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Abstract

We introduce a novel concept of dual-system simulation-sound non-interactive zero-knowledge
(NIZK) proofs. Dual-system NIZK proof system can be seen as a two-tier proof system. As op-
posed to the usual notion of zero-knowledge proofs, dual-system defines an intermediate partial-
simulation world, where the proof simulator may have access to additional auxiliary information
about the potential language member, for example a membership bit, and simulation of proofs
is only guaranteed if the membership bit is correct. Further, dual-system NIZK proofs allow
a quasi-adaptive setting where the CRS can be generated based on language parameters. This
allows for the further possibility that the partial-world CRS simulator may have access to fur-
ther trapdoors related to the language parameters. We show that for important hard languages
like the Diffie-Hellman language, such dual-system proof systems can be given which allow
unbounded partial simulation soundness, and which further allow transition between partial
simulation world and single-theorem full simulation world even when proofs are sought on non-
members. The construction is surprisingly simple, involving only two additional group elements
in asymmetric bilinear pairing groups.

As a first application we show a first single-round universally-composable password authen-
ticated key-exchange (UC-PAKE) protocol which is secure under dynamic corruption in the
erasure model. The single message flow only requires four group elements under the SXDH
assumption, which is at least two times shorter than earlier schemes.

As another application we give a short keyed-homomorphic CCA-secure encryption scheme.
The ciphertext in this scheme consist of only six group elements (under the SXDH assumption)
and the security reduction is linear-preserving. An earlier scheme of Libert et al based on their
efficient unbounded simulation-sound QA-NIZK proofs only provided a quadratic-preserving se-
curity reduction, and further had ciphertexts almost twice as long as ours.

Keywords: NIZK, bilinear pairings, UC-PAKE, keyed-homomorphic encryption, SXDH.
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1 Introduction

Since the introduction of simulation-sound non-interactive zero-knowledge (NIZK) proofs in [Sah99],
simulation-soundness has become an essential cryptographic tool. While the idea of zero-knowledge
simulation [GMR89] brought rigour to the concept of semantic security, simulation-soundness of
some form is usually implict in most cryptographic applications. While the original construc-
tion of [Sah99] was rather inefficient, the advent of pairing based cryptography, and in particular
Groth-Sahai NIZK proofs [GS08], has led to much more efficient simulation-sound NIZK construc-
tions. Pairing-based cryptography has also led to efficient construction of powerful primitives where
simulation-soundness is not very explicit.

It has been shown that different forms of simulation-soundness suffice for many applications.
Indeed, the original application (CCA2-secure encryption) considered in [Sah99] only required what
is known as single-theorem simulation-soundness (also known as one-time simulation-soundness).
However, many other cryptographic constructions are known only using unbounded simulation-
sound NIZK proofs. In this paper, we introduce the concept of dual-system simulation-sound
NIZK proof systems, which lie somewhere in between one-time and unbounded simulation-soundness.
The aim is to show that this weaker concept suffices for constructions where unbounded simulation-
soundness was being used till now. We also show that in many applications this new concept of
dual-system simulation soundness is implicit, in the sense that we cannot get a generic construction
from a NIZK proof, but can use the underlying ideas of the dual-system simulation-sound NIZK
proofs.

Indeed, our novel definition is inspired by the dual-system identity-based encryption (IBE)
scheme of Waters [Wat09], where such a concept was implicit, and led to the first IBE scheme
which was fully-secure under static and standard assumptions. So without further ado, we jump
straight into the main idea of the new concept. In dual-system simulation-sound NIZK proof
systems we will consider three worlds: the real-world, the partial-simulation world, and the one-
time full-simulation world. The real world consists of a common-reference string (CRS), an efficient
prover P, and an efficient verifier V. The concept of completeness and soundness of P and V with
respect to a witness-relation R is well-understood. The full-simulation world is also standard, and
it includes two simulators: a CRS simulator and a proof simulator. The proof simulator is a zero-
knowledge simulator in that it can simulate proofs even without access to the witness. In order
to achieve this, the CRS simulator generates the CRS in a potentially different way and produces
a trapdoor for the proof simulator. The partial-simulation world we consider also has a CRS
simulator, and a proof simulator, but this proof simulator is allowed partial access to the witness
(or some other auxiliary information) about the member on which the proof is sought.

At this point, we also bring in the possibility of the CRS being generated as a function of the
language or witness-relation under consideration. The recent quasi-adaptive NIZK (QA-NIZK)
proofs of [JR13] allow this possibility for distributions of witness-relations. The CRS in the real
and the full-simulation world is generated based on a language parameter generated according to
some distribution. Now we consider the possibility that in the partial-simulation world, the CRS
simulator actually generates the language parameter itself. In other words, the CRS simulator has
access to the “witness” of the language parameter. For example, the CRS simulator may know the
discrete-logs of the language parameters. This leads to the possibility that in the partial simulation
world the proof simulator may have access to further trapdoors which makes simulation and/or
simulation soundness easier to achieve.

In this paper, we will only define and consider dual-system simulation sound QA-NIZK proofs
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(called DSS-QA-NIZK), where the only auxiliary information that the partial proof simulator gets
is a single bit which is called the membership bit. The membership bit indicates whether the
potential member on which the proof is sought is in the language or not. We show that we can
achieve unbounded partial-simulation soundness for important languages like the Diffie-Hellman
language (and more general such languages) by relatively simple constructions. The constructions
also allow one-time full-ZK simulation, and hence form a DSS-QA-NIZK for the Diffie-Hellman
language. Indeed, for the Diffie-Hellman language, under the standard SXDH assumption in bilinear
pairing groups, the DSS-QA-NIZK only requires two more group elements.

We now give the main idea as to why such a construction is useful. Most applications only need
a full-simulation NIZK proof for the hard language under whose hardness the application is to be
proven secure. However, the particular application may have a more complex language for which
the NIZK proofs are required, and the security proof may require soundness of the NIZK system
while proofs of many elements (real or fake) of such a complex language are being simulated. The
idea is that multiple simulations of such elements can be performed in a partial-simulation manner,
and full simulation is only required of one member at a time, and that too of the underlying hard
language member.
Applications.
1. Keyed-Homomorphic CCA-secure Encryption. As a first application we consider the
keyed-homomorphic CCA-secure encryption scheme notion of [EHO+13]. In such an encryption
scheme, a further functionality called Eval is available which using a key can homomorphically
combine valid ciphertexts. The scheme should provide IND-CCA2 security when this Eval key is
unavailable to the adversary, and should continue to enjoy IND-CCA1 security when the Eval key
is exposed to the adversary. Emura et al. also gave constructions for such a scheme, albeit schemes
which are not publicly verifiable, and further satisfying a weaker notion than CCA1-security when
Eval key is revealed. Recently, Libert et al gave a publicly-verifiable construction which is more
efficient and also CCA1-secure when Eval key is revealed. Their construction is based on a new
and improved unbounded simulation-sound QA-NIZK for linear subspace languages. We show in
this paper that ideas from DSS-QA-NIZK for the Diffie-Hellman language suffice, and leads to a
much improved construction. While the construction in [LPJY14], under the SXDH assumption,
requires nine group elements in one group, and two more in the other plus a one-time signature key
pair, our construction only requires six group elements in any one of the bilinear groups. Further,
while the earlier construction only had a quadratic-preserving security reduction, our reduction is
linear-preserving.

The main idea of our construction is as follows. The ciphertexts consist of an El-Gamal encryp-
tion of the messageM , say gr,M ·gk·r for a public key gk. The public key also consists of a member
ga, and the ciphertext includes ga·r. It is well-known [JR12] that if a one-time simulation-sound
NIZK proof of gr and ga·r being of the correct form is included in the ciphertext then it becomes a
publicly-verifiable CCA2-secure encryption scheme. In our keyed-homomorphic construction we in-
clude a DSS-QA-NIZK for gr and ga·r being of the correct form, which is just the requirement that
this be a Diffie-Hellman tuple. The DSS-QA-NIZK we give for this language has the nice property
that the CRS in the real-world and the partial world are statistically identical. Thus, the public
key can be generated by the partial-world CRS simulator, and the partial-simulation trapdoor it
generates can be the Eval key. Since the partial simulation world is unbounded simulation-sound,
the Eval functionality can be provided by first verifying that the Eval is performed on valid ci-
phertexts, homomorphically combining the triples of the form gr,ga·r,M · gk·r, and then calling
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the partial-simulator with the membership bit set as one (and this is a valid membership bit as
the partial-world verifier is unbounded simulation sound). We also show that our DSS-QA-NIZK
construction remains CCA1-style secure when the partial-simulator trapdoor is revealed.
2. Universally-Composable Password-Authenticated Key Exchange (UC-PAKE) The
UC-PAKE ideal functionality was introduced in [CHK+05] where they also gave a three round con-
struction. In [KV11] a single-round construction for UC-PAKE was given using Groth-Sahai NIZK
proofs along with unbounded simulation-soundness construction of [CCS09]. In [JR12], further
improvement was obtained by generating the key in the target bilinear-group. The construction
still required unbounded simulation-soundness. Later [BBC+13] gave a construction based on novel
trapdoor smooth projective hash functions instead of unbounded simulation-sound NIZK proofs.
Their construction yielded a single-round UC-secure PAKE scheme under static corruption, and
each message consisted of six group elements in one group, and another five elements in the other
group, under the SXDH assumption. The key is generated in the target group.

We now give a single-round construction based on dual-system simulation-soundness which is
UC-secure under dynamic corruption (in the erasure model), and which has only a total of four
group elements in each message (three in one group and one in the other). The key is generated in
the target group. The construction is not a generic construction from the DSS-QA-NIZK for the
Diffie-Hellman language, but uses its underlying idea as well as the various component algorithms
of the DSS-QA-NIZK. The main idea of the construction is given in more detail in Section 5.3.
All previous constructions, with the exception of a two-round construction of [ACP09], were only
secure in the static corruption model.

1.1 Dual-System Simulation-Soundness

A witness relation is a binary relation on pairs of inputs, the first called the witness and the second
called a language member. Note that each witness relation R defines a corresponding language L
which is the set of all x for which there exists a witness w, such that R(w, x) holds.

We will consider Quasi-Adaptive NIZK proofs for a probability distribution D on a collection
of (witness-) relations R = {Rρ} [JR13]. Recall that in a quasi-adaptive NIZK, the CRS can be set
after the language parameter has been chosen according to D. To define dual-system simulation
soundness of such NIZK proofs, we will consider three worlds: the real-world, the partial-simulation
world, and the one-time (or single theorem) full-simulation world. While the real-world and the
full-simulation world should be familiar from earlier definitions of NIZK proof systems or quasi-
adaptive NIZK proof systems, the partial-simulation world leads to interesting possibilities. To
start with, in the partial simulation world, one would like the proof simulator to have access to
partial or complete witness of the potential language member. In case, the proof simulator is being
invoked on a non-language member, it is not immediately clear what this witness can be, unless we
also define a language and a distribution for a super-language which includes the language under
consideration as a subset. Finally, in the quasi-adaptive setting, the language parameters may
actually be generated by the CRS simulator and hence the simulator may have access to, say, the
discrete logs of the language parameters which can serve as trapdoors.

Rather than consider these general settings, we focus on a simple partial-simulation setting,
where (a) the CRS simulator can generate the language parameters itself and (b) the proof simulator
when invoked with a potential language member x is given an additional bit β, which we call the
membership bit which represents the information whether the potential language member x is
indeed a member or not.
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The partial simulation world is required to be unbounded simulation-sound and hopefully it
should be easier to prove (given that its simulators have additional information) than usual un-
bounded simulation-soundness. We also allow the partial simulation world to be sound with respect
to a private verifier (this concept has been considered earlier in [JR12]), and this further leads to
the possibility of easier and/or simpler constructions.

A surprising property achievable under such a definition is that one can go back and forth
between the partial-simulation world and the one-time full-simulation world even when simulating
fake tuples. However, between the real-world and the partial-simulation world one must only pass
the prover/simulator real language members.
Dual-system Simulation-Sound Quasi-Adaptive NIZK (DSS-QA-NIZK). A Dual-system
proof system for a collection of witness-relations Rλ = {Rρ}, with parameters sampled from a
distribution D over associated parameter language Lpar consists of:

• Following real-world PPT components:
A pair of CRS generators (K0,K1), where K0 takes a unary string and produces an ensemble
parameter λ. The ensemble parameter λ is used to sample a witness-relation parameter ρ
using Dλ. Next, K1 uses ρ (and λ) to produce the real-world CRS ψ. A prover P that takes
as input a CRS, a language member and its witness and produces a proof. A verifier V that
takes as input a CRS, a potential language member, and a proof, and outputs a single bit.

• In addition, there are the following partial-simulation world PPT components:
A semi-functional CRS simulator sfK1 that takes ensemble parameter λ as input and
produces a witness relation parameter ρ, a semi-functional CRS σ, as well as two trapdoors
τ and η. The first trapdoor is used by the proof simulator, and the second by the private
verifier. A semi-functional simulator sfS that takes a CRS, a trapdoor τ , a potential
language member and a membership-bit β to produce a proof. A private verifier pV that
takes a CRS, a trapdoor η, a potential language member and a proof and outputs a single
bit.

• Finally, there are the following one-time full simulation PPT components:
A one-time full-simulation CRS generator otfK1, that takes as input the ensemble
parameter λ, the witness relation parameter ρ to produce a CRS and three trapdoors τ , τ1
and η. A one-time full simulator otfS that takes as input a CRS, a trapdoor τ1, and
a potential language member and produces a proof. A semi-functional verifier sfV that
takes as input a CRS, a trapdoor η, a potential language member, a proof and outputs a bit.
The adversaries also have access to semi-functional simulator.

All of the above provers, proof simulators and verifiers may also take a label l as an additional
argument.

The definition of the real-world quasi-adaptive system to be complete and (computationally)
sound are standard and can be found in [JR13]. Such a proof system is called a dual-system
simulation-sound quasi-adaptive NIZK for a collection of witness relations Rλ = {Rρ},
with parameters sampled from a distribution D, if for all non-uniform PPT adversaries A =
(A1,A2,A3,A4) all of the following properties are satisfied:

• partial-ZK:

Pr[λ← K0(1
m); ρ← Dλ; ψ ← K1(λ, ρ); A

P(ψ,·,·;·),V(ψ,·,·;·)
1 (ψ) = 1] ≈
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Pr[λ← K0(1
m); (ρ, σ, τ, η) ← sfK1(λ); A

X(σ,τ,·,·;·), pV(σ,η,·,·;·)
1 (σ) = 1],

where the calls to P (with inputs a witness and a language member) are restricted to ones satisfying
Rρ, and X(σ, τ, x, w; l ) is defined to be sfS(σ, τ, x,Rρ(w, x); l ) (i.e. witness is dropped, and
membership bit β is just 1),

• unbounded partial-simulation (relative) soundness:

Pr[λ← K0(1
m); (ρ, σ, τ, η) ← sfK1(λ); (x, l , π)← A

sfS(σ,τ,·,·;·), pV(σ,η,·,·;·)
2 (σ) :

[¬∃w s.t. Rρ(w, x) = 1, and pV(σ, η, x, π; l ) = 1] ≈ 0.

• one-time full-ZK:

Pr[λ← K0(1
m); (ρ, σ, τ, η) ← sfK1(λ); (x, l , β, s)← A

sfS(σ,τ,·,·;·), pV(σ,η,·,·;·)
3 (σ);

π ← sfS(σ, τ, x, β; l ) : A
sfS(σ,τ,·,·;·), pV(σ,η,·,·;·)
4 (π, s) = 1] ≈

Pr[λ← K0(1
m); ρ← Dλ; (σ, τ, τ1, η) ← otfK1(λ, ρ); (x, l , β, s)← A

sfS(σ,τ,·,·;·), sfV(σ,η,·,·;·)
3 (σ);

π ← otfS(σ, τ1, x; l ) : A
sfS(σ,τ,·,·;·), sfV(σ,η,·,·;·)
4 (π, s) = 1],

where β is a correct Lρ-membership bit for x, and all calls to sfS also have correct Lρ-membership
bits and 〈x, π; l 〉 is not queried to sfV/pV. Here s is a state variable.

Remark 1. Note that there is no restriction in the unbounded partial-simulation soundness defini-
tion of x, l (along with a β) being called to the first oracle sfS and returning π as proof.
Remark 2. Note that in the partial-ZK definition, the calls to the prover are restricted to ones
satisfying the relation. However, the calls to the provers (i.e. sfS and otfS) in the one-time full-ZK
definition are only restricted to having the correct membership bit β. In particular, one can go
back and forth with non-members.
Remark 3. We now show that sfS generated proofs on potential language members (whether
members or not, i.e. β being 1 or 0) are accepted by real-world verifier V (with semi-functional CRS
σ). Of course, the private verifier pV will even reject proofs generated on non-language members
by sfS. This justifies the name “semi-functional simulator”. To be precise, for distributions E of
fake language members (i.e. β = 0) such that with high probability no efficient adversary can
distinguish them from real language members (i.e. β = 1), the semi-functional proofs generated
on such tuples are accepted by V. The proof is standard and uses both the partial-ZK and the
one-time full ZK property, and will be given in the full version of the paper.

It can also be shown that the semi-functional verifier sfV is still complete, i.e. it accepts language
members and proofs generated on them by P(σ, ·, ·; ·) (i.e. P instantiated with CRS generated by
otfK1). As opposed to P and pV, it may no longer be sound. This justifies the name “semi-functional
verifier” a la Waters’ dual-system IBE construction.

2 Dual-System Simulation-Sound QA-NIZK for DH Language

We will consider bilinear groups (G1,G2,GT ), with an efficiently computable pairing e from G1×G2

to GT . Each group will be assumed to be cyclic with prime order q. For the construction to be
secure, we will also assume that the external Diffie-Hellman (XDH) assumption holds for group G1.
Essentially, it says that the DDH assumption holds in group G1. Later, we also give a construction
based on the decisional linear (DLIN) assumption.

We consider the following class of languages parameterized by g2,g
a
2 (∈ G

2
2). The Diffie-

Hellman language corresponding to one such parameter ρ = 〈g2,g
a
2〉 is Lρ = {〈g

r
2,g

a·r
2 〉 | r ∈ Zq}.
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Note that the witness relation Rρ corresponding to this language is defined by Rρ(r, 〈x1,x2〉) being
true iff x1 = gr2 and x2 = (ga2)

r.
The distribution D under which the DSS-QA-NIZK is obtained is defined by picking g2 as a

generator for G2 according to a bilinear group (G1,G2,GT ) generation algorithm for which DDH
assumption holds for G1, and then choosing a randomly from Zq.

We now define the various components of the DSS-QA-NIZK system for the above class of
Diffie-Hellman languages under distribution D. In all the algorithms below l will denote label, the
additional input.

• The real-world algorithms:

– The algorithm K0 is just the group generation algorithm (it takes a unary string 1m as
input), and it also generates a collision-resistant hash function H. The CRS generation
algorithm K1 takes language parameter ρ = 〈g2,g

a
2〉 and other bilinear group parame-

ters as input and generates the CRS as follows: it picks c, b, d, e,∆′

1,∆
′

2 randomly and
independently from Zq and sets the CRS to be (CRSp,CRSv,H):

CRSp = {ρ, d = gd2, e = ge2, w1 = g
(∆′

1
+d)/b

2 · (ga2)
c/b, w2 = g

(∆′

2
+e)/b

2 },

CRSv = {g1, c = gc1, b = gb1, v1 = g
−∆′

1

1 , v2 = g
−∆′

2

1 }.

– The prover P takes as input CRSp, a language member 〈x1,x2〉 and its witness r and
produces a proof π consisting of two group G2 elements T and W as follows: Compute
ι = H(x1,x2, l). Next, compute T = (d · eι)r, and W = (w1 ·w

ι
2)
r.

– The verifier V takes as input CRSv, a potential language member 〈x1,x2〉, and a proof
π = (T,W ), computes ι = H(x1,x2, l), and outputs true iff

e((v1v
ι
2),x

−1
1 ) · e(c,x2) · e(g1, T ) = e(b,W ).

• The partial-simulation world PPT components:

– The semi-functional CRS simulator sfK1 takes group parameters and H as input
and produces a witness relation parameter ρ = 〈g2,g

a
2〉 by picking a at random from Zq.

It produces the semi-functional CRS σ = (CRSp,CRSv,H) as follows:
it further picks c, b, d1, d2, e1, e2,∆

′

1,∆
′

2 randomly and independently from Zq, and com-
putes d = d1 + a · d2, e = e1 + a · e2, ∆1 = (∆′

1 + d+ a · c)/b, ∆2 = (∆′

2 + e)/b, and sets
the CRS to be (σp, σv,H):
σp = {ρ, d = gd2, e = ge2, w1 = g∆1

2 , w2 = g∆2

2 },

σv = {g1, c = gc1, b = gb1, v1 = g
−∆′

1

1 , v2 = g
−∆′

2

1 }.
It outputs c, b, d1, d2, e1, e2,∆

′

1,∆
′

2 as proof simulator trapdoors τ , and outputs a, c, b,
d, e, ∆1, ∆2 as private-verifier trapdoors η.

– The semi-functional simulator sfS uses trapdoors {c, b, d1, d2, e1, e2,∆
′

1,∆
′

2} to pro-
duce a (partially-simulated) proof for a potential language member 〈x1,x2〉 and a binary
bit β as follows: compute ι = H(x1,x2, l); if β = 1, compute and output

T = xd1+ιe11 · xd2+ιe22 , W = x
(∆′

1
+d1+ι·(∆′

2
+e1))/b

1 · x
(d2+ιe2+c)/b
2 ,

else choose y at random from Zq; Compute and output

T = xd1+ιe11 · gy2 , W = x
(∆′

1
+d1+ι·(∆′

2
+e1))/b

1 · x
c/b
2 · g

y/b
2 .

This proof is partially simulated as it uses the bit β.
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– The private verifier pV uses trapdoors {a, c, b, d, e,∆1 ,∆2} to check a potential lan-
guage member 〈x1,x2〉 and a proof T,W as follows: it outputs 1 iff x2 = xa1 and
T = xd+ιe1 and W = x∆1+ι∆2

1 , where ι = H(x1,x2, l).

• Finally, the one-time full simulation PPT components:

– The one-time full-simulation CRS generator otfK1 takes as input the bilinear group
parameters, H, and the language parameter ρ = 〈g2,g

a
2〉 to produce the CRS as in

the real-world, but with a little twist: it picks c, b, d1, d2, e1, e2,∆
′

1,∆
′

2 randomly and
independently from Zq and sets the CRS to be (σp, σv,H):

σp = {ρ, d = gd12 · (g
a
2)
d2 , e = ge12 · (g

a
2)
e2 , w1 = g

(∆′

1
+d1)/b

2 · (ga2)
(d2+c)/b, w2 = g

(∆′

2
+e1)/b

2 ·
(ga2)

e2/b},

σv = {g1, c = gc1, b = gb1, v1 = g
−∆′

1

1 , v2 = g
−∆′

2

1 }.
It also outputs c, b, d1, d2, e1, e2,∆

′

1,∆
′

2 as all three trapdoors τ , τ1 and η.

– The one-time full simulator otfS takes as input the trapdoors {c, b, d1, d2, e1, e2,∆
′

1,∆
′

2}
and a potential language member 〈x1,x2〉 to produce a proof as follows: T = xd1+ιe11 ·

xd2+ιe22 , W = x
(∆′

1
+ι∆′

2
+d1+ιe1)/b

1 · x
(d2+ιe2+c)/b
2 , where ι = H(x1,x2, l).

– The semi-functional verifier sfV uses trapdoors {c, b, d1, d2, e1, e2,∆
′

1,∆
′

2} to ver-
ify a potential language member 〈x1,x2〉 and a proof T,W as follows: compute ι =
H(x1,x2, l) and output 1 iff

(x
∆′

1
+ι∆′

2

1 · xc2 · T = W b) and (T = x
(d1+ιe1)
1 · x

(d2+ιe2)
2 ),

Theorem 1 The above algorithms constitute a computationally-sound, complete and dual-system
simulation sound quasi-adaptive NIZK proof system for the Diffie-Hellman language with language
parameters sampled according to D above, given any bilinear-group generation algorithm for which
the DDH assumption holds for groups G1. Let advXDH denote any adversary’s advantage in breaking
the DDH assumption in group G1. Then, the probability of Adversary’s success in the soundness
experiment is at most 2 · advXDH + O(1/q). Further, unbounded partial-simulation soundness is
perfect. The advantage of adversary A1 in the partial-ZK property experiment is at most 2 · N ·
advXDH + O(N/q), where N is the number of A1’s oracle calls to the second oracle. Finally, A4’s
advantage in the one-time full-ZK property experiment is at most O((N +M)/q), where M and N
are the number of calls of A3 and A4 combined to the first and second oracle resp.

The theorem is proved in the next section.

3 Proof of DSS-QA-NIZK for DH Language

In this section we prove the theorem stated in the previous section about the security of the DSS-
QA-NIZK construction for the Diffie-Hellman Language. After the proof, in the next sub-section,
we show how the proof extends to the situation where the partial-world simulation key is revealed
adaptively to the Adversary. Finally, we also show how to extend the above construction so that
it is secure in a CCA1-security sense even after the simulation key is revealed.
Proof: [Theorem 1]
Completeness: Completeness of the real-world prover follows by simple inspection.
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Soundness: We first define an extended Diffie-Hellman tag-based language

Lρ = {x1,x2, T, ι | ∃r : x1 = gr2,x2 = ar, T = (deι)r}. (1)

We will show that the element W is the single element proof for the quasi-adaptive NIZK for
Lρ [JR14]. For this extended language d and e are additional language parameters. Hence, from
the soundness of this QA-NIZK [JR14] follows the soundness of the system in consideration. But
to be self-contained, we provide a proof of soundness for the language Lρ here, with the adversary
getting the full CRS generated by K1.

We will consider several experiments between a challenger C and adversary A here, starting
with H0 which is same as the experiment of the soundness definition except that the challenger
also generates ρ according to D. The challenger C runs the verifier V on A’s input x1,x2, T and
proof W and outputs the result of the verifier.

In H1, the challenger C generates the CRS differently by first picking ∆1 and ∆2 at random,
and then setting ∆′

1 = ∆1 ·b−d−c ·a, and ∆′

2 = ∆2 ·b−e. It is easy to see that the CRS generated
in H1 is identically distributed to that generated in H0. Further, instead of running the verifier V
on A’s input, the challenger runs the following test: it first picks s at random and then outputs:

e((v1v
ι
2)
s,x−1

1 ) · e(cs,x2) · e(g
s
1, T ) · e(b

s,W−1).

Since probability of s being zero is only 1/q, and further that G1 is a group, the probability of
C outputting 1 in H1 is at most the probability of C outputting 1 in H0 (plus 1/q).

In H2, the C also picks a random and independent s′, and first computes a ξ = e(gs
′

1 , T · x
c
2 ·

x
−(d+ιe+a·c)
1 ), and then outputs as follows:

e((v1v
ι
2)
s,x−1

1 ) · e(cs,x2) · e(g
s
1, T ) · e(b

s,W−1) · ξ.

The probability of C outputting 1 in H2 differs from it outputting 1 in H1 by at most the
probability of an adversary’s advantage in the DDH game. This follows by using DDH assumption
on tuples g1,g

b
1,g

b·s
1 and either gs1 (real DDH challenge) or gs+s

′

1 (fake DDH challenge). The
important thing to note is that b is not used at all in simulating group G2 elements in the CRS (as
opposed to H0). When the DDH challenge is real, this sets up H1 (i.e. C and the code of PPT A),
and when the DDH challenge is fake this sets up H2.

In H3, C also picks a random and independent c′ and computes ξ as follows: ξ = e(gc
′

1 ,x2 ·

x−a
1 ) · e(gs

′

1 , T · x
−(d+ιe)
1 ).

Rest of the computation remains same. Again, the probability of C outputting 1 in H3 differs
from it outputting 1 inH2 by at most the probability of an adversary’s advantage in the DDH game.
This follows by using DDH assumption on tuples g1,g

s′
1 ,g

c
1 and either gs

′c
1 (real DDH challenge)

or gc
′

1 (fake DDH challenge). The important thing to note is that c is not used at all in simulating
group G2 elements in the CRS (as opposed to H0). When the DDH challenge is real, this sets up
H2 (i.e. C and the code of PPT A), and when the DDH challenge is fake this sets up H3.

Now, a simple information theoretic argument shows that the probability of C outputting 1 in

H3 when x2 · x
−a
1 6= 11 or T · x

−(d+ιe)
1 6= 11 is negligible. That completes the proof of soundness.

Partial-ZK: We first note that the semi-functional CRS generator does a statistically indistinguish-
able simulation of the real-world CRS generator. This is seen by noting that the former generator
generates ρ identically to D, and that b is non-zero with high probability.
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Now we show, by induction over the order of calls to the two oracles, that A1 cannot compu-
tationally distinguish between oracle responses in the real-world and the partial-simulation world.
First, looking at oracle calls to the first oracle (i.e. P or sfS), we first note that if the call in the
real-world to P is with language member 〈x1,x2〉 and a valid witness r, then since this property
is polynomial time verifiable given language parameter ρ, by induction, the adversary A1 in the
partial simulation world also generates a 〈x1,x2〉 which belongs to Lρ (with probability close to
1). Next, note that when 〈x1,x2〉 belongs to Lρ (i.e. x2 = xa1), the proof simulation is perfect; the
membership bit β is 1, and hence y = 0, which leads to identical distribution for proof T,W in the
two worlds.

We next show that for each call to the second oracle (i.e. V or pV), the difference in the
probability of the oracle returning 1 in the two worlds is negligible. Since the CRS generated in the
two worlds has statistically indistinguishable distribution, the probability of V (using real-world
CRS) returning 1 in the real-world is non-negligibly close to the probability of the same V (with
partial-simulation world CRS) returning 1. Thus, we just need to bound the difference in the
probability of V and pV returning 1 in the partial-simulation world.

Consider the language Lρ defined above. Now, from definition of pV it is clear that it accepts
iff x1,x2, T, ι are in Lρ, and W is the unique “proof” matching this tuple (i.e W = (w1w

ι
2)
r). It

is also clear that V accepts the triplet and W if the triplet is in Lρ and W is this unique “proof”.
Further, it is clear that V rejects if the quadruplet is in Lρ and W is not this unique proof. Thus,
we just need to show that if the quadruplet is not in Lρ then (regardless of W ) V rejects with high
probability. But, indeed we showed in the proof of soundness above that W is the (single group
element) proof of the language Lρ which is sound under the verifier V and with adversary getting
the full CRS generated by K1 (and hence also the full CRS generated by sfK1).
Unbounded partial-simulation (relative) soundness: This follows trivially, since the private verifier
has access to a (see the private verifier trapdoor), and directly checks if the potential language
member submitted is indeed a language member.
One-time full-ZK: We will show that the one-time full-ZK property holds statistically, i.e. against
all powerful adversaries. Now we define a sequence of experiments, and show that they are statis-
tically indistinguishable.

First note that the distribution of the CRS generated by the one-time full-simulation CRS
generator is statistically indistinguishable from the distribution of the CRS generated by the semi-
functional CRS generator. We next show, by induction over the order of calls of A3 and A4 to
the two oracles and the one-time generation of proof π, that A4 cannot distinguish between the
responses of the oracle calls and π in the partial-simulation world and this one-time full simulation
world.

To this end, we will define a sequence of hybrid experiments and show that the view of A4 in
every two consecutive experiments is computationally indistinguishable.

The first experiment H0 is identical to the partial-simulation world, but we describe it in detail
here. The challenger C interacts with two adversaries A3 and A4 each with two different types of
oracle calls. To start with, C produces a CRS to be used by both the adversaries. A3 also produces
a potential language member 〈x1,x2〉, and a membership bit β. The challenger then produces π
and A4 takes this as additional input, and finally outputs a bit.
C starts by picking a at random and sets ρ = 〈g2,g

a
2〉. Next, it picks c, b, d1, d2, e1, e2,∆

′

1,∆
′

2

randomly and independently from Zq, and computes d = d1 + a · d2, e = e1 + a · e2, ∆1 =
(∆′

1 + d+ a · c)/b, ∆2 = (∆′

2 + e)/b, and sets the CRS to be (σp, σv,H):
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σp = {ρ, d = gd2, e = ge2, w1 = g∆1

2 , w2 = g∆2

2 },

σv = {g1, c = gc1, b = gb1, v1 = g
−∆′

1

1 , v2 = g
−∆′

2

1 }.
It retains c, b, d1, d2, e1, e2,∆

′

1,∆
′

2 as proof simulator trapdoors τ , and retains a, c, b, d, e, ∆1, ∆2

as private-verifier trapdoors η.
The challenger C serves all calls to the first oracle using the algorithm sfS described above on

trapdoors τ . It also produces π using the same algorithm sfS on A3 supplied input. It serves all
calls to the second oracle using private verifier pV described above using trapdoors η.

In experiment H1, the challenger C, instead of picking d1, d2 at random (and similarly e2, e2 at
random), picks d and d2 randomly and independently and sets d1 = d− a · d2 (and e1 = e− a · e2).
Rest of the CRS computation remains the same, and it retains a, c, b, d, d2, e, e2, ∆

′

1, ∆
′

2, ∆1,
∆2 as trapdoors (for both oracles). It further replaces sfS by the following: on input a potential
language member 〈x1,x2〉 and a binary bit β as follows: compute ι = H(x1,x2); if β = 1 set y = 0,
else choose y at random from Zq; Compute and output

T = xd+ιe1 · gy2 , W = x
(∆′

1
+d+ι·(∆′

2
+e))/b

1 · x
c/b
2 · g

y/b
2 . (2)

We show that when the membership bit β is valid for 〈x1,x2〉, the view of the adversaries
in Expt0 and Expt1 is identical. First note that the CRS is identically distributed in the two
experiments. Next, let x2 = xa1 · z. Thus, if β = 1 then z = 12, otherwise z is not one. When
β = 1, C chooses y = 0 in H1 above, and hence this is identical to behavior of sfS. Otherwise, y is
chosen randomly in both sfS and H1, and now note that

xd+ιe1 · gy2 = xd1+ιe11 · (x2/z)
d2+ιe2 · gy2 ,

x
(∆′

1
+d+ι·(∆′

2
+e))/b

1 · x
c/b
2 · g

y/b
2 = x

(∆′

1
+d1+ι·(∆′

2
+e1))/b

1 · x
c/b
2 · (x2/z)

(d2+ιe2)/b · g
y/b
2 .

Since, y is chosen randomly and independently the experiments H0 and H1 produce identical
distributions.

In the next experiment H2, the challenger simulates otfS by producing the proof π on the
potential language member 〈x1,x2〉 and binary bit β produced by A3 as follows (all calls to the
first oracle remain as in previous experiment): it ignores the bit β, computes ι = H(x1,x2), and
next computes and outputs

T = x
d+ιe−a·(d2+ιe2)
1 · xd2+ιe22 , W = x

(∆′

1
+d+ι·(∆′

2
+e)−a·(d2+ιe2))/b

1 · x
(d2+ιe2+c)/b
2 . (3)

Again, let x2 = xa1 · z, and note the T and W being computed in this experiment can be written as

T = xd+ιe1 · zd2+ιe2 , W = x
(∆′

1
+d+ι·(∆′

2
+e))/b

1 · x
c/b
2 · z

(d2+ιe2)/b.

Next, note that d2 was chosen randomly and independently of d. Further, the CRS computation,
all first oracle response computations, and all second oracle response (see pV) computations only
need d and e (and not d2). Thus, since z = 12 iff β = 1 (given that β is a valid membership bit),
the distribution of π is identical in H1 and H2.

In the next experiment H3, the private-verifier pV is replaced by the following code: output 1
iff

T = x
d+ιe−a·(d2+ιe2)
1 · x

(d2+ιe2)
2 and x

∆′

1
+ι∆′

2

1 · xc2 · T = W b, (4)

where ι = H(x1,x2).
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In order to show that the view of the adversary is indistinguishable in experiments H3 and
H2, we define several hybrid experiments H2,i (for 0 ≤ i ≤ N , where N is the total number
of calls to the second-oracle by A3 and A4 combined). Experiment H2,0 is identical to H2, and
the intermediate experiments are defined inductively, by modifying the response of one additional
second-oracle call starting with the last (N -th) second-oracle call, and ending with the changed
response of first second-oracle call. The last hybrid experiment H2,N will then be same as H3. The
second-oracle call response in experiment H2,i+1 differs only in the (N − i)-th second-oracle call
response in H2,i. In the latter experiment, this call is still served as in H2 (i.e. using pV). In the
former experiment H2,i+1, the (N − i)-th call is responded to as defined in H3 above.

To show that the view of the adversary is statistically indistinguishable in H2,i and H2,i+1,
first note that the view of the adversary (A3 and A4 combined) till it’s (N − i)-th call in both
experiments is identical. Moreover, this view is independent of d2 and e2 except for the information
d2+ι

′e2, where ι
′ = H(x′

1,x
′

2), and 〈x
′

1,x
′

2〉 is the potential language member on which A3 sought a
proof π (if the (N − i)-th second-oracle call happens before A3 outputs this request, then even this
information d2 + ι′e2 is not available to the adversary). Now, consider the case that the adversary
does not query this 〈x′

1,x
′

2〉 and π to the second-oracle (and hence to this (N − i)-th call).
First, suppose the (N − i)-th call has the same 〈x′

1,x
′

2〉, but a different proof π′ then the proof
π output by the challenger C (see definition of experiment H2 above). Then, we show that both
experiments H2,i and H2,i+1 reject this call (i.e. output 0). This follows from uniqueness of the
valid proof, but to be rigorous, note that the proof π produced in both experiments is

T = (x′

1)
d+ι′e−a·(d2+ι′e2) · (x′

2)
d2+ι′e2 , W = (x′

1)
(∆′

1
+d+ι′·(∆′

2
+e)−a·(d2+ι′e2))/b · (x′

2)
(d2+ι′e2+c)/b,

where ι′ = H(x′

1,x
′

2). Since, the (N − i)-th call has the same 〈x′

1,x
′

2〉, and hence the same hash
H-value, it is easy to inspect that pV accepts the above proof π, and in particular T = (x′

1)
d+ι′e and

W = (x′

1)
∆1+ι′∆2 . Thus, any change in this T or W will be rejected by pV (and hence experiment

H2,i). It is also easy to inspect that the response to (N − i)-th call in H2,i+1 with input 〈x′

1,x
′

2〉
and above proof π will be 1, i.e.

T = (x′

1)
d+ι′e−a·(d2+ι′e2) · (x′

2)
(d2+ι′e2) and (x′

1)
∆′

1
+ι′∆′

2 · (x′

2)
c · T = W b,

Thus, any change in T will fail the first conjunct, and any change in just W (and not T ) will fail
the second conjunct, except for the negligible probability that b = 0. Thus, experiment H2,i+1 also
outputs 0 on its (N − i)-th call.

Now, suppose that 〈x1,x2〉 in the (N−i)-th second-oracle call is different from 〈x′

1,x
′

2〉 on which
the adversary sought proof π. Since H is a collision resistant hash function, no efficient adversary
can choose these inputs to H such that their hash is the same. So, assume that ι = H(x1,x2) is
different from ι′ = H(x′

1,x
′

2).
Thus, d2 + ιe2 is random and independent given d2 + ι′e2 (recall, d2, e2 are chosen randomly

and independently of d and e from H1 on-wards). Now it is clear that if pV accepts 〈x1,x2〉 and
the submitted proof T , W , then experiment H2.i+1 also accepts the same. So, we next show that
if H2,i+1 accepts the (N − i)-th call, then pV also accepts. Thus,

T = x
d+ιe−a·(d2+ιe2)
1 · x

(d2+ιe2)
2 and x

∆′

1
+ι∆′

2

1 · xc2 · T = W b (5)

holds, and suppose pV rejects, i.e. one of the three conjuncts x2 = xa1 and T = xd+ιe1 and W =
x∆1+ι∆2

1 fails. First, note that if the first two conjuncts hold and equation (5) holds, then the third
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conjunct (involving W ) holds. Also, note that if the first conjunct holds and equation (5) holds,
then the second conjunct (involving T ) holds. So, suppose the first conjunct does not hold, i.e.
x2 6= xa1. Now, from equation 5, we get

d2 + ιe2 =
logg

2

(T/xd+ιe1 )

logg
2

(x2/xa1)
(6)

But since d2 + ιe2 is completely independent of the adversary’s view till the (N − i)-th call and
d, e, a, and hence the right-hand-side of equation (6), the probability of equation (6) holding is at
most 1/q. that completes the proof of computational indistinguishability of H2.i and H2,i+1, and
hence by induction of also H2 and H3. Note that computational restriction was only required for
the collision-resistance property.

In then next experiment H4, the challenger C changes back the response to the first-oracle to
as in sfS (from (9) in H1), i.e.: compute ι = H(x1,x2); if β = 1 set y = 0, else choose y at random
from Zq; Compute and output

T = xd1+ιe11 · xd2+ιe22 · gy2 , W = x
(∆′

1
+d1+ι·(∆′

2
+e1))/b

1 · x
(d2+ιe2+c)/b
2 · g

y/b
2 .

The argument that the view of the adversary in H4 is identical to the view of the adversary in
H3 (when the membership bits β are valid) is same as the argument for H1 and H0 given earlier.

In the next experiment H5, the challenger C changes the response to the second-oracle (verifier)
call (from equation (4) defined in H3) to: compute ι = H(x1,x2) and output 1 iff

(T = x
(d1+ιe1)
1 · x

(d2+ιe2)
2 ) and (x

∆′

1
+ι∆′

2

1 · xc2 · T = W b),

It is straightforward to see that Adversary’s view is identical in H4 and H5 (i.e. by the way d1 and
e1 are defined).

In the next experiment H6, the challenger samples ρ, and then computes the CRS and the
trapdoors exactly as in otfK1. It is straightforward to see that the CRS (and the trapdoors)
generated in H6 is identically distributed to the CRS (and the trapdoors) generated in H5.

At this point, the view of the adversaries A3 and A4 is exactly as in the one-time full ZK world,
and that completes the proof. �

3.1 Revealing the Partial-Simulation Key

In some applications, the partial-simulation trapdoor τ can be revealed to the adversary, adaptively
on adversary’s demand. This event will be referred to as the Reveal event. In this case we would
like to have the property that one-time full ZK simulation is still possible under the restriction that
the adversary A4 has access to the second oracle (i.e. the verifier pV/sfV) only till the reveal event.
The adversary A3 will continue to have access to the second oracle regardless of the reveal event.

To achieve this, we highlight an interesting property of the DSS-QA-NIZK of the Diffie-Hellman
language from Section 2. We show that in the one-time full ZK property, there is an intermediate
world, which uses a slightly different semi-functional CRS generator and simulator, but uses the
private-verifier pV. Let’s call these CRS generator and simulator sfK′

1 and sfS′ respectively, which
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we define soon. Then, we have the following:

Pr[λ← K0(1
m); (ρ, σ, τ, η) ← sfK1(λ); (x, β, s)← A

sfS(σ,τ,·,·), pV(σ,η,·,·)
3 (σ);

π ← sfS(σ, τ, x, β) : A
sfS(σ,τ,·,·), pV(σ,η,·,·)
4 (π, s) = 1] ≈

Pr[λ← K0(1
m); (ρ, σ, τ, τ1, η)← sfK′

1(λ); (x, β, s)← A
sfS

′

(σ,τ,·,·), pV(σ,η,·,·)
3 (σ);

π ← otfS(σ, τ1, x) : A
sfS

′

(σ,τ,·,·), pV(σ,η,·,·)
4 (π, s) = 1] ≈ (7)

Pr[λ← K0(1
m); ρ← Dλ; (σ, τ, τ1, η) ← otfK1(λ, ρ); (x, β, s)← A

sfS(σ,τ,·,·), sfV(σ,η,·,·)
3 (σ);

π ← otfS(σ, τ1, x) : A
sfS(σ,τ,·,·), sfV(σ,η,·,·)
4 (π, s) = 1], (8)

where β is a correct Lρ-membership bit for x, and all calls to sfS also have correct Lρ-membership
bits and 〈x, π〉 is not queried to sfV/pV.

We now define sfK′

1 and sfS′. These actually come from the intermediate games in the proof of
one-time full-ZK in Section!3. In particular, this intermediate world is just experiment H2. So, in
particular sfK′

1 is the following algorithm: It is just like sfK1 except that instead of picking d1, d2
at random (and similarly e2, e2 at random), it picks d and d2 randomly and independently and
sets d1 = d − a · d2 (and e1 = e − a · e2). Rest of the CRS computation remains the same. It
outputs c, b, d, e, ,∆′

1,∆
′

2 as trapdoors τ (to be used by sfS′), and outputs c, b, d1, d2, e1, e2,∆
′

1,∆
′

2

as trapdoors τ1 (to be used by otfS), and outputs a, c, b, d, e, ∆1, ∆2 as private-verifier trapdoors
η.

The intermediate semi-functional simulator sfS′ (using trapdoors c, b, d, e, ,∆′

1,∆
′

2) on input a
potential language member 〈x1,x2〉 and a binary bit β as follows: compute ι = H(x1,x2); if β = 1
set y = 0, else choose y at random from Zq; Compute and output

T = xd+ιe1 · gy2 , W = x
(∆′

1
+d+ι·(∆′

2
+e))/b

1 · x
c/b
2 · g

y/b
2 . (9)

The proof of the above property ((7) and (8) then follows from the proof of Section 3.
We now show that the above property ((7) and (8) holds even if τ is revealed to the adversary

(adaptively), as long as the following holds: (a) the second oracle (verifier) is not called after
τ is revealed to the adversary, and (b) the switch between the partial-simulation world and the
intermediate world above is undertaken only if x is a (Diffie-Hellman) language member (i.e. β = 1),
and (c) the first oracle (sfS/sfS′) is only called with language members (i.e. β = 1) in all cases
above.

To show this we need to verify the (computational or statistical) indistinguishability of various
experiments in the proof of one-time full-ZK, i.e. games H0 through H6.

Between experiment H0 and H1 the CRS computation is statistically indistinguishable even
with τ revealed. When β = 1 (which is the restriction (b) and (c) combined above), the generation
of T and W is identical in the two games, i.e. sfS and sfS′ behave identically.

In the indistinguishability of experiments H1 and H2, again restricting to β = 1 (by (b)),
we notice there is no difference in the way sfS generates T,W (experiment H1) and how otfS

(experiment H2) generates T,W .
In the indistinguishability of H2 and H3 where we replace pV with sfV, we go though various

hybrid games H2,i. Since by restriction (a) above, no calls to the second oracle are allowed after
τ , i.e. d2, e2 among others, is revealed to the adversary, the information-theoretic argument in
equation 6 still holds.
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The indistinguishability of H3 andH4 follows by noting that we restrict to β = 1 (i.e. restriction
(c)). Indistinguishability of H4,H5 and H6 is straightforward.

We will see that the above properties of the DSS-QA-NIZK for the Diffie-Hellman language
allows for a keyed-homomorphic CCA2-secure encryption scheme with CPA security maintained if
the homomorphic-evaluation key is revealed (Section 4). The above properties ensure that CPA
security holds along with a decryption oracle till reveal event.

3.2 Key-Reveal and CCA1-style Security

We can also extend th keyed-homomorphic scheme of Section 4 to maintain CCA1-security when the
key is revealed, but the construction requires use of another group element as proof that provides
CCA1-style security. Since this proof element is actually malleable it does not require additional
trapdoor keys. This additional group element however provides CCA1 style-soundness of the Diffie-
Hellman tuple, and hence the usual trick of switching between alternate ways of decryption can be
accomplished up to the encryption query event.

To this end, we define a DSS-QA-NIZK for a new class of parameterized languages.
We consider the following class of languages parameterized by g2, g

a
2, g

ǫ1
2 ·g

ǫ2·a
2 , ǫ1, ǫ2 (∈ G

4
2×Z

2
q).

The augmented Diffie-Hellman language corresponding to one such parameter ρ is

Lρ = {〈gr2,g
a·r
2 , (gǫ12 · g

ǫ2·a
2 )r〉 | r ∈ Zq}.

Note that the parameters include ǫ1 and ǫ2. In this respect, the hard component of the language
(Diffie-Hellman) is due to a and that is not part of the parameters. The distribution D under which
the DSS-QA-NIZK now picks ǫ1 and ǫ2 at random from Zq as well.

We now describe the modifications required to the construction of Section 2. First, the com-
ponent T of the proof will remain as before. The component W was just the QA-NIZK for the
extended Diffie-Hellman language (see (1) in Section 3), and now it will be the single group element
QA-NIZK [JR14] for the augmented and extended Diffie-Hellman language (and for this QA-NIZK
the parameters ǫ1, ǫ2 are ignored by the CRS generator, and it just uses g2, g

a
2, g2ǫ1 · g

ǫ2·a
2 ). More

precisely, this doubly-augmented Diffie-Hellman language is the following tag-based language

XLρ = {x1,x2,x3, T, ι | ∃r : x1 = gr2,x2 = ar,x3 = (gǫ12 · g
ǫ2·a
2 )r, T = (deι)r}. (10)

Thus, the real-world CRS for the DSS-QA-NIZK is the real-world CRS for the QA-NIZK for this
doubly-augmented Diffie-Hellman language XLρ (with ǫ1, ǫ2 dropped) (see [JR14]). The real-world
prover P computes ι = H(x1,x2,x3, l), and T = (d ·eι)r, and computes W using the prover for the
QA-NIZK for XLρ. The real-world verifier V just follows the verifier for the QA-NIZK for XLρ.

In the partial-simulation world, sfK1 itself generates the language parameters. However, it
generates gǫ12 · g

ǫ2·a
2 differently by just picking an ǫ at random from Zq and outputting gǫ2. The

value ǫ is made an additional part of the verifier trapdoor η, and hence the private verifier pV can
directly check for validity of the language members. Crucially, ǫ is not part of the proof simulation
trapdoor τ .

In the one-time full-ZK world, the CRS generator otfK1 will make ǫ1 and ǫ2 as part of the
verifier trapdoor η. Recall ǫ1 and ǫ2 are part of the parameters of the augmented Diffie-Hellman
language.

Now, focusing on the proof security of the above scheme, the proof is similar to the proof of
theorem 1. More importantly, now we also get a CCA1-style security even if the proof simulation
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trapdoor is revealed. This is proven similarly to the proof sketch given above in Section 3.1, but
now with the restriction of not calling the second (verifier) oracle after reveal only limited to A4.
More precisely, we now claim that properties ((7) and (8) hold even if τ is revealed to the adversary
(adaptively), as long as the following (modified restrictions) holds: (a’) the second oracle (verifier)
is not called by A4 after τ is revealed to the adversary, and (b) the switch between the partial-
simulation world and the intermediate world above is undertaken only if x is a (Diffie-Hellman)
language member (i.e. β = 1), and (c) the first oracle (sfS/sfS′) is only called with language
members (i.e. β = 1) in all cases above.

The proof is similar to the proof sketch above in Section 3.1 except with the following change.
In the indistinguishability of H2 and H3 where we replace pV with sfV, we go though various hybrid
games H2,i. Since by restriction (a’) above, no calls to the second oracle are allowed after τ , i.e.
d2, e2 among others, is revealed to the adversary, the information-theoretic argument in equation 6
still holds. A similar information-theoretic argument continues to hold for A3’s oracle calls using
β2 as trapdoor to prove that if x2 6= xa1 holds then

β2 =
logg

2

(x3/x
β
1 )

logg
2

(x2/xa1)
(11)

where β is chosen independently by challenger C in experiment H2 and H3, But, the probability of
this holding is negligible, and that completes the proof sketch.

4 Keyed-Homomorphic CCA Encryption

Keyed-Homomorphic Encryption is a primitive, first developed in [EHO+13], which allows homo-
morphic operations with a restricted evaluation key, while preserving different flavors of semantic
security, depending on whether access to the evaluation key is provided or not. To an adversary
not having access to the evaluation key, the homomorphic operation should not be possible and
this is ensured by requiring CCA security. However, if an adversary comes into possession of the
evaluation key, CCA security can no longer be preserved and thus weaker forms of security, such
as CCA1, are required. In [LPJY14], the authors gave improved constructions with better security
guarantees.

Definition 2 (KH-PKE Scheme) A KH-PKE scheme for a message space M with a binary
operation ⊙ defined from M2 →M is a tuple of algorithms (KeyGen,Enc,Dec,Eval):

KeyGen: This algorithm takes 1λ as input, and returns a public key pk, a decryption key skd, and
a homomorphic operation key skh.

Enc: This algorithm takes pk and a message M ∈ M as inputs and returns a ciphertext C.

Dec: This algorithm takes skd and a ciphertext C as input, and returns M or ⊥.

Eval: This algorithm takes skh and two ciphertexts C1 and C2 as inputs, and returns a ciphertext
C or ⊥.

The scheme is said to be correct if (i) for Enc we have Dec(skd, C) = M and (ii) for Eval we
have Dec(skd, C) = Dec(skd, C1)⊙Dec(skd, C2).
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Definition 3 (KH-CCA Security) A KH-PKE scheme (KeyGen,Enc,Dec,Eval) for a mes-
sage spaceM with a binary operation ⊙ defined fromM2 →M is said to be KH-CCA secure if no
PPT adversary A has non-negligible advantage in winning the following game with a challenger:

KeyGen: The challenger takes 1λ as input, and computes a public key pk, a decryption key skd,
and a homomorphic operation key skh. It then gives pk to A. It also initializes a list D := ∅.
It also gives oracle access to A to the functions Enc(.), Eval(skh, .), RevHK and Dec(skd, .)
defined as follows:

Enc: This query is performed once. On A’s inputs m0,m1 ∈ M, the challenger randomly samples
a bit b and computes C := Enc(pk,mb) and returns C.

Eval: On receiving ciphertexts C1, C2 from A, computes C := Eval(skh, C1, C2) and returns C. In
addition if C1 ∈ D or C2 ∈ D, then sets D := D ∪ {C}.

RevHK: Upon receiving this request, returns skh.

Dec: This oracle is not available after A has both requested RevHK and obtained the challenge
ciphertext C∗ in any order. When available, it returns ⊥ if C ∈ D and Dec(skd, C) on A’s
query C.

The adversary A outputs a bit b′ and wins if b′ = b. Its advantage is defined to be |Pr[A wins]−1/2|.

Construction. We present a construction of a KH-CCA secure encryption scheme which utilizes
our DSS-QA-NIZK proofs. We start with the observation that a standard El Gamal encryption
scheme (gx,m · fx) is multiplicatively homomorphic, but is not CCA secure due to the exact same
reason. Extending it to be a CCA secure encryption scheme, as in Cramer-Shoup [CS02], destroys
the homomorphic property. Our construction essentially takes an El Gamal scheme and attaches a
DSS-QA-NIZK to it. Although the NIZK itself is not homomorphic, we can take advantage of the
corresponding Semi-Functional Simulator sfS and simulate the proof of a multiplicatively generated
El Gamal encryption while computing a homomorphic evaluation. We show that keeping the sfS

trapdoor hidden from the adversary enables the scheme to be CCA secure, while also giving weaker
semantic security if the sfS trapdoor is revealed. The semantic security continues to hold even with
the availability of a decryption oracle till the time of reveal. Using the augmented Diffie Hellman
language and its DSS-QA-NIZK as described in Section 3.2, we also get CCA1-security despite the
key being revealed. Here we focus on the construction for the weaker notion where the decryption
oracle is available till the reveal event.

KeyGen: Generate g and a, k randomly. Use sfK1 to generate CRS σ and trapdoors τ and η for
the language (gw,gaw). Set pk = (g,ga,gk, σ), skh := τ, skd := k.

Enc: Given plaintext m, generate w
$
←− Zq and compute

c := (gw,gaw,m · gkw,P(σ, (gw,gaw), w; γ)),

where γ := m · gkw

Dec: Given ciphertext c = (ρ, ρ̂, γ, π), first check if V(σ, π, (ρ, ρ̂); γ) holds, then computem := γ/ρk.
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Eval: Given ciphertexts c1 = (ρ1, ρ̂1, γ1, π1) and c2 = (ρ2, ρ̂2, γ2, π2), first check if V(σ, π, (ρ1, ρ̂1); γ1)
and V(σ, η, π, (ρ2, ρ̂2); γ2) hold. Then compute: ρ = ρ1ρ2, ρ̂ = ρ̂1ρ̂2, γ = γ1γ2. Then compute
π := sfS(σ, τ, (ρ, ρ̂), β = 1; γ). Output ciphertext c := (ρ, ρ̂, γ, π).

Theorem 4 (Security of Construction) The above algorithms (KeyGen,Enc,Dec,Eval) con-
stitute a KH-CCA secure Keyed-Homomorphic Public Key Encryption scheme.

Proof: We will prove the theorem using theorem 1 and its extension to the reveal event in Sec-
tion 3.1. We prove the theorem by going through a sequence of games, where for any m0,m1 ∈ M,
the first game is a world where the challenger encrypts m0 and the last game is a world where the
challenger encrypts m1.

Game 0 :

KeyGen: Generate g and a, k randomly. Use sfK1 to generate CRS σ and trapdoors τ and η for
the language (gw,gaw). Set pk = (g,ga,gk, σ), skh := τ, skd := k.

Enc: Generate w
$
←− Zq and compute

c := (gw,gaw,m0 · g
kw,P(σ, (gw,gaw), w; γ)),

where γ := m0 · g
kw

Dec: Given ciphertext c = (ρ, ρ̂, γ, π), first check if V(σ, π, (ρ, ρ̂); γ) holds, then computem := γ/ρk.

Eval: Given ciphertexts c1 = (ρ1, ρ̂1, γ1, π1) and c2 = (ρ2, ρ̂2, γ2, π2), first check if V(σ, π, (ρ1, ρ̂1); γ1)
and V(σ, η, π, (ρ2, ρ̂2); γ2) hold. Then compute: ρ = ρ1ρ2, ρ̂ = ρ̂1ρ̂2, γ = γ1γ2. Then compute
π := sfS(σ, τ, (ρ, ρ̂); γ). Output ciphertext c := (ρ, ρ̂, γ, π).

RevHK: Output τ .

Game 1 : Same as Game 0, but now during decryption and eval the challenger switches to
the private verifier pV. Also the challenge encryption is performed as

c := (gw,gaw,m0 · g
kw, sfS(σ, τ, (gw,gaw), β = 1; γ)),

where γ := m0 · g
kw.

Indistinguishability follows due to the partial-ZK property.

Game 2 : Same as Game 1, but now KeyGen generates k0, k1 randomly and sets k = k0+ak1
and gives skd = (k0, k1). The challenge encryption is performed as

c := (gw,gaw,m0 · g
k0wgk1aw, sfS(σ, τ, (gw,gaw), β = 1; γ)),

where γ := m0 · g
k0wgk1aw. Decryption is performed as m := γ/(ρk0 ρ̂k1).

This step is indistinguishable from Game 1, as unbounded partial-simulation (relative) sound-
ness holds in the semi-functional world, therefore ρ̂ = ρa.
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Game 3 : Same as Game 2, but now KeyGen switches to the otfK1 to generate CRS σ and
trapdoors σ, τ, τ1, η. Now sfS in Eval continues to use σ, τ and the pV is switched to sfV which uses
σ, η. The Challenge encryption is performed as

c := (gw,gaw,m0 · g
k0wgk1aw, otfS(σ, τ1, (g

w,gaw); γ)),

where γ := m0 · g
k0wgk1aw.

Indistinguishability holds due to the one-time full-ZK property. Note that the membership bits
β in the calls to sfS (in Eval) in game 2 are with β = 1, and they are correct memebership bits
as the verifier pV (note the swtich in game 1) is unbounded partial-simulation sound. Since, the
one-time full-ZK property is proven against all powerful adversaries (see Section 3, it suffices to
employ the one-time full-ZK property when the membership bits are known to be correct only in
the partial-simulation world.

Game 4 : Same as Game 3, but now the challenge encryption is performed as follows: Generate

w,w′
$
←− Zq and compute:

c := (gw,gaw
′

,m0 · g
k0wgk1aw

′

, otfS(σ, τ1, (g
w,gaw

′

); γ)),

where γ := m0 · g
k0wgk1aw

′

.
Indistinguishability holds by DDH.

Game 5 : Now we switch to the intermediate world (see Section 3.1), where the KeyGen
uses sfK′

1 to generate σ, τ, τ1, η. The Eval function now uses sfS′ to simulate proofs. Decryption
is performed as follows: First switch to pV, while checking the NIZK in the ciphertext and then
compute m := γ/ρk0+ak1 with decryption key skd = k = k0 + ak1.

This step is indistinguishable from Game 4 as we could switch to pV for decryption, as in the
intermediate world, and as simulation soundness holds with pV as the verifier, therefore ρ̂ = ρa.

Game 6 : Now we choose a, k′0, k
′

1, w,w
′ such that log(m0) + k0w+ k1aw

′ = log(m1) + k′0w+
k′1aw

′ and k0 + ak1 = k′0 + ak′1. It can be seen that the distribution of a, k′0, k
′

1, w,w
′ is identical as

a, k0, k1, w,w
′ in Game 5. Hence these two games are indistinguishable.

Now the challenge encryption is performed as

c := (gw,gaw,m1 · g
k′
0
wgk

′

1
aw′

, otfS(σ, τ, (gw,gaw
′

); γ)),

where γ := m1 · g
k0wgk1aw

′

. Decryption is performed as m := γ/ρk
′

0
+ak′

1 with decryption key
skd = k = k′0 + ak′1.

Game 7 : In this game, decryption is switched back to m := γ/(ρk
′

0 ρ̂k
′

1) with decryption key
skd = (k′0, k

′

1). Indistinguishability holds due to unbounded partial-simulation soundness.

Game 8 : Now we switch back to using otfK1 in KeyGen. he challenge encryption is performed

as follows: Generate w,w′
$
←− Zq and compute:

c := (gw,gaw
′

,m1 · g
k′
0
wgk

′

1
aw′

, otfS(σ, τ1, (g
w,gaw

′

); γ)),
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where γ := m1 · g
k′
0
wgk

′

1
aw′

. In addition, we switch back to sfV for verification before decryption.
Indistinguishability holds due to switching from the intermediate world to the OTFS world.

Game 9 : Now the Challenge encryption is performed as follows: Generate w
$
←− Zq and

compute:
c := (gw,gaw,m1 · g

k′
0
wgk

′

1
aw, otfS(σ, τ1, (g

w,gaw); γ)),

where γ := m1 · g
k′
0
wgk

′

1
aw.

Indistinguishability holds due to DDH.

Game 10 : Now we switch back to the semi-functional world. The challenge encryption is
performed as

c := (gw,gaw,m1 · g
k′
0
wgk

′

1
aw, sfS(σ, τ, (gw,gaw), β = 1; γ)),

where γ := m1 · g
k′
0
wgk

′

1
aw.

This step is indistinguishable from Game 9 due to one-time full ZK.

Game 11 : Now instead of giving k′0, k
′

1 as skd, KeyGen gives k = k′0 + ak′1. The challenge
encryption is computed as:

c := (gw,gaw,m1 · g
kw, sfS(σ, τ, (gw,gaw), β = 1; γ)),

where γ := mq · g
kw. Decryption is switched back to m := γ/ρk.

Indistinguishability follows due to unbounded partial simulation soundness.

Game 12 : In this game we switch back to the real prover for encryption, the real verifier for
decryption and the semi-functional simulator for Eval. The only difference from Game 0 is that
now m1 is encrypted instead of m0. Thus we are done. �

5 A Single Round UC Password-Based Key Exchange Protocol

5.1 Universally Composable Security

The Universally Composable (UC) framework [Can01] is a formal system for proving security of
computational systems such as cryptographic protocols. The framework describes two probabilistic
games: The real world that captures the protocol flows and the capabilities of an attacker, and the
ideal world that captures what we think of as a secure system. The notion of security asserts that
these two worlds are essentially equivalent.

5.2 UC Functionality for Password-Based Key Exchange

The essential elements of the Universal Composability framework can be found in [Can01]. We
adopt the definition for password-based key exchange from Canetti et al [CHK+05]. The formal
description is given in Figure 1.

The real-world protocol we provide is also shown to be secure when different sessions use the
same common reference string (CRS). To achieve this goal, we consider the universal Composability
with joint state (JUC) formalism of Canetti and Rabin [CR03]. This formalism provides a “wrapper
layer” that deals with “joint state” among different copies of the protocol. In particular, defining
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Functionality Fpake

The functionality Fpake is parameterized by a security parameter k. It interacts with an adversary
S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:
Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query, or if
this is the second NewSession query and there is a record (Pj , Pi, pw

′), then record (Pi, Pj , pw)
and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record
compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted

and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi, then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to
player Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw
′) with pw′ = pw, and a key sk′

was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Upon receiving (Corrupt, sid, Pi) from S: if there is a (Pi, Pj , pw) recorded, return pw to S, and
mark Pi corrupted.

Figure 1: The password-based key-exchange functionality Fpake

a functionality F also implicitly defines the multi-session extension of F(denoted by F̂)g: F̂ runs
multiple independent copies of F , where the copies are distinguished via sub-session IDs ssid. The
JUC theorem [CR03] asserts that composing a protocol π that uses multiple independent copies of
F , with a single copy of a protocol that realizes F̂ , preserves the security of π.

5.3 Main Idea of the UC Protocol using DSS-QA-NIZK

For the sake of exposition, let’s call one party in the session the server and the other the client
(there is no such distinction required in the actual protocol). The common reference string (CRS)
defines a Diffie-Hellman language, i.e. ρ = g2,g

a
2. The client picks a fresh Diffie-Hellman tuple by

picking a witness r and computing 〈x1 = gr2,x2 = ga·r2 〉. It also computes a DSS-QA-NIZK proof
π on this tuple, i.e. T,W as described in Section 2. It next modifies the Diffie-Hellman tuple using
the password pwd it possesses. Essentially, it multiplies x2 by pwd to get a modified group element
which we will denote by S. It next sends this modified Diffie-Hellman tuple, i.e. x1, S, and the T
component of the proof π to the server. It retains W for later use. At this point it can erase the
witness r.

As a first step, we intend to utilize an interesting property of the real-world verifier V of the
DSS-QA-NIZK. Note, V on input x1,x2 and proof T,W , computes ι = H(x1,x2), and outputs true
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CRS : g1, c = gc
1, b = gb

1, v1 = g−∆1b+d+c·a
1 , v2 = g−∆2b+e

1 ,

g2, a = ga
2 , d = gd

2, e = ge
2, w1 = g∆1

2 , w2 = g∆2

2 ,

where g1

$
←− G1, g2

$
←− G2, and c, b, a, d, e,∆1,∆2

$
←− Zq

Party Pi Adv A

Input (NewSession, sid, ssid, Pi, Pj , pwd, initiator/responder)

Choose r1, s1
$
←− Zq.

R1,S1,T1,ρ̂1

−−−−−−−−→ A
Set R1 = gr1

2 , S1 = pwd · ar1 , T1 = (d · ei1 )r1 , ρ̂1 = bs1 ,

W1 = (w1w
i1
2 )r1 , where i1 = H(sid, ssid, Pi, Pj , R1, S1, ρ̂1),

and erase r1. Send R1, S1, T1 and ρ̂1, and retain W1.
R′

2
,S′

2
,T ′

2
,ρ̂′

2←−−−−−−−− A
If any of R′

2, S
′

2, T
′

2, ρ̂
′

2 is not in their respective group or is 1,

set sk1
$
←− GT , else

compute i′2 = H(sid, ssid, Pj , Pi, R
′

2, S
′

2, ρ̂
′

2) ,

ρ1 = gs1
1 , θ1 = cs1 , γ1 = (v1v

i′
2

2 )s1 .
Finally compute sk1 = e(ρ1, T

′

2) · e(θ1, S
′

2/pwd) · e(γ
−1
1 .R′

2) · e(ρ̂
′

2,W1)
Output (sid, ssid, sk1).

Figure 2: Single round UC-secure Password-authenticated KE under SXDH Assumption.

iff
e((v1v

ι
2),x

−1
1 ) · e(c,x2) · e(g1, T ) = e(b,W ).

Thus, it outputs true iff the left-hand-size (LHS) equals the right-hand-side (RHS) of the above
equation. Note that the client sent x1, S (i.e. x2 linearly modified by pwd) and T to the server.
Assuming the server has the same password pwd, it can un-modify the received message and get
x2 = S/pwd, and hence can compute this LHS (using the CRS). The client retained W , and can
compute the RHS (using the CRS).

The intuition is that unless an adversary out-right guesses the password, it cannot produce a
different x′

1, S
′, T ′, such that x′

1, S̃
′/pwd, T ′ used to compute the LHS will match the RHS above.

While we make this intuition rigorous later by showing a UC simulator, to complete the description
of the protocol, and using this intuition, the client and server actually compute the LHS and RHS
respectively of the following equation (for a fresh random s ∈ Zq picked by the server):

e((v1v
ι
2)
s,x−1

1 ) · e(cs,x2) · e(g
s
1, T ) = e(bs,W ). (12)

Now note that for the client to be able to compute the RHS, it must have bs, since s was picked by
the server afresh. For this purpose, the protocol requires that the server send bs to the client (note
this can be done independently and asynchronously of the message coming from the client). It is not
difficult to see, from completeness of the prover and verifier of the DSS-QA-NIZK, that both parties
compute the same quantity. Given the definition of the real-world CRS of the DSS-QA-NIZK for
the DH language, the LHS of equation (12) can also be written as

e(gs1,x
(∆′

1
+ι∆′

2
)

1 ) · e(gs1,x
c
2) · e(g

s
1, T ).

Now, by DDH assumption holding in group G1, g
s
1 is random and independent given bs (and g1, b).

Thus, the (identical) computation of the two parties is random and independent of their message

flows as long as x
(∆′

1
+ι∆′

2
)

1 · xc2 · T is not one (which happens with high probability).
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Each pair of parties actually run two versions of the above protocol, where-in each party plays
the part of client in one version, and the part of server in the other version. Each party then outputs
the product of the LHS of (12) computation (in the server version) and the RHS of (12) computation
(in the client version) as the session-key. This is the final UC-PAKE protocol described in Fig. 2
(with the parties identities, session identifiers and bs from its server version, used as label). The
quantity x1 is called R in the protocol, as subscripts will be used for other purposes.

5.4 Main Idea of the UC Simulator

We first re-define the various verifiers in the DSS-QA-NIZK for the DH language described in
Section 2, to bring them in line with the above description. In particular, V is defined equivalently
to be: the verifier V takes as input CRSv, a potential language member 〈x1,x2〉, and a proof
π = (T,W ), computes ι = H(x1,x2, l), picks a fresh random s ∈ Zq, and outputs true iff

e((v1v
ι
2),x

−1
1 )s · e(c,x2)

s · e(g1, T )
s = e(bs,W ).

This is equivalent as long as s 6= 0.
The partial-simulation world private-verifier pV is now defined as: it checks a potential language

member 〈x1,x2〉 and a proof T,W as follows: compute ι = H(x1,x2, l); pick s and s′ randomly
and independently from Zq, and if x2 = xa1 and T = xd+ιe1 then set ξ = 1T else set ξ = ǫ(g1,g2)

s′

and output true iff

e((v1v
ι
2),x

−1
1 )s · e(c,x2)

s · e(g1, T )
s · ξ = e(bs,W ). (13)

This is equivalent to the earlier definition of pV with high probability by an information-theoretic
argument, if the trapdoors used were generated by the semi-functional CRS generator sfK1.

The UC simulator S will generate the CRS for F̂pake using the semi-functional CRS generator
sfK1 for the Diffie-Hellman language. Note, S simulating the server can compute the LHS of
equation (13), except S does not have direct access to pwd and hence cannot get x2 from the
modified Ŝ that it receives. However, it can do the following: Use the TestPwd functionality of
the ideal functionality F̂pake with a pwd′ computed as Ŝ/xa1. If this pwd

′ does not match the pwd

recorded in F̂pake for this session and party, then F̂pake anyway outputs a fresh random session
key. This is same as x2 (= S/pwd) 6= xa1, which would also have resulted in the same computation
on the LHS (note s′, and hence ξ in this case, is random and independent of the transcript). If the
pwd′ matched the pwd, the simulator is notified the same, and hence it can now do the following:
if T = xd+ιe1 then set ξ = 1T else set ξ = ǫ(g1,g2)

s′ . Call F̂pake’s NewKey with session key
e((v1v

ι
2),x

−1
1 )s · e(c,xa1)

s · e(g1, T )
s · ξ (multiplied by a RHS computation of (13) in the simulation

of the party as a client).
The UC Simulator S must also simulate gr2,pwd · (g

a
2)
r and the T component of the DSS-QA-

NIZK, as that is the message sent out to the adversary by the real party. However, S does not have
access to pwd. It can just generate a fake tuple gr2, µ · (g

a
2)
r · gr

′

2 (for some constant or randomly
chosen group element µ, and some random and independent r′ ∈ Zq). Now, the semi-functional
(proof) simulator sfS of the DSS-QA-NIZK of Section 2 has an interesting property that when
the tuple 〈x1,x2〉 does not belong to the language, the T component of the simulated proof does
not even depend on x2. In the simulation, with high probability x2 is not going to be consistent
regardless of µ and pwd, because of the way r′ is chosen. Thus, S can simulate T from just x1(= gr2).
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The simulator also needs W , but only in the session-key computation phase. As mentioned
above, if the password pwd′ “decrypted” from the incoming message is not correct then the key
is anyway set to be random, and hence a proper W is not even required. However, if the pwd′ is
correct, the simulator is notified of same, and hence it can compute W component of the proof by
passing x2 = µ · (ga2)

r · gr
′

2 /pwd
′ along with x1 (= gr2) to sfS.

5.5 Main Idea of the Proof of UC Realization

The proof that the simulator S described above simulates the Adversary in the real-world protocol,
follows essentially from the properties of the DSS-QA-NIZK, although not generically since the
real-world protocol and the simulator use the verifiers V and pV (resp.) in a split fashion. However,
as described above the proof is very similar and we give a broad outline here. The proof will
describe various experiments between a challenger C and the adversary, which we will just assume
to be the environment Z (as the adversary A can be assumed to be just dummy and following Z’s
commands). In the first experiment the challenger C will just be the combination of the code of the
simulator S above and F̂pake. In particular, after the environment issues a NewSession request with
a password pwd, the challenger gets that password. So, while in the first experiment, the challenger
(copying S) does not use pwd directly, from the next experiment on-wards, it can use the pwd.
Thus, the main goal of the ensuing experiments is to modify the fake tuples gr2, µ · (g

a
2)
r ·gr

′

2 by real
tuples (as in real-world) gr2,pwd·(g

a
2)
r, since the challenger has access to pwd. This is accomplished

by a hybrid argument, modifying one instance at a time using DDH assumption in group G2 and
using one-time full-ZK property (and using the otfS proof simulator for that instance). A variant
of the one-time full-ZK semi-functional verifier sfV (just as the variants for pV and V described
above) is easily obtained.

Once all the instances are corrected, i.e. R,S generated as gr2,pwd · (g
a
2)
r, the challenger can

switch to the real-world because the tuples R,S/pwd are now Diffie-Hellman tuples. This implies
that the session keys are generated using the V variant described above, which is exactly as in the
real-world.

5.6 Dynamic Corruption

The UC protocol described above is also UC-secure against dynamic corruption of parties by the
Adversary in the erasure model. In the real-world when the adversary corrupts a party (with a
Corrupt command), it gets the internal state of the party. Clearly, if the party has already been
invoked with a NewSession command then the password pwd is leaked at the minimum, and hence
the ideal functionality Fpake leaks the password to the Adversary in the ideal world. In the protocol
described above, the Adversary also gets W and s, as this is the only state maintained by each
party between sending R,S, T, ρ̂, and the final issuance of session-key. Simulation of s is easy for
the simulator S since it also generates s exactly as in the real world. For generating W , which S
had postponed to computing till it received an incoming message from the adversary, it can now use
the pwd which it gets from F̂pake by issuing a Corrupt call to F̂pake. More precisely, it issues the
Corrupt call, and gets pwd, and then calls the semi-functional simulator with x2 = µ ·(ga2)

r ·gr
′

2 /pwd
along with x1 (= gr2) to get W .

Without loss of generality, we can assume that in the real-world if the Adversary (or Environ-
manet Z) corrupts an instance before the session key is output then the instance does not output
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any session key. This is so because the Adversary (or Z) either sets the key for that session or can
compute it from the internal state it broke into.

5.7 Realization of the UC-PAKE functionality

Theorem 5 Assuming the existence of SXDH-hard groups, the protocol in Fig 2 securely realizes
the F̂pake functionality in the Fcrs hybrid model, in the presence of dynamic corruption adversaries.

6 Proof of Realization of the UC-PAKE Functionality

In this section we state and prove that the protocol in Fig. 2 realizes the multi-session ideal func-
tionality F̂pake.

Theorem 6 Assuming the existence of SXDH-hard groups, the protocol in Fig 2 securely realizes
the F̂pake functionality in the Fcrs hybrid model, in the presence of dynamic corruption adversaries.

We start by defining the UC simulator in detail.

6.1 The Simulator for the UC Protocol

We will assume that the adversary A in the UC protocol is dummy, and essentially passes back
and forth commands and messages from the environment Z. Thus, from now on we will use
environment Z as the real adversary, which outputs a single bit. The simulator S will be the ideal
world adversary for F̂pake. It is a universal simulator that uses A as a black box.

For each instance (session and a party), we will use subscript 2 along with a prime, to refer to
variables received in the message from Z(i.e A), and use subscript 1 to refer to variables computed
in the instance under consideration. We will call a message legitimate if it was not altered by Z,
and delivered in the correct session, and to the correct party.

The simulator S picks the CRS just as semi-functional CRS generator sfK1 picks the CRS for
the DSS-QA-NIZK. This is statistically same as the real-world CRS in the UC protocol, except S
sets d = d1 + a · d2, and e = e1 + a · e2, where d1, d2, e1, e2 are chosen randomly and independently
from Zq. It retains a, c, b, d1, d2, e1, e2,∆

′

1,∆
′

2 as trapdoors.
The next main difference in the simulation of the real world parties is that S uses a dummy

message µ instead of the real password which it does not have access to. Further, it decrypts the
incoming message R′

2, S
′

2, T
′

2 to compute a pwd′, which it uses to call the ideal functionality’s test
function. If the test succeeds, it produces a sk (see below) and sends it to the ideal functionality
to be output to the party concerned.

6.1.1 New Session: Sending a message to Z.

On message (NewSession, sid, ssid, i, j, role) from F̂pake, S starts simulating a new instance of
the protocol Π for party Pi, peer Pj , session identifier ssid, and CRS set as above. We will denote
this instance by (Pi, ssid). To simulate this instance, S chooses r1, r

′

1, r
′′

1 , s1 at random, and sets

R1 = gr12 , S1 = µ · ar1 · g
r′
1

2 , T1 = g
r1·(d1+ι1e1)
2 · g

r′′
1

2 , ρ̂1 = bs1 where ι1 = H(sid, ssid, Pi, Pj ,
R1, S1, ρ̂1) (note the use of µ instead of pwd). Note this is what sfS would compute for T1. It
retains r1, r

′

1, r
′′

1 , s1 (and µ if chosen randomly). It then hands R1, S1, T1, ρ̂1 to Z on behalf of this
instance.
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6.1.2 On Receiving a Message from Z.

On receiving a message R′

2, S
′

2, T
′

2, ρ̂
′

2 from Z intended for this instance (Pi, ssid), the simulator S
makes the real world protocol checks, namely group membership and non-triviality. If any of the
checks fail, it issues a TestPwd call to F̂pake with the dummy password µ, followed by a NewKey

call with a random session key, which leads to the functionality issuing a random and independent
session key to the party Pi (regardless of whether the instance was interrupted or compromised).

Otherwise, if the message received from Z is same as message sent by S on behalf of peer Pj in
session ssid, then S just issues a NewKey call for Pi.

Else, it computes pwd′ by decrypting S′

2, i.e. setting it to S′

2/(R
′

2)
a. S then calls F̂pake with

(TestPwd, ssid, Pi, pwd
′). Regardless of the reply from F , it then issues a NewKey call for Pi with

key computed as follows (recall, R1, S1, ι1, r
′

1, r
′′

1 from earlier in this instance when the message was
sent to Z).

ι′2 = H(sid, ssid, Pj , Pi, R
′

2, S
′

2, ρ̂
′

2), ρ1 = gs11 , θ1 = cs1 , γ1 = (v1v
ι′
2

2 )
s1 ,

W1 = R
(∆′

1
+d1+ι1(∆′

2
+e1))/b

1 · (S1/pwd
′)c/b · g

r′′
1
/b

2 .

if T ′

2 = (R′

2)
d+ι′

2
e then set ξ1 = 1T else set ξ = ǫ(g1,g2)

s′
1 , where s′1 is a fresh random value. Call

F̂pake’s NewKey with session key

e(γ−1
1 , R′

2) · e(θ1, (R
′

2)
a) · e(ρ1, T

′

2) · e(ρ̂
′

2,W1) · ξ1.

Note that this is how sfS would compute W1. By definition of F̂pake, this has the effect that if the
pwd′ was same as the actual pwd previously recorded in F̂pake (for this instance) then the session
key is determined by the Simulator as above, otherwise the session key is set to a random and
independent value.

6.1.3 Corruption

On receiving a Corrupt call from Z for instance Pi in session ssid, the simulator S calls the Corrupt

routine of F̂pake to obtain pwd. If S had already output a message to Z, and not output sk1 it
computes

W1 = R
(∆′

1
+d1+ι1(∆′

2
+e1))/b

1 · (S1/pwd)
c/b · g

r′′
1
/b

2

and outputs this W1 along with pwd, and ρ1, θ1, γ11, γ12 as internal state of Pi. Note that this
computation of W1 is identical to the computation of W1 in the computation of sk1 (which is really
output to Z when pwd′ = pwd).

As explained in Section 5.6, if Z corrupts an instance before it has output its session key, we
will assume w.l.o.g. that the session-key is not output at all by that instance.

6.2 Proof of Indistinguishability - Series of Experiments

We now describe a series of experiments between a probabilistic polynomial time challenger C and
the environment Z, starting with Expt0 which we describe next. We will show that the view of Z
in Expt0 is same as its view in UC-PAKE ideal-world setting with Z interacting with F̂pake and
the UC-PAKE simulator S described above in Section 6.1. We end with an experiment which is
identical to the real world execution of the protocol in Fig 2. We will show that the environment
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has negligible advantage in distinguishing between these series of experiments, leading to a proof
of realization of Fpake by the protocol Π.

Here is the complete code in Expt0 (stated as it’s overall experiment with Z):

1. The challenger C picks the CRS just as in the real world, except it sets d = d1 + a · d2, and
e = e1 + a · e2, where d1, d2, e1, e2 are chosen randomly and independently from Zq. It retains
a, c, b, d1, d2, e1, e2,∆1 ,∆2 as trapdoors.

2. On receiving NewSession, sid, ssid, Pi, Pj ,pwd, role from Z, C generates R1, S1, T1, ρ̂1 by choos-

ing r1, r
′

1, r
′′

1 , s1 at random, and setting R1 = gr12 , S1 = µ · ar1 · g
r′
1

2 , T1 = g
r1·(d1+ι1e1)
2 · g

r′′
1

2 ,
ρ̂1 = bs1 . It sends these values to Z.

3. On receiving R′

2, S
′

2, T
′

2, ρ̂
′

2 from Z, intended for session ssid and party Pi (and assuming no
corruption of this instance)

(a) if the received elements are either not in their respective groups, or are trivially 1, output
sk1 chosen randomly and independently from GT .

(b) Otherwise, if the message received is identical to message sent by C in the same session

(i.e. same SSID) on behalf of the peer, then output sk1
$
←− GT (unless the simulation of

peer also received a legitimate message and its key has already been set, in which case
the same key is used to output sk1 here).

(c) Else, compute pwd′ = S′

2/(R
′

2)
a. If pwd′ 6= pwd (note pwd was given in NewSession

request), then output sk1 randomly and independently from GT .

(d) Else, compute ι′2 = H(sid, ssid, Pj , Pi, R
′

2, S
′

2, ρ̂
′

2), ρ1 = gs11 , θ1 = cs1 , γ1 = (v1v
ι′
2

2 )
s1 ,

W1 = R
(∆′

1
+d1+ι1(∆′

2
+e1))/b

1 · (S1/pwd)
c/b · g

r′′
1
/b

2 . if T ′

2 = (R′

2)
d+ι′

2
e then set ξ1 = 1T else

set ξ = ǫ(g1,g2)
s′
1 , where s′1 is a fresh random value. Output

e(γ−1
1 , R′

2) · e(θ1, S
′

2/pwd) · e(ρ1, T
′

2) · e(ρ̂
′

2,W1) · ξ1.

4. On a Corrupt call, if step 2 has already happened then output s1, pwd and

W1 = R
(∆′

1
+d1+ι1(∆′

2
+e1))/b

1 · (S1/pwd)
c/b · g

r′′
1
/b

2 .

All outputs of sk1 are also accompanied with sid, ssid (but are not mentioned above for ease of
exposition).

Note that each instance has two asynchronous phases: a phase in which C outputs R1, S1, ...
to Z, and a phase where it receives a message from Z. However, C cannot output sk1 until it has
completed both phases. These orderings are dictated by Z. We will consider two different kinds
of temporal orderings. A temporal ordering of different instances based on the order in which C
outputs sk1 in an instance will be called temporal ordering by key output. A temporal ordering
of different instances based on the order in which C outputs its first message (i.e. R1, S1, ...) will
be called temporal ordering by message output. It is easy to see that C can dynamically
compute both these orderings by maintaining a counter (for each ordering).

It is straightforward to inspect that the view of Z in Expt0 is identical to its view in its combined
interaction with F̂pake and S, as C has just combined the code of F̂pake and S (noting that in step
3(d), pwd = pwd′)
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Expt1 : In this experiment step 3(c) is dropped altogether and step 3(d) is altered as follows: In
step 3(d) in Expt0, ξ1 is set based on the condition T ′

2 = (R′

2)
d+ι′

2
e. In Expt1 in step 3(d), the

computation of ξ1 is now changed to: if (S′

2 = pwd · (R′

2)
a) and (T ′

2 = (R′

2)
d+ι′

2
e) then set

ξ1 = 1T else set ξ = ǫ(g1,g2)
s′
1 , where s′1 is a fresh random value. Rest of the computation

of sk1 in step 3(d) remains the same.

We claim that the view of Z is statistically identical in Expt0 and Expt1. This follows by noting
that the computation of sk1 has the extra factor ξ1. Since s

′

1 is chosen independently of the rest of
the transcript, this will be a random and independent factor in GT if S′

2 6= pwd · (R′

2)
a, which is

equivalent to the condition pwd′ 6= pwd in Expt0. The condition S
′

2 = pwd · (R′

2)
a held in step 3(d)

in Expt0, as that step was only reached if this condition held.

Expt2 : In this experiment step 3(b) is modified as follows:
Step 3(b): Otherwise, if the message received is identical to message sent by C in the same
session (i.e. same SSID) on behalf of the peer, then

– if simulation of peer also received a legitimate message and its key has already been set,
then output that same key here. Else, got to step 3(d).

If the message received is identical to the message sent by C in the same session, then clearly S′

2

received is not equal to pwd · (R′

2)
a, since C had produced S1 with a random g

r′
1

2 factor. Thus, step
3(d) will output a random sk1 in Expt2 as well (because of the way ξ1 is defined).

At this point, Expt2 can equivalently be written as follows:

1. The challenger C picks the CRS just as in the real world, except it sets d = d1 + a · d2, and
e = e1 + a · e2, where d1, d2, e1, e2 are chosen randomly and independently from Zq. It retains
a, c, b, d1, d2, e1, e2,∆1,∆2 as trapdoors.

2. On receiving NewSession, sid, ssid, Pi, Pj ,pwd, role from Z, C generates R1, S1, T1, ρ̂1 by choos-

ing r1, r
′

1, r
′′

1 , s1 at random, and setting R1 = gr12 , S1 = µ · ar1 · g
r′
1

2 , T1 = g
r1·(d1+ι1e1)
2 · g

r′′
1

2 ,
ρ̂1 = bs1 . It sends these values to Z.

3. On receiving R′

2, S
′

2, T
′

2, ρ̂
′

2 from Z(and assuming no corruption of this instance),

(a) if the received elements are either not in their respective groups, or are trivially 1, output
sk1 chosen randomly and independently from GT .

(b) Otherwise, if the message received is identical to message sent by C in the same session
(i.e. same SSID) on behalf of the peer and if simulation of peer also received a legitimate
message and its key has already been set, then output that same key here.

(c) -

(d) compute ι′2 = H(sid, ssid, Pj , Pi, R′

2, S
′

2, ρ̂
′

2), ρ1 = gs11 , θ1 = cs1 , γ1 = (v1v
ι′
2

2 )
s1 , W1 =

R
(∆′

1
+d1+ι1(∆′

2
+e1))/b

1 ·(S1/pwd)
c/b ·g

r′′
1
/b

2 . if (S′

2 = pwd ·(R′

2)
a) and (T ′

2 = (R′

2)
d+ι′

2
e) then

set ξ1 = 1T else set ξ = ǫ(g1,g2)
s′
1 , where s′1 is a fresh random value. Output

e(γ−1
1 , R′

2) · e(θ1, S
′

2/pwd) · e(ρ1, T
′

2) · e(ρ̂
′

2,W1) · ξ1.
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4. On a Corrupt call, if step 2 has already happened then output s1, pwd and

W1 = R
(∆′

1
+d1+ι1(∆′

2
+e1))/b

1 · (S1/pwd)
c/b · g

r′′
1
/b

2 .

Expt3 : In this experiment the challenger in step 2 computes S1 in each instance as pwd · ar1 · g
r′
1

2 .
Note the use of pwd instead of µ.

This is statistically the same, as in each instance the challenger picks a fresh and random r′1, and
it is not used anywhere else.

Expt4 : In each instance T1 is computed as follows: T1 = gr1·d+ι1e2 · g
r′′
1

2 . Further, later on in

the instance, on receiving a message from Z, W1 is computed as W1 = R
(∆′

1
+d+ι1(∆′

2
+e))/b

1 ·

(S1/pwd)
c/b · g

r′′
1
/b

2 .

This is statistically identical as T1 has a random factor g
r′′
1

2 and W1 has a random factor g
r′′
1
/b

2 , and
r′′1 is not used anywhere else. This change is equivalent to experiment H1 in the proof of one-time
full-ZK in Section 3 (see 9).

Expt5 : In this experiment the challenger C generates the CRS slightly differently. It picks ∆′

1 and
∆′

2 at random, and sets ∆1 = (∆′

1 + d + c · a)/b, and ∆2 = (∆′

2 + e)/b. Rest of the CRS
computation remains the same. Note that a is not used anymore in the computation of group
G1 CRS elements.

The view of the adversary in Expt4 and Expt5 is statistically the same.

Expt6 : In each instance S1 is computed as follows: pwd · ar1 . Further, T1 is computed as follows:
T1 = Rd+ι1e1 . Further, later on in the instance, on receiving a message from Z,W1 is computed

as W1 = R
(∆′

1
+d+ι1(∆′

2
+e))/b

1 · (S1/pwd)
c/b. In other words, the computation of S1, T1 and W1

is as in the real-world (this can be seen from the definition of w1 and w2 in the CRS).

To show that Expt5 is computationally indistinguishable from Expt6, we define several hybrid
experiments Expt5,i inductively. Experiment Expt5,0 is identical to Expt5. If there are a total of N
instances, Expt5,N will be identical to Expt6. Experiment Expt5,1+1 differs from experiment Expt5,i
in only (temporally ordered by message output) the (i + 1)-th instance. While in Expt5,i, the
(i+1)-th instance is simulated by C as in Expt5, in Expt5,i+1 this instance is simulated as in Expt6.

Lemma 7 For all i : 0 ≤ i ≤ N , the view of Z in experiment Expt5,i+1 is computationally indis-
tinguishable from the view of Z in Expt5,i.

Proof: The proof will follow the proof of one-time full ZK in Section 3, except that we will also
employ DDH to replace the fake tuples with real tuples.

We define several hybrid experiments. Experiment H0 is identical to Expt5,i.
In experiment H1, the CRS is picked differently by C. instead of picking d1, d2 at random (and

similarly e2, e2 at random), picks d and d2 randomly and independently and sets d1 = d − a · d2
(and e1 = e− a · e2). Rest of the CRS computation remains the same, and it retains a, c, b, d, d2,
e, e2, ∆

′

1, ∆
′

2. This is statistically the same distribution.
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In H2, in the (i+ 1)-th instance T and W are computed differently:

T = R
d+ι1e−a·(d2+ι1e2)
1 ·(S1/pwd)

d2+ι1e2 , W = R
(∆′

1
+d+ι1·(∆′

2
+e)−a·(d2+ι1e2))/b

1 ·(S2/pwd)
(d2+ι1e2+c)/b.

(14)
This is statistically the same as d2 was chosen randomly and independently of d. All other

instances are only using d and e in their computation. Thus, the r′′1 in this instance can be replaced
by d2 + ι1e2.

In the next experiment H3, in step 3(d) of each instance, the computation of ξ1 is done as
follows: if (T ′

2 = (R′

2)
d1+ι′2e1 · (S′

2/pwd)
d2+ι′2e2) then set ξ1 = 1T else set ξ = ǫ(g1,g2)

s′
1 , where s′1 is

a fresh random value. Rest of the computation of sk1 remains the same. This is the same as using
the sfV instead of pV, and the proof of H3 being statistically indistinguishable from H2 is exactly
the same as in proof of H2 and H3 in one-time full-ZK property proof of theorem 1 noting that
sid, ssid, P,Pj and ρ̂ are used as label.

In the next experiment H4, the computation of each of the instances (except the (I + 1)-th
instance undergoes the following change: in the j-th instance, if j < (i + 1), then set r′′1 = 0,

else choose r′′1 at random. Compute T1 = Rd1+ι1e11 · (S1/pwd)
d2+ι1e2 · g

r′′
1

2 . Further, later on in

the instance, on receiving a message from Z, W1 is computed as W1 = R
(∆′

1
+d1+ι1(∆′

2
+e1))/b

1 ·

(S1/pwd)
(d2+ι1e2+c)/b · g

r′′
1
/b

2 .
Experiments H4 and H3 are statistically identical, and the proof is same as for experiments

Expt3 and Expt4.
In the next experiment H5, the challenger produces the rest of the CRS using ρ = g2,g

a
2, where

a is chosen randomly from Zq. In particular, it chooses d1, d2, e1, e2,∆
′

1,∆
′

2, b, c at random, and
defines the CRS using ρ and these values. This is statistically the same.

In the next experiment H6, the challenger generates the S1 in the (i+1)-th instance as follows:
S1 = pwd·ar1 . That the view of Z in experiments H5 andH6 are computationally indistinguishable
follows from the DDH assumption in group G2.

Now, we unwind our way back to Expt5,i+1 following all of the above hybrid games back-wards,
and that completes the proof. �

Expt7 : In this experiment, the challenger C sets the CRS by just directly choosing ∆1,∆2 at
random, instead of first choosing ∆′

1, ∆
′

2 and then setting ∆1 etc. in terms of the primed
quantities and c, b, a, d and e. This means v1 is now again computed as in the real world
CRS. Note, now c and b are not used in simulation of group G2 CRS elements.

It is easy to see that the view of Z is unchanged in going from Expt8 to Expt7.

Expt8 : In this experiment in step 3(d), in each instance C picks another fresh random value c′1 ∈ Zq

(independent of s′1), and computes ξ1 differently as follows (all other values are computed as
in Expt4):
ξ1 = e(g1, T

′

2 · (S
′

2/pwd)
c′
1)s

′

1 · e(g1, R
′

2)
−(d+ι′

2
e+c′

1
·a)s′

1 .

This computation of ξ1 is statistically indistinguishable by a simple information-theoretic argument.

Expt9 : In this experiment, in each instance ξ1 is computed without using a fresh c′1, but instead
using c itself, i.e. ξ1 = e(g1, T

′

2 · (S
′

2/pwd)
c)s

′

1 · e(g1, R
′

2)
−(d+ι′

2
e+ca)s′

1 .
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Note that, since experiment Expt6, and the way the CRS is picked in experiment Expt7, W1 can
now be computed just as (w1 ·w

ι1
2 )

r1 . A standard hybrid argument. employing DDH assumption

in group G1 on g1, g
c
1, g

s′
1

1 and either g
c·s′

1

1 (real DDH tuple) or g
c′
1
·s′

1

1 (fake DDH tuple), shows that
Expt8 and Expt9 are computationally indistinguishable by Z.

Expt10 : In this experiment, in each instance ξ1 is not computed at all and is not used as a factor in
computation of sk1.

First note that in Expt9, sk1 can be equivalently computed by C as follows:

ρ1 = g
s1+s′1
1 , θ1 = cs1+s

′

1 , γ1 = (v1v
ι′
2

2 )
s1 · g

(d+ι′
2
e+ca)s′

1

1 , W1 = (w1w
ι1
2 )

r1 ,

sk1 = e(ρ1, T
′

2) · e(θ1,
S′

2

pwd
) · e(γ−1

1 .R′

2) · e(ρ̂
′

2,W1).

We also remark that if the instance has already been corrupted (and s1 disclosed to Z) then this
step never happens. Now, it is an easy matter to show that Expt10 and Expt9 are computationally
indistinguishable by employing DDH assumption (multiple times using a hybrid argument) on g1,

gb1, gbs11 and either gs11 (real DDH challenge yielding experiment Expt10) or g
s1+s′1
1 (fake DDH

challenge yielding experiment Expt9.
At this point, i.e. in Expt10, the computation of step 3(d) is as follows:

Step 3(d): Else, compute ρ1 = gs11 , θ1 = cs1 , γ1 = (v1v
ι′
2

2 )
s1 , W1 = (w1w

ι1
2 )

r1 and output sk1 =
e(ρ1, T

′

2) · e(θ1, S
′

2) · e(γ
−1
1 .R′

2) · e(ρ̂
′

2,W1).

Expt11 : In this experiment the step 3(b) is dropped. In other words, the challenger code goes
straight from 3(a) to 3(d).

Experiments Expt10 and Expt11 produce the same view for Z, since if both peers (of a session)
received legitimate messages forwarded by Z, then step 3(d) computes the same session key in
both instances.

Expt12 : In this experiment, the challenger chooses d and e randomly and uniformly, i.e. without
first choosing d1, d2, e1, e2 and then computing d and e in terms of these and other variables.

It is straightforward to see that the view of Z is same in Expt12 and Expt11.
Finally, a simple examination shows that the view of Z in Expt12 is identical to the real world

protocol.
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A Dual-System Simulation-Sound QA-NIZK for DLIN Language

We will consider bilinear groups (G1,G2,GT ), with an efficiently computable pairing e from G1×G2

to GT . Each group will be assumed to be cyclic with prime order q.
We consider the following class of languages parametrized by g, f ,h (∈ G

3
1). The DLIN lan-

guage corresponding to one such parameter ρ = 〈g, f ,h〉 is Lρ = {〈g
x1 , f x2 ,hx1+x2〉 | x1, x2 ∈ Zq}.

The distribution D under which the quasi-adaptive NIZK is obtained is defined by picking g1 as
a generator for G1 according to a bilinear group (G1,G2,GT ) generation algorithm for which the
DLIN assumption holds for G2, and then choosing a, b, c randomly from Zq and letting g = ga1, f =
gb1,h = gc1 .

We now define the various components of the DSS-QA-NIZK system for the above class of DLIN
languages under distribution D.

• The real-world algorithms:

– The algorithm K0 is just the group generation algorithm (it takes a unary string 1m as
input), and it also generates a collision-resistant hash function H. The CRS generation
algorithm K1 takes language parameter ρ = 〈g, f,h〉 and other bilinear group parameters
as input and generates the CRS as follows: it picks r1, r2, b1, b2, d1, d2, e1, e2,∆

′

1−4,1−2

randomly and independently from Zq and sets the CRS to be (CRSp,CRSv,H):

CRSp =





ρ, d1 = gd11 , d2 = gd21 , e1 = ge11 , e2 = ge21 ,

w11 = g∆′

11
/b1d

1/b1
1 hr1/b1 , w21 = g∆

′

21
/b1e

1/b1
1 ,

w31 = f ∆′

31
/b1d

1/b1
2 hr1/b1 , w41 = f ∆

′

41
/b1e

1/b1
2 ,

w12 = g∆′

12
/b2d

1/b2
1 hr2/b2 , w22 = g∆

′

22
/b2e

1/b2
1 ,

w32 = f ∆
′

32
/b2d

1/b2
2 hr2/b2 , w42 = f ∆

′

42
/b2e

1/b2
2





CRSv =





g2, r1 = gr12 , r2 = gr22 , b1 = g−b12 ,b2 = g−b22 ,

v11 = g
∆′

11

2 , v12 = g
∆′

12

2 , v21 = g
∆′

21

2 , v22 = g
∆′

22

2 ,

v31 = g
∆′

31

2 , v32 = g
∆′

32

2 , v41 = g
∆′

41

2 , v42 = g
∆′

42

2




.

– The prover P takes as input CRSp, a language member 〈x1,x2,x3〉 and its witness
x1, x2 and produces a proof π consisting of two group G2 elements T and W as follows:
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Compute ι = H(x1,x2,x3) (in a labeled version, the label is also included in the input
to H). Next, compute T = (d1e

ι
1)
x1(d2e

ι
2)
x2 , W1 = (w11w

ι
21)

x1(w31w
ι
41)

x2 and W2 =
(w12w

ι
22)

x1(w32w
ι
42)

x2 .

– The verifier V takes as input CRSv, a potential language member 〈x1,x2,x3〉, and a
proof π = (T,W1,W2), computes ι = H(x1,x2,x3), and outputs true iff both

e(x1,v11v
ι
21) · e(x2,v31v

ι
41) · e(x3, r1) · e(T,g2) · e(W1,b1)

?
= 1T .

e(x1,v12v
ι
22) · e(x2,v32v

ι
42) · e(x3, r2) · e(T,g2) · e(W2,b2)

?
= 1T .

• The partial-simulation world PPT components:

– The semi-functional CRS simulator sfK1 takes group parameters and H as input
and produces a witness relation parameter ρ = 〈g, f ,h〉 by picking a, b, c at random
from Zq and setting g = ga1, f = gb1,h = gc1. It produces the semi-functional CRS
σ = (CRSp,CRSv,H) as follows:
It further picks r1, r2, b1, b2, d

′

1, d
′

2, e
′

1, e
′

2, u1, u2,∆1−4,1−2 randomly and independently
from Zq, and computes

d1 = ad′1 + cu1, e1 = ae′1 + cu2,
d2 = bd′2 + cu1, e2 = be′2 + cu2,

∆′

11 = ∆11b1a
−1 − d1a

−1 − r1ca
−1, ∆′

21 = ∆21b1a
−1 − e1a

−1,
∆′

31 = ∆31b1b
−1 − d2b

−1 − r1cb
−1, ∆′

41 = ∆41b1b
−1 − e2b

−1,
∆′

12 = ∆12b2a
−1 − d1a

−1 − r2ca
−1, ∆′

22 = ∆22b2a
−1 − e1a

−1,
∆′

32 = ∆32b2b
−1 − d2b−1 − r2cb−1, ∆′

42 = ∆42b2b
−1 − e2b−1,

and sets the CRS to be (σp, σv,H):

σp =





ρ, d1 = gd11 , d2 = gd21 , e1 = ge11 , e2 = ge21 ,

w11 = g∆11

1 , w21 = g∆21

1 ,

w31 = g∆31

1 , w41 = g∆41

1 ,

w12 = g∆12

1 , w22 = g∆22

1 ,

w11 = g∆32

1 , w21 = g∆42

1





σv =





g2, r1 = gr12 , r2 = gr22 , b1 = g−b1
2 ,b2 = g−b22 ,

v11 = g
∆′

11

2 , v12 = g
∆′

12

2 , v21 = g
∆′

21

2 , v22 = g
∆′

22

2 ,

v31 = g
∆′

31

2 , v32 = g
∆′

32

2 , v41 = g
∆′

41

2 , v42 = g
∆′

42

2




.

It outputs r1, r2, b1, b2, d
′

1, d
′

2, e
′

1, e
′

2, u1, u2,∆
′

1−4,1−2 as proof simulator trapdoors τ , and
outputs a, b, c, r1, r2, b1, b2, d1, d2, e1, e2, ∆1−4,1−2 as private-verifier trapdoors η.

– The semi-functional simulator sfS uses trapdoors {r1, r2, b1, b2, d
′

1, d
′

2, e
′

1, e
′

2, u1, u2,∆
′

1−4,1−2}
to produce a (partially-simulated) proof for a potential language member 〈x1,x2,x3〉 and
a binary bit β as follows: compute ι = H(x1,x2,x3); if β = 1 compute and output

T = x
d′
1
+ιe′

1

1 · x
d′
2
+ιe′

2

2 · xu1+ιu23

W1 = x
(∆′

11
+d′

1
+ι·(∆′

21
+e′

1
))/b1

1 · x
(∆′

31
+d′

2
+ι·(∆′

41
+e′

2
))/b1

2 · x
(u1+ιu2+r1)/b1
3

W2 = x
(∆′

12
+d′

1
+ι·(∆′

22
+e′

1
))/b2

1 · x
(∆′

32
+d′

2
+ι·(∆′

42
+e′

2
))/b2

2 · x
(u1+ιu2+r2)/b2
3
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else choose y at random from Zq; Compute and output

T = x
d′
1
+ιe′

1

1 · x
d′
2
+ιe′

2

2 · gy1
W1 = x

(∆′

11
+d′

1
+ι·(∆′

21
+e′

1
))/b1

1 · x
(∆′

31
+d′

2
+ι·(∆′

41
+e′

2
))/b1

2 · x
r1/b1
3 · g

y/b1
1

W2 = x
(∆′

12
+d′

1
+ι·(∆′

22
+e′

1
))/b2

1 · x
(∆′

32
+d′

2
+ι·(∆′

42
+e′

2
))/b2

2 · x
r2/b2
3 · g

y/b2
1 .

This proof is partially simulated as it uses the bit β.

– The private verifier pV uses trapdoors {a, b, c, r1, r2, b1, b2, d1, d2, e1, e2,∆1−4,1−2} to
check a potential language member 〈x1,x2,x3〉 and a proof T,W1,W2 as follows: it
outputs 1 iff

x3
?
= xca

−1

1 · xcb
−1

2

T
?
= x

(d1+ιe1)a−1

1 · x
(d2+ιe2)b−1

2

W1
?
= x

(∆11+ι∆21)a−1

1 · x
(∆31+ι∆41)b−1

2

W2
?
= x

(∆12+ι∆22)a−1

1 · x
(∆32+ι∆42)b−1

2 ,

where ι = H(x1,x2,x3).

• Finally, the one-time full simulation PPT components:

– The one-time full-simulation CRS generator otfK1 takes as input the bilinear group
parameters, H, and the language parameter ρ = 〈g, f ,h〉 to produce the CRS as in
the real-world, but with a little twist: it picks r1, r2, b1, b2, d

′

1, d
′

2, e
′

1, e
′

2, u1, u2,∆
′

1−4,1−2

randomly and independently from Zq and sets the CRS to be (σp, σv ,H):

σp =





ρ, d1 = gd
′

1hu1 , d2 = f d
′

2hu1 , e1 = ge
′

1hu2 , e2 = ge
′

2hu2 ,

w11 = g(∆′

11
+d′

1
)/b1h(u1+r1)/b1 , w21 = g(∆′

21
+e′

1
)/b1hu2/b1 ,

w31 = f (∆
′

31
+d′

2
)/b1h(u1+r1)/b1 , w41 = f (∆′

41
+e′

2
)/b1hu2/b1 ,

w12 = g(∆′

12
+d′

1
)/b2h(u1+r2)/b2 , w22 = g(∆′

22
+e′

1
)/b2hu2/b2 ,

w32 = f (∆
′

32
+d′

2
)/b2h(u1+r2)/b2 , w42 = f (∆′

42
+e′

2
)/b2hu2/b2 ,





σv =





g2, r1 = gr12 , r2 = gr22 , b1 = g−b1
2 ,b2 = g−b22 ,

v11 = g
∆′

11

2 , v12 = g
∆′

12

2 , v21 = g
∆′

21

2 , v22 = g
∆′

22

2 ,

v31 = g
∆′

31

2 , v32 = g
∆′

32

2 , v41 = g
∆′

41

2 , v42 = g
∆′

42

2




.

It also outputs r1, r2, b1, b2, d
′

1, d
′

2, e
′

1, e
′

2, u1, u2,∆
′

1−4,1−2 as both the trapdoor τ and η.

– The one-time full simulator otfS takes as input the trapdoors {r1, r2, b1, b2, d
′

1, d
′

2, e
′

1, e
′

2, u1, u2,∆
′

1−4,1−

and a potential language member 〈x1,x2,x3〉 to produce a proof as follows:

T = x
d′
1
+ιe′

1

1 · x
d′
2
+ιe′

2

2 · xu1+ιu23

W1 = x
(∆′

11
+d′

1
+ι·(∆′

21
+e′

1
))/b1

1 · x
(∆′

31
+d′

2
+ι·(∆′

41
+e′

2
))/b1

2 · x
(u1+ιu2+r1)/b1
3

W2 = x
(∆′

12
+d′

1
+ι·(∆′

22
+e′

1
))/b2

1 · x
(∆′

32
+d′

2
+ι·(∆′

42
+e′

2
))/b2

2 · x
(u1+ιu2+r2)/b2
3 ,

where ι = H(x1,x2,x3).
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– The semi-functional verifier sfV uses trapdoors {r1, r2, b1, b2, d
′

1, d
′

2, e
′

1, e
′

2, u1, u2,∆
′

1−4,1−2}
to verify a potential language member 〈x1,x2,x3〉 and a proof T,W1,W2 as follows: com-
pute ι = H(x1,x2,x3) and output 1 iff

T
?
= x

d′
1
+ιe′

1

1 · x
d′
2
+ιe′

2

2 · xu1+ιu23

W b1
1

?
= x

∆′

11
+ι∆′

21

1 · x
∆′

31
+ι∆′

41

2 · xr13 · T

W b2
2

?
= x

∆′

12
+ι∆′

22

1 · x
∆′

32
+ι∆′

42

2 · xr23 · T
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