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Abstract

Constructing a verifiable random function (VRF) with large input space and full adaptive security
from a static complexity assumption, like decisional Diffie-Hellman for instance, has proven to be a
challenging task. To date it is not even clear that such a VRF exists. Most known constructions either
allow only a small input space of polynomially-bounded size, or do not achieve full adaptive security
under a static complexity assumption.

The only known constructions without these restrictions are based on non-static, so-called “q-type”
assumptions, which are parametrized by an integer q. Since q-type assumptions get stronger with larger
q, it is desirable to have q as small as possible. In current constructions q is a polynomial (Hohenberger
and Waters, Eurocrypt 2010) or at least linear (Boneh et al., CCS 2010) in the security parameter.

We show that it is possible to construct relatively simple and efficient verifiable random functions
with full adaptive security and large input space from q-type assumptions, where q is only logarithmic
in the security parameter.

Interestingly, our VRF is very similar to a verifiable unpredictable function by Lysyanskaya (Crypto
2002), but very different from Lysyanskaya’s VRF from the same paper. Thus, our result can also be
viewed as a new, direct VRF-security proof for Lysyanskaya’s VUF, which is (somewhat surprisingly)
based on weaker assumption than VRF constructions that appeared later. As a technical tool, we intro-
duce and construct balanced admissible hash functions.

1 Introduction

Verifiable random functions. Verifiable random functions (VRFs) can be seen as the public-key equiva-
lent of pseudorandom functions. Each function Vsk is associated with a secret key sk and a corresponding
public verification key vk . Given sk , an element X from the domain of Vsk , and Y = Vsk (X), it is pos-
sible to create a non-interactive, publicly verifiable proof π that Y was computed correctly. For security,
unique provability is required. This means that for each X only one unique value Y such that the statement
“Y = Vsk (X)” can be proven may exist. Note that unique provability is a very strong requirement: not even
the party that creates sk (possibly maliciously) may be able to create fake proofs. These additional features
should not affect the pseudorandomness of the function on other inputs. Verifiable random functions are
strongly related to verifiable unpredictable functions (VUFs), where (weaker) unpredictability instead of
pseudorandomness is required.

Their strong properties make VRFs useful for applications like resettable zero-knowledge proofs [MR01],
lottery systems [MR02], transaction escrow schemes [JS04], updatable zero-knowledge databases [Lis05],
or e-cash [ASM07, BCKL09]. VRFs funtions can also be seen as verifiably unique digital signatures (called
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invariant signatures in [GO92]), their uniqueness makes them automatically strongly unforgeable [BSW06,
SPW07].

The difficulty of constructing VRFs. In particular the unique provability requirement makes it very diffi-
cult to construct verifiable random functions. For instance, the natural attempt of combining a pseudorandom
function with a non-interactive zero-knowledge proof system fails, since zero-knowledge proofs are inher-
ently simulatable, which contradicts uniqueness. More generally, any reduction which attempts to prove
pseudorandomness of a candidate construction faces the following problem.

• On the one hand, the reduction must be able to compute the unique function value Y := Vsk (X)
for preimages X selected by the attacker, along with a proof of correctness π. Due to the unique
provability, there exists only one unique value Y such that the statement “Y = Vsk (X)” can be
proven, thus the reduction is not able to “lie” by outputting false values Ỹ .

Note that this stands in contrast to typical reductions for pseudorandom functions, like the Naor-
Reingold construction [NR97] for instance, where due to the absence of proofs the reduction may be
able to output incorrect values.

• On the other hand, the reduction must not be able to compute Y ∗ := Vsk (X∗) for a particularX∗, as it
must be able to use an attacker that distinguishes Y ∗ from random to break a complexity assumption.

Most previous works [MRV99, Lys02, Dod03, DY05, ACF09] constructed VRFs with only small input
spaces of polynomially-bounded size.1 The only two exceptions are due to Hohenberger and Waters [HW10]
and Boneh et al. [BMR10], who constructed verifiable random functions with full adaptive security that
allow an input space of exponential size.

VRFs with large input spaces. Hohenberger and Waters [HW10] provided the first fully-secure VRF with
exponential-size input space. Security is proven under a q-type assumption, where an algorithm receives as
input a list of group elements

(g, h, gx, . . . , gx
q−1
, gx

q+1
, . . . , gx

2q
, T ) ∈ G2q+1 ×GT

where e : G×G→ GT is a bilinear map. The assumption is that no efficient algorithm is able to distinguish
T = e(g, h)x

q
from a random group element with probability significantly better than 1/2. The proof given

in [HW10] requires that q = Θ(Q · k), where k is the security parameter and Q is the number of function
evaluations Vsk (X) queried by the attacker in the security experiment. Note that in particular Q can be very
large, as it is only bounded by a polynomial in the security parameter.

The construction of Boneh et al. [BMR10] is based on the assumption where the algorithm receives as
input a list of group elements

(g, h, gx, . . . , gx
q
, T ) ∈ Gq+2 ×GT

and the algorithm has to distinguish T = e(g, h)1/x from random. The proof in [BMR10] requires q =
Θ(k). Is it possible to construct VRFs with large input and full adaptive security from weaker q-type as-
sumptions?

1Or, alternatively, based on interactive complexity assumptions or with only weaker selective security.
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Our contribution. We construct verifiable random functions with exponential-size input space, full adap-
tive security, and based on a q-type assumptions for very small q. More precisely, q = O(log k) depends
only logarithmically on security parameter. We also construct a verifiable unpredictable function, which in
combination with a Goldreich-Levin hard-core predicate [GL89] also gives rise to a VRF [MRV99].

In terms of efficiency, our constructions are slightly less efficient than (but within the same order
of magnitude as) the constructions of Hohenberger and Waters [HW10], Abdalla et al. [ACF09], and
Boneh et al. [BMR10].

As a technical tool, we introduce the notion of balanced admissible hash functions (balanced AHFs),
which are standard admissible hash functions [BB04] with an extra property (cf. the explanations below
and in Section 4.1), and may be useful for applications beyond VRFs. We show how to construct balanced
AHFs from codes with suitable minimal distance.

Our VRF construction. Let G,GT be groups with bilinear map e : G×G→ GT , and let C : {0, 1}k →
{0, 1}n be a hash function. We construct a VRF with domain {0, 1}k and range GT . The verification key of
our VRF consists of C along with 2n+ 2 random elements of G

vk =
(
g, h, (hi,j)(i,j)∈[n]×{0,1}

)
The secret key consists of the discrete logarithms αi,j such that gαi,j = hi,j for (i, j) ∈ [n]× {0, 1}.

The function is evaluated on input X ∈ {0, 1}k by first computing the hash (C1, . . . , Cn) := C(X),
then αX :=

∏n
i=1 αi,Ci , and finally setting

Vsk (X) := e(g, h)αX

A proof that Vsk (X) = e(g, h)αX consists of group elements (π1, . . . , πn) where πi := π
αi,Ci
i−1 for π0 := g

and i ∈ [n]. Correctness of proofs is verified with the bilinear map.

Similarity to Lysyanskaya’s VUF. We note that – quite surprisingly2 – our VRF construction is nearly
identical to a VUF (resp. unique signature) construction of Lysyanskaya [Lys02], but very different from
the VRF construction of [Lys02]. To explain this in more detail, recall that Lysyanskaya [Lys02] followed a
much more complex approach:

1. Construct a VUF based on a “computational” complexity assumption (in contrast to a “decisional”
complexity assumption)

2. Turn this VUF into a VRF with single-bit output, by using a Goldreich-Levin hard-core predicate [GL89].
This step is not as simple as it may appear, because Micali et al. [MRV99] show in their initial VRF
paper that this only yields a VRF with polynomially-bounded input space (due to the fact that the
randomness of the Goldreich-Levin hard-core predicate must be public to allow verifiability, which in
turn leads to the problems discussed in [NR98]).

2We find this surprising for two reasons. First, we actually started from the VRF of Hohenberger and Waters [HW10]. We modi-
fied this construction to make our proof idea go through, and thereby obtained essentially the unique signature/VUF construction of
Lysyanskaya [Lys02]. Second, several previous works [ACF09, HW10, BMR10], where in particular [ACF09, HW10] seem clearly
inspired by or build upon Lysyanskaya’s construction, aimed at or asked for the construction of VRFs from weaker assumptions.
It appears surprising that actually the comparatively old VUF construction of Lysyanskaya allows a VRF-security proof from the
weakest assumption known so far.
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3. Turn this single-bit-VRF into a VRF with many-bit output (still with poly-bounded input space), by
applying a generic construction from [MRV99]. Note that this generic construction requires many
evaluations of the underlying single-bit VRF.

4. Finally, in order to extend the VRF again to an exponential-size, apply another generic tree-based
construction of [MRV99]. Note that again this requires many evaluations of the underlying VRF.

In contrast, our direct VRF security proof of (essentially) the VUF-construction of Lysyanskaya yields di-
rectly a – in comparison much more simple and efficient – VRF with exponential-sized input space, adaptive
security, and many-bit output.

Our security analysis and the need for balanced AHFs. We prove security under the assumption that
given

(g, h, gx, . . . , gx
q
, T )

it is hard to distinguish T = e(g, h)x
q+1

from random. We call this the qDDH-assumption.
A qDDH-challenge is embedded into the view of the attacker by setting

hi,j := gx+αi,j

where αi,j
$← Z|G| is a random blinding term, but only for O(log k) carefully selected indices (i, j). This

careful embedding essentially partitions the domain {0, 1}k of the VRF into two sets X0,X1, such that

• For all values X ∈ X1 we have

Vsk (X) = e(g
∏q
i=0 γix

i
, h) and πj = g

∏q
i=0 γj,ix

i ∀1 ≤ j ≤ n (1)

where the γi and γj,i are integers in Z|G| which are known to the reduction. Note that the polynomials
in the exponent of Equations (1) have degree at most q, thus Vsk (X) and π1, . . . , πn can be computed,
given the values (g, gx, . . . , gx

q
) from the qDDH challenge and the integers γi, γj,i.

• For all values X∗ ∈ X0 the reduction is able to compute integers γi such that

Y ∗ = e(g
∏q
i=0 γix

i
, h) · T γq+1

such that if T = e(g, h)x
q+1

then it holds that Y ∗ = Vsk (X∗). Note that if T is random, then so is
Y ∗.

Let {X(1), . . . , X(Q)} denote the set of inputs on which the VRF-attacker queries the evaluation of the
VRF with corresponding proof, and let X∗ denote the element such that the attacker attempts to distinguish
Vsk (X∗) from random. The reduction will succeed, if it holds that {X(1), . . . , X(Q)} ⊆ X1 and X∗ ∈ X0.

Instantiating C with an admissible hash function ensures that indeed both {X(1), . . . , X(Q)} ⊆ X1 and
X∗ ∈ X0 hold with non-negligible probability. However, unfortunately this is not yet sufficient to make the
analysis of the success probability of our reduction go through, due to the incompatibility of partitioning
proofs with “decisional” complexity assumptions, like qDDH. Intuitively, the problem stems from the fact
that two different sequences of queries made by the attacker may cause the simulator to abort with different
probabilities. This issue was explained in detail in [Wat05, BR09a, CS06].
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Therefore we need the stronger, new notion of balanced AHFs. Essentially, a balanced AHF ensures
that the upper and lower bounds γmax, γmin on the probability in

γmax ≥ Pr[{X(1), . . . , X(Q)} ⊆ X1 ∧ X∗ ∈ X0] ≥ γmin

are reasonably close. This is a typical requirement for partitioning proofs based on decisional complexity
assumptions, it occurs both in reductions with and without the “artificial abort” [Wat05, BR09a]. This
suggests that the notion of balanced AHFs may find applications beyond the construction of VRFs.

More related work. VRFs were introduced by Micali, Rabin, and Vadhan [MRV99], along with verifiable
unpredictable functions (VUFs), a generic conversion from VUFs to VRFs based on Goldreich-Levin hard-
core predicates [GL89], and a VUF-construction (with small input space) based on the RSA assumption.
Specific, number-theoretic constructions of VRFs can be found in [MRV99, Lys02, Dod03, DY05, ACF09,
HW10, BMR10]. Abdalla et al. gave generic constructions of VRFs from so-called VRF-suitable identity-
based KEMs [ACF09].

Brakerski et al. [BGRV09] introduced the relaxed notion of weak VRFs, along with simple and efficient
constructions, and proofs that neither VRFs, nor weak VRFs can be constructed (in a black-box way) from
one-way permutations. Fiore and Schröder [FS12] proved that verifiable random functions are not even
implied (in a black-box sense) by trapdoor permutations. Several works introduced related primitives, like
simulatable VRFs [CL07] and constrained VRFs [Fuc14].

At Eurocrypt 2006 Cheon [Che06] described an algorithm, which computes the discrete logarithm x on
input (g, gx, . . . , gx

q
). This algorithm is faster by a factor of

√
q than generic algorithms for the standard

discrete logarithm problem where only (g, gx) is given. This shows that q-type assumptions are particularly
problematic when q is large. The security loss must be compensated with larger group parameters, at the
cost of efficiency.

We stress that Cheon’s algorithm is only much faster than generic algorithms for the standard discrete
logarithm problem if q is very large (say, q = 250). However, Cheon’s algorithm gives no apparent reason
to criticise q-type assumptions for small q, like 1 ≤ q ≤ 100.

On avoiding q-Type assumptions altogether. Chase and Meiklejohn [CM14] present a conversion that
allows to replace q-type assumption in certain applications with a static (that is, not q-type) subgroup hiding
assumption, by leveraging the dual-systems techniques of Waters [Wat09]. It is natural to ask whether these
techniques can be used to construct verifiable random functions from static assumptions. Unfortunately, the
conversion of [CM14] requires to add randomization. Thus, when applying it to known VRF constructions
like [DY05], then this contradicts the unique provability requirement. Accordingly, Chase and Meiklejohn
were able to prove that the VRF of Dodis and Yampolski [DY05] forms a secure pseudorandom function
under a static assumption, but not that it is a secure verifiable random function.

We leave the construction of a verifiable random function with large input space and full adaptive secu-
rity from a static assumption, like Decisional Diffie-Hellman, as an open problem.

2 Preliminaries

Notation. For a vector K ∈ {0, 1}n we write Ki to denote the i-th component of K. If A is a finite set,
then a $← A denotes the action of sampling a uniformly random from A. If A is a probabilistic algorithm,
then we write a $← A to denote the action of computing a by running A with uniformly random coins. We
define [n] := {1, . . . , n} ⊂ N as the set of all positive integers up to n.
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Initialize :

b
$← {0, 1}

(vk , sk)
$← Gen(1k)

Return vk

Evaluate(X) :

(Y, π)
$← Eval(sk , X)

Return (Y, π)

Challenge(X∗) :

(Y0, π)
$← Eval(sk , X∗)

Y1
$← Y

Return Yb

FinalizeVUF(X∗, Y ∗) :

(Y, π)
$← Eval(sk , X∗)

If Y ∗ = Y then
Return 1

Else Return 0

FinalizeVRF(b′) :

If b′ = b then
Return 1

Else Return 0

Figure 1: Procedures defining the security experiments for VUFs and VRFs.

2.1 Verifiable Unpredictable/Random Functions

Let (Gen,Eval,Vfy) be the following algorithms.

• Algorithm (vk , sk)
$← Gen(1k) takes as input a security parameter k and outputs a key pair (vk , sk).

We say that sk is the secret key and vk is the verification key.

• Algorithm (Y, π)
$← Eval(sk , X) takes as input secret key sk andX ∈ {0, 1}k, and outputs a function

value Y ∈ Y , where Y is a finite set, and a proof π. We write Vsk (X) to denote the function value Y
computed by Eval on input (sk , X).

• Algorithm Vfy(vk , X, Y, π) ∈ {0, 1} takes as input verification key vk , X ∈ {0, 1}k, Y ∈ Y , and
proof π, and outputs a bit.

Definition 1. We say that (Gen,Eval,Vfy) is a verifiable random function (VRF) if all the following prop-
erties hold.

Correctness. Algorithms Gen, Eval, Vfy are polynomial-time algorithms, and for all (vk , sk)
$← Gen(1k)

and all X ∈ {0, 1}k holds: if (Y, π)
$← Eval(sk , X), then Vfy(vk , X, Y, π) = 1 .

Unique provability. For all (vk , sk)
$← Gen(1k) and all X ∈ {0, 1}k, there does not exist any tuple

(Y0, π0, Y1, π1) such that Vfy(vk , X, Y0, π0) = Vfy(vk , X, Y1, π1) = 1.

Pseudorandomness. Consider an attacker A with access (via oracle queries) to the procedures defined
in Figure 1. Let GAVRF denote the game where A first queries Initialize, then Challenge, then
FinalizeVRF, where the output of FinalizeVRF is the output of the game. Moreover, A may issue
an arbitrary number of Evaluate-queries in arbitrary order, but only after querying Initialize and
before querying FinalizeVRF. We say that A is legitimate, if A never queries Evaluate(X) and
Challenge(X∗) with X = X∗ throughout the game.

We define the advantage of A in breaking the pseudorandomness of VF as

AdvVRFA (k) := 2 · Pr[GAVUF = 1]− 1
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InitializeqCDH :

g, h
$← G;x

$← Z|G|
Return (g, gx, . . . , gx

q
, h)

FinalizeqCDH(T ) :

If T = e(gx
q+1
, h) then Return 1

Else Return 0

InitializeqDDH :

g, h
$← G;x

$← Z|G|; b
$← {0, 1}

T0 := e(g, h)x
q+1
, T1

$← GT

Return (g, gx, . . . , gx
q
, h, Tb)

FinalizeqDDH(b′) :

If b′ = b then Return 1
Else Return 0

Figure 2: Procedures defining the q-Diffie Hellman assumptions.

Definition 2. We say that (Gen,Eval,Vfy) is a verifiable unpredictable function (VUF) if the correctness
and unique provability properties from Definition 1 hold, and we have:

Unpredictability. Consider an attacker A with access (via oracle queries) to the procedures defined in
Figure 1. Let GAVUF denote the game where A first queries Initialize, then an arbitrary number of
Evaluate-queries, then FinalizeVUF, and the output of FinalizeVUF is the output of the game.
We say that A is legitimate, if A never queries Evaluate(X) and Challenge(X∗) with X = X∗

throughout the game.

We define the advantage of A in breaking the unpredictability of VF as

AdvVUFA (k) := Pr[GAVUF = 1]

2.2 q-Diffie-Hellman Assumptions

In the sequel let G,GT begroups of prime order, with bilinear map e : G×G→ GT .

Definition 3. Let GqCDH
B be the game with B and the procedures defined in Figure 2, where B first calls

InitializeqCDH and then FinalizeqCDH, and the output of FinalizeqCDH is the output of the game. We
denote with

AdvqCDH
B (k) := Pr

[
GqCDH
B = 1

]
the advantage of A in breaking the qCDH-assumption in (G,GT ).

Definition 4. Let GqDDH
B be the game with B and the procedures defined in Figure 2, where B first calls

InitializeqDDH and then FinalizeqDDH, and the output of FinalizeqDDH is the output of the game. We
denote with

AdvqDDH
B (k) := 2 · Pr

[
GqDDH
B = 1

]
− 1

the advantage of A in breaking the qDDH-assumption in (G,GT ).

3 Main Construction

Let G,GT be groups of prime order with bilinear map e : G×G→ GT , such that each group element has a
unique representation, and that group membership can be tested efficiently.
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In the sequel letC : {0, 1}k → {0, 1}n be a hash function. We describe algorithms (GenC ,EvalC ,VfyC)
which depend on hash functionC. We will require different properties ofC, depending on whether we prove
that VFC is a verifiable random function, or that VFC is a verifiable unpredictable function.

Let VFC = (GenC ,EvalC ,VfyC) be the following construction.

Generation. Algorithm Gen(1k) chooses two random generators g, h $← G. Then it computes hi,j := gαi,j ,
where αi,j

$← Z|G| and for (i, j) ∈ [n]× {0, 1}. The keys are defined as

vk :=
(
C, g, h, (hi,j)(i,j)∈[n]×{0,1}

)
and sk := (αi,j)(i,j)∈[n]×{0,1}

Evaluation. On input X ∈ {0, 1}k, algorithm Eval(sk , X) first computes C(X). For i ∈ [n] let C(X)i
denote the i-th bit of C(X) ∈ {0, 1}n. Then the algorithm determines the function value and proof
by computing aX :=

∏n
i=1 αi,C(X)i and setting

Y := e(g, h)aX .

The corresponding proof π = (π1, . . . , πn) is computed recursively by first defining π0 := g and then
setting

πi := π
αi,C(X)i
i−1 for all i ∈ [n]

The algorithm outputs (Y, π).

Verification. Algorithm Vfy(vk , X, Y, π) checks the consistency of π using the bilinear map. It first tests
if X and π contain only valid group elements. Then it computes C(X) = (C(X)1, . . . , C(X)n) ∈
{0, 1}n, defines π0 := g, and outputs 1 if and only if all the following equations are satisfied.

e(πi, h) = e(πi−1, hi,C(X)i) for all i ∈ [n]

Y = e(πn, h)

It is straightforward to verify that the above construction is correct in the sense of Definitions 1 and 2.
Furthermore, the unique provability follows from the group structure and the fact that even an unbounded
attacker is not able to devise a proof π for a different group element. It remains to prove pseudorandomness
and unpredictability.

4 VF is a Verifiable Random Function

4.1 Balanced Admissible Hash Functions

Standard admissible hash functions (AHFs) were introduced by Boneh and Boyen [BB04], a simplified
definition was given by Freire et al. [FHPS13a]. For our application, we will need AHFs with stronger
properties, therefore we have to extend the notion of AHFs to balanced AHFs. The essential difference
between balanced AHFs and the standard definition (e.g. [FHPS13b, Definition 3]) is that previous works
required only a reasonable lower bound on the probability in Equation (3) below. In contrast, the security
analysis of our VRF construction will essentially require reasonable upper and lower bounds, and that these
bounds are sufficiently close.
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Definition 5. Let k ∈ N and n = n(k) be a polynomial, and let C : {0, 1}k → {0, 1}n(k) be an efficiently
computable function. Let FK : {0, 1}k → {0, 1} be defined as

FK(X) :=

{
0, if ∀i : C(X)i = Ki ∨ Ki = ⊥
1, else.

(2)

We say that C is a balanced admissible hash function (balanced AHF), if there exists an efficient algo-
rithm AdmSmp(1k, Q, δ), which takes as input (Q, δ) where Q = Q(k) ∈ N is polynomially bounded and
δ = δ(k) ∈ [0, 1] is non-negligible, and computesK ∈ ({0, 1}∪{⊥})n such that for allX(1), . . . , X(Q), X∗ ∈
{0, 1}k with X∗ 6∈ {X(1), . . . , X(Q)} holds that

γmax(k) ≥ Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0] ≥ γmin(k) (3)

where γmax(k) and γmin(k) satisfy that the function τ(k) defined as

τ(k) := 2 · γmin(k) · δ(k)− γmax(k) + γmin(k) (4)

is non-negligible. The probability is taken over the choice of K.

Remark 1. The definition of function τ may appear very specific. We note that such a term appears typically
in security analyses that follow the approach of [BR09a], therefore we think this is exactly what is needed
for typical applications of balanced AHFs. See Lemma 1, for instance.

Instantiating balanced admissible hash functions. Efficient standard admissible hash functions are
known to exist [Lys02, BB04, FHPS13a]. For instance, there is a simple construction from codes with
suitable minimal distance [Lys02, FHPS13a]. In this section we will show that such codes also yield a bal-
anced AHF. In contrast to [Lys02, FHPS13a], we have to show both upper and lower bounds, and choose
certain parameters more carefully to ensure that (4) is a non-negligible function.

Theorem 1. Let (Ck)k∈N with Ck : {0, 1}k → {0, 1}n be a family of codes with minimal distance nc for a
constant c. Then (Ck)k∈N is a family of balanced admissible hash functions. Moreover, AdmSmp(1k, Q, δ)

outputs K ∈ S ∪ {⊥}n with exactly d =
⌊
ln(2Q+Q/δ)
− ln((1−c))

⌋
components not equal to ⊥.

PROOF. Consider the algorithm AdmSmp which sets

d :=

⌊
ln(2Q+Q/δ)

− ln((1− c))

⌋
and chooses K uniformly random from ({0, 1} ∪ {⊥})n with exactly d components not equal to ⊥.3

Fix X(1), . . . , X(Q), X∗ ∈ {0, 1}k with X∗ 6∈ {X(1), . . . , X(Q)} for the analysis of this algorithm.

Upper bound. Note that we have Pr[FK(X∗) = 0] = 2−d, and thus

γmax := 2−d = Pr[FK(X∗) = 0]

≥ Pr[FK(X∗) = 0] · Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 | FK(X∗)]

= Pr[FK(X∗) = 0 ∧ FK(X(1)) = · · · = FK(X(Q)) = 1].

3Note that this algorithm is identical to the algorithm from [FHPS13b, Theorem 2], except that we have chosen d slightly
differently.
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Lower bound. We first observe that for any two strings X,X∗ ∈ {0, 1}k with X 6= X∗ holds that

Pr[FK(X) = 0 | FK(X∗) = 0] ≤ (1− c)d.

To see this, consider an experiment where two code words C(X) and C(X∗) of X,X∗ ∈ {0, 1}k with
X 6= X∗ are given, and we sample d pairwise distinct positions i1, . . . , id

$← [n]. Since C(X) and C(X∗)
differ in at least nc positions, the probability that C(X)i1 = C(X∗)i1 is at most (n− nc)/n = 1− c. The
probability that C(X)ij = C(X∗)ij for all j ∈ [d] is thus at most (1− c)d.

A union bound yields that

Pr[FK(X(1)) = 0 ∨ · · · ∨ FK(X(Q)) = 0 | FK(X∗) = 0] ≤ Q(1− c)d

which implies

Pr[FK(X(1)) = 1 ∧ · · · ∧ FK(X(Q)) = 1 | FK(X∗) = 0] ≥ 1−Q(1− c)d

This yields the lower bound

γmin :=(1−Q(1− c)d) · 2−d

≤Pr[FK(X(1)) = 1 ∧ · · · ∧ FK(X(Q)) = 1 | FK(X∗) = 0] · Pr[FK(X∗) = 0]

= Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0]

Balancedness of bounds. Finally, it remains to show that for polynomial Q and non-negligible δ the
function τ from (4) is non-negligible. We first compute (omitting the parameter k from functions to simplify
notation):

τ :=2 · δ · γmin − γmax + γmin

=2 · δ · (1−Q(1− c)d) · 2−d − 2−d + (1−Q(1− c)d) · 2−d

=2−d ·
(

2δ − (2δ + 1) ·Q(1− c)d
)

Now we will show that if d is chosen as above, then both 2−d and 2δ−(2δ+1)·Q(1−c)d are non-negligible.
Thus, their product is non-negligible as well.

We have

2−d = 2
−
⌊
ln(2Q+Q/δ)
− ln((1−c))

⌋
≥ 2

ln(2Q+Q/δ)
ln((1−c))

which is non-negligible since c is a constant, Q is a polynomial and δ is non-negligible, and

2δ − (2δ + 1) ·Q(1− c)d = 2δ − (2δ + 1) ·Q(1− c)
⌊
ln(2Q+Q/δ)
− ln((1−c))

⌋
≥ 2δ − (2δ + 1) ·Q(2Q+Q/δ)−1

= 2δ − (2δQ+Q)(2Q+Q/δ)−1

= 2δ − δ(2δQ+Q)(2δQ+Q)−1 = δ

which is non-negligible, since δ is. �
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Initialize :

bad := 0

K
$← AdmSmp(1k, Q, δ)

For (i, j) ∈ [n]× {0, 1} do
αi,j

$← Z|G|
If Ki = j then hi,j := gx+αi,j

Else hi,j := gαi,j

vk :=
(
C, g, h, (hi,j)(i,j)

)
Return vk

Evaluate(X) :

(Y, π) := ⊥
If FK(X) 6= 1 then
bad := 1;

Else
Y := e(gPK,n,X(x), h)
For j ∈ [n] do
πj := gPK,j,X(x)

π := (π1, . . . , πn)
Return (Y, π)

Challenge(X∗) :

Y ∗ := ⊥
If FK(X) = 1 then
bad := 1

Else
Compute γ0, . . . , γq+1 s.t.

PK,n,X∗(x) =
∑q+1

i=0 γix
i

Y ∗ := T γq+1 ·
∏q
i=1 e((g

xi)γi , h)
Return Y ∗

FinalizeVRF(b′) :

If bad = 1 then c′ $← {0, 1}
Else c′ := b′

Return c′

Figure 3: Procedures for the simulation of the VRF pseudorandomness experiment by B.

4.2 Security Analysis

Theorem 2. If VFC is instantiated with the admissible hash function from Theorem 1, then for any legit-
imate attacker A that breaks the pseudorandomness of VF in time tA with advantage AdvVRFA by mak-
ing at most Q Eval-queries, there exists an algorithm B that breaks the q-DDH assumption with q =⌊
ln(2Q+Q/δ)
− ln((1−c))

⌋
− 1 in time tB ≈ tA and with advantage

AdvqDDH
B (k) ≥ τ(k)

where 2 · δ is a non-negligible lower bound on AdvVRFA (k), and τ(k) is a non-negligible function.

PROOF. Algorithm B receives as input (g, gx, . . . , gx
q
, h, T ) and runs algorithm A as a subroutine. When-

ever A issues a query (Initialize, Evaluate, Challenge, Finalize), then B executes the corresponding
procedure from Figure 3. Let us give some remarks on these procedures.

Initialization. The values (g, h, gx) in Initialize are from the qDDH-challenge. Recall that 2 · δ is a
non-negligible lower bound on AdvVRFA (k), and Q is the upper bound on the number of Evaluate-queries.

Note that B computes the hi,j-values exactly as in the original Gen-algorithm, by choosing αi,j
$← Z|G|

and setting hi,j := gαi,j , but with the exception that

hi,Ki := gx+αi,Ki .

for all (i, j) ∈ [n] × {0, 1} with Ki = j. Due to our choice of an admissible hash function according to
Theorem 1, there are exactly q + 1 components Ki of K which are not equal to ⊥.

Finally, note that all hi,Ki-values are distributed correctly, and that this set-up defines the secret key
implicitly as sk := (logg hi,j)(i,j)∈[n]×{0,1}. Thus, the function Vsk (X) is well-defined for all X (but B will
not be able to evaluate Vsk on all inputs X , as explained below).
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Helping definitions. In order to explain how B responds to Evaluate and Challenge queries made by
A, let us define two sets IK,w,X and JK,w,X , which depend on an AHF key K, a VRF input X ∈ {0, 1}k,
and integer w ∈ N with 1 ≤ w ≤ n, as

IK,w,X := {i ∈ [w] : Ki = C(X)i} and JK,w,X := [w] \ IK,w,X

Note that IK,w,X denotes the set of all indices i ∈ [w] ⊆ [n] such that Ki = C(X)i, and JK,w,X denotes
the set of all indices in [w] which are not contained in IK,w,X . Based on these sets, we define polynomials
PK,w,X(x)

PK,w,X(x) =
∏

i∈IK,w,X

(x+ αi,Ki) ·
∏

i∈JK,w,X

αi,Ki ∈ Z|G|[x]

Now we can make the following observations:

1. For all X with FK(X) = 1, the set IK,w,X contains at most q elements, and thus the polynomial
PK,w,X(x) has degree at most q.

This implies that if FK(X) = 1, then B can efficiently compute gPK,w,X(x) for all w ∈ [n]. To this
end, B first computes the coefficients γ0, . . . , γq of the polynomial PK,w,X(x) =

∑q
i=0 γix

i with
degree at most q, and then

gPK,w,X(x) := g
∑q
i=0 γix

i
=

q∏
i=0

(gx
i
)γi

using the terms (g, gx, . . . , gx
q
) from the q-DDH challenge.

2. If FK(X) = 0, then PK,n,X(x) has degree q + 1. We do not know how B can efficiently compute
gPK,n,X(x) in this case.

Responding to Evaluate-queries. Note that if FK(X) = 1, then procedure Evaluate computes the
terms gPK,w,X(x) as explained above, and therefore responds to the Evaluate(X)-query of A correctly.
However, if FK(X) = 0, then the response of B is incorrect.

Responding to the Challenge-query. If FK(X∗) = 0, then procedure Challenge computes

Y ∗ := T γq+1 ·
q∏
i=1

e((gx
i
)γi , h) = T γq+1 · e(g

∑q
i=1 γix

i
, h)

where γ0, . . . , γq+1 are the coefficients of the degree-(q + 1)-polynomial PK,n,X∗(x) =
∑q+1

i=0 γix
i. Note

that if T = e(g, h)x
q+1

, then it holds that Y ∗ = Vsk (X∗). Moreover, if T is uniformly random, then so is
Y ∗.

Analysis of B’s running time. The running time tB of B consists essentially of the running time tA of A
plus a minor number of additional operations, thus we have tB ≈ tA.
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Analysis of B’s success probability. The simulation of the challenger by B is perfect, unless bad := 1 is
set. This happens only if A queries Evaluate(X) with FK(X) 6= 1, or Challenge(X∗) with FK(X∗) =
1. Since the AHF keyK is information-theoretically hidden in vk , the terms γmax and γmin from Equation (3)
are upper and lower bounds on the probability that bad := 1 is never set throughout the experiment.

Lemma 1.
AdvqCDH

B (k) ≥ 2 · γmin · δ − γmax + γmin

The proof of Lemma 1 follows the approach of Bellare and Ristenpart [BR09a] very closely, therefore
it is deferred to Appendix A. This approach allows us to provide an analysis without the “artificial abort” of
Waters [Wat05]. The latter has also been used to analyze the VRF of Hohenberger and Waters [HW09], but
leads to a less tight reduction.

Remark 2. Note that the lower bound on AdvqCDH
B (k) in Lemma 1 is only useful, if δ and γmin are non-

negligible and γmax and γmin are sufficiently close. This is where we need the balancedness of admissible
hash function C.

Observe that since we instantiate C with a balanced AHF and δ is a non-negligible lower bound on
AdvVRFA (k)/2, the function

τ(k) := 2 · γmin · δ − γmax + γmin

is non-negligible. This concludes the proof of Theorem 2. �

5 VF is a Verifiable Unpredictable Function

In this section we prove that construction VF also is a secure VUF. Note that this construction is essentially
identical to the VUF of Lysyanskaya [Lys02], only the proof is based on a different complexity assumption.
Note also that this construction also yields a VRF by applying the generic conversion from VUFs to VRFs
from [MRV99], but only with polynomially-bounded input space.

5.1 Admissible Hash Functions

In order to prove that VF is a VUF, it will suffice to instantiate VF with a standard admissible hash function
C. We recall the standard definition of admissible hash functions (AHFs) from Freire et al. [FHPS13a].

Definition 6 ([FHPS13a]). Let k ∈ N and n = n(k) be a polynomial, and let C : {0, 1}k → {0, 1}n(k)
be an efficiently computable function. Let FK : {0, 1}k → {0, 1} be defined as in Equation (2). We
say that C is an admissible hash function (AHF), if there exists an efficient algorithm AdmSmp(1k, Q),
which takes as input polynomial Q = Q(k) ∈ N, and computes K ∈ ({0, 1} ∪ {⊥})n such that for all
X(1), . . . , X(Q), X∗ ∈ {0, 1}k with X∗ 6∈ {X(1), . . . , X(Q)} holds that

Pr[FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0] ≥ γmin(k) (5)

such that γmin(k) non-negligible. The probability is taken over the choice of K.
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Initialize(X) :

bad := 0

K
$← AdmSmp(1k, Q, δ)

For (i, j) ∈ [n]× {0, 1} do
αi,j

$← Z|G|
If Ki = j then hi,j := gx+αi,j

Else hi,j := gαi,j

vk :=
(
C, g, h, (hi,j)(i,j)

)
Return vk

Evaluate(X) :

(Y, π) := ⊥
If FK(X) 6= 1 then
bad := 1;

Else
Y := e(gPK,n,X(x), h)
For j ∈ [n] do
πj := gPK,j,X(x)

π := (π1, . . . , πn)
Return (Y, π)

FinalizeVUF(X∗, Y ∗) :

If FK(X∗) = 0 then
bad := 1

If bad = 1 then Return ⊥
Compute γ0, . . . , γq+1

s.t. PK,n,X∗(x) =
∑q+1

i=0 γix
i

T :=
(
Y ∗/e(g

∑q
i=1 γix

i
, h)
)1/γq+1

Return T

Figure 4: Procedures for the simulation of the VUF unpredictability experiment by B.

Instantiating Admissible Hash Functions. A simple and efficient construction of AHFs can be found
in [FHPS13a] (based on [Lys02]), we capture their existence in the following lemma.

Lemma 2 ([Lys02, FHPS13a]). Let S be a set and (Ck)k∈N with Ck : {0, 1}k → Sn be a family of codes,
with minimal distance nc for a constant c and such that |S| is bounded by a polynomial in k. Then (Ck)k∈N
is an admissible hash function, where AdmSmp(Q) outputs K ∈ S ∪ {⊥}n with exactly d := b(ln 2Q)/cc
components not equal to ⊥ and γmin ≥ (1−Q(1− c)d) · 2−d.

Remark 3. Note that even though the last two statements of the above theorem were not made explicit in
previous works, they are implicitly contained in the proof of [FHPS13b, Theorem 2].

5.2 Security Analysis

Theorem 3. If VFC is instantiated with the admissible hash function from Lemma 2, then for any legitimate
attacker A that breaks the unpredictability of VF in time tA with advantage AdvVUFA by making at most Q
Eval-queries, there exists an algorithm B that breaks the qCDH assumption with q = b(ln 2Q)/cc − 1 in
time tB ≈ tA and with advantage

AdvqCDH
B (k) ≥ AdvVUFA (k) · (1−Q(1− c)d) · 2−d

where d := b(ln 2Q)/cc = q + 1.

The proof of this theorem is nearly identical to the proof of Theorem 2, but the analysis of the suc-
cess probability of B is much simpler, because we consider unpredictability instead of pseudorandomness.
Therefore we only sketch the proof.
PROOF. Algorithm B receives as input (g, gx, . . . , gx

q
, h, T ) and runs algorithm A as a subroutine. When-

ever A issues a query (Initialize, Evaluate, Finalize), then B executes the corresponding procedure
from Figure 4.

The running time tB of B consists essentially of the running time tA of A plus a minor number of
additional operations, thus we have tB ≈ tA. Note that B simulates the original VUF security experiment
perfectly, if bad = 0 throughout the game. Note also that

Y ∗ = e(g, h)
∑q+1
i=0 γix

i
=⇒ T = e(g, h)x

q+1
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The choice of K is information theoretically hidden in vk . Thus,

AdvqCDH
B (k) ≥ AdvVUFA (k) · Pr[bad = 0] ≥ AdvVUFA (k) · γmin(k) = AdvVUFA (k) · (1−Q(1− c)d) · 2−d

�
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[CM14] Melissa Chase and Sarah Meiklejohn. Déjà Q: Using dual systems to revisit q-type assumptions.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 622–639, Copenhagen, Denmark, May 11–15, 2014. Springer, Berlin, Germany.

[CS06] Sanjit Chatterjee and Palash Sarkar. HIBE with short public parameters without random oracle.
In Xuejia Lai and Kefei Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 145–
160, Shanghai, China, December 3–7, 2006. Springer, Berlin, Germany.

[Dod03] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Yvo
Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 1–17, Miami, USA, January 6–8,
2003. Springer, Berlin, Germany.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs
and keys. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431, Les
Diablerets, Switzerland, January 23–26, 2005. Springer, Berlin, Germany.

[FHPS13a] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 513–530, Santa Barbara, CA, USA, Au-
gust 18–22, 2013. Springer, Berlin, Germany.

[FHPS13b] Eduarda S.V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. Cryptology ePrint Archive, Report
2013/354, 2013. http://eprint.iacr.org/.
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A Proof of Lemma 1

Let GqDDH
B(A) denote the qDDH security experiment with B runningA as a subroutine as described above. Let

good denote the event that variable bad is never set to 1. Then, since B outputs a random bit if bad := 1 is
set, it holds that

Pr[GqDDH
B(A) = 1] = Pr[GqDDH

B(A) = 1 ∧ good] + Pr[¬good] · Pr[GqDDH
B(A) = 1 | ¬good]

= Pr[GqDDH
B(A) = 1 ∧ good] + Pr[¬good] · 1/2

and therefore

AdvqDDH
B (k) = 2 · Pr[GqDDH

B(A) = 1]− 1

= 2 · Pr[GqDDH
B(A) = 1 ∧ good]− Pr[good] (6)

Thus, it remains to derive suitable bounds on Pr[GqDDH
B(A) = 1 ∧ good] and Pr[good]. We will need the

following lemma from [BR09a, BR06].

Lemma 3 ([BR09a, BR06]). Let Gi and Gj be two games which proceed identical until bad = 1. Then

• Pr[Gi sets bad = 1] = Pr[Gj sets bad = 1]

• Pr[Gi = b ∧Gi does not set bad = 1] = Pr[Gj = b ∧Gj does not set bad = 1] for any b.

A simpler-to-analyze game. Following Bellare and Ristenpart [BR09a], we now gradually make changes
to game GqDDH

B(A) , until we reach game G3, which will be easier to analyze. In the sequel let goodi denote the
event that bad is never set to bad = 1 in Game i.

Game 0. We define G0 := GqDDH
B(A) , which implies

Pr[GqDDH
B(A) = 1 ∧ good] = Pr[G0 = 1 ∧ good0] and Pr[good] = Pr[good0]
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Procedures for Game G1:

Evaluate1(X) :

(Y, π) := ⊥
If FK(X) 6= 1 then
bad := 1

Else
(Y, π)

$← Eval(sk , X)
Return (Y, π)

Challenge1(X
∗) :

Y ∗ := ⊥
If FK(X) = 1 then
bad := 1

Else
If b = 1 then

(Y ∗, π)
$← Eval(sk , X)

Else Y ∗ $← GT

Return Y ∗

Finalize1(b
′) :

If bad = 1 then c′ $← {0, 1}
Else c′ := b′

If c′ = b then Return 1
Else Return 0

Initialize1(X) :

bad := 0
(vk , sk)

$← GenC(1k)

b
$← {0, 1}

K
$← AdmSmp(1k, Q, δ)

Return vk

Procedures for Game G2 (new instructions are highlighted in boxes):

Evaluate2(X) :

(Y, π) := ⊥
If FK(X) 6= 1 then
bad := 1

(Y, π)
$← Eval(sk , X)

Else
(Y, π)

$← Eval(sk , X)
Return (Y, π)

Challenge2(X
∗) :

Y ∗ := ⊥
If FK(X) = 1 then
bad := 1
If b = 1 then

(Y ∗, π)
$← Eval(sk , X)

Else Y ∗ $← GT

Else
If b = 1 then

(Y ∗, π)
$← Eval(sk , X)

Else Y ∗ $← GT

Return Y ∗

Finalize2(b
′) :

If bad = 1 then c′ := b′

Else c′ := b′

If c′ = b then Return 1
Else Return 0

Procedures for Game G3 (new instructions are highlighted in boxes):

Evaluate3(X) :

X := X ∪ {X}

(Y, π)
$← Eval(sk , X)

Return (Y, π)

Challenge3(X
∗) :

If b = 1 then
(Y ∗, π)

$← Eval(sk , X)

Else Y ∗ $← GT

Return Y ∗

Initialize3(X) :
bad := 0
(vk , sk)

$← GenC(1k)

b
$← {0, 1}

X := ∅
Return vk

Finalize3(b
′) :

K
$← AdmSmp(1k, Q, δ)

For X ∈ X do
If FK(X) 6= 1 then bad := 1

If FK(X∗) = 1 then bad := 1

c′ := b′

If c′ = b then Return 1
Else Return 0

Figure 5: Procedures defining the sequence of games in the proof of Lemma 1.
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Game 1. In Game 1 the procedures Initialize1, Evaluate1, Challenge1, and Finalize1 described in
Figure 5 are used. Note that Initialize1 generates a normal VRF key pair (vk , sk), and Evaluate1 and
Challenge1 use the secret key sk to evaluate the VRF and to create the challenge.

However, note that sk is only used in Evaluate1(X)-queries with FK(X) = 1, and Challenge1(X
∗)-

queries with FK(X∗) = 0. This mimics the simulation of B perfecty, in particular all outputs computed by
these procedures are distributed exactly like in Game 0. This implies that

Pr[G1 = 1 ∧ good1] = Pr[G0 = 1 ∧ good0] and Pr[good1] = Pr[good0]

Game 2. In this game we set Initialize2 := Initialize1, and define Finalize2, Evaluate2, and
Challenge2 as depicted in Figure 5. Note that Games G2 and G1 proceed identical until bad is set,
thus by Lemma 3 we have

Pr[G2 = 1 ∧ good2] = Pr[G1 = 1 ∧ good1] and Pr[good2] = Pr[good1]

Game 3. Note that the outputs of procedures Evaluate2 and Challenge2 are independent of K, only
Finalize2 depends on K. Therefore we can simplify our description of the game, by choosing K only at
the end of the game, and checking only then if bad needs to be set to bad := 1.

Formally, in GameG3 the procedures Initialize3, Evaluate3, Challenge3, and Finalize3 described
in Figure 5 are used. All changes are purely conceptual, thus we have

Pr[G3 = 1 ∧ good3] = Pr[G2 = 1 ∧ good2] and Pr[good3] = Pr[good2]

Note also that now K is chosen only after A asks Finalize3.

Analysis of Game G3. It remains to derive bounds on Pr[G3 = 1 ∧ good3] and Pr[good3]. Let X denote
the set

X := {(X(1), . . . , X(Q), X∗) : X∗ 6= X(i), 1 ≤ i ≤ Q}

of all sequences of queries a legitimate attacker A may ask, and let X∗ ∈ X . Let γ(X∗) denote the
probability of good3 (over the choice of K), if the particular sequence X∗ of queries is asked. Note that
Pr[γ(X∗)] equals the probability in Equation (3), so that γmin is a lower bound on the smallest value of
γ(X∗) over all X∗ ∈ X , and γmax is an upper bound on the largest value of γ(X∗) over all X∗ ∈ X . Let
Q(X∗) denote the event that the execution of Game G3 results in the particular sequence X∗. Then we can
state the following lemma (which corresponds to [BR09b, Lemma 3.4]).

Lemma 4. For any X∗ as defined above holds that

Pr[G3 = 1 ∧ good3 ∧ Q(X∗)] = γ(X∗) · Pr[G3 = 1 ∧ Q(X∗)]

Pr[good3 ∧ Q(X∗)] = γ(X∗) · Pr[Q(X∗)]

The proof of Lemma 4 is nearly identical to the proof of [BR09b, Lemma 3.4], and therefore deferred
to Appendix B.
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Now we can compute

AdvqDDH
B (k) = 2 · Pr[GqDDH

B(A) = 1 ∧ good]− Pr[good] (7)

= 2 · Pr[G3 = 1 ∧ good3]− Pr[good3] (8)

= 2 ·
∑

X∗∈X
Pr[G3 = 1 ∧ good3 ∧ Q(X∗)]−

∑
X∗∈X

Pr[good3 ∧ Q(X∗)] (9)

= 2 ·
∑

X∗∈X
γ(X∗) · Pr[G3 = 1 ∧ Q(X∗)]−

∑
X∗∈X

γ(X∗) · Pr[Q(X∗)] (10)

≥ 2 · γmin ·
∑

X∗∈X
Pr[G3 = 1 ∧ Q(X∗)]− γmax ·

∑
X∗∈X

Pr[Q(X∗)]

= 2 · γmin · Pr[G3 = 1]− γmax (11)

= 2 · γmin · (AdvVFA (k) + 1)/2− γmax

= γmin · AdvVFA (k)− γmax + γmin

≥ 2 · γmin · δ − γmax + γmin (12)

Here, (7) is due to Equation (6), (8) follows from the sequence of games described above, (9) and (11)
follow from the fact that we sum over mutually exclusive events Q(X∗) with

∑
X∗∈X Pr[Q(X∗)] = 1, (10)

is by Lemma 4, and (12) by the definition of δ ≤ AdvVFA (k)/2.

B Proof of Lemma 4

The execution of AdmSmp in Game 3 uses random coins which are independent of the rest of the game.
Therefore, the set of random coins underlying Game 3 can be seen as a cross product Ω = Ω′ ×RK , where
each member is a pair (ω′, rK) ∈ Ω such that rK denotes the random coins used by algorithm AdmSmp,
and ω′ denotes all other coins of the experiment and the attacker.

Note that that any particular choice X∗ of a sequence of queries made byA depends only on ω′, because
in Game 3 algorithm AdmSmp is executed in the Finalize3-procedure, when the sequence of queries X∗

issued by the attacker is already fixed. Thus, for all X∗ ∈ X let Ω′(X∗) denote the set of all ω′ ∈ Ω′ that
produce the particular sequence of queries X∗. Similarly, note that the probability that Game 3 outputs 1
depends only on Ω′.

Let Ω′1 ⊆ Ω′ denote the set of all ω′ ∈ Ω′ such that the experiment outputs 1. Let Rgood(X∗) ⊆ RK
denote the set of all coins leading to an AHF key K such that for X∗ = (X(1), . . . , X(Q), X∗) holds that

FK(X(1)) = · · · = FK(X(Q)) = 1 ∧ FK(X∗) = 0

Then the set of coins such that G3 = 1 is Ω′1 × RK , and the set of coins leading to good3 ∧ Q(X∗) is
Ω′(X∗)×Rgood(X∗). Now we can compute
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Pr[G3 = 1 ∧ good3 ∧ Q(X∗)] =
|(Ω′1 ×RK) ∩ (Ω′(X∗)×Rgood(X∗))|

|Ω′ ×RK |

=
|(Ω′1 ∩ Ω′(X∗))×Rgood(X∗)|

|Ω′ ×RK |

=
|Ω′1 ∩ Ω′(X∗)| · |Rgood(X∗)|

|Ω′| · |RK |

=
|Ω′1 ∩ Ω′(X∗)| · |RK |

|Ω′| · |RK |
·
|Rgood(X∗)|
|RK |

=
|(Ω′1 ∩ Ω′(X∗))×RK |

|Ω′ ×RK |
·
|Rgood(X∗)|
|RK |

= Pr[G3 = 1 ∧ Q(X∗)] · γ(X∗)

and

Pr[good3 ∧ Q(X∗)] =
|Ω′(X∗)×Rgood(X∗)|

|Ω′ ×RK |

=
|Ω′(X∗)| · |Rgood(X∗)|

|Ω′| · |RK |

=
|Ω′(X∗)| · |RK |
|Ω′| · |RK |

·
|Rgood(X∗)|
|RK |

=
|Ω′(X∗)×RK |
|Ω′ ×RK |

·
|Rgood(X∗)|
|RK |

= Pr[Q(X∗)] · γ(X∗)
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