
Efficient Pairings and ECC for
Embedded Systems

Thomas Unterluggauer and Erich Wenger

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, 8010 Graz, Austria
{Thomas.Unterluggauer,Erich.Wenger}@iaik.tugraz.at

Abstract. The research on pairing-based cryptography brought forth
a wide range of protocols interesting for future embedded applications.
One significant obstacle for the widespread deployment of pairing-based
cryptography are its tremendous hardware and software requirements.
In this paper we present three side-channel protected hardware/software
designs for pairing-based cryptography yet small and practically fast:
our plain ARM Cortex-M0+-based design computes a pairing in less
than one second. The utilization of a multiply-accumulate instruction-
set extension or a light-weight drop-in hardware accelerator that is placed
between CPU and data memory improves runtime up to six times. With
a 10.1 kGE large drop-in module and a 49 kGE large platform, our design
is one of the smallest pairing designs available. Its very practical runtime
of 162 ms for one pairing on a 254-bit BN curve and its reusability for
other elliptic-curve based crypto systems offer a great solution for every
microprocessor-based embedded application.

Keywords: optimal-ate pairing, elliptic-curve cryptography, embedded
computing, hardware/software co-design.

1 Introduction

The field of pairing-based cryptography has become the key enabler for novel pro-
tocols and algorithms: privacy-aware group-signature schemes [9, 22], identity-
based encryption schemes [7, 23], and since recently even provable leakage-
resilient protocols [25] rely on pairing operations. The practical advantages of
those protocols motivate their use in the very competitive markets of embedded
microprocessors and smart cards.

The biggest implementation challenges of pairing-based cryptography are
related to its tremendous resource and runtime requirements. Therefore, re-
searchers started to implement optimized pairing operations for desktop comput-
ers [1, 6], for smart phones [20, 31], and as dedicated hardware modules [16, 24].

©IACR 2014. This article is the final version submitted by the author(s) to the
IACR and to Springer-Verlag on 06/16/2014. The version published by Springer-Verlag
is available at 10.1007/978-3-662-44709-3 17.

1

Cost-sensitive embedded applications however simply do not have the budget
for such powerful application processors or 130-180 kGE of dedicated hardware.

For these embedded scenarios, implementations on light-weight RISC pro-
cessors have been done. For example, Szczechowiak et al. [33] need 17.9 seconds
for a pairing on an ATmega microprocessor, Gouvêa et al. [18] need 1.9 sec-
onds on an MSP430X microprocessor, and Devegili et al. [15] need 2.5 seconds
on a Philips HiPerSmart™ MIPS microprocessor. Unfortunately, such runtimes
are not very promising for real-world, interactive applications as pairing-based
protocols like group-signature schemes often happen to rely on several pairing
and group operations. The resulting overall runtimes of several seconds would
be considerably too slow. Additionally, it is unclear to which degree timing-
analysis, power-analysis, or fault-analysis attacks have been considered in all
those implementations.

These limitations motivated us to be the first to implement constant-runtime,
side-channel protected optimal-Ate pairings using Barreto-Naehrig (BN) curves
[4] on an ARM Cortex-M0+ [2, 3] microprocessor. The respective pairing runtime
of 993 ms seems very promising as it is several times faster than related work1,
but might be insufficient for interactive protocols as well. Therefore, it was a
necessity to improve performance by adding dedicated hardware.

In this paper, we present three reusable pairing platforms which offer run-
times of down to 162 ms requiring 10.1 kGE of dedicated hardware at most –
significantly less than similarly fast hardware implementations by related work.
Our rigorous hardware/software co-design approach equipped one platform with
a multiply-accumulate instruction-set extension and another platform with a
drop-in accelerator2 [35]. By building a flexible, specially crafted drop-in module
with several novel design ideas, we were able to improve the runtime of pairing
and group operations up to ten times. This concept platform consisting of CPU,
RAM, ROM, and drop-in module consumes merely 49 kGE of hardware in total
with 10.1 kGE of those being spent for the drop-in accelerator. The practicability
of this platform is evaluated for several high-level pairing protocols [7, 8, 22] –
each operating in significantly less than one second. Its reusability for Elliptic-
Curve Cryptography (ECC) is further verified for secp160r1, secp256r1 [11,
29], and Curve25519 [5], requiring 11.9-36.8 ms for a side-channel protected point
multiplication. Those results make the drop-in based platform highly suitable for
embedded computing, smart cards, wireless sensor nodes, near-field communi-
cation, and the Internet of Things.

The paper is structured as follows: Section 2 gives an overview on pairings and
Section 3 covers the implementation aspects of the high-level pairing arithmetic.
In Section 4, the architectural options to build suitable pairing platforms are
presented. The respective platforms are evaluated in Section 5 and compared
with related work in Section 6. The (re-)usability of our drop-in platform is
content of Section 7. A conclusion is finally done in Section 8.

1Not considering the different underlying microprocessor architectures.
2Wenger [35] applied the concept to binary-field based elliptic-curve cryptography

while we apply the concept to prime-field based elliptic-curve cryptography.

2

2 Background on Pairings

The wide range of cryptographic protocols in pairing-based cryptography is
based on three cyclic order-n groups G1, G2, GT and a bilinear pairing op-
eration. A bilinear pairing e : G1 × G2 → GT accepts an element of the two
additive groups G1 and G2, respectively, maps these to the multiplicative group
GT , and hereby fulfills several properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab ∀P ∈ G, Q ∈ G, a, b ∈ Z .
2. Non-degeneracy: ∀P ∈ G1 \ {O} ∃ Q ∈ G2 : e(P,Q) 6= 1 .
3. Computability: e(P,Q) can be computed efficiently.

The groups G1, G2 are typically groups over elliptic curves and GT is the sub-
group of a large extension field. However, only certain elliptic curves allow the
definition of G1, G2, GT with an admissible bilinear pairing, e.g., [4, 27]. In this
paper, we focus on the pairing-friendly elliptic curves by Barreto and Naehrig
[4] of the form E : y2 = x3 + b with b 6= 0 (BN curves). Ate pairings a(Q,P)
based on these curves can be described as follows:

a : G2 ×G1 → GT : E(Fp12)× E(Fp)→ F∗p12 . (1)

Note that for G1, G2 and GT to have the same prime order n, G2 and GT need to
be subgroups of E(Fp12) and F∗p12 , respectively. The BN curves use a parameter
u such that a desired security level is achieved. This allows the computation of
the prime p and the prime group order n in dependence of u:

p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1 .

As another benefit, BN curves possess an efficiently computable group homomor-
phism that exploits the curve’s sextic twist E′. Utilization of this homomorphism
allows the compression of the elements in G2, which leads to a more efficient def-
inition of the Ate pairing, namely

a : G2 ×G1 → GT : E′(Fp2)× E(Fp)→ F∗p12 . (2)

The pairing a itself consists of the evaluation of a rational function fλ,Q and a
final exponentiation that maps all cosets to the same unique representative:

a = fλ,Q(P)(p
12−1)/n.

Owing to the Frobenius homomorphism, the final exponentiation by (p12− 1)/n
can be split into an easy part (p6 − 1)(p2 + 1) and a hard part (p4 − p2 + 1)/n.
The function fλ,Q can in general not be evaluated directly. However, Miller [26]
described an important property of rational functions, namely

fi+j,P = fi,P fj,P
`[i]P,[j]P

ν[i+j]P
.

3

 Pairing

Integer Arith.

Hash, PRNG,
Symmetric
Algorithm, ...

E′(Fp2)

Fig. 1: Arithmetic required for pairings over Barreto-Naehrig curves

The property allows the computation of fλ,Q in polynomial time by merely
evaluating vertical (ν) and straight (`) lines in elliptic curve points using a
double-and-add approach. Values of λ with low Hamming weight result in a
particularly fast computation of fλ,Q, the pairing becomes optimal. In this work,
we used the efficient optimal-Ate pairing by Vercauteren [34].

3 High-Level Arithmetic

The computation of bilinear pairings over BN curves requires several layers of
arithmetic. As illustrated in Figure 1, all arithmetic is based on a multi-precision
integer arithmetic layer. On top of that, prime-field arithmetic and a tower of
extension fields are built upon. The elliptic curve groups used as G1 and G2

utilize the prime field and its quadratic extension field, respectively. The largest
extension field Fp12 is used by GT . The pairing computation itself is based on
the groups G1, G2, GT , and their underlying field arithmetic.

Methodology. Our state-of-the-art implementations are based on the tech-
niques used by Beuchat et al. [6] and Devegili et al. [14]. The pairing imple-
mentation uses the fast formulas by Costello et al. [13], the inversion trick by
Aranha et al. [1], a lazy reduction technique in Fp2 [6, 31], and a slightly modified
variant of the final exponentiation by Fuentes-Castañeda et al. [17] that requires
less memory (see Appendix A.1). The prime-field inversion using Fermat’s little
theorem is optimized according to Appendix A.2. Since operations in GT and in
the hard part of the final exponentiation take place in the cyclotomic subgroup
of F∗p12 , dedicated squaring formulas are utilized [19]. The point multiplications
in both elliptic curve groups use Montgomery ladders that are based on fast
formulas [21] in homogeneous projective co-Z coordinates.

Parameters. As this work aims to offer a certain degree of flexibility, both
the 80-bit and the 128-bit security level are supported. The two elliptic curves
BN158 [18] (u = 40 00800023h) and BN254 [30] (u = −40800000 00000001h) of
the form y2 = x3+2 were chosen. Those lead to particularly fast execution times
as the respective constants λ of fλ,Q have low Hamming weights. The extension

4

field Fp2 is represented as Fp[i]/(i2 − β) with β = −1. The extension field Fp12
is built as Fp2 [z]/(z6 − ζ), with ζ = (1 + i) for BN254 and ζ = 1

1+i for BN158.

Implementation Attacks. An important aspect in the implementation of
pairings and group arithmetic for embedded applications is the consideration of
side-channel attacks. While scalar factors or exponents are typically the secret
operands for operations in G1,G2 and GT , an elliptic curve point may have to
be protected in the case of pairing operations.

As a countermeasure to timing attacks, all implemented algorithms have
constant, data-independent runtime. Therefore, e.g., some fast but vulnerable
point multiplication algorithms are not used. Both the point multiplications
in G1, G2 and the exponentiations in GT hence use Montgomery ladders. The
implementation’s countermeasures against first-order Differential Power Analysis
(DPA) attacks comprise Randomized Projective Coordinates (RPC) [12] in both
the pairing computation and the point multiplications in G1 and G2. To detect
fault attacks on data, point multiplications in G1 and G2 include several point
verifications. DPA and fault attacks on exponentiations in GT as well as fault
attacks on pairings were also taken into consideration, but can better be handled
on the protocol layer using randomization.

4 Hardware Architectures

To meet the high requirements of pairing-based cryptography in embedded de-
vices, our goal was to equip a stand-alone microprocessor, designated for em-
bedded applications, with a dedicated hardware unit such that: (i) Pairing com-
putations are usable within interactive (e.g., authentication) protocols. (ii) A
pre-existing microprocessor platform is modified only minimally. (iii) The over-
all hardware requirements, i.e., the costs, are kept small and considerably below
100 kGE needed in related work [16, 24]. (iv) Embedded applications such as
wireless sensor nodes and NFC should be practically feasible.

Figure 2 summarizes potential architectures that can be used to attain such
goals. The straightforward solution (a), a sole off-the-shelf microprocessor, re-
quires minimal hardware-development time, however potentially delivers insuf-
ficient performance. The runtimes desirable for interactive protocols can only
be achieved by either adding powerful, dedicated instructions (b), or by adding
dedicated co-processors. Contrary to a dedicated hardware module (c), a drop-in
module (d) is memoryless and requires neither a Direct Memory Access (DMA)
controller nor a multi-master bus. Wenger [35] showed the advantages of the
drop-in concept in comparison to a dedicated hardware module for binary-field
ECC. However, the applicability of this technique for prime-field based pairings
is still an open question.

Following up the potential architectures, we consecutively evaluate the prac-
ticability of a plain microprocessor design (a), a multiply-accumulate instruction-
set extension (b), and a dedicated drop-in module (d).

5

(d)

(b)

(c)

(a)

CPU

Program
Memory

Dedicated
Hardware
Module

Data
Memory

CPU

Program
Memory

Data
Memory

CPU

Program
Memory

Data
Memory

CPU

Program
Memory

Data
Memory

MAC

Drop-in
Module

Fig. 2: Architectural options for fast and flexible pairing designs

4.1 The Used Microprocessor

The accomplishment of the initially set goals highly depends on the used mi-
croprocessor. As the runtime figures by Szczechowiak et al. [32] and Gouvêa et
al. [18] discourage the use of an 8-bit or 16-bit microprocessor, a 32-bit micro-
processor is preferred as a basis. Moreover, the bottleneck between computation
unit and RAM is less of an issue if 32-bit interfaces are used. We hence decided to
utilize a self-built processor functionally equivalent to the ARM Cortex-M0+ [2],
because the Cortex-M0+ was especially designed for embedded applications and
currently is one of the smallest 32-bit processors in production. The Cortex-M0+
has 16 32-bit general-purpose registers of which 8 are efficiently usable. It comes
with a mixed 16/32-bit Thumb/Thumb-2 instruction set and optionally either
a 32-cycle or single-cycle 32-bit multiplier. In its minimum configuration, ARM
specifies its Cortex-M0+ to require only 12 kGE in a 90 nm process technology.

4.2 The Software Framework

The biggest advantage of an off-the-shelf microprocessor are the vast (open-
source) toolchains. Thus a high-level framework capable of pairing-based cryp-
tography using BN curves was created in C. It provides extension field arithmetic,
elliptic curve operations, and bilinear pairings. The framework focuses on both
good performance and low memory consumption. To achieve the latter, several
optimizations were incorporated into the framework. First, virtually all of the
memory is allocated on the stack. As stack variables are discarded at the end of
each function, stack allocation facilitates the reduction of required memory by
separating code into different functions. Second, allocated memory is reutilized
where possible. Third, memory-optimized algorithms are used, e.g., for the final
exponentiation as in Appendix A.1. Last, compiler optimizations are used to de-
crease the program size. Therefore, the compiler options -ffunction-sections,

6

-fdata-sections and the linker options -gc-sections, --specs=nano.specs
are passed to the bare-metal ARM GNU toolchain (version 4.7.4).

The high-level pairing framework is common to all three evaluated platforms.
The main difference between these platforms is the implemented finite-field arith-
metic. While (a) and (b) control the whole finite field arithmetic in software, (d)
relies on finite-state machines to perform additions, subtractions and multipli-
cations in Fp and Fp2 . Nevertheless, all implementation options ensure constant
runtime and consider side-channel attacks.

4.3 Assembly-Optimized Software Implementation (a)

The plain microprocessor platform (a) is based on a Cortex-M0+ with a single-
cycle multiplier. Its hand-crafted assembly routines for optimized prime-field
arithmetic always perform a reduction step to ensure constant runtime. This is
accomplished by storing the reduction result either to the target or a dummy
memory location via masking of the operand addresses. The crucial prime-field
multiplication utilizes an unrolled Separated Product Scanning (SPS) method of
the Montgomery multiplication [28] that is derived from [10]. The SPS variant
is chosen because of the particular Fp2-multiplication technique [6, 31] we use,
which performs the required three multiplications and two reductions separately.
Product scanning can further be efficiently implemented on the processor if three
registers are used as an accumulator, as presented in [36]. The reduction step
for the curve BN254 is further optimized as several multiply-accumulates can be
skipped due to the sparse prime [18].

4.4 Multiply-Accumulate Hardware Extensions (b)

The performance of the prime-field multiplication significantly suffers from the
32× 32 → 32 bit multiplier of the Cortex-M0+, which results in 80% of a pair-
ing’s runtime being spent in Fp multiplications. To improve this, the processor
core is equipped in (b) with a multiply-accumulate extension similar to [36].
It adds the result of a full 32 × 32 → 64 bit multiplication to three accumula-
tion registers in a single cycle. In order to avoid a modification of the compiler
toolchain, the TST instruction, which is not required for prime-field multipli-
cation, is reinterpreted as a multiply-accumulate instruction if a certain bit in
the control register is set. The control register is manipulated accordingly at
the beginning and the end of a prime-field multiplication. Besides accelerated
multiply-accumulate operations, the prime-field multiplication requires less reg-
isters for temporary variables, which we exploit by caching some of the operand
words in the product scanning routine.

4.5 The Drop-in Module (d)

As a consequence of the high-level runtime and area goals, it is of utmost impor-
tance to maximize the utilization of the invested chip hardware. To achieve this,

7

Drop-In DatapathCortex-M0+

Controlpath

Datapath
NVIC

Decoder

Instruction
Pipeline

Registers

ALU

Memory
Access

Unit

R
A

M

 OpAReg OpBReg

ACC

 WRITE

32x16-bit
Multiply-

Accumulate

ADD/
SUB

Controlpath

 160-bit Fp

Fp2

 256-bit Fp

Fig. 3: High-level representation of architecture (d) (without program memory). Note
that the sizes of the blocks are not proportional to their respective hardware footprints

a lightweight hardware drop-in accelerator is placed between processor and data
memory. The respective design, which is shown in Figure 3, uses a Cortex-M0+,
but any other processor is equally suitable.

The drop-in module provides unrolled state machines and an appropriate
arithmetic unit for 160-bit and 256-bit Fp multiplication, Fp addition and Fp
subtraction. It further encompasses state machines to control Fp2 addition, Fp2
subtraction, Fp2 multiplication and Fp2 squaring. Several memory-mapped reg-
isters are used to control the drop-in module. A lightweight arbiter is built in
which always gives preference to the CPU when the CPU wants to access the
data memory. In such case, the drop-in module is prepared to stall its operation.

The core element of our drop-in module is a multiply-accumulate unit that is
used to perform a Finely Integrated Product Scanning (FIPS) [10] Montgomery
multiplication. Within this algorithm approximately 2N2 +N , with N =d ld(p)

W e,
W -bit integer multiplications are performed that require approximately 4N2 load
operations. Instead of using a dual-port memory, we attain a perfectly utilized
bus and a perfectly utilized multiplier by using a two-cycle multiply-accumulate
unit that is based on a W ×W/2-bit multiplier. This saves 3 kGE for W = 32
in an 130 nm process compared to a traditional W ×W -bit multiplier.

A finite-field operation is started by writing three memory pointer registers
(OpA, OpB, and RES) and a control register. As those registers are mapped at
consecutive addresses, the store-multiple instruction (STM) of the Cortex-M0+
can be used to efficiently start an operation. A started finite-field multiplication
is performed using the following hardware components: a W ×W/2 = 32×16-bit
multiplier, a dld(2N)e + 2W = 68-bit ACCumulator, a W = 32-bit register for
operand A (OpAReg), a 3W/2 = 48-bit register for operand B (OpBReg), and a
W = 32-bit WRITE register. In OpBReg, the top 32 bits are always written by the
bus and the lowest 16 bits are used as an operand of the multiplier. Therefore, a
sequence of shift/rotate operations is necessary to actually multiply the loaded
operands. Table 1 visualizes the dataflow within the drop-in module. For a single
multiply-accumulate operation five clock cycles are necessary. As the drop-in

8

Table 1: Propagation of data within the
pipelined drop-in module

Bus OpBReg OpAReg Mult. Accum.

LD OpB+0

LD OpA+0 WR

LD OpB+0 SH WR

LD OpA+1 WRSH MUL1

LD OpB+1 SH WR MUL2 SHIFT

LD OpA+0 WRSH MUL1

LD OpB+2 SH WR MUL2

ST RES+0 WRSH MUL1

LD OpB+1 SH MUL2 SHIFT

LD OpA+1 WRSH MUL1

LD OpB+0 SH WR MUL2

A[0]B[0]A[4]B[4]

A[0]B[4]

C[0]C[4]C[8]

A[4]B[0]

Fig. 4: 5×5-word zig-zag product scanning
multi-precision multiplication method

module heavily relies on pipelining, practically only two cycles are needed. The
following steps are performed: (i) OpB+i is applied to the bus. (ii) OpB+i is WRitten
to OpBReg and OpA+j is applied to the bus. (iii) OpAReg is WRitten and OpBReg

is SHifted by 16 bits. (iv) The first multiplication cycle (MUL1) multiplies the
lower 16 bits of OpB+i with OpA+j and OpBReg is shifted again. (v) During the
second multiplication cycle (MUL2) the accumulator is optionally SHIFTed. When
shifted, the lowest 32-bit of the accumulator are stored in the WRITE register.
This data is later written to the address RES+i+j, when the bus is not utilized.

As the fully utilized bus needs some free cycles to write the result, we use a
zig-zag product scanning technique (cf. Figure 4) [37]. In this technique, consec-
utive columns are traversed in different order, which allows caching of a single
operand from one column to the next. This frees the bus for 2N cycles, which
are exactly the 2N cycles required to store the computed results.

Although the implemented FIPS multiplication is quite complex, the software
running on the CPU is completely independent of the methodology used to
perform finite-field arithmetic within the drop-in module. However, there are two
implementation guidelines the software has to deal with. First, constant variables
have to be temporarily copied to the data memory when being used. Second,
there are two techniques to wait for the drop-in module to finish. A function
delegating an operation to the drop-in module can either start an operation and
wait for it to finish, or wait for a previously started operation to finish and
only then start a new operation. The latter case is more performant because the
CPU and the drop-in module potentially work in parallel, i.e., the control flow
operations involved in the invocation of the routines that call the drop-in module
are done while the drop-in module is computing. However, temporary variables
on the stack are freed once a function finishes, which requires adding additional
wait statements within the extension-field arithmetic to prevent the drop-in from
accessing reallocated memory locations. Nevertheless, the utilization of the drop-

9

Table 2: Performance of various operations on architectures (a), (b), and (d)

Design
Fp G1 G2 GT G1 ×G2

RAM ROM
Add Mul Inv Mul Mul Exp Pairing

[Cycles] [Cycles] [kCycles] [kCycles] [kCycles] [kCycles] [kCycles] [Byte] [Byte]

BN158

Cortex-M0+ 112 1,800 331 4,828 11,775 22,871 17,389 1,856 13,980
MAC 112 361 72 1,129 4,042 10,736 7,828 1,796 11,232
Drop-in 56 161 29 493 1,577 4,322 3,182 1,876 10,364

BN254

Cortex-M0+ 166 3,782 1,122 16,071 38,277 72,459 47,643 2,828 18,116
MAC 166 934 285 4,323 11,449 27,460 17,960 2,836 12,572
Drop-in 75 335 97 1,566 4,858 12,076 7,763 2,880 10,764

in is increased from 77.6% to 85.1% when the function first waits for previous
operations to finish. Similarly, the utilization of the RAM is raised from 75.7%
to 80.1% (cf. 34.6% in (b), 17.0% in (a)).

5 Implementation Results

To verify the achievement of the area and performance goals initially set, the
three microprocessor-based platforms (a), (b) and (d) were evaluated with re-
spect to hard- and software. Regarding the overall hardware platforms, runtime,
area, power, and energy consumption are distinctive. Regarding the software
part, the evaluation focuses on the runtimes of the underlying finite-field arith-
metic and the most expensive operations used within protocols: the point mul-
tiplications in G1 and G2, the exponentiation in GT , and the pairing operation.

The results in Table 2 show that the multiply-accumulate extension speeds up
the prime-field multiplications by factors of 4.0-5.03, but leaves the prime-field
additions unaffected. The same speed-ups are observed for prime-field inversions
and point multiplications in G1. However, the impact of the multiply-accumulate
extension on the performance of both pairings and operations in G2, GT is lower
and lies between a factor of 2.1 and 3.3. Considering the performance of the drop-
in module, an even greater speed-up is observed compared to the plain software
implementation. In this case, prime-field multiplications, inversions and point
multiplications in G1 are up to 11.3 times faster, which eventually results in
an up to 6.1 times faster computation of pairings. On average, operations using
BN158 are 3.0 times faster than operations using BN254.

Throughout all implementations, the demand for data memory is kept rela-
tively low, with a maximum of 1,876 bytes and 2,880 bytes for BN158 and BN254,
respectively. Similarly, the program sizes are kept small, e.g., 18 KB for BN254.
Given a typical clock frequency of 48 Mhz, the performance results of the point
multiplications in G1, G2, the exponentiation in GT , and the pairing opera-
tion are illustrated in Figure 5. The respective runtimes support our choice of a

3The implementation for BN158 with multiply-accumulate extension utilizes the
FIPS method and discards lazy reduction in Fp2 [6, 31] as it yields better performance.

10

Cortex-M0+ MAC Drop-in
0

200

400

600
1
0
1

2
4

1
0

2
4
5

8
3

3
3

4
7
6

2
2
4

9
0

3
6
2

1
6
3

6
6

[ms] BN158

G1 Mul.

G2 Mul.

GT Exp.

Pairing

Cortex-M0+ MAC Drop-in
0

500

1,000

1,500

2,000

3
3
5

9
0

3
3

7
9
7

2
3
9

1
0
1

1
,5

1
0

5
7
2

2
5
2

9
9
3

3
7
4

1
6
4

[ms] BN254

G1 Mul.

G2 Mul.

GT Exp.

Pairing

Fig. 5: Group operations at 48 MHz

32-bit architecture: providing 128-bit security, the drop-in based platform does
pairing computations in highly practical 164 ms. The pure embedded software
implementation performs the same computation in 993 ms.

While Table 2 focuses on the software part, the most important hardware
characteristics are visualized in Table 3. The runtime is given for a single pairing
computation. Both area and power measurements were determined for an 130 nm
low-leakage UMC technology. The area results in a 90 nm UMC technology are
explicitly marked. The designs were synthesized and their power and runtime
evaluated for a clock frequency of 48 MHz. Both data and program memory
were realized using RAM and ROM macros of appropriate sizes. The program
memory encompasses all routines required to implement pairing-based protocols,
i.e., pairings, operations in G1, G2, and GT . These platforms are hence ready-
to-use for future applications based on pairings over BN curves.

According to Table 3, BN254 pairing computations with reasonable perfor-
mance are available at the cost of 57.7 kGE in an 130 nm process technology.
Switching to the more advanced 90 nm process technology shrinks the design to
49.0 kGE, constituting one of the smallest available hardware designs for pairings
with practical relevance. In terms of power consumption, the plain microproces-
sor design is, as expected, the most economical. The multiply-accumulate exten-
sion and the drop-in module increase power consumption by 25% and 70%, re-
spectively. Due to their increased performance, these platforms are more energy-
efficient though. Their respective demand for energy is 2.1 and 3.5 times lower.

6 Comparison with Related Work

As a consequence of our hardware/software co-design approach, comparison with
related work focuses on two aspects. On the one hand, the pure software imple-
mentation on the Cortex-M0+ is brought into relation to other software imple-

11

Table 3: Implementation characteristics for 130 nm and 90 nm process technologies

Platform
Area

RAM ROM CPU Dedicated Total Power Runtime Energy
[kGE] [kGE] [kGE] [kGE] [kGE] [mW] [ms] [mJ]

BN158

Cortex-M0+ 11.4 15.6 18.4 - 45.4 5.92 362 2.14
MAC 11.1 13.8 27.1 - 52.0 7.38 163 1.20
Drop-in 11.4 13.8 17.0a 10.8 52.9 10.25 66 0.68

Drop-in 90nm 10.5 12.0 12.6a 10.1 45.2 - 66 -

BN254

Cortex-M0+ 16.0 19.3 18.4 - 53.7 5.80 993 5.76
MAC 16.0 15.6 27.1 - 58.8 7.33 374 2.74
Drop-in 16.2 13.8 17.0a 10.8 57.7 9.96 162 1.61

Drop-in 90nm 14.3 12.0 12.6a 10.1 49.0 - 162 -

aBit-serial multiplier.

mentations on low-resource hardware. On the other hand, the resulting hardware
design is compared with other dedicated pairing hardware implementations.

The comparison of our software implementation with related implementa-
tions of Ate pairings over BN curves providing approximately 128-bit security
is summarized in Table 4. Gouvêa et al. [18] provide highly optimized software
implementations for the 16-bit microcontroller MSP430 and a variant of its suc-
cessor MSP430X, which is equipped with a 32-bit multiplier (MPY32). The
implementation by Devegili et al. [15] is evaluated on a 32-bit Philips HiPerS-
mart™ smart card, which has a SmartMIPS architecture and clearly is a direct
competitor of Cortex-M0+-based smart cards. However, it is unclear to which
extent side-channel resistance is considered by either of them.

As both the MSP430 and the Cortex-M0+ use a 16-bit instruction-set, it is
important to highlight the exceptionally low program and data memory foot-
print of our implementations. It is however hard to compare the quality of an
implementation when different frameworks and different microprocessors are in-
volved.

Other pairing implementations for 32-bit ARM processors are limited to the
Cortex-A series, such as in [20]. However, their pairing’s runtime of 9.9 ms on

Table 4: Related software implementations of Ate pairings over BN curves

Platform
RAM ROM Runtime Frequ. Runtime
[Byte] [Byte] [kCycles] [MHz] [ms]

Gouvêa [18] MSP430 6,500 36,000 79,440 8 9,930
Devegili [15] Philips HiPerSmart™ <16,000 - 90,462 36 2,513
Gouvêa [18] MSP430X/MPY32 6,500 34,400 47,736 25 1,909
Ours Cortex-M0+ 2,828 18,116 47,643 48 993

12

Table 5: Related hardware platforms
(130 nm)

Area
Time

Ded. Total
[kGE] [kGE] [kCycles]

Fan [16] 183 183 593
Kammler [24] 71a 164 5,340
Kammler [24] 67a 145 6,490
Kammler [24] 53a 130 10,816

Ours (Drop-in) 11b 58 7,763

aCore excl. 26 kGE of original RISC
bDrop-in module.

0 10 20 30 40 50
0

50

100

150

200
·103

Cortex-M0+

MAC

Drop-In

Kammler 1

Kammler 2
Kammler 3

Fan

Runtime [MCycles]

A
re

a
[G

E
]

Faster

Efficient

Smaller

Fig. 6: Characteristics of related hardware

a 1.2 GHz Cortex-A9 is as well hardly comparable with our pairing’s runtime
on the Cortex-M0+ since the multi-core Cortex-A processors provide massively
higher clock frequencies along with a more powerful instruction set.

Regarding related hardware platforms, Table 5 covers hardware implemen-
tations of pairings providing roughly 128-bit security. Fan et al. [16] proposed a
dedicated pairing cryptoprocessor with parallelized, full-precision Fp arithmetic.
Its centerpiece is a hardware implementation of a hybrid modular multiplication
algorithm that performs both polynomial and coefficient reduction. Their area
figures, however, exclude the required RAM. Kammler et al. [24] extended a
5-stage 32-bit RISC core with instructions for Fp arithmetic. Their Application-
Specific Instruction-set Processor (ASIP) uses a Montgomery multiplier struc-
ture that can be synthesized in different configurations and sizes. Unfortunately,
their area figures do not contain the program memory.

In comparison to [16] and [24], our drop-in-based platform is 2.2-3.1 times
smaller with regard to total area consumption. In both [24] and our case the
CPU and the data memory can be reused for other applications. In terms of
dedicated hardware, our drop-in-based platform is 16.6 times smaller than the
work of Fan et al. In exchange, their design is faster and provides the best area-
runtime product according to Figure 6. However, it depends on the application
how much hardware area is actually acceptable to be spent on a dedicated pairing
accelerator.

7 Re-usability of our Drop-in Architecture

To emphasize the practicability of our low-area platforms for deploying cryp-
tography to embedded environments, several protocols that are relevant in such
context have been assessed in terms of the performance to expect.

13

Table 6: Performance of pairing-based protocols on the drop-in platform

G1 G2 GT G1×G2 BN158 BN254
Mul Mul Exp Pairing [ms] [ms]

Leakage Resilient KEM [25]

Encaps. 0 1 1 0 123 353
Decaps. 2 0 0 2 153 389

Identity-Based Encryption KEM [7, 23]

Encaps. 3 0 1 0 121 349
Decaps. 0 0 0 1.5a 99 243

aRatios and products of pairings are
counted as 1.5 pairing computations.

G1 G2 GT G1×G2 BN158 BN254
Mul Mul Exp Pairing [ms] [ms]

Short Signatures [8]

Sign 1 0 0 0 10 33
Verify 0 2 0 1 132 364

Short Group Signatures [22]

Sign 9 2 0 1.5a 258 739
Verify 9 2 0 3 357 981
Link 0 0 0 3 199 485

Using the Drop-in Module for Pairing-based Protocols. The short
signature scheme by Boneh et al. [8] is interesting for constrained signature
devices as it aids to reduce communication. As a representative of group signa-
tures, which help to provide anonymous authentication, the scheme by Hwang
et al. [22] was chosen. To be able to establish a random session key without
the necessity of verifying public keys, the identity-based encryption scheme by
Boneh et al. [7] in its Key Encapsulation Mechanism (KEM) variant was evalu-
ated as it combines good performance with small parameters. Additionally, the
leakage resilient bilinear ElGamal KEM by Kiltz and Pietrzak [25] is taken into
consideration because it is proven to have bounded side-channel leakage.

The number of computationally expensive operations and the expected over-
all runtime of each of the aforementioned protocols are presented in Table 6. The
runtimes are given for the drop-in module based platform. As the figures sug-
gest, all of the protocols may be performed on the device with user interaction
as response times lie noticeably below one second.

Using the Drop-in Module for ECC. In order to emphasize the re-
usability of our drop-in module based design, we also evaluated the performance
of the standardized curves [11, 29] secp160r1 and secp256r1 and the perfor-
mance of Curve25519 by Bernstein [5], which many people fancy as replacement
curve of standardized NIST curves. Again, we follow the point multiplication
methodology from [36], which relies on Montgomery ladders, randomized pro-
jective coordinates and multiple point validation checks. All implementations
have similar hardware footprints and require 4.1 kGE (500 bytes) for RAM,
6.2 kGE (3,200 bytes) for ROM, 10.1 kGE for the drop-in module, 12.6 kGE
for the Cortex-M0+, and 33 kGE in total (in a 90 nm UMC technology). Point
multiplications for secp160r1, secp256r1, and Curve25519 need 570 kcycles,
1,765 kcycles, and 1,110 kcycles, respectively. Note that we do not take advan-
tage of the special form of the underlying primes. However, with runtimes of
11.9-36.8 ms (at 48 MHz) the drop-in concept is clearly an enabler of elliptic-
curve based interactive protocols.

14

8 Conclusion

According to our evaluations of three microprocessor-based hardware designs,
the utilization of a compact 32-bit microprocessor results in notably small pairing
implementations. Requiring merely 45.2-49.0 kGE of chip area, we provided one
of the smallest available hardware designs capable of bilinear pairings. The most
prominent platform was however obtained by the construction of a dedicated
drop-in hardware module for prime-field arithmetic. Its low area requirements
and highly practical runtime facilitate pairing-based cryptography in interactive
embedded applications.

Acknowledgments

This work has been supported in part by the Austrian Government through the
research program FIT-IT under the project number 835917 (project NewP@ss)
and by the European Commission through the FP7 program under project num-
ber 610436 (project MATTHEW).

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C., López, J.: Faster Explicit
Formulas for Computing Pairings over Ordinary Curves. In: Paterson, K. (ed.)
EUROCRYPT 2011, LNCS, vol. 6632, pp. 48–68. Springer Berlin Heidelberg (2011)

2. ARM Ltd.: Cortex-M0+ Processor (Sep 2013), http://www.arm.com/products/

processors/cortex-m/cortex-m0plus.php

3. Atmel Corporation: Atmel SAM D20 ARM-based Microcontroller Datasheet (Dec
2013), http://www.atmel.com/Images/Atmel-42129-SAM-D20_Summary.pdf

4. Barreto, P.S., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer
Berlin Heidelberg (2006)

5. Bernstein, D.: Curve25519: New Diffe-Hellman Speed Records. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. vol. 3958, pp. 207–228 (2006)

6. Beuchat, J.L., González-Dı́az, J., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-Speed Software Implementation of the Optimal
Ate Pairing over Barreto-Naehrig Curves. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010, LNCS, vol. 6487, pp. 21–39. Springer Berlin Heidelberg (2010)

7. Boneh, D., Boyen, X.: Secure Identity Based Encryption Without Random Oracles.
In: Franklin, M. (ed.) CRYPTO 2004, LNCS, vol. 3152, pp. 443–459. Springer
Berlin Heidelberg (2004)

8. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH
Assumption in Bilinear Groups. Journal of Cryptology 21(2), 149–177 (2008)

9. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer Berlin Heidelberg (2004)

10. Ç.K. Koç, T. Acar and B.S. Kaliski, Jr.: Analyzing and Comparing Montgomery
Multiplication Algorithms. IEEE Micro 16(3), 26–33 (June 1996)

11. Certicom Research: Standards for Efficient Cryptography, SEC 2: Recommended
Elliptic Curve Domain Parameters, Version 1.0 (September 2000), http://www.

secg.org/

15

12. Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp. 292–302.
Springer (1999)

13. Costello, C., Lange, T., Naehrig, M.: Faster Pairing Computations on Curves with
High-Degree Twists. In: Nguyen, P., Pointcheval, D. (eds.) PKC 2010, LNCS, vol.
6056, pp. 224–242. Springer Berlin Heidelberg (2010)

14. Devegili, A.J., hÉigeartaigh, C.O., Scott, M., Dahab, R.: Multiplication and Squar-
ing on Pairing-Friendly Fields. Cryptology ePrint Archive, Report 2006/471 (2006)

15. Devegili, A., Scott, M., Dahab, R.: Implementing Cryptographic Pairings over
Barreto-Naehrig Curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T.
(eds.) Pairing 2007, LNCS, vol. 4575, pp. 197–207. Springer Berlin Heidelberg
(2007)

16. Fan, J., Vercauteren, F., Verbauwhede, I.: Faster Fp-Arithmetic for Cryptographic
Pairings on Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009,
LNCS, vol. 5747, pp. 240–253. Springer Berlin Heidelberg (2009)

17. Fuentes-Castañeda, L., Knapp, E., Rodŕıguez-Henŕıquez, F.: Faster hashing to G2.
In: SAC 2011. pp. 412–430. SAC’11, Springer-Verlag, Berlin, Heidelberg (2012)

18. Gouvêa, C., Oliveira, L., López, J.: Efficient Software Implementation of Public-
Key Cryptography on Sensor Networks Using the MSP430X Microcontroller. Jour-
nal of Cryptographic Engineering 2(1), 19–29 (2012)

19. Granger, R., Scott, M.: Faster Squaring in the Cyclotomic Subgroup of Sixth De-
gree Extensions. In: Nguyen, P., Pointcheval, D. (eds.) PKC 2010, LNCS, vol. 6056,
pp. 209–223. Springer Berlin Heidelberg (2010)

20. Grewal, G., Azarderakhsh, R., Longa, P., Hu, S., Jao, D.: Efficient Implementation
of Bilinear Pairings on ARM Processors. In: SAC 2012. LNCS, Springer Berlin
Heidelberg (2013)

21. Hutter, M., Joye, M., Sierra, Y.: Memory-Constrained Implementations of El-
liptic Curve Cryptography in Co-Z Coordinate Representation. In: Nitaj, A.,
Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 170–187.
Springer (2011)

22. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Short Group Signatures
with Controllable Linkability. In: LIGHTSEC 2011. pp. 44–52. IEEE Computer
Society, Washington, DC, USA (2011)

23. IEEE: P1363.3TM/D1 Draft Standard for Identity-based Public-key Cryptography
Using Pairings. (2008)

24. Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras,
D., Ascheid, G., Mathar, R.: Designing an ASIP for Cryptographic Pairings over
Barreto-Naehrig Curves. In: CHES 2009. pp. 254–271. Springer-Verlag, Berlin,
Heidelberg (2009)

25. Kiltz, E., Pietrzak, K.: Leakage Resilient ElGamal Encryption. In: Abe, M. (ed.)
ASIACRYPT 2010, LNCS, vol. 6477, pp. 595–612. Springer Berlin Heidelberg
(2010)

26. Miller, V.S.: The Weil Pairing, and Its Efficient Calculation. Journal of Cryptology
17(4), 235–261 (2004)

27. Miyaji, A., Nakabayashi, M., Takano, S.: New Explicit Conditions of Elliptic Curve
Traces for FR-Reduction (2001)

28. Montgomery, P.L.: Modular Multiplication without Trial Division. Mathematics of
Computation 44, 519–521 (1985)

29. National Institute of Standards and Technology (NIST): FIPS-186-3: Digital
Signature Standard (DSS) (2009), http://csrc.nist.gov/publications/fips/

fips186-3/fips_186-3.pdf

16

30. Nogami, Y., Akane, M., Sakemi, Y., Kato, H., Morikawa, Y.: Integer Variable χ-
Based Ate Pairing. In: Galbraith, S., Paterson, K. (eds.) Pairing 2008, LNCS, vol.
5209, pp. 178–191. Springer Berlin Heidelberg (2008)

31. Sánchez, A.H., Rodŕıguez-Henŕıquez, F.: NEON Implementation of an Attribute-
Based Encryption Scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013, LNCS, vol. 7954, pp. 322–338. Springer Berlin Hei-
delberg (2013)

32. Szczechowiak, P., Kargl, A., Scott, M., Collier, M.: On the Application of Pairing
Based Cryptography to Wireless Sensor Networks. In: Basin, D.A., Capkun, S.,
Lee, W. (eds.) WISEC 2009. pp. 1–12. ACM (2009)

33. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer (2008)

34. Vercauteren, F.: Optimal Pairings. Information Theory, IEEE Transactions on
56(1), 455–461 (2010)

35. Wenger, E.: Hardware Architectures for MSP430-Based Wireless Sensor Nodes
Performing Elliptic Curve Cryptography. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013, LNCS, vol. 7954, pp. 290–306. Springer
Berlin Heidelberg (2013)

36. Wenger, E., Unterluggauer, T., Werner, M.: 8/16/32 Shades of Elliptic Curve Cryp-
tography on Embedded Processors. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT
2013. LNCS, vol. 8250, pp. 244–261. Springer International Publishing (2013)

37. Wenger, E., Werner, M.: Evaluating 16-Bit Processors for Elliptic Curve Cryptog-
raphy. In: Prouff, E. (ed.) CARDIS 2011, LNCS, vol. 7079, pp. 166–181. Springer
Berlin Heidelberg (2011)

A Optimizations

A.1 Final Exponentiation

The hard part of the final exponentiation by Fuentes-Castañeda et al. [17] yields
fast execution by reducing the number of multiplications and exponentiations in
Fp12 . As a drawback, it requires four large temporary variables in Fp12 . In order
to attain a low-memory implementation, we decreased the number of temporary
variables by adapting their formulas without noticeably degrading performance.
Therefore, we initially set t0 = fp and compute the chain

fu → f2u → f4u → f6u → f6u
2 → f12u

2 → f12u
3

.

Following, a and b are set to a = f6u · f6u2 · f12u3

and b = a · (f2u · f)−1. The
computation of the result, namely

f = f6u
2 · f · fp ,

f = [f · a][b]p[a]p
2

[b]p
3

,

requires one more multiplication and one more Frobenius action than originally.
However, the respective implementation in Algorithm 1 requires three temporary

17

Algorithm 1 Memory-optimized hard part of the final exponentiation for pair-
ings over BN curves.

Input: f ∈ Fp12
Output: fφ12(p)/n ∈ Fp12
1: t0 ← fp

2: b← fu

3: if u < 0 then b← b . Conjugate
4: b← b2

5: a← b2

6: a← a · b
7: b← b · f
8: b← b
9: f ← f · t0

10: t0 ← au

11: if u < 0 then t0 ← t0

12: f ← f · t0
13: a← a · t0
14: t0 ← t20
15: if u < 0 then t0 ← t0
16: a← a · tu0 . Interleaved
17: b← b · a
18: t0 ← bp

19: t0 ← t0 · a
20: t0 ← tp0
21: t0 ← t0 · b
22: t0 ← tp0
23: t0 ← t0 · f
24: f ← t0 · a
25: return f

variables instead of four when the exponentiation and the multiplication on
Line 16 are done simultaneously using a dedicated function. Since variables in
Fp12 are large and RAM is more expensive than ROM, this approach aids to
keep chip area low.

A.2 Prime-Field Inversion

The parameterized prime p(u) facilitates an optimized exponentiation-based
prime-field inversion for positive u that have low Hamming weight. In such cases,
the inverse a−1 ∈ Fp can be expressed as

a−1 mod p = ap−2 mod p = a36u
4+36u3+24u2+6u−1 mod p

= a6u(4u+6u2(1+u)) · a6u−1 mod p .

Precomputation of the constant 6u− 1 and the chain of computations

a6u−1 → a6u → a12u
2 → a24u

2 → a36u
2 → a36u

3 → a36u
4

enables the computation of the inverse as

a−1 mod p = a6u−1 · a24u2 · a36u3 · a36u4

mod p .

Consequently, prime field inversion is done using three fast exponentiations by
u, one exponentiation by 6u−1, five multiplications and two squarings. Since the
exponents are fixed and publicly known, Montgomery ladders are not required
and runtime thus remarkably benefits from the low Hamming weight of u.

18

