
Short Signatures from Homomorphic Trapdoor Functions

Jacob Alperin-Sheriff∗

May 13, 2015

Abstract

We present a lattice-based stateless signature scheme provably secure in the standard model. Our
scheme has a constant number of matrices in the public key and a single lattice vector (plus a tag) in the
signatures. The best previous lattice-based encryption schemes were the scheme of Ducas and Micciancio
(CRYPTO 2014), which required a logarithmic number of matrices in the public key and that of Bohl et.
al (J. of Cryptology 2014), which required a logarithmic number of lattice vectors in the signature. Our
main technique involves using fully homomorphic computation to compute a degree d polynomial over
the tags hidden in the matrices in the public key. In the scheme of Ducas and Micciancio, only functions
linear over the tags in the public key matrices were used, which necessitated having d matrices in the
public key.

As a matter of independent interest, we extend Wichs’ (eprint 2014) recent construction of homomor-
phic trapdoor functions into a primitive we call puncturable homomorphic trapdoor functions (PHTDFs).
This primitive abstracts out most of the properties required in many different lattice-based cryptographic
constructions. We then show how to combine a PHTDF along with a function satisfying certain properties
(to be evaluated homomorphically) to give an eu-scma signature scheme.

∗School of Computer Science, College of Computing, Georgia Institute of Technology. Email: jmas6@cc.gatech.edu

1 Introduction

Lattice-based cryptography has made great strides since the original work of Ajtai [AD97, Ajt96]. In many
areas, it holds its own in comparison to cryptography based on various quantum-insecure number-theoretic
problems such as RSA and Diffie-Hellman. Variants of the very efficient commercial NTRUEncrypt
scheme have been proved secure under worst-case lattice problems [HPS98, SS11]. Moreover, lattice-based
cryptography has led to cryptographic primitives such as fully homomorphic encryption (FHE) which have
not been realized at all under classical number-theoretic hardness assumptions [Gen09].

In the area of digital signatures, lattice-based cryptography is also able to hold its own–in the random
oracle model. The work in this area [Lyu09, Lyu12, GLP12, DDLL13, BG14] has led to signature schemes
which are very efficient. Signing is about as fast as in state-of-the-art schemes providing comparable security
(in the random oracle model) based on quantum-insecure problems, and verification is much faster. On the
downside, the key and signatures are quite a bit larger.

The gap in key size is even more pronounced for stateless signatures in the standard model. In state-
of-the-art schemes based on the security of standard number-theoretic assumptions as RSA and decisional
Bilinear Diffie-Hellman (BDH), [Wat09, HW09] both the public key and signatures contain only a constant
number of “basic” elements (elements of Z∗N in the RSA scheme, group elements in the BDH-based scheme).
This results in the public key and signatures having size linear (O(λ)) in the security parameter. By contrast,
even when using “compact” algebraic lattices [Mic02], the “basic” elements in lattice-based cryptography
(matrices of a certain size in Zq for the public key, where q can usually be polynomial in λ, vectors of a
certain size in Zq for the signatures) have size quasilinear (Õ(λ)) in the security parameter. Moreover, the
best known schemes require either a logarithmic number of “basic” elements in the public key [DM14] or a
logarithmic number of “basic” elements in signatures [BHJ+14].

The efficient RSA-based scheme cited above [HW09] uses the well-studied prefix-guessing technique for
achieving static security in signature schemes. In this technique, the simulator samples from the polynomially-
sized set of shortest prefixes not found in the messages received from the adversary and then sets up the
scheme so that a forgery on a message with that prefix lets the simulator solve RSA. A short public key is
achieved by embedding trapdoors for all prefixes of the messages received by the adversary into the public
key. The efficient BDH-based scheme [Wat09] is a generic transformation from an efficient fully secure
identity-based encryption scheme. The techniques used in the RSA scheme does not appear to have an easy
realization in the lattice setting, and since the most efficient known lattice-based fully secure identity-based
encryption scheme requires a linear number of “basic” elements in the public key [ABB10], it also does not
appear to be a productive avenue of investigation for improving efficiency in signatures. Instead of attempting
to use these techniques, we turn to an area where lattice-based cryptography has proven to be particularly
versatile: homomorphic computation.

1.1 Our Results

We present the first standard model construction of a lattice-based stateless signature scheme with short
signatures and a constant number of matrices in the public key. The constant number of matrices does come at
a price, as our scheme requires a significantly larger SIS parameter β (and correspondingly, a larger modulus
q) to achieve similar levels of security to previous schemes. See Figure 1.1 for a detailed comparison to
previous works.

Our starting point is the recent scheme of Ducas and Micciancio [DM14], which combines the confined
guessing technique of Böhl et al. [BHJ+14] with the “vanishing trapdoors” technique of Boyen [Boy10]. We
provide two improvents to the scheme:

1

Scheme Pub. Key Secret Key Signature Reduction SIS param β
R1×k
q mat. Rk×kq mat. Rkq vec. loss

[LM08] (Trees) 1 1 log n Q Ω̃(n2)

[CHKP10] n n n Q Ω̃(n3/2)

[Boy10, MP12] n n 1 Q Ω̃(n7/2), Ω̃(n5/2)

[BHJ+14] 1 1 d (Q2/ε)c Ω̃(n5/2)

[DM14] d 1 1 (Q2/ε)c Ω̃(n7/2)

This work 1 1 1 (Q2/ε)c Ω̃(d2d · n11/2)

In the above table, we have ignored constant factors to avoid clutter. The comparison is in the ring setting
because as written, [LM08, DM14] have no realization over general lattices. Here, Rq = Zq[X]/〈f(X)〉
for some cyclotomic polynomial f of degree n, the modulus q ≥ β

√
nω(
√

log n), and k = O(log q). Q is
the number of signatures queries made by the adversary and ε is its success probability. For those schemes
using the confined guessing technique, d is a value satisfying 2Q2/ε < 2bc

dc for an arbitrary constant c > 1
(which governs a trade-off between public key size and the reduction loss). The reduction loss is the ratio ε′/ε
between the success probability ε′ of the reduction and the success probability ε of the adversary. In order to
be secure against any PPT adversary succeeding with non-negligible probability, we need d = ω(log log n).
For our scheme, we can choose d to be as large as O(log(n)/ log(log(n))) and still end up with a polynomial-
sized SIS parameter β. However, it does have the downside that, choosing d = log(n), as in previous works
using confined guessing, results in a SIS parameter of size nΩ̃(log logn).

Figure 1: Comparison to previous standard-model lattice-based signature schemes in the ring setting

Instantiation Over General Lattices. The Ducas-Micciancio scheme only works in the ring-based setting.
The reason for this is that, as written, the scheme requires that their tags (represented as matrices) commute
with a certain structured matrix G ∈ Zn×mq under multiplication. Over general lattices, the only tags which
commute with G are scalar tags, and there are only a (small) polynomial number of these tags which are
“short”, while a superpolynomial number are required for the construction. As a result, they were forced to
use the ring setting, where their tag space can be represented as ring elements, which do in fact commute
with G.

To resolve this non-commutativity issue, we recall a technique which appears to have first been explicitly
presented by [Xag13], although it appears earlier implicitly in an earlier work in the area of fully homomorphic
encryption [BV11]. This technique involves a function which we denote (somewhat abusively) as G−1(U),
where the output of the function is a {0, 1}m×m matrix X such that GX = U. As a result, in order to
multiply a tag H “commutatively” with G, we simply compute G ·G−1(HG) = HG. As a further benefit,
in the actual construction, the multiplication causes the size of the trapdoor to grow according to the norm of
the tag, which forced them to use tags from a set with small norm. As G−1(X) has small norm regardless of
the size of X, our scheme is not subject to this restriction in terms of tag choice.

Homomorphic Computation of Trapdoors. Lattice-based signature schemes using the “vanishing trap-
doors” technique of Boyen ([Boy10, MP12, DM14]) involve homomorphically evaluating a function
g = g(µ,T) over tags t̂i statistically hidden in matrices (A0,A1, . . . ,Ad) in the public key, where the
function g to be evaluated is from a function family indexed by the message µ being signed and (possibly)
some additional set of tags T sampled randomly. The output of this function is a matrix A(µ,T), with an
associated trapdoor, the size of which grows in a manner depending on the function g being evaluated. The

2

trapdoor can be used by the signer to sample short vectors from some coset of a lattice constructed using
A(µ,T) whenever the tag hidden in A(µ,T) is invertible; these preimages are combined with the tags T to form
the signature. However, when the tag hidden is 0, we refer to A(µ,T) as punctured, because in this case we
can no longer sample short vectors, and in fact, A(µ,T) can be used to embed a challenge for the SIS problem.

In order to make the signature scheme secure, the function family g must be such that we can choose two
sets of d+ 1 tags T̂1, T̂2 to hide in the matrices in the public key such that the tags satisfy certain properties.
The first set of tags is used in the actual signature scheme, and they must be such that for any message µ
and tags T , the tag associated with matrix A(µ,T) is invertible. The second set of tags is used in the security
reduction, and they must be such that we can (with non-negligible probability) produce a signature for each
of the adversary’s queried messages while ensuring that a forgery output by the adversary will result in a
punctured Aµ∗,T ∗ with non-negligible probability.

In these previous schemes, the function g being computed was linear over the d+ 1 tags in the public
key. We use a technique from recent works works by Boneh et al. [BGG+14] and Wichs et al. [GVW14]
to allow us to homomorphically compute a degree d polynomial over these tags. This lets us use just two
tagged matrices in the public key instead of d. Computation in these works was defined in terms of basic
operations of addition, multiplication, addition-with-constant, and multiplication-by-constant. However,
naive evaluation of computation over homomorphic trapdoors results in larger growth in the size of the
trapdoor than is necessary. To reduce the growth of the trapdoor, we use the “right-associativity” tech-
nique for multiplication. This technique was developed by Brakerski and Vaikuntanathan [BV14] and by
Alperin-Sheriff and Peikert [ASP14] in the context of bootstrapping the GSW homomorphic encryption
scheme [GSW13]. Those two papers only used the technique with {0, 1} messages (tags in our context)
which resulted in “quasi-additive” noise growth in the size of the (implicit) trapdoors. Here, we show that for
tags of bounded size at most d, the technique allows us to homomorphically evaluate a degree d polynomial
while causing the trapdoors to grow by a dd poly(n) factor.

Puncturable Homomorphic Trapdoor Functions. As a side contribution, we abstract out the properties
required to construct “vanishing trapdoor”-based cryptographic primitives, including signatures, identity-
based encryption and attribute-based encryption, into a primitive we call puncturable homomorphic trapdoor
functions (PHTDFs). These functions are an extension of the Wichs et al. definition of homomorphic trapdoor
functions [GVW14]. A PHTDF consists of a tagged function space ai with corresponding trapdoors ri. One
can homomorphically compute functions g of these ai, ri to get a tagged function a∗ and (if one knows the
trapdoors for the original ai) trapdoor r∗. Whenever the tag associated with a∗ is invertible, one can use the
trapdoor r∗ to invert the function fpk,a∗,x, where x ∈ X are indices.

For security, we require that for a punctured a∗, it should be difficult to find collisions x 6= x′, u, u′

such that fpk,a∗,x(u) = fpk,a∗,x′(u
′), even given oracle access to an inverter for fpk,ai,x for arbitrary ai with

invertible tags and arbitrary x.
We do not expect realizations of PHTDFs under the various classical assumptions (just as we do not

expect realizations of fully homomorphic cryptography in general from those assumptions). However, we
believe that building our signature scheme generically using a PHTDF makes the proof of security easier
to follow. Perhaps more importantly, we believe that viewing “vanishing trapdoor”-based cryptographic
primitives under this framework and focusing on the function g to be computed may lead to realizations of
these primitives with smaller public keys.

Organization. The remainder of the paper is organized as follows. In Section 2 we recall some preliminary
information about lattice-based cryptography. In Section 3 we define and construct puncturable homomorphic

3

trapdoor functions (PHTDFs). In Section 4 we show how to use a PHTDF to construct a secure signature
scheme given that the function g being homomorphically computed satisfies certain properties. In Section 5
we provide our main result, the explicit construction and analysis of the function g.

Acknowledgements. I would like to thank Léo Ducas and Daniele Micciancio for some helpful correspon-
dence regarding their signature scheme in the early stages of this work. I would also like to thank Fuqun
Wang for pointing out a subtle issue with the definition of the function g in Section 5 and describing an easy
fix. Thanks are also due to the anonymous PKC ’15 reviewers and to my advisor Chris Peikert for their
helpful comments.

2 Preliminaries

We write [d] for a positive integer d to denote the set {1, . . . , d}. We denote vectors over Z with lower-case
bold letters (e.g. x), and matrices by upper-case bold letters (e.g. A). For an integer q ≥ 2, we let Zq denote
the ring of integers modulo q. We represent the elements of Zq as integers in (−q/2, q/2] and define |x| ∈ Zq
by taking the absolute value of the representative in this range. We say that a function is negligible, written
negl(n), if it vanishes faster than the inverse of any polynomial in n. For a matrix X ∈ Rn×k, the largest
singular value (also known as the spectral norm) of X is defined as s1(X) = max‖u‖=1‖Xu‖.

2.1 Signatures

We briefly recall the standard definitions of digital signature schemes. A signature scheme SIG is a triple
(Gen,Sign,Ver) of PPT (probabilistic polynomial time) algorithms, together with a message spaceM =Mλ.
It is correct if, for all messages µ ∈Mλ, Ver(vk, µ, σ) = 1 holds true, except with negligible probability in
λ over the choice of (sk, vk)← Gen(1λ) and σ ← Sign(sk, µ).

We now recall the standard security definitions for digital signature schemes. Existential unforgeability
under static chosen-message attack, or eu-scma, is as follows: the adversary A first outputs a list of message
µ1, . . . , µQ to be signed, for some Q = poly(n). The challenger then generates keys (vk, sk)← Gen and
signatures σi ← Sign(sk, µi) for each i ∈ [Q], and sends vk and {σi}i∈[Q] to A. Finally, A outputs an
attempted forged signature (µ∗, σ∗). In order to satisfy eu-scma security, the probability that µ∗ 6= µi for any
i ∈ [Q] and that Ver(vk, µ∗, σ∗) = 1 accepts should be negligible in the security parameter λ.

Existential unforgeability under adaptive chosen-message attack (eu-acma security) is defined in a similar
manner. The difference is that under this notion,A receives the verification key vk before making any queries,
and is allowed to make queries one at a time, receiving back a signature before having to make its next query.

A standard technique for achieving adaptive security from static security is chameleon hashing [KR00].
An efficient construction (which has an immediate analog over general lattices) requiring a constant number
of matrices was given by Ducas and Micciancio [DM14]. As a result, we can use it to make our eu-scma
signature scheme adaptively secure without increasing the asymptotic size of our public key by more than a
constant factor.

2.2 Lattices and Gaussians

A (full-rank) m-dimensional integer lattice Λ is an additive subgroup of Zm with finite index. This work
is concerned with the family of integer lattices whose cryptographic importance was first demonstrated by

4

Ajtai [Ajt96]. For integers n ≥ 1, modulus q ≥ 2, an m-dimensional lattice from this family is specified by
an “arity check” matrix A ∈ Zn×mq :

Λ⊥(A) = {x ∈ Zm : Ax = 0 ∈ Znq } ⊆ Zm.

For y in the subgroup of Znq generated by the columns of A, we define the coset

Λ⊥y (A) = {x ∈ Zm : Ax = y mod q} = Λ⊥(A) + x̄,

where x̄ ∈ Zm is an arbitrary solution to Ax̄ = y.
We briefly recall Gaussian distributions over lattices (for more details see [MR04, GPV08]). For s > 0

and dimension m ≥ 1, the Gaussian function ρs : Rm → (0, 1] is defined as ρs(x) = exp(−π‖x‖2/s2). For
a coset Λ + c of a lattice Λ, the discrete Gaussian distribution DΛ+c,s (centered at zero) assigns probability
proportional to ρs(x) to each vector in the coset, and probability zero elsewhere.

We will need several standard facts about discrete Gaussians over lattices. First, for ε > 0 the smoothing
parameter [MR04] ηε(Λ) of an n-dimensional lattice is a positive real value. We will not need its precise
definition in this work. Instead, we recall the few relevant facts that we need; for more details, see,
e.g., [MR04, GPV08, MP12].

Lemma 2.1. Let m ≥ Cn lg q for some constant C > 1.

1. For any ω(
√

log n) function, we have ηε(Zn) ≤ ω(
√

log n) for some negligible ε(n) = negl(n).

2. With all but negl(n) probability over the uniformly random choice of A ∈ Zn×mq , the following holds:
For e← DZm,r where r = ω(

√
log n), the distribution of y = Ae mod q is within negl(n) statistical

distance of uniform, and the conditional distribution of e given y is DΛ⊥y (A),r.

3. For any m-dimensional lattice Λ, any c ∈ Zm, and any r ≥ ηε(Λ) where ε(n) = negl(n), we
have ‖DΛ+c,r‖ ≤ r

√
m with all but negl(n) probability. In addition, for Λ = Z we have |DZ,r| ≤

r · ω(
√

log n) except with negl(n) probability.

4. For any r > 0, and for R← Dn×k
Z,r , we have s1(R) ≤ r ·O(

√
n+
√
k) except with negl(n) probability.

5. Let Λ ⊂ Rm be a lattice and r ≥ 2ηε(Λ) for some ε ∈ (0, 1). Then for any c ∈ Rn, y ∈ Λ + c, we
have Pr[DΛ+c,r = y] ≤ 2−n · 1+ε

1−ε .

The SIS problem. For β > 0, the short integer solution problem SISn,q,β is an average-case version of
the approximate shortest vector problem on Λ⊥(A). Given a uniformly random matrix A ∈ Zn×mq for any
m = poly(n), the problem is to find a nonzero vector z ∈ Zm such that Az = 0 mod q and ‖z‖ ≤ β. For
q ≥ β

√
nω(
√

log n), it has been shown that solving this problem with non-negligible success probability
over the random choice of A is at least as hard as probabilistically approximating the classic Shortest
Independent Vectors Problem (SIVP) on n-dimensional lattices to within Õ(β

√
n) factors in the worst

case. [Ajt96, MR04, GPV08]

2.3 Trapdoors for Lattices

In this section, we recall the efficient trapdoor construction and associated sampling algorithm of Micciancio
and Peikert [MP12], which is at the heart of our signature scheme. This construction uses a universal
public “gadget” matrix G ∈ Zn×wq for which there is an efficient discrete Gaussian sampling algorithm

5

for any parameter r ≥ ω(
√

log n) ≥ ηε(Λ
⊥(G)) (for some ε(n) = negl(n)), i.e., an algorithm that,

given any y ∈ Znq and r, outputs a sample from DΛ⊥y (G),r. For concreteness, as in [MP12] we take
G = In ⊗ [1, 2, 4, . . . , 2k−1] ∈ Zn×nkq for k = dlg qe. We will somewhat abuse notation by writing G−1(v)

to denote computing the lexically first (using 0 < 1) binary vector x ∈ {0, 1}nk such that Gx = v; the
vector will be unique if q = 2`, but for other moduli (including the ones used in our scheme), there will
potentially be more than one such vector.

Following [MP12], we say that an integer matrix R ∈ Z(m)×nk is a G-trapdoor with tag H for A ∈
Zn×(m+nk)
q if A

[
R
I

]
= HG for some invertible matrix H ∈ Zn×nq . If H = 0, we say that R is a “punctured”

trapdoor for A. We require the following two lemmas regarding these trapdoors.

Lemma 2.2 ([MP12]). There is a probabilistic polynomial time algorithm GenTrap(Ā,H, r) that on input
a matrix Ā ∈ Zn×mq , a matrix H ∈ Zn×nq and parameter r ≥ ω(

√
log(n)), outputs a matrix A := [Ā |

−ĀR + HG] ∈ Zn×(m+nk)
q which is statistically close to uniform over the choice of R as well as a matrix

R ∈ Zm×nkq such that if H is invertible, R is a G-trapdoor with tag H for A, while if H = 0, then R is a
punctured trapdoor.

Lemma 2.3 ([MP12]). Let R be a G-trapdoor for A ∈ Zn×mq . There is an efficient randomized algorithm
SampleD(A,u,R, r) that, given R, any u ∈ Znq , and any r ≥ s1(R) · ω(

√
log n) ≥ ηε(Λ⊥(A)) (for some

ε(n) = negl(n)), samples from a distribution within negl(n) distance of DΛ⊥u (A),r.

3 Puncturable Homomorphic Trapdoor Functions

In this section we define and describe our construction of puncturable homomorphic trapdoor functions, a
primitive that abstracts out the properties required for our signature scheme, as well as those for many other
lattice-based cryptographic primitives.

3.1 Definition

Our definition is an extension of the Wichs et al. definition of homomorphic trapdoor functions [GVW14]. A
puncturable homomorphic trapdoor function (PHTDF) scheme consists of six polynomial-time algorithms
(Gen,GenTrap, f, Invert,Evaltdpk,Eval

func
pk) with the following syntax:

pk ← Gen(1λ) generates the public key. The parameter λ also defines a tag space T , a trapdoor spaceR, a
tagged function space A,1 an index space X , an input space U and an output space V . We also need an
efficiently sampleable key distribution DR overR, a parameterized input distribution DU ,s over U and
a tag set distribution DT ` over T `. We also need to be able to sample V uniformly at random.

(a, r)← GenTrap(pk, t) generates a trapdoor r ← DR for (pk, a ∈ A), with t the tag associated with
a. We need the distribution of a to be statistically close to uniform over A. We define the auxiliary
function Tag(pk, a, r) to output t ∈ T if t is the tag associated with a and r is a trapdoor for a.

fpk,a,x : U → V is a deterministic function (not necessarily injective) indexed by x ∈ X , and pk, a ∈ A.

Invertr,pk,a,x,s : V → U is a puncturable probabilistic inverter indexed by x ∈ X , r ∈ R and pk, a ∈ A. The
parameter s ∈ R relates to some property Prop : U → R of the desired inverse when the function space

1Technically, the function space is also parameterized by the public key and the index space.

6

is not injective. We need to be able to find an inverse u such that Prop(u) ≤ s (with overwhelming
probability) whenever the tag t associated with a is invertible and whenever the trapdoor r is strong
enough to invert with parameter s. If these conditions are not fulfilled, it outputs ⊥.

r∗ ← Evaltdpk(g, {(ai, ri)}i∈[κ], T), a∗ ← Evalfuncpk (g, {ai}i∈[κ], T) are deterministic trapdoor/function ho-
momorphic evaluation algorithms. The algorithms take as input some function g : T κ × T ` → T , a
set of tags T = {tj}j∈[`] ∈ T , as well as values ai ∈ A, ri ∈ R. The outputs are r∗ ∈ R and a∗ ∈ A.

Correctness of Evaluation. Let (pk) ← Gen(1λ), T̂ = {t̂i ∈ T }i∈[κ], T = {tj ∈ T }j∈[`], (ri, ai) ←
GenTrap(pk, t̂i). Let g : T κ × T ` → T and let t∗ := g(T̂ , T). We require that for

r∗ ← Evaltdpk(g, {(ai, ri)}i∈[κ], T), a∗ ← Evalfuncpk (g, {ai}i∈[κ], T)

we have that r∗ is a trapdoor for (pk, a∗), and that t∗ is the tag associated with a∗.
Leveled relaxation: In a leveled fully homomorphic scheme, each trapdoor ri ∈ R has an associated level

of noise βi ∈ R. The noise level β∗ of the homomorphically computed key r∗ is larger than the initial noise
levels, and depends in concrete instantiations on the function g (and the method by which it is computed),
the initial trapdoors ri, and the tags t̂i ∈ T . If the noise level β∗ > βmax for some threshold βmax, the
trapdoor will not be strong enough to compute Invertr,pk,a,x,s, thus limiting the type of functions g that can
be computed.

Definition 3.1. We call a function g admissible with parameter s on the set of tags T̂ := {ti}i∈[κ], if,
whenever, the initial trapdoors ri have noise levels βi ≤ βinit = ω(

√
log n), r∗ will have noise level

β∗ ≤ s/ω(
√

log n) with overwhelming probability.

In our concrete construction below, the trapdoors will be matrices Ri, and we measure the noise level
using the spectral norm s1(Ri).

Distribution Equivalence of Inversion. We require the following statistical indistinguishability for pk ←
Gen(1λ), trapdoor/function pair (r, a) with an invertible tag t:

(pk, r, a, x, u, v)
s
≈ (pk, r, a, x, u′, v′)

where x ∈ X is arbitrary, u← DU ,s, v := fpk,a,x(u), v′ ← V and u′ ← Invertr,pk,a,x,s(v
′).

Security for PHTDFs. Our security definition allows us to use a PHTDF easily as a building block in our
construction of a secure signature scheme. Roughly, we need it to be difficult, given two punctured trapdoor
functions a(1), a(2) computed using a function g : T κ × T ` → T admissible with parameter s, to find a
collision u, u′, x, x′ ∈ U , with x 6= x′ ∈ X such that fpk,a(1),x(u) = fpk,a(2),x′(u

′), even given oracle access
to inversion queries for non-punctured functions a′ computed using that same function g.

The security game between an adversary A and a challenger C is parameterized by a security parameter
λ, as well as a function g : T κ × T ` → T and set of tags T̂ := {ti}i∈[κ] such that g is admissible with some
parameter s on the set of tags T̂ :

1. C runs pk ← Gen(1λ) and then computes (ai, ri)← GenTrap(pk, t̂i) for each i ∈ [κ]. A is given pk
and {ai}.

7

2. A may make inversion queries. To query, A sends some v ∈ V , x ∈ X and some T ′ := {t′j}j∈[`] such

that g(T̂ , T ′) is invertible. C computes r′ ← Evaltdpk(g, {(ai, ri)}, T ′) as well as a′ ← Evalfuncpk (g, {ai}, T ′),
samples u← Invertr′,pk,a′,x,s(v) and returns u to A.

3. A(1λ) outputs tag sets T (1) := {t(1)
j }, T (2) := {t(2)

j } ∈ T ` which satisfy
g(T̂ , T (1)) = g(T̂ , T (2)) = 0, as well as (u(1), u(2) ∈ U , x(1) 6= x(2) ∈ X), and wins if fpk,a(1),x(1)(u

(1)) =

fpk,a(2),x(2)(u
(2)), where Prop(u(1)),Prop(u(2)) ≤ s and a(b) ← Evalfuncpk (g, {(ai)}, T (b)) for b ∈

{1, 2}.

We say the PHTDF satisfies (λ, g, {ti})-collision resistance when punctured (CRP) security if every PPT
adversary has a negligible probability of success in the above game.

3.2 Construction: Basic Algorithms

Our explicit lattice-based construction of PHTDFs is as follows. While our construction is written over
general lattices, it may be instantiated easily in the ring setting. We have a lattice dimension parameter n := λ
and a prime modulus q > 2. Other parameters include m̄ = O(n log q), k = dlog2 qe, r = ω(

√
log n),

m = m̄+ nk. We let A = Zn×nkq ,R = Zm̄×nkq , DR = Dm̄×nk
Z,r , X = {−1, 0, 1}m̄, U = Zmq , DU ,s = Dm

Z,s,
V = Znq .

Tags. We first consider the general lattice setting. For a degree-n polynomial f(x), the ring Rq =
Zq[x]/〈f(x)〉 has a standard embedding into Mn(Zq) [ABB10]. The embedding sets the ith row of the
matrix H corresponding to g(x) ∈ Rq to the coefficients (in increasing order of degree) of xi−1g(x) mod Rq.
By choosing f(x) to be irreducible over Zq, we ensure that Rq is a field, and set T = Rq. In this setting,
there are some operations that can only be done over the subring of scalar elements {tIn} ⊂ T , because for
technical reasons, the tags must be commutative under multiplication with respect to arbitrary matrices.

When using our construction in the ring setting, some care must be taken in constructing the embedding;
see [DM14] for an instantiation of a tag space that will work for our scheme as well.

Gen(1λ) : Choose Ā,B← Zn×m̄q , and output pk = (Ā,B).

GenTrap(Ā ∈ Zn×m̄q ,H ∈ T) : Output (A = [Ā | C],R)← GenTrap(Ā,H, r) using Lemma 2.2.

Tagpk=Ā(C ∈ Zn×nkq ,R) : Compute X = [Ā | C]
[
R
I

]
. If X = HG for some H, output H.

fA=[Ā|C],x∈X (u ∈ U): Let z = (u,x) ∈ Zm+m̄
q . Output v := [A | B]z.

InvertA=[Ā|C],R∈R,x∈X ,s∈R(v ∈ V): Compute H = Tag(A,R). If H = 0 or H = ⊥ or if the parameter
s < s1(R) · ω(

√
log n), output ⊥. Otherwise, output u ← SampleD(A,v − Bx,R, s) using

Lemma 2.3. We define Prop(u) := ‖u‖/
√
m̄, so that by Lemma 2.1, with overwhelming probability

over the randomness of SampleD, Prop(u) ≤ s.

As long as s ≥ s1(R) · ω(
√

log n), distributional equivalence of inversion follows immediately from
Lemma 2.1

8

3.3 Construction: Homomorphic Computation

We define the algorithms Evaltdpk,Eval
func
pk by showing how to compute basic operations. Note that in our

actual construction in Section 5, instead of naively composing addition and multiplication, we extend a
technique used by Brakerski and Vaikuntanathan [BV14] and Alperin-Sheriff and Peikert [ASP14] regarding
chaining homomorphic multiplications that was originally developed in the context of bootstrapping the
GSW [GSW13] encryption scheme. These techniques carry over immediately, because the only difference
between the form of a GSW ciphertext and the form of our trapdoor functions is that in the former case, the
matrix A in the public key is an LWE instance A =

[
Ā

bt=stĀ+et

]
, while in our case it is truly uniform.

In the descriptions of the basic homomorphic operations on tags below, Ci ∈ A is a trapdoor function,
Ci := ĀRi + tiG.

Homomorphic addition (C1 ‘ C2) of two functions is defined as C∗ ← C1 + C2. The operation induces
R∗ ← R1 + R2 on the trapdoors. The tags t1, t2 may be any elements in T .

Homomorphic multiplication (C1 d C2) is defined as C∗ ← C1 ·G−1(C2), and is right associative. The
operation induces R∗ ← R1G

−1(C2) + t1R2 on the trapdoors. Here the tag t1 must be a scalar (of
the form t1In), while t2 can be any element of T . Unlike in the GSW scheme, we need to compute
G−1(C2) in the deterministic manner described in Section 2.3.

Multiplication by a constant (C d H) is defined as C∗ ← C ·G−1(HG). The operation induces R∗ ←
RG−1(HG) on the trapdoor. The constant tag H may be any element in T , but the tag t associated
with C must be a scalar.

Addition of a constant (C ‘ H) is defined as C∗ ← C+HG. This operation does not affect the trapdoor,
which remains R. Both the constant tag H and the tag t associated with C may be any element in T .

3.4 Construction: Security

We now prove the security of our PHTDF construction under the SIS assumption.

Theorem 3.2. Let g be admissible with parameter s for T̂ := {ti}i∈[κ]. Assuming the SISn,q,β assumption
holds for β := O(s2

√
n log q), the scheme satisfies CRPn,g,T̂ security.

Proof. Let g be admissible with parameter s for T̂ := {ti}i∈[κ]. Now, assume there exists an adversaryA that
wins the PHTDF security game for the above scheme with non-negligible probability δ with respect to g and
T̂ . We consider an alternate game where we change our PHTDF by setting B = ĀS for S← Dm̄×m̄

Z,ω(
√

logn)

instead of choosing it uniformly at random. By Lemma 2.1, this change is statistically indistinguishable and
it does not affect our ability to invert, so that the adversary A still wins with non-negligible probability.

We now give a reduction to SIS. The reduction uses the challenge matrix Ā as the public key. It then
computes (Ci,Ri)← GenTrap(Ā, ti, ω(

√
log n)). We can invert with parameter s on any trapdoor function

and trapdoor C′,R′ output by Evalfuncpk ,Evaltdpk when computing g homomorphically on T̂ and arbitrary other
tags T ′ := {t′j}j∈[`] as long as g(T̂ , T ′) is invertible, so we can properly answer all of A’s inversion queries.

With non-negligible probability δ, A eventually outputs tag sets T (1) := {t(1)
j }j∈[`], T (2) := {t(2)

j }j∈[`]

such that g(T̂ , T (1)) = g(T̂ , T (2)) = 0 along with (u(1) = (u
(1)
1 ∈ Zm̄q ,u

(1)
2 ∈ Znkq),x(1)), (u(2) = (u

(2)
1 ∈

Zm̄q ,u
(2)
2 ∈ Znkq),x(2)) such that Prop(u(1)),Prop(u(2)) ≤ s, x 6= x′ and fA(1)=[Ā|C(1)],x(1)(u(1)) =

9

fA(2)=[Ā|C(2)],x(2)(u(2)), where C(b) := Evalfuncpk (g, {ti}, {t(b)j }). Since g is admissible with parameter s,
we have C(b) = ĀR(b), where s1(R(b)) ≤ s/ω(

√
log n). Let

v := u
(1)
1 − u

(2)
1 + R(1)u

(1)
2 −R(2)u

(2)
2 + S(x(1) − x(2))

Recalling the definition of f , we then have that Āv = 0.
Since Prop(u(1)),Prop(u(2)) ≤ s, by Lemma 2.1 with overwhelming probability ‖R(b)u

(b)
2 ‖ ≤

O(s2(
√
m̄+ nk)) ≤ O(s2

√
n log q). The other terms in v can be bounded at or below O(s2

√
n log q),

so
‖v‖ ≤ O(s2(

√
n log q)) ≤ β

Thus, in order to show that we have in fact solved SIS, we need only show that with non-negligible
probability, v 6= 0. To do so, we let x∗ = x(1) − x(2) and choose some entry of x∗ that is nonzero (since
x(1) 6= x(2), such an entry exists); without loss of generality we may say it is x∗1. Now, let s be the first
column of S, let b be the first column of B, and fix the last m̄− 1 columns of S as well as u(b), R(b). Then
we have v = 0 only if s · x∗1 = y for some fixed y. Over the view of the adversary, s is distributed as a
discrete Gaussian of parameter larger than 2ηε(Λ

⊥(Ā)) for an ε = negl(n) over the coset Λ⊥b (Ā). As a
result, by Lemma 2.1 we have s = y/x∗1 with only negligible probability, so that with probability δ−negl(n),
v 6= 0 and we have solved SIS.

4 Signatures from PHTDFs

Here we show how to construct a statically secure (eu-scma) signature scheme using a PHTDF, in a manner
that encompasses both our signature scheme and that of Ducas and Micciancio. The reduction itself depends
directly on the properties of the admissible function g that is homomorphically computed in the Sign and Ver
algorithms. We recall that one can apply the efficient generic transformation using chameleon hash functions
to achieve full (eu-acma) security.

4.1 Required Properties of the Function g and Tags

In order for our construction to work, we need to be able to choose two different sets of tags T̂ = {ti ∈ T }, one
set for the actual scheme and one set for the security reduction, to use when calling (ai, ri)← GenTrap(pk, t̂i).
In particular, when g : T κ × T ` → T is homomorphically evaluated Q = poly(n) times on the fixed set of
tags T̂ and on sampled sets of tags T := {tj} ← DT ` , we need the following properties to be fulfilled:

Actual Scheme The tag homomorphically computed by g must always be invertible.

Security Reduction Here, we need two different properties to be satisfied with non-negligible probabilities:

1. At most one of the Q sets of tags Ti ← DT ` (corresponding to signature queries by the adversary)
may result in g(T̂ , Ti) = 0.

2. A chooses tags T ∗ := {t∗j} for his forgery such that g(T̂ , T ∗) = 0.

4.2 Generic Signature Scheme from PHTDFs

We now present our generic signature scheme constructed from a PHTDF. It is parameterized by a security
parameter λ as well as a family of functions {g : T κ × T ` → T } ∈ G admissible with parameter s and sets

10

of tags T̂ := {t̂i ∈ T }i∈[κ], which allow us to satisfy the properties in Section 4.1 for the actual scheme,
and T̂ ∗ := {t̂∗i ∈ T }i∈[κ], which allow us to satisfy the properties for the security reduction. The specific
choice of function will depend on a parameter d = ω(log log n) (so that 2bc

dc for some constant c > 1 is
superpolynomially large), which in our concrete construction of g corresponds to the degree of a polynomial.
Below, we assume that d is fixed and so the specific function g in the family is determined.

We also have some requirements for the index space X . In particular, we need there to exist a collision-
resistant hash function h : {0, 1}∗ → X such that there is some x∗ ∈ X that is not in the range of h, i.e.
no µ exists such that h(µ) = x∗. In our concrete instantiation, we can satisfy this property by choosing a
collision-resistant hash function which maps into {0, 1}m̄ (in which case any x∗ ∈ X = {−1, 0, 1}m̄ with a
negative element is not in the range of h and is therefore not a valid hash of any message).

Gen(1λ): Compute pkPHTDF ← PHTDF.Gen(1λ), and then let v ← V , {(ai, ri)← PHTDF.GenTrap(pkPHTDF, ti)}i∈[κ].
We set vk = (pkPHTDF, {ai}i∈[κ], v), sk = ({ri}i∈[κ]).

Sign(sk, x = h(µ) ∈ X): Sample T := {t′j} ← DT ` , and compute r∗ ← Evaltdpk(g, {(ai, ri)}i∈[κ], T) and

a∗ ← Evalfuncpk (g, {ai}i∈[κ], T). Let u← Invertr∗,pk,a∗,x,s(v), and output σ = (u, T).

Ver(vk, x = h(µ) ∈ X , σ = (u, T ∈ T `): Compute a∗ ← Evalfuncpk (g, {ai}i∈[κ], T), and verify that fpk,a∗,x(u) =
v and that Prop(u) ≤ s.

Correctness. We immediately have that the scheme is correct, since in the actual scheme the homomor-
phically computed tag will always be invertible, and a u output by Invertr∗,pk,a∗,x,s(v) will always satisfy
fpk,a∗,x(u) = v, and will with overwhelming probability satisfy that Prop(u) ≤ s.

Security Reduction. We prove that this signature scheme satisfies eu-scma security assuming the underly-
ing PHTDF satisfies (λ, g, T̂)-CRP security for g admissible with parameter s on a set of tags T̂ := {ti}i∈[κ].

Theorem 4.1. Let g be admissible with parameter s on a set of tags T̂ := {t̂i} which allow us to satisfy
the properties for the security reduction described in Section 4.1 with non-negligible probabilities ε1 :=
ε1(Q, d, δ), ε2 := ε2(Q, δ) respectively against an eu-scma adversary A making Q signature queries and
succeeding with probability δ. Then there exists an algorithm SA that breaks the (λ, g, T̂)-CRP security of
the underlying PHTDF with probability ε∗ = (δ− (1− ε1))ε2, and so the above signature scheme is eu-scma
secure.

Proof. We assume we have an adversaryA against the eu-scma security game who makesQ signature queries
and succeeds in outputting a successful forgery with probability δ. The simulator S first receives the Q
messages (x(j) = h(µ(j)) ∈ X) from the adversary. Next, it samples Q sets of tags Ti := {tij}j∈[`] ← DT ` .
With probability ε1, at most one set of these tags will result in g(T̂ , Ti) = 0. If there is more than one such
set of tags, the simulator aborts (this happens with probability at most (1− ε1)). Otherwise, it invokes the
(λ, g, {ti})-CRP security game, receiving back pkPHTDF and A := {ai}i∈[κ].

Now, if there exists a Ti such that g(T̂ , Ti) = 0, we set T � := Ti and x� := x(i). Otherwise, we choose
some tag set2 T̄ ∈ T ` ourselves such that g(T̂ , T̄) = 0 and sample some x̄ from the set of elements inX not in
the range of the hash function h. We then set T � := T̄ , µ� := µ̄. We then compute a← Evalfuncpk (g,A, T �),
sample u� ← DU , and set v ← fpk,a,µ�(u

�); the signature for message µ� is σ� = (u�, T �). By the

2Note that such a tag set must exist since g and T̂ allow us to fulfill the second required property for the security reduction.

11

distribution equivalence of inversion property of the PHTDF, this is statistically indistinguishable from
having chosen v ← V .

We have thus “programmed” in a signature for the tag/hashed message pair (T �, x�). For the rest of the
messages, g(T̂ , Ti) is invertible, so S is able to compute signatures for hashed messages x(i) = h(µ(i)) by
making inversion queries on v, x(i), Ti, receiving back ui and setting σi = (ui, Ti) to be the signature. S
then sends the verification key (pkPHTDF, {ai}, v) and the signatures σi to the adversary A, thus successfully
simulating the public key and signatures in a manner indistinguishable from an actual attack.

Now, conditioned on having made it this far, since the second needed property for the security reduction
is satisfied by g and T̂ , with probability ε2 the tag T ∗ used by the adversary in a successful forgery
(σ∗ = (u∗, T ∗), x∗ = h(µ∗)) with µ∗ /∈ {µ(i)}i∈[Q] will be such that g(T̂ , T ∗) = 0. Letting ab ←
Evalfuncpk (g, {ai}, T (b)) for b ∈ {∗, �}, we have that

fpkPHTDF,a∗,x∗(u
∗) = fpkPHTDF,a�,x�(u

�) = v,

and that Prop(u∗),Prop(u�) ≤ s. If x� = x(i) for some i, then by the collision-resistance of h, x� 6= x∗,
while if x� was chosen from outside the range of h, then we immediately have that x� 6= x∗ = h(µ∗). As a
result, we have that x� 6= x∗, so that we have broken the (λ, g, T̂)-CRP security of the underlying PHTDF.

5 Lattice-Based Instantiation of the Function g

We now give the main result of our paper, the lattice-based instantiation of a function g to be homomorphically
evaluated in our signature scheme, and the method of choosing tags for it that allow us to fulfill the properties
described in Section 4.1.

Theorem 5.1. Let g be as defined in Algorithm 1, c > 1 be a constant. Let d = ω(log log n), and let
β ≥ O(d2dn11/2 log13/2 q). Assume there exists an eu-scma adversary making Q signature queries that
succeeds with probability ε against the signature scheme of Section 4 instantiated with the lattice-based
PHTDF of Section 3, where 2Q2/ε ≤ 2bc

dc. Then there exists an algorithm SA that solves SISn,q,β with
probability δ1+c

4Q2c − negl(n).

The remainder of this section is devoted to proving those parts of this theorem we have not already shown
in Theorem 3.2 and Theorem 4.1.

5.1 Tag Instantiations

We define the explicit distribution T ← DT ` used as the “tag” part of the signatures from Section 4.2,
following the instantiation of Ducas and Micciancio. Recall that our tag space is, in the general setting, an
embedding of GF(qn) (represented asRq := Zq[x]/〈f(x)〉 for f(x) irreducible over Zq) into Zn×nq . Each tag
set consists of d elements, where d = ω(log log n). However, these d elements each correspond to specific
subsets of coefficients of a degree e := 2d = O(n) polynomial in Rq (the tag prefixes below), so that in the
signatures, we can represent the entire set of tags with a single polynomial in Rq. As a result, our signatures
remain short.

Concretely, for the constant c > 1 mentioned in the theorem statement above, we define sets of tag
prefixes Ti = {0, 1}ci of lengths c0 = 0, ci = bcic for i ∈ [d]. For full tags t ∈ T = Td and i ≤ d, we write
t≤i ∈ Ti for its prefix of length ci and t[i] for the difference t≤i(x)− t≤i−1(x) ∈ Rq.

We technically have more freedom than the previous work when it comes to identifying tag prefixes
with ring elements, as we do not need our tag prefixes to satisfy geometric properties. Instead, the critical

12

requirement is that for any two distinct tag prefixes t, t′ ∈ Ti, the difference t(X)− t′(X) is invertible over
Rq. However, for simplicity, we may nonetheless use the identification described therein, where a tag prefix
t = [t0, . . . , tci−1] ∈ Ti is mapped to the ring element t(X) =

∑
j<ci

tjX
j ∈ Rq.

As in the Ducas-Micciancio scheme, to choose how to tag the homomorphic trapdoor matrices Ai in
the public key, we have a confined guessing stage [BHJ+14] where we let i∗ ≤ d be the smallest index
such that 2Q2/ε ≤ |Ti∗ |, where Q is the number of signature queries made by the adversary and ε is the
adversary’s probability of success in the eu-scma security game. Note that such an index exists, since
2Q2/ε ≤ 2bc

dc = |Td|. This choice of i∗ guarantees that for Q tags {t(j)}j∈Q chosen uniformly at random
from T , their prefixes {t(j)≤i∗} of length ci∗ will all be distinct except with probability at most δ/2. For our
construction of g, this guarantees that g(T̂ , t(j)) = 0 for at most one tag (the first security property from
Section 4.1). We then choose a prefix t�≤i∗ ∈ Ti∗ uniformly at random, with the hope that the tag t∗ in
the forgery output by the adversary is such that t�≤i∗ = t∗≤i∗ (so that for our construction, we will have
that g(T̂ , t∗) = 0, satisfying the second security property). By keeping the adversary’s view statistically
independent of our choice of prefix, we will have that t�≤i∗ = t∗≤i∗ with probability 1/|Ti∗ |. Following
the proof of security for the generic signature scheme in Section 4.2, if one of the tags t(j) is such that
t
(j)
≤i∗ = t�≤i∗ , we set t� = t(j), and if not, we choose the full tag t� uniformly at random from the set of

tags with prefix t�≤i∗ . Our choice of i∗ guarantees that 2ci∗−1 < 2Q2

δ ≤ 2ci∗ = |Ti∗ |. We also have that

ci∗ ≤ ci
∗

= c(ci
∗−1) < c(ci∗−1 + 1). As a result, we have that |Ti∗ | ≤ 2c(ci∗−1+1) ≤ (4Q2

δ)c, so that the
second security property is fulfilled with probability at least (δ

4Q2)c.
In the various previous “vanishing trapdoor”-based signature schemes, the public key contained d+ 1

trapdoor functions ai, and the function g computed homomorphically was linear over the d+ 1 associated
tags T̂ = (t̂0, t̂1, . . . , t̂d). Specifically, letting T = (t1, . . . , td)← DT d , the function g was

g(T̂ , T) := t0 +
∑

i∈[d] t̂iti.

To achieve the required properties for the actual scheme, they set t̂0 = 1, t̂i = 0 for i ∈ [d], so that the
homomorphically computed tag g(T̂ , ·) = 1 was always invertible. In the security reduction, they let t∗≤i∗ be
the prefix of length i∗ on which they hoped the adversary will forge. Then they set t̂0 = −t∗≤i∗ , t̂i = 1 for
1 ≤ i ≤ i∗ and t̂i = 0 for i∗ < i ≤ d.

In our scheme, we have only two trapdoor functions a0 = A0, ã = Ã in the public key, and compute
degree-(d) polynomials. We set the associated tags t̂0, t̃ as follows:

Actual Scheme: Let t̂0 = 1, t̃ = 0.

Security Reduction: Let t∗≤i∗ be the prefix of length i∗ on which we hope the adversary will forge. Then
we let t̂0 = −t∗≤i∗ , t̃ = i∗.

5.2 Computation of g

To help compute g, in Gen we add to the public key the coefficients of d different degree d− 1 polynomials
p1, . . . , pd ∈ Zq[x] with the following behavior:

pi(x) :=

{
1 1 ≤ x ≤ i
0 x = 0, i < x ≤ d

=
∑

j∈{0,d}

cijx
j

13

Since Zq is a finite field, these polynomials have a unique realization as degree d polynomials over Zq, and
their coefficients can easily be computed using Lagrange interpolation; see, i.e. [Sha79]. The total number of
bits required to store the coefficients is d2 log q = o(n), so they do not increase the asymptotics of the public
key (and technically the coefficients may be computed on the fly from d and q alone).

We can now give a concrete definition of the function g in terms of input tags t̂0, t̃ (which will be
associated with the trapdoors as discussed in the previous section) and T = (t1, . . . , td). We have

g(T̂ = (t̂0, t̃), T) := t̂0 +
∑
i∈[d]

(pi(t̃)ti).

To reduce the space required and the noise growth of the trapdoors when evaluating g homorphically on
input (T̂ = (t̂0, t̃), T ← DT d) using the PHTDF from Section 3, we instead compute g in a slightly different
manner. In the clear, we view g in an alternative (but identical) form (recall that cij is the jth coefficient of
the polynomial pi described above):

g(T̂ = (t̂0, t̃), T) := t̂0 +

d∑
j=0

t̃j ∑
i∈[d]

(cijti)

 .

Homomorphically, we evaluate g using Algorithm 1. In the algorithm, Si is the trapdoor for Bi, t̂0 is the
tag for A0, t̃ is the tag for Ã.

Algorithm 1 Evalfuncpk (g,A0, Ã, T) and Evaltdpk(g, (A0,R0), (Ã, R̃, T))

B0 ← (
∑

i∈d ci0ti)G S0 ← 0
B1 ← G S1 ← 0
for j ∈ {0, . . . , d} do

B1 ← Ã d B1 S1 ← R̃G−1(B1) + t̃S1

B2 ← B1 d (
∑

i∈[d] cijti) S2 ← S1G
−1(
∑

i∈[d] cijtiG)
B0 ← B0 ‘ B2 S0 ← S0 + S2

end for
B0 ← B0 ‘ A0 S0 ← S0 + R0

return B0 return S0

Correctness of the algorithm follows by inspection.

5.3 Noise Growth Analysis

We now proceed to analyze the noise growth of the trapdoor S0 for B0 in Algorithm 1. The following
theorem covers the tag settings in both the actual scheme and the security reduction.

Theorem 5.2. Let Ā ∈ Zn×m̄q for m̄ = O(n log q). Let r = ω(
√

log n). Sample (A0,R0)← GenTrap(Ā, t̂0I, r)

for some t̂0 ∈ Zq, (Ã, R̃)← GenTrap(Ā, t̃I, r) for some t̃ ≤ d ∈ Zq. Then the noise level in the trapdoor
S0 for B0 returned by Algorithm 1 is at most ddrO(n5/2 log3 q). In particular, the function g as evaluated by
Algorithm 1 is admissible with parameter s = ddO(n5/2 log3 q).

14

Proof. Let Si denote the trapdoor for Bi in Algorithm 1. We denote by Bi,j , Si,j the value of Bi,Si at the
end of the jth iteration. We have that at the end of the jth iteration,

S1,j = R̃(

j−1∑
`=0

t̃`G−1(B1,j−`−1)),

so that s1(S1,j) ≤ j · dj−1nk · s1(R) ≤ djr · O(n3/2 log2 q). As a result, we have that s1(S2,j) ≤
djr · O(n5/2 log3 q). Since the final value of S0 is just

∑d
j=0 S2,j + R0, we have that at the end of the

algorithm,
s1(S0) ≤ ddrO(n5/2 log3 q).

References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In
EUROCRYPT, pages 553–572. 2010.

[AD97] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence.
In STOC, pages 284–293. 1997.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32,
2004. Preliminary version in STOC 1996.

[ASP14] J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In CRYPTO (1),
pages 297–314. 2014.

[BG14] S. Bai and S. D. Galbraith. An improved compression technique for signatures based on learning
with errors. In Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s Track at the RSA
Conference 2014, San Francisco, CA, USA, February 25-28, 2014. Proceedings, pages 28–47.
2014.

[BGG+14] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and
D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit abe and compact
garbled circuits. In EUROCRYPT, pages 533–556. 2014.

[BHJ+14] F. Böhl, D. Hofheinz, T. Jager, J. Koch, and C. Striecks. Confined guessing: New signatures
from standard assumptions. Journal of Cryptology, pages 1–33, 2014.

[Boy10] X. Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures
and more. In Public Key Cryptography, pages 499–517. 2010.

[BV11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, pages 97–106. 2011.

[BV14] Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In Innovations in
Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 1–12.
2014.

15

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. J.
Cryptology, 25(4):601–639, 2012. Preliminary version in Eurocrypt 2010.

[DDLL13] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures and bimodal gaussians.
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pages 40–56. 2013.

[DM14] L. Ducas and D. Micciancio. Improved short lattice signatures in the standard model. In Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2014, Proceedings, Part I, pages 335–352. 2014.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. 2009.

[GLP12] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based cryptography: A
signature scheme for embedded systems. In CHES, pages 530–547. 2012.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, pages 197–206. 2008.

[GSW13] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO (1), pages 75–92.
2013.

[GVW14] S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic signatures from
standard lattices. Cryptology ePrint Archive, Report 2014/897, 2014. http://eprint.
iacr.org/.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In
ANTS, pages 267–288. 1998.

[HW09] S. Hohenberger and B. Waters. Short and stateless signatures from the RSA assumption. In
CRYPTO, pages 654–670. 2009.

[KR00] H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS. 2000.

[LM08] V. Lyubashevsky and D. Micciancio. Asymptotically efficient lattice-based digital signatures. In
TCC, pages 37–54. 2008.

[Lyu09] V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In ASIACRYPT, pages 598–616. 2009.

[Lyu12] V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, pages 738–755. 2012.

[Mic02] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.
Computational Complexity, 16(4):365–411, 2007. Preliminary version in FOCS 2002.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, pages 700–718. 2012.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004.

16

http://eprint.iacr.org/
http://eprint.iacr.org/

[Sha79] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[SS11] D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.
In EUROCRYPT, pages 27–47. 2011.

[Wat09] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assump-
tions. In CRYPTO, pages 619–636. 2009.

[Xag13] K. Xagawa. Improved (hierarchical) inner-product encryption from lattices. In Public-Key
Cryptography - PKC 2013 - 16th International Conference on Practice and Theory in Public-Key
Cryptography, Nara, Japan, February 26 - March 1, 2013. Proceedings, pages 235–252. 2013.

17

	Introduction
	Our Results

	Preliminaries
	Signatures
	Lattices and Gaussians
	Trapdoors for Lattices

	Puncturable Homomorphic Trapdoor Functions
	Definition
	Construction: Basic Algorithms
	Construction: Homomorphic Computation
	Construction: Security

	Signatures from PHTDFs
	Required Properties of the Function g and Tags
	Generic Signature Scheme from PHTDFs

	Lattice-Based Instantiation of the Function g
	Tag Instantiations
	Computation of g
	Noise Growth Analysis

