):=C(X)$, then $\alpha_{X}:=\prod_{i=1}^{n} \alpha_{i, C_{i}}$, and finally setting

$$
V_{s k}(X):=e(g, h)^{\alpha_{X}}
$$

A proof that $V_{s k}(X)=e(g, h)^{\alpha_{X}}$ consists of group elements $\left(\pi_{1}, \ldots, \pi_{n}\right)$ where $\pi_{i}:=\pi_{i-1}^{\alpha_{i, C_{i}}}$ for $g_{0}:=g$ and $i \in[n]$. Correctness of proofs is verified with the bilinear map.

Note the similarity of this construction to the VRFs of [Lys02, ACF09, HW10]. The major difference lies in the security proof, more precisely, in the way how a given challenge of the q-type assumption is embedded into the view of a VRF-attacker. We prove security under the assumption that given

$$
\left(g, h, g^{x}, \ldots, g^{x^{q}}, T\right)
$$

it is hard to distinguish $T=e(g, h)^{x^{q+1}}$ from random. We call this the $q \mathrm{DDH}$-assumption.
A q DDH-challenge is embedded into the view of the attacker by setting

$$
h_{i, j}:=g^{x+\alpha_{i, j}}
$$

where $\alpha_{i, j} \stackrel{\&}{\leftarrow} \mathbb{Z}_{|\mathbb{G}|}$ is a random blinding term, but only for certain, carefully selected indices (i, j). More precisely, we require that C is instantiated with a code-based, admissible hash function [FHPS13a]. The properties of this specific type of admissible hash function allow us to embed g^{x} into only $O(\log k)$ values $h_{i, j}$, such that with sufficiently high probability we have that

- For all values X such that the VRF-attacker queries $V_{s k}(X)$ along with proof $\left(\pi_{1}, \ldots, \pi_{n}\right)$ we have

$$
\begin{equation*}
V_{s k}(X)=e\left(g^{\prod_{i=0}^{q} \gamma_{i} x^{i}}, h\right) \quad \text { and } \quad \pi_{j}=g^{\prod_{i=0}^{q} \gamma_{j, i} x^{i}} \quad \forall 1 \leq j \leq n \tag{1}
\end{equation*}
$$

where the γ_{i} and $\gamma_{j, i}$ are integers in $\mathbb{Z}_{|\mathbb{G}|}$ which are known to the reduction. Note that the polynomials in the exponent of Equations (1) have degree at most q, thus $V_{s k}(X)$ and π_{1}, \ldots, π_{n} can be computed, given the values $\left(g, g^{x}, \ldots, g^{x^{q}}\right)$ from the q DDH challenge and the integers $\gamma_{i}, \gamma_{j, i}$.

- For the value X^{*} such that the attacker attempts to distinguish $V_{s k}\left(X^{*}\right)$ from random, the reduction is able to compute integers γ_{i} such that

$$
Y^{*}=e\left(g^{\prod_{i=0}^{q} \gamma_{i} x^{i}}, h\right) \cdot T^{\gamma_{q+1}}
$$

such that if $T=e(g, h)^{x^{q+1}}$ then it holds that $Y^{*}=V_{s k}\left(X^{*}\right)$. Note that if T is random, then so is Y^{*}.

The main advantage of this approach is that, due to the properties of the admissible hash function, it suffices to have $q=O(\log k)$.

In order to prove that the above construction is a secure verifiable unpredictable function, we can instantiate the above construction with the code-based admissible hash function from [FHPS13a]. However, in order to prove that the above construction also forms a verifiable random function, we need the stronger properties of balanced AHFs (which are constructed in this paper) to make the analysis of the success probability of the reduction go through.

More related work. VRFs were introduced by Micali, Rabin, and Vadhan [MRV99], along with verifiable unpredictable functions (VUFs), a generic conversion from VUFs to VRFs based on Goldreich-Levin hardcore predicates [GL89], and a VUF-construction (with small input space) based on the RSA assumption. Specific, number-theoretic constructions of VRFs can be found in [MRV99, Lys02, Dod03, DY05, ACF09, HW10, BMR10]. Abdalla et al. gave generic constructions of VRFs from so-called VRF-suitable identitybased KEMs [ACF09].

Brakerski et al. [BGRV09] introduced the relaxed notion of weak VRFs, along with simple and efficient constructions, and proofs that neither VRFs, nor weak VRFs can be constructed (in a black-box way) from one-way permutations. Fiore and Schröder [FS12] proved that verifiable random functions are not even implied (in a black-box sense) by trapdoor permutations. Several works introduced related primitives, like simulatable VRFs [CL07] and constrained VRFs [Fuc14].

At Eurocrypt 2006 Cheon [Che06] described an algorithm, which computes the discrete logarithm x on input $\left(g, g^{x}, \ldots, g^{x^{q}}\right)$. This algorithm is faster by a factor of \sqrt{q} than generic algorithms for the standard discrete logarithm problem where only $\left(g, g^{x}\right)$ is given. This shows that q-type assumptions are particularly problematic when q is large. The security loss must be compensated with larger group parameters, at the cost of efficiency.

We stress that Cheon's algorithm is only much faster than generic algorithms for the standard discrete logarithm problem if q is very large (say, $q=2^{50}$). However, Cheon's algorithm gives no apparent reason to criticise q-type assumptions for small q, like $1 \leq q \leq 100$.

On avoiding q-Type assumptions altogether. Chase and Meiklejohn [CM14] present a conversion that allows to replace q-type assumption in certain applications with a static (that is, not q-type) subgroup hiding assumption, by leveraging the dual-systems techniques of Waters [Wat09]. It is natural to ask whether these techniques can be used to construct verifiable random functions from static assumptions. Unfortunately, the conversion of [CM14] requires to add randomization. Thus, when applying it to known VRF constructions like [DY05], then this contradicts the unique provability requirement. Accordingly, Chase and Meiklejohn were able to prove that the VRF of Dodis and Yampolski [DY05] forms a secure pseudorandom function under a static assumption, but not that it is a secure verifiable random function.

We leave the construction of a verifiable random function with large input space and full adaptive security from a static assumption, like Decisional Diffie-Hellman, as an open problem.

2 Preliminaries

Notation. For a vector $K \in\{0,1\}^{n}$ we write K_{i} to denote the i-th component of K. If A is a finite set, then $a \stackrel{\&}{\leftarrow} A$ denotes the action of sampling a uniformly random from A. If A is a probabilistic algorithm,

Initialize :	Evaluate (X) :	Challenge (X^{*}) :
$b \stackrel{s}{\leftarrow}\{0,1\}$	$(Y, \pi) \stackrel{\&}{\leftarrow} \mathrm{Eval}(s k, X)$	$\left(Y_{0}, \pi\right) \stackrel{\&}{\leftarrow} \mathrm{Eval}\left(s k, X^{*}\right)$
$(v k, s k) \stackrel{\&}{\leftarrow} \operatorname{Gen}\left(1^{k}\right)$	Return (Y, π)	$Y_{1} \stackrel{\&}{\leftarrow} \mathcal{Y}$
Return $v k$		Return Y_{b}

Finalize ${ }^{\text {VUF }}\left(X^{*}, Y^{*}\right)$:	Finalize ${ }^{\text {VRF }}\left(b^{\prime}\right)$
$(Y, \pi) \stackrel{\&}{\leftarrow} \operatorname{Eval}\left(s k, X^{*}\right)$	If $b^{\prime}=b$ then
If $Y^{*}=Y$ then	Return 1
Return 1	Else Return 0
Else Return 0	

Figure 1: Procedures defining the security experiments for VUFs and VRFs.
then we write $a \stackrel{\&}{\leftarrow} A$ to denote the action of computing a by running A with uniformly random coins. We define $[n]:=\{1, \ldots, n\} \subset \mathbb{N}$ as the set of all positive integers up to n.

2.1 Verifiable Unpredictable/Random Functions

Let (Gen, Eval, Vfy) be the following algorithms.

- Algorithm $(v k, s k) \stackrel{\&}{\leftarrow} \operatorname{Gen}\left(1^{k}\right)$ takes as input a security parameter k and outputs a key pair $(v k, s k)$. We say that $s k$ is the secret key and $v k$ is the verification key.
- Algorithm $(Y, \pi) \stackrel{\&}{\leftarrow} \operatorname{Eval}(s k, X)$ takes as input secret key $s k$ and $X \in\{0,1\}^{k}$, and outputs a function value $Y \in \mathcal{Y}$, where \mathcal{Y} is a finite set, and a proof π. We write $V_{s k}(X)$ to denote the function value Y computed by Eval on input ($s k, X$).
- Algorithm $\operatorname{Vfy}(v k, X, Y, \pi) \in\{0,1\}$ takes as input verification key $v k, X \in\{0,1\}^{k}, Y \in \mathcal{Y}$, and proof π, and outputs a bit.

Definition 1. We say that (Gen, Eval, Vfy) is a verifiable random function (VRF) if all the following properties hold.

Correctness. Algorithms Gen, Eval, Vfy are polynomial-time algorithms, and for all $(v k, s k) \stackrel{\&}{\leftarrow} \operatorname{Gen}\left(1^{k}\right)$ and all $X \in\{0,1\}^{k}$ holds: if $(Y, \pi) \stackrel{\&}{\leftarrow} \operatorname{Eval}(s k, X)$, then $\operatorname{Vfy}(v k, X, Y, \pi)=1$.

Unique provability. For all $(v k, s k) \stackrel{\&}{\leftarrow} \operatorname{Gen}\left(1^{k}\right)$ and all $X \in\{0,1\}^{k}$, there does not exist any tuple $\left(Y_{0}, \pi_{0}, Y_{1}, \pi_{1}\right)$ such that $\mathrm{Vfy}\left(v k, X, Y_{0}, \pi_{0}\right)=\mathrm{Vfy}\left(v k, X, Y_{1}, \pi_{1}\right)=1$.

Pseudorandomness. Consider an attacker \mathcal{A} with access (via oracle queries) to the procedures defined in Figure 1. Let $G_{\text {VRF }}^{\mathcal{A}}$ denote the game where \mathcal{A} first queries Initialize, then Challenge, then Finalize ${ }^{\text {VRF }}$, where the output of Finalize ${ }^{\mathrm{VRF}}$ is the output of the game. Moreover, \mathcal{A} may issue an arbitrary number of Evaluate-queries in arbitrary order, but only after querying Initialize and
Initialize ${ }^{q \mathrm{CDH}}:$
$g, h \stackrel{\&}{\leftarrow} \mathbb{G} ; x \stackrel{\&}{\leftarrow} \mathbb{Z}_{|\mathbb{G}|}$
Return $\left(g, g^{x}, \ldots, g^{x^{q}}, h\right)$
Finalize $^{q \mathrm{CDH}}(T):$
If $T=e\left(g^{x^{q+1}}, h\right)$ then Return 1
Else Return 0
$\frac{\text { Initialize }^{q \mathrm{DDH}}:}{g, h \stackrel{\&}{\leftarrow} \mathbb{G} ; x \stackrel{\&}{\leftarrow} \mathbb{Z}_{|\mathbb{G}|} ; b \stackrel{\$}{\leftarrow}\{0,1\}}$
$T_{0}:=e(g, h)^{x^{q+1}}, T_{1} \stackrel{\&}{\leftarrow} \mathbb{G}_{T}$
Finalize ${ }^{q \mathrm{DDH}}\left(b^{\prime}\right)$:
If $b^{\prime}=b$ then Return 1
Return $\left(g, g^{x}, \ldots, g^{x^{q}}, h, T_{b}\right)$

Figure 2: Procedures defining the q-Diffie Hellman assumptions.
before querying Finalize ${ }^{\text {VRF }}$. We say that \mathcal{A} is legitimate, if \mathcal{A} never queries $\operatorname{Evaluate}(X)$ and Challenge (X^{*}) with $X=X^{*}$ throughout the game.
We define the advantage of \mathcal{A} in breaking the pseudorandomness of $\mathcal{V} \mathcal{F}$ as

$$
\operatorname{Adv}_{\mathcal{A}}^{\operatorname{VRF}}(k):=2 \cdot \operatorname{Pr}\left[G_{\mathrm{VUF}}^{\mathcal{A}}=1\right]-1
$$

Definition 2. We say that (Gen, Eval, Vfy) is a verifiable unpredictable function (VUF) if the correctness and unique provability properties from Definition 1 hold, and we have:

Unpredictability. Consider an attacker \mathcal{A} with access (via oracle queries) to the procedures defined in Figure 1. Let $G_{\mathrm{VUF}}^{\mathcal{A}}$ denote the game where \mathcal{A} first queries Initialize, then an arbitrary number of Evaluate-queries, then Finalize ${ }^{\text {VUF }}$, and the output of Finalize ${ }^{\text {VUF }}$ is the output of the game. We say that \mathcal{A} is legitimate, if \mathcal{A} never queries $\operatorname{Evaluate}(X)$ and Challenge $\left(X^{*}\right)$ with $X=X^{*}$ throughout the game.
We define the advantage of \mathcal{A} in breaking the unpredictability of $\mathcal{V F}$ as

$$
\operatorname{Adv}_{\mathcal{A}}^{\operatorname{VUF}}(k):=\operatorname{Pr}\left[G_{\mathrm{VUF}}^{\mathcal{A}}=1\right]
$$

$2.2 q$-Diffie-Hellman Assumptions

In the sequel let $\mathbb{G}, \mathbb{G}_{T}$ begroups of prime order, with bilinear map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_{T}$.
Definition 3. Let $G_{\mathcal{B}}^{q C D H}$ be the game with \mathcal{B} and the procedures defined in Figure 2, where \mathcal{B} first calls Initialize ${ }^{q \mathrm{CDH}}$ and then Finalize ${ }^{q \mathrm{CDH}}$, and the output of Finalize $^{q \mathrm{CDH}}$ is the output of the game. We denote with

$$
\operatorname{Adv}_{\mathcal{B}}^{q \mathrm{CDH}}(k):=\operatorname{Pr}\left[G_{\mathcal{B}}^{q \mathrm{CDH}}=1\right]
$$

the advantage of \mathcal{A} in breaking the $q \mathrm{CDH}$-assumption in $\left(\mathbb{G}, \mathbb{G}_{T}\right)$.
Definition 4. Let $G_{\mathcal{B}}^{q D D H}$ be the game with \mathcal{B} and the procedures defined in Figure 2, where \mathcal{B} first calls Initialize ${ }^{q \mathrm{DDH}}$ and then Finalize $^{q \mathrm{DDH}}$, and the output of Finalize $^{q \mathrm{DDH}}$ is the output of the game. We denote with

$$
\operatorname{Adv}_{\mathcal{B}}^{q \mathrm{DDH}}(k):=2 \cdot \operatorname{Pr}\left[G_{\mathcal{B}}^{q \mathrm{DDH}}=1\right]-1
$$

the advantage of \mathcal{A} in breaking the $q \mathrm{DDH}$-assumption in $\left(\mathbb{G}, \mathbb{G}_{T}\right)$.

3 Main Construction

Let $\mathbb{G}, \mathbb{G}_{T}$ be groups of prime order with bilinear map $e: \mathbb{G}_{\times} \mathbb{G} \rightarrow \mathbb{G}_{T}$, such that each group element has a unique representation, and that group membership can be tested efficiently.

In the sequel let $C:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ be a hash function. We describe algorithms $\left(\right.$ Gen $_{C}$, Eval $_{C}$, Vfy $\left._{C}\right)$ which depend on hash function C. We will require different properties of C, depending on whether we prove that $\mathcal{V} \mathcal{F}_{C}$ is a verifiable random function, or that $\mathcal{V} \mathcal{F}_{C}$ is a verifiable unpredictable function.

Let $\mathcal{V} \mathcal{F}_{C}=\left(\right.$ Gen $_{C}$, Eval $\left._{C}, \mathrm{Vfy}_{C}\right)$ be the following construction.
Generation. Algorithm Gen $\left(1^{k}\right)$ chooses two random generators $g, h \stackrel{\&}{\leftarrow} \mathbb{G}$. Then it computes $h_{i, j}:=g^{\alpha_{i, j}}$, where $\alpha_{i, j} \stackrel{\&}{\leftarrow} \mathbb{Z}_{|\mathbb{G}|}$ and for $(i, j) \in[n] \times\{0,1\}$. The keys are defined as

$$
v k:=\left(C, g, h,\left(h_{i, j}\right)_{(i, j) \in[n] \times\{0,1\}}\right) \quad \text { and } \quad s k:=\left(\alpha_{i, j}\right)_{(i, j) \in[n] \times\{0,1\}}
$$

Evaluation. On input $X \in\{0,1\}^{k}$, algorithm Eval $(s k, X)$ first computes $C(X)$. For $i \in[n]$ let $C(X)_{i}$ denote the i-th bit of $C(X) \in\{0,1\}^{n}$. Then the algorithm determines the function value and proof by computing $a_{X}:=\prod_{i=1}^{n} \alpha_{i, C(X)_{i}}$ and setting

$$
Y:=e(g, h)^{a_{X}} .
$$

The corresponding proof $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is computed recursively by first defining $\pi_{0}:=g$ and then setting

$$
\pi_{i}:=\pi_{i-1}^{\alpha_{i, C(X)_{i}}} \quad \text { for all } \quad i \in[n]
$$

The algorithm outputs (Y, π).
Verification. Algorithm $\mathrm{Vfy}(v k, X, Y, \pi)$ checks the consistency of π using the bilinear map. It first tests if X and π contain only valid group elements. Then it computes $C(X)=\left(C(X)_{1}, \ldots, C(X)_{n}\right) \in$ $\{0,1\}^{n}$, defines $\pi_{0}:=g$, and outputs 1 if and only if all the following equations are satisfied.

$$
\begin{aligned}
e\left(\pi_{i}, h\right) & =e\left(\pi_{i-1}, h_{\left.i, C(X)_{i}\right)}\right) \text { for all } \quad i \in[n] \\
Y & =e\left(\pi_{n}, h\right)
\end{aligned}
$$

It is straightforward to verify that the above construction is correct in the sense of Definitions 1 and 2 . Furthermore, the unique provability follows from the group structure and the fact that even an unbounded attacker is not able to devise a proof π for a different group element. It remains to prove pseudorandomness and unpredictability.

$4 \mathcal{V} \mathcal{F}$ is a Verifiable Random Function

4.1 Balanced Admissible Hash Functions

Standard admissible hash functions (AHFs) were introduced by Boneh and Boyen [BB04], a simplified definition was given by Freire et al. [FHPS13a]. For our application, we will need AHFs with stronger properties, therefore we have to extend the notion of AHFs to balanced AHFs. The essential difference between balanced AHFs and the standard definition (e.g. [FHPS13b, Definition 3]) is that previous works required only a reasonable lower bound on the probability in Equation (3) below. In contrast, the security analysis of our VRF construction will essentially require reasonable upper and lower bounds, and that these bounds are sufficiently close.

Definition 5. Let $k \in \mathbb{N}$ and $n=n(k)$ be a polynomial, and let $C:\{0,1\}^{k} \rightarrow\{0,1\}^{n(k)}$ be an efficiently computable function. Let $F_{K}:\{0,1\}^{k} \rightarrow\{0,1\}$ be defined as

$$
F_{K}(X):=\left\{\begin{array}{l}
0, \text { if } \forall i: C(X)_{i}=K_{i} \quad \vee \quad K_{i}=\perp \tag{2}\\
1, \text { else. }
\end{array}\right.
$$

We say that C is a balanced admissible hash function (balanced AHF), if there exists an efficient algorithm $\operatorname{AdmSmp}\left(1^{k}, Q, \delta\right)$, which takes as input (Q, δ) where $Q=Q(k) \in \mathbb{N}$ is polynomially bounded and $\delta=\delta(k) \in[0,1]$ is non-negligible, and computes $K \in(\{0,1\} \cup\{\perp\})^{n}$ such that for all $X^{(1)}, \ldots, X^{(Q)}, X^{*} \in$ $\{0,1\}^{k}$ with $X^{*} \notin\left\{X^{(1)}, \ldots, X^{(Q)}\right\}$ holds that

$$
\begin{equation*}
\gamma_{\max }(k) \geq \operatorname{Pr}\left[F_{K}\left(X^{(1)}\right)=\cdots=F_{K}\left(X^{(Q)}\right)=1 \wedge F_{K}\left(X^{*}\right)=0\right] \geq \gamma_{\min }(k) \tag{3}
\end{equation*}
$$

where $\gamma_{\max }(k)$ and $\gamma_{\text {min }}(k)$ satisfy that the function $\tau(k)$ defined as

$$
\begin{equation*}
\tau(k):=2 \cdot \gamma_{\min }(k) \cdot \delta(k)-\gamma_{\max }(k)+\gamma_{\min }(k) \tag{4}
\end{equation*}
$$

is non-negligible. The probability is taken over the choice of K.
Remark 1. The definition of function τ may appear very specific. We note that such a term appears typically in security analyses that follow the approach of [BR09a], therefore we think this is exactly what is needed for typical applications of balanced AHFs. See Lemma 1, for instance.

Instantiating balanced admissible hash functions. Efficient standard admissible hash functions are known to exist [Lys02, BB04, FHPS13a]. For instance, there is a simple construction from codes with suitable minimal distance [Lys02, FHPS13a]. In this section we will show that such codes also yield a balanced AHF. In contrast to [Lys02, FHPS13a], we have to show both upper and lower bounds, and choose certain parameters more carefully to ensure that (4) is a non-negligible function.

Theorem 1. Let $\left(C_{k}\right)_{k \in \mathbb{N}}$ with $C_{k}:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ be a family of codes with minimal distance nc for a constant c. Then $\left(C_{k}\right)_{k \in \mathbb{N}}$ is a family of balanced admissible hash functions. Moreover, $\operatorname{AdmSmp}\left(1^{k}, Q, \delta\right)$ outputs $K \in S \cup\{\perp\}^{n}$ with exactly $d=\left\lfloor\frac{\ln (2 Q+Q / \delta)}{-\ln ((1-c))}\right\rfloor$ components not equal to \perp.

Proof. Consider the algorithm AdmSmp which sets

$$
d:=\left\lfloor\frac{\ln (2 Q+Q / \delta)}{-\ln ((1-c))}\right\rfloor
$$

and chooses K uniformly random from $(\{0,1\} \cup\{\perp\})^{n}$ with exactly d components not equal to $\perp .{ }^{2}$
Fix $X^{(1)}, \ldots, X^{(Q)}, X^{*} \in\{0,1\}^{k}$ with $X^{*} \notin\left\{X^{(1)}, \ldots, X^{(Q)}\right\}$ for the analysis of this algorithm.
Upper bound. Note that we have $\operatorname{Pr}\left[F_{K}\left(X^{*}\right)=0\right]=2^{-d}$, and thus

$$
\begin{aligned}
\gamma_{\max }:=2^{-d} & =\operatorname{Pr}\left[F_{K}\left(X^{*}\right)=0\right] \\
& \geq \operatorname{Pr}\left[F_{K}\left(X^{*}\right)=0\right] \cdot \operatorname{Pr}\left[F_{K}\left(X^{(1)}\right)=\cdots=F_{K}\left(X^{(Q)}\right)=1 \mid F_{K}\left(X^{*}\right)\right] \\
& =\operatorname{Pr}\left[F_{K}\left(X^{*}\right)=0 \wedge F_{K}\left(X^{(1)}\right)=\cdots=F_{K}\left(X^{(Q)}\right)=1\right] .
\end{aligned}
$$

[^1]Lower bound. We first observe that for any two strings $X, X^{*} \in\{0,1\}^{k}$ with $X \neq X^{*}$ holds that

$$
\operatorname{Pr}\left[F_{K}(X)=0 \mid F_{K}\left(X^{*}\right)=0\right] \leq(1-c)^{d}
$$

To see this, consider an experiment where two code words $C(X)$ and $C\left(X^{*}\right)$ of $X, X^{*} \in\{0,1\}^{k}$ with $X \neq X^{*}$ are given, and we sample d pairwise distinct positions $i_{1}, \ldots, i_{d} \stackrel{\&}{\leftarrow}[n]$. Since $C(X)$ and $C\left(X^{*}\right)$ differ in at least $n c$ positions, the probability that $C(X)_{i_{1}}=C\left(X^{*}\right)_{i_{1}}$ is at most $(n-n c) / n=1-c$. The probability that $C(X)_{i_{j}}=C\left(X^{*}\right)_{i_{j}}$ for all $j \in[d]$ is thus at most $(1-c)^{d}$.

A union bound yields that

$$
\operatorname{Pr}\left[F_{K}\left(X^{(1)}\right)=0 \vee \cdots \vee F_{K}\left(X^{(Q)}\right)=0 \mid F_{K}\left(X^{*}\right)=0\right] \leq Q(1-c)^{d}
$$

which implies

$$
\operatorname{Pr}\left[F_{K}\left(X^{(1)}\right)=1 \wedge \cdots \wedge F_{K}\left(X^{(Q)}\right)=1 \mid F_{K}\left(X^{*}\right)=0\right] \geq 1-Q(1-c)^{d}
$$

This yields the lower bound

$$
\begin{aligned}
\gamma_{\text {min }} & :=\left(1-Q(1-c)^{d}\right) \cdot 2^{-d} \\
& \leq \operatorname{Pr}\left[F_{K}\left(X^{(1)}\right)=1 \wedge \cdots \wedge F_{K}\left(X^{(Q)}\right)=1 \mid F_{K}\left(X^{*}\right)=0\right] \cdot \operatorname{Pr}\left[F_{K}\left(X^{*}\right)=0\right] \\
& =\operatorname{Pr}\left[F_{K}\left(X^{(1)}\right)=\cdots=F_{K}\left(X^{(Q)}\right)=1 \wedge F_{K}\left(X^{*}\right)=0\right]
\end{aligned}
$$

Balancedness of bounds. Finally, it remains to show that for polynomial Q and non-negligible δ the function τ from (4) is non-negligible. First we compute (omitting the parameter k from functions to simplify notation):

$$
\begin{aligned}
\tau & : \\
& =2 \cdot \delta \cdot \gamma_{\min }-\gamma_{\max }+\gamma_{\min } \\
& =2 \cdot \delta \cdot\left(1-Q(1-c)^{d}\right) \cdot 2^{-d}-2^{-d}+\left(1-Q(1-c)^{d}\right) \cdot 2^{-d} \\
& =2^{-d} \cdot\left(2 \delta-(2 \delta+1) \cdot Q(1-c)^{d}\right)
\end{aligned}
$$

Now we will show that if d is chosen as above, then both 2^{-d} and $2 \delta-(2 \delta+1) \cdot Q(1-c)^{d}$ are non-negligible. Thus, their product is non-negligible as well.

We have

$$
2^{-d}=2^{-\left\lfloor\frac{\ln (2 Q+Q / \delta)}{-\ln (1-c))}\right\rfloor} \geq 2^{\frac{\ln (2 Q+Q / \delta)}{\ln ((1-c))}}
$$

which is non-negligible since c is a constant, Q is a polynomial and δ is non-negligible, and

$$
\begin{aligned}
2 \delta-(2 \delta+1) \cdot Q(1-c)^{d} & =2 \delta-(2 \delta+1) \cdot Q(1-c)^{\left\lfloor\frac{\ln (2 Q+Q / \delta)}{-\ln (1-c))}\right\rfloor} \\
& \geq 2 \delta-(2 \delta+1) \cdot Q(2 Q+Q / \delta)^{-1} \\
& =2 \delta-(2 \delta Q+Q)(2 Q+Q / \delta)^{-1} \\
& =2 \delta-\delta(2 \delta Q+Q)(2 \delta Q+Q)^{-1}=\delta
\end{aligned}
$$

which is non-negligible, since δ is.

Initialize :	Evaluate (X) :	Challenge(X^{*}) :
bad := 0	$(Y, \pi):=\perp$	$Y^{*}:=\perp$
$\begin{aligned} & K \stackrel{\&}{\leftarrow} \operatorname{AdmSmp}\left(1^{k}, Q, \delta\right) \\ & \text { For }(i, j) \in[n] \times\{0,1\} \text { do } \end{aligned}$	If $F_{K}(X) \neq 1$ then bad :=1;	If $F_{K}(X)=1$ then bad :=1
$\alpha_{i, j} \stackrel{\&}{\leftarrow} \mathbb{Z}_{\|\mathbb{G}\|}$ If $K_{i}=j$ then $h_{i, j}:=g^{x+\alpha_{i, j}}$ Else $h_{i, j}:=g^{\alpha_{i, j}}$	Else $\begin{gathered} Y:=e\left(g^{P_{K, n, X}(x)}, h\right) \\ \text { For } j \in[n] \text { do } \\ \quad \pi:=g^{P_{K, j, X}(x)} \end{gathered}$	Else Compute $\gamma_{0}, \ldots, \gamma_{q+1}$ s.t. $P_{K, n, X^{*}}(x)=\sum_{i=0}^{q+1} \gamma_{i} x^{i}$
$v k:=\left(C, g, h,\left(h_{i, j}\right)_{(i, j)}\right)$	$\begin{aligned} & \pi_{j}:=g^{P_{K, j, X}(x)} \\ & :=\left(\pi_{1}, \ldots, \pi_{n}\right) \end{aligned}$	$Y^{*}:=T^{\gamma_{q+1}} \cdot \prod_{i=1}^{q} e\left(\left(g^{x^{2}}\right)^{\gamma_{i}}, h\right)$ Return Y^{*}
Return $v k$	Return (Y, \quad)	Return Y

Finalize $^{\operatorname{VRF}}\left(b^{\prime}\right):$
If bad $=1$ then $c^{\prime} \leftarrow\{0,1\}$
Else $c^{\prime}:=b^{\prime}$
Return c^{\prime}

Figure 3: Procedures for the simulation of the VRF pseudorandomness experiment by \mathcal{B}.

4.2 Security Analysis

Theorem 2. If $\mathcal{V} \mathcal{F}_{C}$ is instantiated with the admissible hash function from Theorem 1, then for any legitimate attacker \mathcal{A} that breaks the pseudorandomness of $\mathcal{V} \mathcal{F}$ in time $t_{\mathcal{A}}$ with advantage $\mathrm{Adv}_{\mathcal{A}}^{\mathrm{VRF}}$ by making at most Q Eval-queries, there exists an algorithm \mathcal{B} that breaks the q-DDH assumption with $q=$ $\left\lfloor\frac{\ln (2 Q+Q / \delta)}{-\ln ((1-c))}\right\rfloor-1$ in time $t_{\mathcal{B}} \approx t_{\mathcal{A}}$ and with advantage

$$
\operatorname{Adv}_{\mathcal{B}}^{q \mathrm{DDH}}(k) \geq \tau(k)
$$

where $2 \cdot \delta$ is a non-negligible lower bound on $\operatorname{Adv}_{\mathcal{A}} \mathrm{VRF}_{(k)}$, and $\tau(k)$ is a non-negligible function.
Proof. Algorithm \mathcal{B} receives as input $\left(g, g^{x}, \ldots, g^{x^{q}}, h, T\right)$ and runs algorithm \mathcal{A} as a subroutine. Whenever \mathcal{A} issues a query (Initialize, Evaluate, Challenge, Finalize), then \mathcal{B} executes the corresponding procedure from Figure 3. Let us give some remarks on these procedures.

Initialization. The values $\left(g, h, g^{x}\right)$ in Initialize are from the $q \mathrm{DDH}$-challenge. Recall that $2 \cdot \delta$ is a non-negligible lower bound on $\operatorname{Adv}_{\mathcal{A}} \operatorname{VRF}_{(k)}$, and Q is the upper bound on the number of Evaluate-queries.

Note that \mathcal{B} computes the $h_{i, j}$-values exactly as in the original Gen-algorithm, by choosing $\alpha_{i, j} \stackrel{\$}{\leftarrow} \mathbb{Z}_{|\mathbb{G}|}$ and setting $h_{i, j}:=g^{\alpha_{i, j}}$, but with the exception that

$$
h_{i, K_{i}}:=g^{x+\alpha_{i, K_{i}}} .
$$

for all $(i, j) \in[n] \times\{0,1\}$ with $K_{i}=j$. Due to our choice of an admissible hash function according to Theorem 1, there are exactly $q+1$ components K_{i} of K which are not equal to \perp.

Finally, note that all $h_{i, K_{i}}$-values are distributed correctly, and that this set-up defines the secret key implicitly as $s k:=\left(\log _{g} h_{i, j}\right)_{(i, j) \in[n] \times\{0,1\}}$. Thus, the function $V_{s k}(X)$ is well-defined for all X (but \mathcal{B} will not be able to evaluate $V_{s k}$ on all inputs X, as explained below).

Helping definitions. In order to explain how \mathcal{B} responds to Evaluate and Challenge queries made by \mathcal{A}, let us define two sets $I_{K, w, X}$ and $J_{K, w, X}$, which depend on an AHF key K, a VRF input $X \in\{0,1\}^{k}$, and integer $w \in \mathbb{N}$ with $1 \leq w \leq n$, as

$$
I_{K, w, X}:=\left\{i \in[w]: K_{i}=C(X)_{i}\right\} \quad \text { and } \quad J_{K, w, X}:=[w] \backslash I_{K, w, X}
$$

Note that $I_{K, w, X}$ denotes the set of all indices $i \in[w] \subseteq[n]$ such that $K_{i}=C(X)_{i}$, and $J_{K, w, X}$ denotes the set of all indices in $[w]$ which are not contained in $I_{K, w, X}$. Based on these sets, we define polynomials $P_{K, w, X}(x)$

$$
P_{K, w, X}(x)=\prod_{i \in I_{K, w, X}}\left(x+\alpha_{i, K_{i}}\right) \cdot \prod_{i \in J_{K, w, X}} \alpha_{i, K_{i}} \in \mathbb{Z}_{|\mathbb{G}|}[x]
$$

Now we can make the following observations:

1. For all X with $F_{K}(X)=1$, the set $I_{K, w, X}$ contains at most q elements, and thus the polynomial $P_{K, w, X}(x)$ has degree at most q.
This implies that if $F_{K}(X)=1$, then \mathcal{B} can efficiently compute $g^{P_{K, w, X}(x)}$ for all $w \in[n]$. To this end, \mathcal{B} first computes the coefficients $\gamma_{0}, \ldots, \gamma_{q}$ of the polynomial $P_{K, w, X}(x)=\sum_{i=0}^{q} \gamma_{i} x^{i}$ with degree at most q, and then

$$
g^{P_{K, w, X}(x)}:=g^{\sum_{i=0}^{q} \gamma_{i} x^{i}}=\prod_{i=0}^{q}\left(g^{x^{i}}\right)^{\gamma_{i}}
$$

using the terms $\left(g, g^{x}, \ldots, g^{x^{q}}\right)$ from the q-DDH challenge.
2. If $F_{K}(X)=0$, then $P_{K, n, X}(x)$ has degree $q+1$. We do not know how \mathcal{B} can efficiently compute $g^{P_{K, n, X}(x)}$ in this case.

Responding to Evaluate-queries. Note that if $F_{K}(X)=1$, then procedure Evaluate computes the terms $g^{P_{K, w, X}(x)}$ as explained above, and therefore responds to the Evaluate (X)-query of \mathcal{A} correctly. However, if $F_{K}(X)=0$, then the response of \mathcal{B} is incorrect.

Responding to the Challenge-query. If $F_{K}\left(X^{*}\right)=0$, then procedure Challenge computes

$$
Y^{*}:=T^{\gamma_{q+1}} \cdot \prod_{i=1}^{q} e\left(\left(g^{x^{i}}\right)^{\gamma_{i}}, h\right)=T^{\gamma_{q+1}} \cdot e\left(g^{\sum_{i=1}^{q} \gamma_{i} x^{i}}, h\right)
$$

where $\gamma_{0}, \ldots, \gamma_{q+1}$ are the coefficients of the degree- $(q+1)$-polynomial $P_{K, n, X^{*}}(x)=\sum_{i=0}^{q+1} \gamma_{i} x^{i}$. Note that if $T=e(g, h)^{x^{q+1}}$, then it holds that $Y^{*}=V_{s k}\left(X^{*}\right)$. Moreover, if T is uniformly random, then so is Y^{*}.

Analysis of \mathcal{B} 's running time. The running time $t_{\mathcal{B}}$ of \mathcal{B} consists essentially of the running time $t_{\mathcal{A}}$ of \mathcal{A} plus a minor number of additional operations, thus we have $t_{\mathcal{B}} \approx t_{\mathcal{A}}$.

Analysis of \mathcal{B} 's success probability. The simulation of the challenger by \mathcal{B} is perfect, unless bad := 1 is set. This happens only if \mathcal{A} queries $\operatorname{Evaluate}(X)$ with $F_{K}(X) \neq 1$, or Challenge $\left(X^{*}\right)$ with $F_{K}\left(X^{*}\right)=$ 1. Since the AHF key K is information-theoretically hidden in $v k$, the terms $\gamma_{\text {max }}$ and $\gamma_{\text {min }}$ from Equation (3) are upper and lower bounds on the probability that bad := 1 is never set throughout the experiment.

Lemma 1.

$$
\operatorname{Adv}_{\mathcal{B}}^{\left.q \mathrm{CDH}^{(}\right)}(k) \geq 2 \cdot \gamma_{\min } \cdot \delta-\gamma_{\text {max }}+\gamma_{\text {min }}
$$

The proof of Lemma 1 follows the approach of Bellare and Ristenpart [BR09a] very closely, therefore it is deferred to Appendix A. This approach allows us to provide an analysis without the "artificial abort" of Waters [Wat05]. The latter has also been used to analyze the VRF of Hohenberger and Waters [HW09], but leads to a less tight reduction.
Remark 2. Note that the lower bound on $\operatorname{Adv}_{\mathcal{B}}^{q \mathrm{CDH}}(k)$ in Lemma 1 is only useful, if δ and $\gamma_{\text {min }}$ are nonnegligible and $\gamma_{\text {max }}$ and $\gamma_{\text {min }}$ are sufficiently close. This is where we need the balancedness of admissible hash function C.

Observe that since we instantiate C with a balanced AHF and δ is a non-negligible lower bound on $\operatorname{Adv}_{\mathcal{A}} \mathrm{VRF}_{(k)} / 2$, the function

$$
\tau(k):=2 \cdot \gamma_{\min } \cdot \delta-\gamma_{\max }+\gamma_{\min }
$$

is non-negligible. This concludes the proof of Theorem 2.

$5 \mathcal{V F}$ is a Verifiable Unpredictable Function

In this section we prove that construction $\mathcal{V \mathcal { F }}$ also is a secure VUF. We note that this construction also yields a VRF by applying the generic conversion from VUFs to VRFs from [MRV99], but at the cost of efficiency and reduction tightness.

5.1 Admissible Hash Functions

In order to prove that $\mathcal{V} \mathcal{F}$ is a VUF, it will suffice to instantiate $\mathcal{V} \mathcal{F}$ with a standard admissible hash function C. We recall the standard definition of admissible hash functions (AHFs) from Freire et al. [FHPS13a].

Definition 6 ([FHPS13a]). Let $k \in \mathbb{N}$ and $n=n(k)$ be a polynomial, and let $C:\{0,1\}^{k} \rightarrow\{0,1\}^{n(k)}$ be an efficiently computable function. Let $F_{K}:\{0,1\}^{k} \rightarrow\{0,1\}$ be defined as in Equation (2). We say that C is an admissible hash function (AHF), if there exists an efficient algorithm $\operatorname{AdmSmp}\left(1^{k}, Q\right)$, which takes as input polynomial $Q=Q(k) \in \mathbb{N}$, and computes $K \in(\{0,1\} \cup\{\perp\})^{n}$ such that for all $X^{(1)}, \ldots, X^{(Q)}, X^{*} \in\{0,1\}^{k}$ with $X^{*} \notin\left\{X^{(1)}, \ldots, X^{(Q)}\right\}$ holds that

$$
\begin{equation*}
\operatorname{Pr}\left[F_{K}\left(X^{(1)}\right)=\cdots=F_{K}\left(X^{(Q)}\right)=1 \wedge F_{K}\left(X^{*}\right)=0\right] \geq \gamma_{\min }(k) \tag{5}
\end{equation*}
$$

such that $\gamma_{\min }(k)$ non-negligible. The probability is taken over the choice of K.

Initialize(X) :	Evaluate (X) :	Finalize ${ }^{\text {VUF }}\left(X^{*}, Y^{*}\right)$
bad : $=0$	$(Y, \pi):=\perp$	If $F_{K}\left(X^{*}\right)=0$ then
$K \stackrel{\&}{\leftarrow} \operatorname{AdmSmp}\left(1^{k}, Q, \delta\right)$	If $F_{K}(X) \neq 1$ then	bad $:=1$
For $(i, j) \in[n] \times\{0,1\}$ do	bad $:=1$;	If $\mathrm{bad}=1$ then Return \perp
$\alpha_{i, j} \stackrel{\&}{\leftarrow} \mathbb{Z}_{\|\mathbb{G}\|}$	Else	Compute $\gamma_{0}, \ldots, \gamma_{q+1}{ }^{\text {a }}$
If $K_{i}=j$ then $h_{i, j}:=g^{x+\alpha_{i, j}}$	$Y:=e\left(g^{P_{K, n, X}(x)}, h\right)$	s.t. $P_{K, n, X^{*}}(x)=\sum_{i=0}^{q+1} \gamma_{i} x^{i}$
Else $h_{i, j}:=g^{\alpha_{i, j}}$	For $j \in[n]$ do	$T:=\left(Y^{*} / e\left(g^{\sum_{i=1}^{q} \gamma_{i} x^{i}}, h\right)\right)^{1 / \gamma_{q+1}}$
$v k:=\left(C, g, h,\left(h_{i, j}\right)_{(i, j)}\right)$ Return $v k$	$\begin{aligned} \pi_{j} & :=g^{P_{K, j, X}(x)} \\ \pi & :=\left(\pi_{1}, \ldots, \pi_{n}\right) \end{aligned}$	Return T
Return $v k$	$\boldsymbol{R e t u r n}(Y, \pi)$	

Figure 4: Procedures for the simulation of the VUF unpredictability experiment by \mathcal{B}.

Instantiating Admissible Hash Functions. A simple and efficient construction of AHFs can be found in [FHPS13a] (based on [Lys02]), we capture their existence in the following lemma.
Lemma 2 ([Lys02, FHPS13a]). Let S be a set and $\left(C_{k}\right)_{k \in \mathbb{N}}$ with $C_{k}:\{0,1\}^{k} \rightarrow S^{n}$ be a family of codes, with minimal distance nc for a constant c and such that $|S|$ is bounded by a polynomial in k. Then $\left(C_{k}\right)_{k \in \mathbb{N}}$ is an admissible hash function, where $\operatorname{AdmSmp}(Q)$ outputs $K \in S \cup\{\perp\}^{n}$ with exactly $d:=\lfloor(\ln 2 Q) / c\rfloor$ components not equal to \perp and $\gamma_{\text {min }} \geq\left(1-Q(1-c)^{d}\right) \cdot 2^{-d}$.

Remark 3. Note that even though the last two statements of the above theorem were not made explicit in previous works, they are implicitly contained in the proof of [FHPS13b, Theorem 2].

5.2 Security Analysis

Theorem 3. If $\mathcal{V} \mathcal{F}_{C}$ is instantiated with the admissible hash function from Lemma 2, then for any legitimate attacker \mathcal{A} that breaks the unpredictability of $\mathcal{V} \mathcal{F}$ in time $t_{\mathcal{A}}$ with advantage $\operatorname{Adv}_{\mathcal{A}}$ VF by making at most Q Eval-queries, there exists an algorithm \mathcal{B} that breaks the $q \mathrm{CDH}$ assumption with $q=\lfloor(\ln 2 Q) / c\rfloor-1$ in time $t_{\mathcal{B}} \approx t_{\mathcal{A}}$ and with advantage

$$
\operatorname{Adv}_{\mathcal{B}}^{q \mathrm{CDH}}(k) \geq \operatorname{Adv}_{\mathcal{A}} \mathrm{VUF}_{(k)} \cdot\left(1-Q(1-c)^{d}\right) \cdot 2^{-d}
$$

where $d:=\lfloor(\ln 2 Q) / c\rfloor=q+1$.
The proof of this theorem is nearly identical to the proof of Theorem 2, but the analysis of the success probability of \mathcal{B} is much simpler, because we consider unpredictability instead of pseudorandomness. Therefore we only sketch the proof.
Proof. Algorithm \mathcal{B} receives as input $\left(g, g^{x}, \ldots, g^{x^{q}}, h, T\right)$ and runs algorithm \mathcal{A} as a subroutine. Whenever \mathcal{A} issues a query (Initialize, Evaluate, Finalize), then \mathcal{B} executes the corresponding procedure from Figure 4.

The running time $t_{\mathcal{B}}$ of \mathcal{B} consists essentially of the running time $t_{\mathcal{A}}$ of \mathcal{A} plus a minor number of additional operations, thus we have $t_{\mathcal{B}} \approx t_{\mathcal{A}}$. Note that \mathcal{B} simulates the original VUF security experiment perfectly, if bad $=0$ throughout the game. Note also that

$$
Y^{*}=e(g, h)^{\sum_{i=0}^{q+1} \gamma_{i} x^{i}} \Longrightarrow T=e(g, h)^{x^{q+1}}
$$

The choice of K is information theoretically hidden in $v k$. Thus,

$$
\operatorname{Adv}_{\mathcal{B}}^{q \operatorname{CDH}}(k) \geq \operatorname{Adv}_{\mathcal{A}}^{\operatorname{VUF}_{(}}(k) \cdot \operatorname{Pr}[\operatorname{bad}=0] \geq \operatorname{Adv}_{\mathcal{A}}^{\operatorname{VUF}_{(}}(k) \cdot\left(1-Q(1-c)^{d}\right) \cdot 2^{-d}
$$

References

[ACF09] Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from identitybased key encapsulation. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 554-571, Cologne, Germany, April 26-30, 2009. Springer, Berlin, Germany.
[ASM07] Man Ho Au, Willy Susilo, and Yi Mu. Practical compact e-cash. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors, ACISP 07, volume 4586 of LNCS, pages 431-445, Townsville, Australia, July 2-4, 2007. Springer, Berlin, Germany.
[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 443-459, Santa Barbara, CA, USA, August 15-19, 2004. Springer, Berlin, Germany.
[BCKL09] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. Compact e-cash and simulatable VRFs revisited. In Hovav Shacham and Brent Waters, editors, PAIRING 2009, volume 5671 of $L N C S$, pages 114-131, Palo Alto, CA, USA, August 12-14, 2009. Springer, Berlin, Germany.
[BGRV09] Zvika Brakerski, Shafi Goldwasser, Guy N. Rothblum, and Vinod Vaikuntanathan. Weak verifiable random functions. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 558-576. Springer, Berlin, Germany, March 15-17, 2009.
[BMR10] Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseudorandom functions with improved efficiency from the augmented cascade. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10, pages 131-140, Chicago, Illinois, USA, October 4-8, 2010. ACM Press.
[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of $L N C S$, pages 409-426, St. Petersburg, Russia, May 28 - June 1, 2006. Springer, Berlin, Germany.
[BR09a] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete security for Waters' IBE scheme. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 407-424, Cologne, Germany, April 26-30, 2009. Springer, Berlin, Germany.
[BR09b] Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete security for waters' ibe scheme. Cryptology ePrint Archive, Report 2009/084, 2009. http://eprint.iacr.org/.
[Che06] Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 1-11, St. Petersburg, Russia, May 28 - June 1, 2006. Springer, Berlin, Germany.
[CL07] Melissa Chase and Anna Lysyanskaya. Simulatable VRFs with applications to multi-theorem NIZK. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 303-322, Santa Barbara, CA, USA, August 19-23, 2007. Springer, Berlin, Germany.
[CM14] Melissa Chase and Sarah Meiklejohn. Déjà Q: Using dual systems to revisit q-type assumptions. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 622-639, Copenhagen, Denmark, May 11-15, 2014. Springer, Berlin, Germany.
[Dod03] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Yvo Desmedt, editor, PKC 2003, volume 2567 of $L N C S$, pages 1-17, Miami, USA, January 6-8, 2003. Springer, Berlin, Germany.
[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416-431, Les Diablerets, Switzerland, January 23-26, 2005. Springer, Berlin, Germany.
[FHPS13a] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Programmable hash functions in the multilinear setting. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of $L N C S$, pages 513-530, Santa Barbara, CA, USA, August 18-22, 2013. Springer, Berlin, Germany.
[FHPS13b] Eduarda S.V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Programmable hash functions in the multilinear setting. Cryptology ePrint Archive, Report 2013/354, 2013. http://eprint.iacr.org/.
[FS12] Dario Fiore and Dominique Schröder. Uniqueness is a different story: Impossibility of verifiable random functions from trapdoor permutations. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 636-653, Taormina, Sicily, Italy, March 19-21, 2012. Springer, Berlin, Germany.
[Fuc14] Georg Fuchsbauer. Constrained verifiable random functions. In Michel Abdalla and Roberto De Prisco, editors, Security and Cryptography for Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, volume 8642 of Lecture Notes in Computer Science, pages 95-114. Springer, 2014.
[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st ACM STOC, pages 25-32, Seattle, Washington, USA, May 15-17, 1989. ACM Press.
[GO92] Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive zeroknowledge proofs are equivalent (extended abstract). In Ernest F. Brickell, editor, CRYPTO'92, volume 740 of $L N C S$, pages 228-245, Santa Barbara, CA, USA, August 16-20, 1992. Springer, Berlin, Germany.
[HW09] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under standard assumptions. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 333-350, Cologne, Germany, April 26-30, 2009. Springer, Berlin, Germany.
[HW10] Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large input spaces. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 656672, French Riviera, May 30 - June 3, 2010. Springer, Berlin, Germany.
[JS04] Stanislaw Jarecki and Vitaly Shmatikov. Handcuffing big brother: an abuse-resilient transaction escrow scheme. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 590-608, Interlaken, Switzerland, May 2-6, 2004. Springer, Berlin, Germany.
[Lis05] Moses Liskov. Updatable zero-knowledge databases. In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 174-198, Chennai, India, December 4-8, 2005. Springer, Berlin, Germany.
[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH separation. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 597-612, Santa Barbara, CA, USA, August 18-22, 2002. Springer, Berlin, Germany.
[MR01] Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 542-565, Santa Barbara, CA, USA, August 1923 , 2001. Springer, Berlin, Germany.
[MR02] Silvio Micali and Ronald L. Rivest. Micropayments revisited. In Bart Preneel, editor, CTRSA 2002, volume 2271 of LNCS, pages 149-163, San Jose, CA, USA, February 18-22, 2002. Springer, Berlin, Germany.
[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th FOCS, pages 120-130, New York, New York, USA, October 17-19, 1999. IEEE Computer Society Press.
[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. In 38th FOCS, pages 458-467, Miami Beach, Florida, October 19-22, 1997. IEEE Computer Society Press.
[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114-127, Aarhus, Denmark, May 2226, 2005. Springer, Berlin, Germany.
[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619-636, Santa Barbara, CA, USA, August 16-20, 2009. Springer, Berlin, Germany.

A Proof of Lemma 1

Let $G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}$ denote the $q \mathrm{DDH}$ security experiment with \mathcal{B} running \mathcal{A} as a subroutine as described above. Let good denote the event that variable bad is never set to 1 . Then, since \mathcal{B} outputs a random bit if bad $:=1$ is set, it holds that

$$
\begin{aligned}
\operatorname{Pr}\left[G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}=1\right] & =\operatorname{Pr}\left[G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}=1 \wedge \text { good }\right]+\operatorname{Pr}[\neg \text { good }] \cdot \operatorname{Pr}\left[G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}=1 \mid \neg \text { good }\right] \\
& =\operatorname{Pr}\left[G_{\mathcal{B}(\mathcal{A})}^{q D D}=1 \wedge \text { good }\right]+\operatorname{Pr}[\neg \text { good }] \cdot 1 / 2
\end{aligned}
$$

and therefore

$$
\begin{align*}
\operatorname{Adv}_{\mathcal{B}}^{q \mathrm{DDH}}(k) & =2 \cdot \operatorname{Pr}\left[G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}=1\right]-1 \\
& =2 \cdot \operatorname{Pr}\left[G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}=1 \wedge \text { good }\right]-\operatorname{Pr}[\text { good }] \tag{6}
\end{align*}
$$

Thus, it remains to derive suitable bounds on $\operatorname{Pr}\left[G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}=1 \wedge\right.$ good $]$ and $\operatorname{Pr}[$ good $]$. We will need the following lemma from [BR09a, BR06].

Lemma 3 ([BR09a, BR06]). Let G_{i} and G_{j} be two games which proceed identical until bad $=1$. Then

- $\operatorname{Pr}\left[G_{i}\right.$ sets bad $\left.=1\right]=\operatorname{Pr}\left[G_{j}\right.$ sets bad $\left.=1\right]$
- $\operatorname{Pr}\left[G_{i}=b \wedge G_{i}\right.$ does not set $\left.\mathrm{bad}=1\right]=\operatorname{Pr}\left[G_{j}=b \wedge G_{j}\right.$ does not set $\left.\mathrm{bad}=1\right]$ for any b.

A simpler-to-analyze game. Following Bellare and Ristenpart [BR09a], we now gradually make changes to game $G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}$, until we reach game G_{3}, which will be easier to analyze. In the sequel let good ${ }_{i}$ denote the event that bad is never set to $\mathrm{bad}=1$ in Game i.

Game 0. We define $G_{0}:=G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}$, which implies

$$
\operatorname{Pr}\left[G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{DDH}}=1 \wedge \mathrm{good}\right]=\operatorname{Pr}\left[G_{0}=1 \wedge \operatorname{good}_{0}\right] \quad \text { and } \quad \operatorname{Pr}[\operatorname{go\circ d}]=\operatorname{Pr}\left[\operatorname{good}_{0}\right]
$$

Game 1. In Game 1 the procedures Initialize ${ }_{1}$, Evaluate E $_{1}$, Challenge ${ }_{1}$, and Finalize ${ }_{1}$ described in Figure 5 are used. Note that Initialize ${ }_{1}$ generates a normal VRF key pair $(v k, s k)$, and Evaluate E $_{1}$ and Challenge ${ }_{1}$ use the secret key $s k$ to evaluate the VRF and to create the challenge.

However, note that $s k$ is only used in Evaluate ${ }_{1}(X)$-queries with $F_{K}(X)=1$, and Challenge ${ }_{1}\left(X^{*}\right)$ queries with $F_{K}\left(X^{*}\right)=0$. This mimics the simulation of \mathcal{B} perfecty, in particular all outputs computed by these procedures are distributed exactly like in Game 0 . This implies that

$$
\operatorname{Pr}\left[G_{1}=1 \wedge \operatorname{good}_{1}\right]=\operatorname{Pr}\left[G_{0}=1 \wedge \operatorname{good}_{0}\right] \quad \text { and } \quad \operatorname{Pr}\left[\operatorname{good}_{1}\right]=\operatorname{Pr}\left[\operatorname{good}_{0}\right]
$$

Game 2. In this game we set Initialize $_{2}:=$ Initialize $_{1}$, and define Finalize $_{2}$, Evaluate ${ }_{2}$, and Challenge ${ }_{2}$ as depicted in Figure 5. Note that Games G_{2} and G_{1} proceed identical until bad is set, thus by Lemma 3 we have

$$
\operatorname{Pr}\left[G_{2}=1 \wedge \operatorname{good}_{2}\right]=\operatorname{Pr}\left[G_{1}=1 \wedge \operatorname{good}_{1}\right] \quad \text { and } \quad \operatorname{Pr}\left[\operatorname{good}_{2}\right]=\operatorname{Pr}\left[\operatorname{good}_{1}\right]
$$

Game 3. Note that the outputs of procedures Evaluate ${ }_{2}$ and Challenge ${ }_{2}$ are independent of K, only Finalize ${ }_{2}$ depends on K. Therefore we can simplify our description of the game, by choosing K only at the end of the game, and checking only then if bad needs to be set to bad $:=1$.

Formally, in Game G_{3} the procedures Initialize ${ }_{3}$, Evaluate ${ }_{3}$, Challenge ${ }_{3}$, and Finalize E $_{3}$ described in Figure 5 are used. All changes are purely conceptual, thus we have

$$
\operatorname{Pr}\left[G_{3}=1 \wedge \operatorname{good}_{3}\right]=\operatorname{Pr}\left[G_{2}=1 \wedge \operatorname{good}_{2}\right] \quad \text { and } \quad \operatorname{Pr}\left[\operatorname{good}_{3}\right]=\operatorname{Pr}\left[\operatorname{good}_{2}\right]
$$

Note also that now K is chosen only after \mathcal{A} asks Finalize $_{3}$.

Figure 5: Procedures defining the sequence of games in the proof of Lemma 1.

Analysis of Game G_{3}. It remains to derive bounds on $\operatorname{Pr}\left[G_{3}=1 \wedge \operatorname{good}_{3}\right]$ and $\operatorname{Pr}\left[\operatorname{good}_{3}\right]$. Let \mathcal{X} denote the set

$$
\mathcal{X}:=\left\{\left(X^{(1)}, \ldots, X^{(Q)}, X^{*}\right): X^{*} \neq X^{(i)}, 1 \leq i \leq Q\right\}
$$

of all sequences of queries a legitimate attacker \mathcal{A} may ask, and let $\mathbf{X}^{*} \in \mathcal{X}$. Let $\gamma\left(\mathbf{X}^{*}\right)$ denote the probability of good $_{3}$ (over the choice of K), if the particular sequence \mathbf{X}^{*} of queries is asked. Note that $\operatorname{Pr}\left[\gamma\left(\mathbf{X}^{*}\right)\right]$ equals the probability in Equation (3), so that $\gamma_{\text {min }}$ is a lower bound on the smallest value of $\gamma\left(\mathbf{X}^{*}\right)$ over all $\mathbf{X}^{*} \in \mathcal{X}$, and $\gamma_{\text {max }}$ is an upper bound on the largest value of $\gamma\left(\mathbf{X}^{*}\right)$ over all $\mathbf{X}^{*} \in \mathcal{X}$. Let $\mathrm{Q}\left(\mathbf{X}^{*}\right)$ denote the event that the execution of Game G_{3} results in the particular sequence \mathbf{X}^{*}. Then we can state the following lemma (which corresponds to [BR09b, Lemma 3.4]).

Lemma 4. For any \mathbf{X}^{*} as defined above holds that

$$
\begin{aligned}
\operatorname{Pr}\left[G_{3}=1 \wedge \operatorname{good}_{3} \wedge \mathbf{Q}\left(\mathbf{X}^{*}\right)\right] & =\gamma\left(\mathbf{X}^{*}\right) \cdot \operatorname{Pr}\left[G_{3}=1 \wedge \mathbf{Q}\left(\mathbf{X}^{*}\right)\right] \\
\operatorname{Pr}\left[\operatorname{good}_{3} \wedge \mathbf{Q}\left(\mathbf{X}^{*}\right)\right] & =\gamma\left(\mathbf{X}^{*}\right) \cdot \operatorname{Pr}\left[\mathbf{Q}\left(\mathbf{X}^{*}\right)\right]
\end{aligned}
$$

The proof of Lemma 4 is nearly identical to the proof of [BR09b, Lemma 3.4], and therefore deferred to Appendix B.

Now we can compute

$$
\begin{align*}
& \operatorname{Adv}_{\mathcal{B}}^{q \mathrm{DDH}}(k)=2 \cdot \operatorname{Pr}\left[G_{\mathcal{B}(\mathcal{A})}^{q \mathrm{qDH}}=1 \wedge \text { good }\right]-\operatorname{Pr}[\text { good }] \tag{7}\\
& =2 \cdot \operatorname{Pr}\left[G_{3}=1 \wedge \text { good }_{3}\right]-\operatorname{Pr}\left[\text { good }_{3}\right] \tag{8}\\
& =2 \cdot \sum_{\mathbf{X}^{*} \in \mathcal{X}} \operatorname{Pr}\left[G_{3}=1 \wedge \operatorname{good}_{3} \wedge \mathrm{Q}\left(\mathbf{X}^{*}\right)\right]-\sum_{\mathbf{X}^{*} \in \mathcal{X}} \operatorname{Pr}\left[\operatorname{good}_{3} \wedge \mathrm{Q}\left(\mathbf{X}^{*}\right)\right] \tag{9}\\
& =2 \cdot \sum_{\mathbf{X}^{*} \in \mathcal{X}} \gamma\left(\mathbf{X}^{*}\right) \cdot \operatorname{Pr}\left[G_{3}=1 \wedge \mathbf{Q}\left(\mathbf{X}^{*}\right)\right]-\sum_{\mathbf{X}^{*} \in \mathcal{X}} \gamma\left(\mathbf{X}^{*}\right) \cdot \operatorname{Pr}\left[\mathbf{Q}\left(\mathbf{X}^{*}\right)\right] \tag{10}\\
& \geq 2 \cdot \gamma_{\text {min }} \cdot \sum_{\mathbf{X}^{*} \in \mathcal{X}} \operatorname{Pr}\left[G_{3}=1 \wedge \mathrm{Q}\left(\mathbf{X}^{*}\right)\right]-\gamma_{\text {max }} \cdot \sum_{\mathbf{X}^{*} \in \mathcal{X}} \operatorname{Pr}\left[\mathrm{Q}\left(\mathbf{X}^{*}\right)\right] \\
& =2 \cdot \gamma_{\text {min }} \cdot \operatorname{Pr}\left[G_{3}=1\right]-\gamma_{\text {max }} \tag{11}\\
& =2 \cdot \gamma_{\text {min }} \cdot\left(\operatorname{Adv}_{\mathcal{A}}^{\mathcal{V} \mathcal{F}}(k)+1\right) / 2-\gamma_{\text {max }} \\
& =\gamma_{\text {min }} \cdot \operatorname{Adv}_{\mathcal{A}}^{\mathcal{V}^{\mathcal{F}}}(k)-\gamma_{\text {max }}+\gamma_{\text {min }} \\
& \geq 2 \cdot \gamma_{\text {min }} \cdot \delta-\gamma_{\text {max }}+\gamma_{\text {min }} \tag{12}
\end{align*}
$$

Where (7) is due to Equation (6), (8) follows from the sequence of games described above, (9) and (11) follow from the fact that we sum over mutually exclusive events $\mathrm{Q}\left(\mathbf{X}^{*}\right)$ with $\sum_{\mathbf{X}^{*} \in \mathcal{X}} \operatorname{Pr}\left[\mathrm{Q}\left(\mathbf{X}^{*}\right)\right]=1$, (10) is by Lemma 4, and (12) by the definition of $\delta \leq \operatorname{Adv}_{\mathcal{A}}^{\mathcal{V} \mathcal{F}}(k) / 2$.

B Proof of Lemma 4

The set of random coins underlying Game 3 can be seen as a cross product $\Omega=\Omega^{\prime} \times R_{K}$, where each member is a pair $\left(\omega^{\prime}, r_{K}\right) \in \Omega$ such that r_{K} denotes the random coins used by algorithm AdmSmp, and ω^{\prime} denotes all other coins of the experiment and the attacker.

Note that that any particular choice \mathbf{X}^{*} of a sequence of queries made by \mathcal{A} depends only on ω^{\prime}, because in Game 3 algorithm AdmSmp is executed in the Finalize ${ }_{3}$-procedure, when the sequence of queries \mathbf{X}^{*}
issued by the attacker is already fixed. Thus, for all $\mathbf{X}^{*} \in \mathcal{X}$ let $\Omega^{\prime}\left(\mathbf{X}^{*}\right)$ denote the set of all $\omega^{\prime} \in \Omega^{\prime}$ that produce the particular sequence of queries \mathbf{X}^{*}. Similarly, note that the probability that Game 3 outputs 1 depends only on Ω^{\prime}.

Let $\Omega_{1}^{\prime} \subseteq \Omega^{\prime}$ denote the set of all $\omega^{\prime} \in \Omega^{\prime}$ such that the experiment outputs 1 . Let $R_{\text {good }}\left(\mathbf{X}^{*}\right) \subseteq R_{K}$ denote the set of all coins leading to an AHF key K such that for $\mathbf{X}^{*}=\left(X^{(1)}, \ldots, X^{(Q)}, X^{*}\right)$ holds that

$$
F_{K}\left(X^{(1)}\right)=\cdots=F_{K}\left(X^{(Q)}\right)=1 \quad \wedge \quad F_{K}\left(X^{*}\right)=0
$$

Then the set of coins such that $G_{3}=1$ is $\Omega_{1}^{\prime} \times R_{K}$, and the set of coins leading to $\operatorname{good}_{3} \wedge \mathrm{Q}\left(\mathbf{X}^{*}\right)$ is $\Omega^{\prime}\left(\mathbf{X}^{*}\right) \times R_{\text {good }}\left(\mathbf{X}^{*}\right)$. Now we can compute

$$
\begin{aligned}
\operatorname{Pr}\left[G_{3}=1 \wedge \operatorname{good}_{3} \wedge \mathrm{Q}\left(\mathbf{X}^{*}\right)\right] & =\frac{\left|\left(\Omega_{1}^{\prime} \times R_{K}\right) \cap\left(\Omega^{\prime}\left(\mathbf{X}^{*}\right) \times R_{\text {good }}\left(\mathbf{X}^{*}\right)\right)\right|}{\left|\Omega^{\prime} \times R_{K}\right|} \\
& =\frac{\left|\left(\Omega_{1}^{\prime} \cap \Omega^{\prime}\left(\mathbf{X}^{*}\right)\right) \times R_{\operatorname{good}}\left(\mathbf{X}^{*}\right)\right|}{\left|\Omega^{\prime} \times R_{K}\right|} \\
& =\frac{\left|\Omega_{1}^{\prime} \cap \Omega^{\prime}\left(\mathbf{X}^{*}\right)\right| \cdot\left|R_{\text {good }}\left(\mathbf{X}^{*}\right)\right|}{\left|\Omega^{\prime}\right| \cdot\left|R_{K}\right|} \\
& =\frac{\left|\Omega_{1}^{\prime} \cap \Omega^{\prime}\left(\mathbf{X}^{*}\right)\right| \cdot\left|R_{K}\right|}{\left|\Omega^{\prime}\right| \cdot\left|R_{K}\right|} \cdot \frac{\left|R_{\text {good }}\left(\mathbf{X}^{*}\right)\right|}{\left|R_{K}\right|} \\
& =\frac{\left|\left(\Omega_{1}^{\prime} \cap \Omega^{\prime}\left(\mathbf{X}^{*}\right)\right) \times R_{K}\right|}{\left|\Omega^{\prime} \times R_{K}\right|} \cdot \frac{\left|R_{\text {good }}\left(\mathbf{X}^{*}\right)\right|}{\left|R_{K}\right|} \\
& =\operatorname{Pr}\left[G_{3}=1 \wedge \mathbf{Q}\left(\mathbf{X}^{*}\right)\right] \cdot \gamma\left(\mathbf{X}^{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{good}_{3} \wedge \mathrm{Q}\left(\mathbf{X}^{*}\right)\right] & =\frac{\left|\Omega^{\prime}\left(\mathbf{X}^{*}\right) \times R_{\text {good }}\left(\mathbf{X}^{*}\right)\right|}{\left|\Omega^{\prime} \times R_{K}\right|} \\
& =\frac{\left|\Omega^{\prime}\left(\mathbf{X}^{*}\right)\right| \cdot\left|R_{\text {good }}\left(\mathbf{X}^{*}\right)\right|}{\left|\Omega^{\prime}\right| \cdot\left|R_{K}\right|} \\
& =\frac{\left|\Omega^{\prime}\left(\mathbf{X}^{*}\right)\right| \cdot\left|R_{K}\right|}{\left|\Omega^{\prime}\right| \cdot\left|R_{K}\right|} \cdot \frac{\left|R_{\text {good }}\left(\mathbf{X}^{*}\right)\right|}{\left|R_{K}\right|} \\
& =\frac{\left|\Omega^{\prime}\left(\mathbf{X}^{*}\right) \times R_{K}\right|}{\left|\Omega^{\prime} \times R_{K}\right|} \cdot \frac{\left|R_{\text {good }}\left(\mathbf{X}^{*}\right)\right|}{\left|R_{K}\right|} \\
& =\operatorname{Pr}\left[\mathbf{Q}\left(\mathbf{X}^{*}\right)\right] \cdot \gamma\left(\mathbf{X}^{*}\right)
\end{aligned}
$$

[^0]: ${ }^{1}$ Or, alternatively, based on interactive complexity assumptions or with only weaker selective security.

[^1]: ${ }^{2}$ Note that this algorithm is identical to the algorithm from [FHPS13b, Theorem 2], except that we have chosen d slightly differently.

