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Abstract. The paper is about the discrete logarithm problem for elliptic curves over characteristic 2 finite fields
F2n of prime degree n. We consider practical issues about index calculus attacks using summation polynomials in
this setting. The contributions of the paper include: a choice of variables for binary Edwards curves (invariant under
the action of a relatively large group) to lower the degree of the summation polynomials; a choice of factor base
that “breaks symmetry” and increases the probability of finding a relation; an experimental investigation of the use
of SAT solvers rather than Gröbner basis methods for solving multivariate polynomial equations over F2.
We show that our choice of variables gives a significant improvement to previous work in this case. The symmetry-
breaking factor base and use of SAT solvers seem to give some benefits in practice, but our experimental results
are not conclusive. Our work indicates that Pollard rho is still much faster than index calculus algorithms for the
ECDLP (and even for variants such as the oracle-assisted static Diffie-Hellman problem of Granger and Joux-Vitse)
over prime extension fields F2n of reasonable size.
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1 Introduction

Let E be an elliptic curve over a finite field F2n where n is prime. The elliptic curve discrete logarithm
problem (ECDLP) is: Given P,Q ∈ E(F2n) to compute an integer a, if it exists, such that Q = aP .
As is standard, we restrict attention to points P of prime order r. The Diffie-Hellman problem (CDH) is:
Given P ∈ E(F2n) and points P1 = aP and P2 = bP , for some integers a and b, to compute abP .
These two computational problems are fundamental to elliptic curve cryptography. There is a wide variety
of “interactive” Diffie-Hellman assumptions, meaning that the attacker/solver is given access to an oracle
that will perform various computations for them. These problems also arise in some cryptographic settings,
and it is interesting to study them (for scenarios where they arise in practice for static-CDH see Brown and
Gallant [3]). These problems are surveyed by Koblitz and Menezes [23] and we recall some of them now.

– The “Delayed Target One-More Discrete Logarithm Problem” in the sense of Joux-Naccache-Thomé is
the following. The solver is supplied with a discrete logarithm oracle and must find the discrete logarithm
of a random group element Y that is given to the solver only after all the queries to the oracle have been
made.

– The “oracle-assisted static Diffie-Hellman problem” (also called the “delayed target One-More Diffie-
Hellman problem”) is the following. The solver is given (P,X = aP ) and a static (also called “one-
sided”) Diffie-Hellman oracle (i.e., O(Y ) = aY ), and must solve the DHP with input (P,X, Y ), where
Y is a random group element that is given to the solver only after all the queries to O have been made.
In other words, the solver must compute Z = aY .

– The “static One-More Diffie-Hellman Problem” is as follows. The solver is again given (P,X = aP )
and access to an oracle O(Y ) = aY , and also a challenge oracle that produces random group elements
Yi . After t queries to the challenge oracle (where t is chosen by the solver) and at most t− 1 queries to
the DHP oracle O, the solver must find Zi = aYi for all i = 1, . . . , t.



Early papers on attacking these sorts of interactive assumptions (e.g., [20]) used index calculus algo-
rithms for finite fields. Granger [18] and Joux-Vitse [22] were the first to consider the case of elliptic curve
groups E(Fqn) (both papers mainly focus on the case where q is a large prime, and briefly mention small
characteristic but not prime degree extension fields F2n).

One approach to solving the ECDLP (or these interactive assumptions) is to use Semaev’s summation
polynomials [27] and index calculus ideas of Gaudry, Diem, and others [5–8, 11–13, 16, 21, 22, 25]. The
main idea is to specify a factor base and then to try and “decompose” random points R = uP + wQ as a
sum P1 + · · ·+Pm of points in the factor base. Semaev’s summation polynomials allow to express the sum
P1 + · · · + Pm − R = ∞, where∞ is the identity element, as a polynomial equation over F2n , and then
Weil descent reduces this problem to a system of polynomial equations over F2

There is a growing literature on these algorithms. Much of the previous research has been focussed on
elliptic curves over Fqn where q is prime or a prime power, and n is small.

Our Work This paper is about the case F2n where n is prime. Other work (for example [6–8, 25]) has
focused on asymptotic results and theoretical considerations. Instead, we focus on very practical issues and
ask about what can actually be computed in practice today. In other words, we follow the same approach as
Huang, Petit, Shinohara and Takagi [19] and Shantz and Teske [26].

We assume throughout that the ECDLP instance cannot be efficiently solved using the Gaudry-Hess-
Smart approach [15] or its extensions, and that the point decomposition step of the algorithm is the bottle-
neck (so we ignore the cost of the linear algebra). This will be the case in our examples.

The goal of our paper is to report on our experiments with three ideas:

(1) We describe a choice of variables for binary Edwards curves that is invariant under the action of a
relatively large group (generated by the action of the symmetric group and addition by a point of order 4).
This allows the summation polynomials to be re-written with lower degree, which in turn speeds up the
computation of relations.

(2) We consider a factor base that “breaks symmetry” and hence significantly increases the probability that
relations exist. It may seem counterintuitive that one can use symmetric variables to reduce the degree and
also a non-symmetric factor base, but if one designs the factor base correctly then this is seen to be possible.

The basic idea is as follows. The traditional approach has relations R = P1 + · · · + Pm where Pi ∈
F = {P ∈ E(F2n) : x(P ) ∈ V } where V ⊆ F2n is some F2-vector subspace of dimension l. Instead, we
demand Pi ∈ Fi over 1 ≤ i ≤ m for m different factor bases Fi = {P ∈ E(F2n) : x(P ) ∈ V + vi}
where vi ∈ F2n are elements of a certain form so that the sets V + vi are all distinct. (Diem [8] has also
used different factor bases Fi, but in a different way.) The probability of finding a relation is increased by a
factor approximately m!, but we need m times as many relations, so the total speedup is approximately by a
factor of (m− 1)!.

(3) We experiment with SAT solvers rather than Gröbner basis methods for solving the polynomial systems.
This is possible since we obtain a system of multivariate polynomial equations over F2, rather than over
larger fields. (SAT solvers have been considered in cryptanalysis before, e.g. [4, 24].)

Our conclusions are: The suggested coordinates for binary Edwards curves give a significant improve-
ment over previous work on elliptic curves in characteristic 2. The use of SAT solvers may potentially enable
larger factor bases to be considered (however, it seems an “early abort” strategy should be taken, as we will
explain). Symmetry breaking seems to give a moderate benefit when n is large compared with lm.

Finally, our overall conclusion is that, for parameters of interest for actual computation, it is slower to
use summation polynomials to solve an ECDLP instance (or even the interactive assumptions mentioned
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earlier) in characteristic 2 elliptic curves than to use Pollard rho. Hence, summation polynomial algorithms
do not seem to be a useful tool for attacking current ECDLP challenge curves for curves defined over F2n

where n is prime.
The paper is organised as follows. Section 2 recalls previous work. Section 3 recalls binary Edwards

curves and introduces our new variables. Section 4 shows how to do the index calculus attack in this setting
and discusses the symmetry-breaking idea. Section 5 discusses the use of SAT solvers, while Section 6
reports on our experimental results.

2 Index Calculus Algorithms and Summation Polynomials

We briefly recall the basic ideas of these methods and introduce our notation. Let P ∈ E(F2n) have prime
order r and supposeQ = aP . One chooses an appropriate factor baseF ⊆ E(F2n), computes random points
R = uP + wQ and then tries to write R = P1 + · · · + Pm for Pi ∈ F . Each successful decomposition of
the point R is called a “relation”. Let ` = #F . Writing F = {F1, . . . , F`} we can write the j-th relation as
ujP+wjQ =

∑`
i=1 zj,iFi and store the relation by storing the values (uj , wj) and the vector (zj,1, . . . , zj,`).

When enough relations (more than `) are found then one can apply (sparse) linear algebra to find a kernel
vector of the matrix M = (zj,i) and hence obtain a pair of integers u and w such that uP + wQ = 0 from
which we can solve for a ≡ −uw−1 (mod r) as long as w 6≡ 0 (mod r). The details are standard.

One can use this approach to solve interactive Diffie-Hellman assumptions. We give the details in the
case of the oracle-assisted static Diffie-Hellman. Choose a factor baseF = {F1, . . . , F`} then call the oracle
for each element Fi to get the points aFi for 1 ≤ i ≤ `. When provided with the challenge point Y one
tries to decompose Y = P1 + · · ·+ Pm for points Pi ∈ F . If such a relation is found then we can compute
the required point aY as aP1 + · · · + aPm. (If we fail to find a relation then we can randomise by taking
Y + uP and recalling that uX = uaP .)

One sees that all applications require decomposing random points over the factor base. This is the dif-
ficult part of the algorithm and is the main focus of our paper. Note however that the ECDLP application
requires a very large number of relations and hence a very large number of point decompositions, whereas
the oracle-assisted static-DH application only requires a single relation.

We will ignore the linear algebra step as, for the parameters considered in the paper, its cost will always
be insignificant.

2.1 Summation Polynomials

Let E be an elliptic curve in Weierstrass form over a field K of odd characteristic. The mth summation
polynomial fm(x1, x2, . . . , xm) ∈ K[x1, x2, . . . , xm] for E, defined by Semaev [27], has the following
defining property. Let X1, X2, . . . , Xm ∈ K. Then fm(X1, X2, . . . , Xm) = 0 if and only if there exist
Y1, Y2, . . . , Ym ∈ K such that (Xi, Yi) ∈ E(K) for all 1 ≤ i ≤ m and (X1, Y1) + (X2, Y2) + · · · +
(Xm, Ym) =∞, where∞ is the identity element.

Lemma 1. (Semaev [27]) Let E : y2 = x3 + a4x+ a6 be an elliptic curve over a field K of characteristic
6= 2, 3 and {a4, a6} ∈ K. The summation polynomials for E are given as follows.

f2(X1, X2)=X1 −X2

f3(X1, X2, X3)=(X1 −X2)
2X2

3 − 2((X1 +X2)(X1X2 + a4) + 2a6)X3

+((X1X2 − a4)2 − 4a6(X1X2)).
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For m ≥ 4 and a constant j such that 1 ≤ j ≤ m− 3, then

fm(X1, . . . , Xm) = ResultantX(fm−j(X1, . . . , Xm−j−1, X), fj+2(Xm−j , Xm−j+1, . . . , Xm, X)).

For m ≥ 2, the mth summation polynomial fm is an irreducible symmetric polynomial that has degree
2m−2 in each of the variables.

Gaudry and Diem noted that, for elliptic curves E(Fqn) over extension fields, there are choices of factor
base for which the problem of finding solutions to summation polynomials can be approached using Weil
descent with respect to Fqn/Fq. In other words, the problem of solving fm+1(x1, . . . , xm, x(R)) for xi ∈ Fq

can be reduced to a system of multivariate polynomial equations over Fq. The details are standard.
To solve the system of multivariate polynomial equations, the current most effective approach (see [11,

19]) is to perform the F4 or F5 algorithm for the graded reverse lex order, followed by the FGLM algo-
rithm [14].

2.2 Degree Reduction Via Symmetries

The summation polynomials have high degree, which makes solving them difficult. Since the summation
polynomial is invariant under the action of the symmetric group Sm, Gaudry [16] observed that re-writing
the polynomial in terms of invariant variables reduces the degree and speeds up the resolution of the system
of equations. As well as lowering the degree of the polynomials, this idea also makes the solution set smaller
and hence faster to compute using the FGLM algorithm.

Faugère et al [12, 13] have considered action by larger groups (by using points of small order) for elliptic
curves over Fqn where n is small (e.g., n = 4 or n = 5) and the characteristic is 6= 2, 3. Their work gives
further reduction in the cost of solving the system. We sketch (for all the details see [12, 13]) the case of
points of order 2 on twisted Edwards curves.

For a point P = (x, y) on a twisted Edwards curve we have −P = (−x, y) and so it is natural to
construct summation polynomials in terms of the y-coordinate (invariant under P 7→ −P ). Accordingly
Faugère et al [12] define their factor base as

F = {P = (x, y) ∈ Fqn : y ∈ Fq}.

Further, the addition of P with the point T2 = (0,−1) (which has order 2) satisfies P + T2 = (−x,−y).
Note that P ∈ F if and only if P +T2 ∈ F . Hence, for each decomposition R = P1 +P2 + · · ·+Pn, there
exist 2n−1 further decompositions, such as

R = (P1 + T2) + (P2 + T2) + P3 + · · ·+ Pn.

It follows that the dihedral coxeter groupDn = (Z/2Z)n−1oSn of order 2n−1n! acts on the set of relations
R = P1 + · · ·+ Pn for any given point R (and all these relations correspond to solutions of the summation
polynomial). It is therefore natural to try to write the summation polynomial fn+1(y1, y2, . . . , yn, y(R)) in
terms of new variables that are invariant under the group action. For further details see [12].

A recent idea (originating in the work of Joux-Vitse [21] for E(Fqn)) is to consider relations with fewer
summands R = P1 + · · ·+ Pm with m < n. Joux and Vitse take m = n− 1 so the probability of a relation
is reduced from 1/n! to 1/(q(n − 1)!). The cost of solving the polynomial system is significantly reduced,
but the running time increases by the factor q. Shantz and Teske [26] call this the “delta method”.
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2.3 The Case of F2n where n is Prime
Following Diem [8] we define the factor base in terms of an F2-vector space V ⊂ F2n of dimension l. A
typical choice for the factor base in the case of Weierstrass curves is F = {P ∈ E(F2n) : x(P ) ∈ V }, and
one wants to decompose random points as R = P1 + · · ·+ Pm for Pi ∈ F .

As above, the symmetric group Sm of order m! acts on the set of relations R = P1 + · · ·+ Pm for any
given point R (and all these relations correspond to solutions of the summation polynomial). It is therefore
natural to try to write the summation polynomial fm+1(x1, x2, . . . , xm, x(R)) in terms of new variables
that are invariant under the group action. In this example, such variables are the elementary symmetric
polynomials in the xi. This approach gives polynomials of lower degree.

Huang et al [19] observe that it is hard to combine re-writing the summation polynomial in terms of
symmetric variables and also using a factor base defined with respect to an arbitrary vector subspace of
F2n . The point is that if x1, . . . , xm ∈ V then it is not necessarily the case that the value of the symmetric
polynomial e2 = x1x2 + x1x3 + · · ·+ xm−1xm (or higher ones) lies in V . Hence, one might think that one
cannot use symmetries in this setting.

Section 3 of [19] considers prime n and the new idea of “both symmetric and non-symmetric variables”.
It is suggested to use a “special subspace” V that behaves relatively well under multiplication: xi, xj ∈ V
implies xixj ∈ V ′ for a somewhat larger space V ′. The experiments in [19], for n prime in the range
17 ≤ n ≤ 53,m = 3, and l ∈ {3, 4, 5, 6}, show a significant decrease of the degree of regularity (the highest
degree reached) during Gröbner basis computations. However, the decrease in the degree of regularity is at
the expense of an increased number of variables, which in turn increases the complexity of the Gröbner basis
computations (which roughly take time N3D and require N2D memory, where N is the number of variables
and D is the degree of regularity).

Huang et al [19] exploit the action of Sm on the summation polynomials but do not exploit points of
order 2 or 4. One of our contributions is to give coordinates that allow to exploit larger symmetry groups
in the case of elliptic curves over binary fields. We are able to solve larger experiments in this case (e.g.,
taking decompositions into m = 4 points, while [19] could only handle m = 3). For more details of our
experiments see Section 6.

3 Edwards Elliptic Curves in Characteristic Two

We study binary Edwards curves [1] since the addition by points of order 2 and 4 is nicer than when using
the Weierstrass model as was done in [12, 13]. Hence we feel this model of curves is ideally suited for the
index calculus application.

Definition 1. Let d1, d2 ∈ F2n be such that d1 6= 0 and d2 6= d21 + d1. The binary Edwards curve with
coefficients d1 and d2 is the elliptic curve given by the affine model

Ed1,d2 : d1(x+ y) + d2(x
2 + y2) = xy + xy(x+ y) + x2y2.

The binary Edwards curve is symmetric in the variables x and y with the following group law [1].

1. The identity element is the point P0 = (0, 0).
2. For a point P = (x, y) ∈ Ed1,d2 , its negation is given by−P = (y, x). We have P +−P = P0 = (0, 0).
3. Let P1 = (x1, y1), P2 = (x2, y2) ∈ Ed1,d2 , then P3 = (x3, y3) = P1 + P2 is given by

x3=
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x21)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x21)(x2 + y2)

y3=
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y21)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y21)(x2 + y2)
.
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4. The point T2 = (1, 1) ∈ Ed1,d2 is invariant under negation so it has order 2. For any point P = (x, y) ∈
Ed1,d2 we have P + T2 = (x+ 1, y + 1).

If d1 6= 0 and TrF2n/F2
(d2) = 1, i.e., there is no element u ∈ F2n such that u satisfies u2 + u+ d2 = 0,

then the addition law on the binary Edwards curve is complete [1]. That is, the denominators in the addition
law d1 + (y1 + y21)(x2 + y2) and d1 + (x1 + x21)(x2 + y2) never vanish.

For summation polynomials with these curves, the best choice of variable is t = x+y. This is the natural
choice, consistent with previous work [16, 12], as this function is invariant under the action of [−1] : P 7→
−P . The coordinate t was used in [1] for differential addition, but it was called ω.

The function t : Ed1,d2 → P1 has degree 4. Given a value t ∈ F2n there are generically four points
P = (x, y) ∈ E(F2) having the same value for t(P ), namely (x, y), (y, x), (x+ 1, y + 1), (y + 1, x+ 1).

When we come to define the factor base, we will choose a vector subspace V of F2n/F2 of dimension l
and will define the factor base to be the set of points corresponding to t(P ) = x(P ) + y(P ) ∈ V .

Theorem 1. Let Ed1,d2 be a binary Edwards curve over F2n and define the function t(P ) = x(P ) + y(P ).
Let the mth summation polynomials for binary Edwards curves be defined as follows:

f2(t1, t2)=t1 − t2
f3(t1, t2, t3)=(d2t

2
1t

2
2 + d1(t

2
1t2 + t1t

2
2 + t1t2 + d1))t

2
3 + d1(t

2
1t

2
2 + t21t2 + t1t

2
2 + t1t2)t3

+d21(t
2
1 + t22)

fm(t1, . . . , tm)=Resultantt(fm−k(t1, t2, . . . , tm−k−1, t), fk+2(tm−k, tm−k+1, . . . , tm, t)),

for m ≥ 4 and 1 ≤ k ≤ m− 3.

For any points P1, . . . , Pm ∈ Ed1,d2(F2) such that P1 + · · · + Pm = P0, then fm(t(P1), . . . , t(Pm)) = 0.
Conversely, given any t1, . . . , tm ∈ F2 such that fm(t1, . . . , tm) = 0, then there exist points P1, . . . , Pm ∈
Ed1,d2(F2) such that t(Pi) = ti for all 1 ≤ i ≤ m and P1 + · · · + Pm = P0. For m ≥ 2, the polynomials
have degree 2m−2 in each variable.

Proof. Let Pi = (xi, yi) ∈ Ed1,d2 and ti = xi+yi, where 1 ≤ i ≤ m. Form = 2, we have P1+P2 = P0 that
is P1 = −P2 = (y2, x2) and this in turn implies t1 = t2. So, it is clear to see that f2(t1, t2) = t1 − t2 = 0.

For m = 3, we have to construct the 3rd summation polynomial f3(t1, t2, t3) corresponding to P1 +
P2 + P3 = P0. Let (x3, y3) = (x1, y1) + (x2, y2) and (x4, y4) = (x1, y1) − (x2, y2). Applying the group
law, we have

x3=
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x21)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x21)(x2 + y2)

y3=
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y21)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y21)(x2 + y2)

and

t3=
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x21)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x21)(x2 + y2)

+
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y21)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y21)(x2 + y2)
.
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Then,

t3=

(
d1 + (y1 + y21)(x2 + y2)

) (
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x21)(x2(y1 + y2 + 1) + y1y2

)(
d1 + (x1 + x21)(x2 + y2)

) (
d1 + (y1 + y21)(x2 + y2)

)
+

(
d1 + (x1 + x21)(x2 + y2)

) (
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y21)(y2(x1 + x2 + 1) + x1x2)

)(
d1 + (x1 + x21)(x2 + y2)

) (
d1 + (y1 + y21)(x2 + y2)

) .

Now (x4, y4) and t4 are computed in a similar way and are given,

x4=
d1(x1 + y2) + d2(x1 + y1)(x2 + y2) + (x1 + x21)(y2(y1 + x2 + 1) + y1x2)

d1 + (x1 + x21)(x2 + y2)

y4=
d1(y1 + x2) + d2(x1 + y1)(x2 + y2) + (y1 + y21)(x2(x1 + y2 + 1) + x1y2)

d1 + (y1 + y21)(x2 + y2)

and t4 = x4 + y4.
We now require to construct a quadratic polynomial in the indeterminate variable t whose roots are t3

and t4, that is t2 + (t3 + t4)t+ t3t4. We can use the EliminationIdeal() function of Magma [?] and
the curve equation to express t3 + t4 and t3t4 in terms of the variables t1 and t2. So, we have finally

t3+t4 =
d1t1t2(t1t2 + t1 + t2 + 1)

d21 + d1
(
t1 + t21

)
t2 +

(
d1t1 + d2t21

)
t22

and t3t4 =
d21(t1 + t2)

2

d21 + d1
(
t1 + t21

)
t2 +

(
d1t1 + d2t21

)
t22
.

Hence,

t2 + (t3 + t4)t+ t3t4=
(
d21 + d1

(
t1 + t21

)
t2 +

(
d1t1 + d2t

2
1

)
t22
)
t2

+ (d1t1t2(t1t2 + t1 + t2 + 1)) t+ d21(t1 + t2)
2.

Rearranging terms, we have

f3(t1, t2, t3)=(d2t
2
1t

2
2 + d1(t

2
1t2 + t1t

2
2 + t1t2 + d1))t

2
3 + d1(t

2
1t

2
2 + t21t2 + t1t

2
2 + t1t2)t3 + d21(t1 + t2)

2.

For m ≥ 4 we use the fact that P1 + · · ·+ Pm = P0 if and only if there exists a point R on the curve such
that P1 + · · ·+ Pm−k−1 +R = P0 and −R+ Pm−k + · · ·+ Pm = P0. It follows that

fm(t1, . . . , tm)=Resultantt(fm−k(t1, t2, . . . , tm−k−1, t), fk+2(tm−k, tm−k+1, . . . , tm, t)),

(for all m ≥ 4 and m− 3 ≥ k ≥ 1).

We can observe that the 3rd summation polynomial has degree 2 in each variable ti. The 4th summation
polynomial f4(t1, t2, t3, t4) = Resultantt(f3(t1, t2, t), f3(t3, t4, t)), which is the resultant of two third sum-
mation polynomials, has degree 2 · 2 = 4 in each variable ti. Computing recursively using resultants, the
mth summation polynomial has degree 2m−2 in each variable. Irreducibility and symmetry follow by the
same arguments as used by Semaev [27]. This completes the proof. ut

Note that the degree bound 2m−2 is consistent with the arguments on page 44 (Sections 2 and 3.1)
of [13]: Since deg(t) = 4 we would expect polynomials of degree 4m−1, but t is invariant and so factors
through a 2-isogeny, so we get degree 2m−1. The further saving of a factor 2 follows since t(−P ) = t(P ).

We now specialise to the case d1 = d2, which will be the case considered in Section 3.3.
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Lemma 2. Let Ed1,d2 be a binary Edwards curve over F2n such that d1 = d2 and define the function
t(P ) = x(P )+y(P ). Let themth summation polynomials for binary Edwards curves be defined as follows:

f2(t1, t2)=t1 + t2

f3(t1, t2, t3)=(d1 + t1t2(t1 + 1)(t2 + 1))t23 + (t1t2 + (t1 + 1)(t2 + 1))t3 + d1(t1 + t2)
2

fm(t1, . . . , tm)=Resultantt(fm−j(t1, t2, . . . , tm−j−1, t), fj+2(tm−j , tm−j+1, . . . , tm, t))

(for all m ≥ 4 and 1 ≤ j ≤ m− 3).

For any points P1, . . . , Pm ∈ Ed1,d1(F2) such that P1 + · · · + Pm = P0, then fm(t(P1), . . . , t(Pm)) = 0.
Conversely, given any t1, . . . , tm ∈ F2 such that fm(t1, . . . , tm) = 0, then there exist points P1, . . . , Pm ∈
Ed1,d1(F2) such that t(Pi) = ti for all 1 ≤ i ≤ m and P1 + · · · + Pm = P0. For m ≥ 2, the polynomials
have degree 2m−2 in each variable.

3.1 Action of Symmetric Group

Since the equation P1+· · ·+Pm is symmetric it follows that the summation polynomials for binary Edwards
curves are symmetric. Hence

fm+1(t1, t2, . . . , tm, t(R)) ∈ F2n [t1, t2, . . . , tm]Sm

where Sm is the symmetric group and the right hand side denotes the ring of polynomials invariant under the
group Sm. Hence, it is possible to express the summation polynomials in terms of the elementary symmetric
polynomials (e1, e2, . . . , em) in the variables ti, as they are generators of the ring F2n [t1, . . . , tm]Sm .

Since the elementary symmetric polynomial ei has degree i, it is natural to expect the polynomial to
have lower degree after this change of variables. Another way to explain this degree reduction is to note that
each relation R = P1 + · · · + Pm comes in an orbit of size (at least, when the points Pi are all distinct)
m!. This implies that the number of solutions to the polynomial when expressed in terms of the ei is smaller
than the original polynomial, and this is compatible with a lowering of the degree.

3.2 Action of Points of Order 2

It was proposed in [12, 13] to consider the action of small torsion points to further lower the degree of
the summation polynomials. This idea also allows to effectively reduce the size of the factor base when
performing the linear algebra. Hence, it is important to exploit torsion points as much as possible. Of the
previous papers, [12] only considers odd characteristic, while [13] considers even characteristic (and even
goes as far as summation polynomials of 8 points!) but only for curves in Weierstrass form and using a point
of order 2. In this section we consider these ideas for binary Edwards curves, and in the next section extend
to using a point of order 4.

Fix a vector space V ⊂ F2n of dimension l. The factor base will be

F = {P ∈ Ed1,d2(F2n) : t(P ) ∈ V }.

We expect #F ≈ #V , and our experiments confirm this.
As mentioned in Section 3, if P = (x, y) ∈ Ed1,d2 then P +T2 = (x+ 1, y+ 1). Note that t(P +T2) =

(x+ 1) + (y+ 1) = x+ y = t(P ) and so the function t is already invariant under addition by T2. Since the
factor base is defined in terms of t(P ) we have that P ∈ F implies P + T2 ∈ F . In other words, our choice
of variables is already invariant under the action of adding a 2-torsion point.
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Let R = P1 + · · ·+ Pm and let u = (u1, . . . , um−1) ∈ {0, 1}m−1. Then

R = (P1 + u1T2) + (P2 + u2T2) + · · ·+ (Pm−1 + um−1T2) +

(
Pm +

(
m−1∑
i=1

ui

)
T2

)
.

This gives an action of the group (Z/2Z)m−1 on the set of relations R = P1 + · · · + Pm. Combining with
the action of the symmetric group, we have that the Dihedral Coxeter group Dm = (Z/2Z)m−1 o Sm acts
on the set of relations, and hence on the summation polynomial. Analogous to the discussion in the previous
section, each relation R = P1 + · · ·+ Pm generically comes in an orbit of size 2m−1m!.

Since the variables ti are already invariant under addition by T2, it follows that

fm+1(t1, t2, . . . , tm, t(R)) ∈ F2n [t1, t2, . . . , tm]Dm .

Hence it can be written in terms of the elementary symmetric polynomials ei, as they are the generators of
the ring F2n [t1, t2, . . . , tm]Dm . This reduces its degree and we experience a speed-up in the FGLM algorithm
due to the reduction in the size of the set of solutions.

To speed-up the linear algebra, the factor base can be reduced in size. Recall that each solution (t1, . . . , tm)
corresponds to many relations. Let us fix, for each t, one of the four points {P,−P, P + T2,−P + T2}, and
put only that point into our factor base. Hence the size of F is exactly the same as the number of t ∈ V that
correspond to elliptic curve points, which is roughly 1

4#V .
Then, for a point R, given a solution fm+1(t1, . . . , tm, t(R)) = 0 there is a unique value z0 ∈ {0, 1},

unique points P1, . . . , Pm ∈ F , and unique choices of sign z1, . . . , zm ∈ {−1, 1} such that

R+ z0T2 =

m∑
i=1

ziPi.

It follows that the matrix size is reduced by a factor of 1/4 (with one extra column added to store the
coefficient of T2) which means we need to find fewer relations and the complexity of the linear algebra,
which has a complexity of Õ(m#F2) using the Lanczos or Wiedemann algorithm, is reduced by a factor of
(1/4)2.

3.3 Action of Points of Order 4

We now consider binary Edwards curves in the case d1 = d2. Then T4 = (1, 0) ∈ Ed1,d1 and one can
verify that T4 + T4 = (1, 1) = T2 and so T4 has order four. The group generated by T4 is therefore
{P0, T4, T2,−T4 = (0, 1)}.

For a point P = (x, y) ∈ Ed1,d1 we have P + T4 = (y, x + 1). Hence t(P + T4) = t(P ) + 1. We
construct our factor baseF such that (x, y) ∈ F implies (y, x+1) ∈ F . For example, we can choose a vector
subspace V ⊆ F2n such that v ∈ V if and only if v + 1 ∈ V , and set F = {P ∈ Ed1,d1(F2n) : t(P ) ∈ V }.

If R = P1 + P2 + · · ·+ Pm is a relation and (u1, . . . , um−1) ∈ {0, 1, 2, 3}m−1 then we also have

R = (P1 + [u1]T4) + (P2 + [u2]T4) + · · ·+ (Pm−1 + [um−1]T4) + (Pm + [um]T4) (1)

for um = −
∑m−1

i=1 ui. Hence, one can consider the groupGm = (Z/4Z)m−1oSm acting on the summation
polynomial. To express the summation polynomial in terms of invariant variables it suffices to note that the
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invariants under the action t 7→ t + 1 in characteristic 2 are t(t + 1) = t2 + t (this is mentioned in Section
4.3 of [13]). Hence,

s2=(t21 + t1)(t
2
2 + t2) + · · ·+ (t2m−1 + tm−1)(t

2
m + tm),

...
sm=(t21 + t1)(t

2
2 + t2) · · · (t2m + tm).

(2)

are invariant variables. One might also expect to use

e1 + e21 = t1 + t21 + · · ·+ tm + t2m

but since the addition by T4 cancels out in equation (1) we actually have that e1 = t1 + · · · + tm remains
invariant. Hence, we can use the invariant variables e1, s2, . . . , sm, which are the generators of the ring
F2n [t1, t2, . . . , tm]Gm .

It is clear that we further halve the size of the factor base by choosing a unique representative of the orbit
under the action. Overall, the factor base is reduced in total by a factor of 1/8 over the basic method. Hence
the complexity of the linear algebra is reduced by a factor of (1/8)2.

4 The Index Calculus Algorithm

We now present the full index calculus algorithm combined with the new variables introduced in Section 3.1.
We work in E(F2n) := Ed1,d1(F2n) where n is prime and Ed1,d1 is a binary Edwards curve with parameters
d2 = d1. We choose an integer m (for the number of points in a relation) and an integer l. Considering
F2n as a vector space over F2 we let V be a vector subspace of dimension l. More precisely, we will
suppose F2n is represented using a polynomial basis {1, θ, . . . , θn−1} where F (θ) = 0 for some irreducible
polynomial F (x) ∈ F2[x] of degree n. We will take V to be the vector subspace of F2n over F2 with basis
{1, θ, . . . , θl−1}.

We start with the standard approach, leaving the symmetry-breaking to Section 4.2. We define a factor
base F = {P ∈ E(F2n) : t(P ) ∈ V }, where t(x, y) = x + y. Relations will be sums of the form
R = P1 + P2 + · · · + Pm where Pi ∈ F . We heuristically assume that #F ≈ 2l. Under this heuristic
assumption we expect the number of points in {P1 + · · · + Pm : Pi ∈ F} to be roughly 2lm/m!. Hence,
the probability that a uniformly chosen point R ∈ E(F2n) can be decomposed in this way is heuristically
(2lm/m!)/2n = 1/(m!2n−lm). Hence we would like to choose m and l so that lm is not too much smaller
than n.

To compute relations we evaluate the summation polynomial at the point R to get

fm+1(t1, t2, . . . , tm, t(R)) ∈ F2n [t1, t2, . . . , tm].

If we can find a solution (t1, t2, . . . , tm) ∈ V m satisfying fm+1(t1, t2, . . . , tm, t(R)) = 0 then we need to
determine the corresponding points, if they exist, (xi, yi) ∈ E(F2n) such that ti = xi + yi and (x1, y1) +
· · · + (xm, ym) = R. Finding (xi, yi) given ti is just taking roots of a univariate quartic polynomial. Once
we have m points in E(F2n), we may need to check up to 2m−1 choices of sign (and also determine an
additive term zj,0T4, since our factor base only includes one of the eight points for each value of ti(ti + 1))
to be able to record the relation as a vector. The cost of computing the points (xi, yi) is almost negligible,
but checking the signs may incur some cost for large m.

When a relation exists (i.e., the random point R can be written as a sum of m points in the factor base)
then there exists a solution (t1, . . . , tm) ∈ V m to the polynomial system that can be lifted to points in
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E(F2n). When no relation exists there are two possible scenarios: Either there is no solution (t1, . . . , tm) ∈
V m to the polynomial system, or there are solutions but they don’t lift to points in E(F2n). In both cases,
the running time of detecting that a relation does not exist is dominated by the Gröbner basis computation
and so is roughly the same.

In total we will need #F+1 ≈ #V = 2l relations. Finally, these relations are represented as the system
of equations

ujP + wjQ = zj,0T4 +
∑
Pi∈F

zj,iPi

where M = (zj,i) is a sparse matrix with at most m non-zero entries per row. Let r be the order of P
(assumed to be odd). If S is any vector in the kernel of the matrix (meaning SM ≡ 0 (mod r)), then
writing u = S(u1, . . . , u`+1)

T (where ` = #F) and w = S(w1, . . . , w`+1)
T . We have uP + wQ = 0 (the

T4 term must disappear if r is odd) and so u+wa ≡ 0 (mod r) and we can solve for the discrete logarithm
a.

The details are given in Algorithm 1.

4.1 The Choice of Variables

Recall that our summation polynomials fm+1(t1, t2, . . . , tm, t(R)) can be written in terms of the invariant
variables (e1, s2, . . . , sm). Here we are exploiting the full group (Z/4Z)m−1 o Sm. Note that t(R) ∈ F2n

is a known value and can be written as t(R) = r0 + r1θ + r2θ
2 + · · ·+ rn−1θ

n−1 with ri ∈ F2.
As noted by Huang et al [19], and using their notation, let us write tj , e1, and sj in terms of binary

variables with respect to the basis for F2n . We have

tj =
l−1∑
i=0

cj,iθ
i (3)

for 1 ≤ j ≤ m, which is a total of lm binary variables cj,i. Set k = min(bn/(2(l − 1))c,m). The invariant
variables e1, s2, . . . , sm can be written as,

e1=d1,0 + d1,1θ + d1,2θ
2 + · · ·+ d1,l−1θ

l−1

s2=d2,0 + d2,1θ + d2,2θ
2 + · · ·+ d2,4(l−1)θ

4(l−1)

...

sj=dj,0 + dj,1θ + dj,2θ
2 + · · ·+ dj,2j(l−1)θ

2j(l−1)

where 1 ≤ j ≤ k = min(bn/(2(l − 1))c,m)

sj+1=dj+1,0 + dj+1,1θ + dj+1,2θ
2 + · · ·+ dj+1,(n−1)θ

n−1

...

sm=dm,0 + dm,1θ + dm,2θ
2 + · · ·+ dm,n−1θ

n−1.

Suppose that n ≈ lm. Then k = n/(2(l− 1)) ≈ m/2 and so we suppose it takes the value ḿ = dm2 e. Then
the number of binary variables di,j is

N = l + (4(l − 1) + 1) + (6(l − 1) + 1) + · · ·+ (2ḿ(l − 1) + 1) + ḿn ≈ (m2l +mn)/2.
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Writing the evaluated summation polynomial as G(e1, s2, . . . , sm) we now substitute the above formu-
lae to obtain a polynomial in the variables dj,i. Apply Weil descent to the polynomial to get

φ1 + φ2θ + · · ·+ φnθ
n−1 = 0.

where the φi are polynomials over F2 in the dj,i. This forms a system of n equations in the N binary
variables dj,i. We add the field equations d2j,i − dj,i and then denote this system of equations by sys1.

One could attempt to solve this system using Gröbner basis methods. For each candidate solution (dj,i)
one would compute the corresponding solution (e1, s2, . . . , sm) and then solve a univariate polynomial
equation (i.e., take roots) to determine the corresponding solution (t1, . . . , tm). From this one determines
whether each value tj corresponds to an elliptic curve point (xj , yj) ∈ E(F2n) such that xj + yj = tj . If
everything works ok then one forms the relation.

However, the approach just mentioned is not practical as the number N of binary variables is too large
compared with the number of equations. Hence, we include the lm < n variables cj,̃i (for 1 ≤ j ≤ m,
0 ≤ ĩ ≤ l − 1) to the problem, and add a large number of new equations relating the cj,̃i to the dj,i via the
tj and equations (2) and (3).

This gives N additional equations in the N + lm binary variables. After adding the field equations
c2
j,̃i
− cj,̃i we denote this system of equations by sys2. Finally we solve sys1 ∪ sys2 using Gröbner basis

algorithms F4 or F5 using the degree reverse lexicographic ordering. From a solution, the corresponding
points Pj are easily computed.

Algorithm 1 Index Calculus Algorithm on Binary Edwards Curve
1: Set Nr ← 0
2: while Nr ≤ #F do
3: Compute R← uP + wQ for random integer values u and w
4: Compute summation polynomial G(e1, s2, . . . , sm) := fm+1(e1, s2, . . . , sm, t(R)) in the variables (e1, s2, . . . , sm)
5: Use Weil descent to write G(e1, s2, . . . , sm) as n polynomials in binary variables dj,i
6: Add field equations d2j,i − dj,i to get system of equations sys1
7: Buld new polynomial equations relating the variables dj,i and cj,̃i
8: Add field equations c2

j,̃i
− cj,̃i to get system of equations sys2

9: Solve system of equations sys1 ∪ sys2 to get (cj,̃i, dj,i)
10: Compute corresponding solution(s) (t1, . . . , tm)
11: For each tj compute, if it exists, a corresponding point Pj = (xj , yj) ∈ F
12: if z1P1 + z2P2 + · · ·+ zmPm + z0T4 = R for suitable z0 ∈ {0, 1, 2, 3}, zi ∈ {1,−1} then
13: Nr ← Nr + 1
14: Record zi, u, w in a matrix M for the linear algebra
15: Use linear algebra to find non-trivial kernel element and hence solve ECDLP

4.2 Breaking Symmetry

We now explain how to break symmetry in the factor base while using the new variables as above.
Again, suppose F2n is represented using a polynomial basis and take V to be the subspace with basis

{1, θ, . . . , θl−1}. We choose m elements vi ∈ F2n (which can be interpreted as vectors in the n-dimensional
F2-vector space corresponding to F2n) as follows: v1 = 0, v2 = θl = (0, 0, . . . , 0, 1, 0, . . . , 0) where the 1
is in position l. Similarly, v3 = θl+1, v4 = θl+1 + θl, v5 = θl+2 etc. In other words, vi is represented as a
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vector of the form (0, . . . , 0, w0, w1, w2, . . . ) where · · ·w2w1w0 is the binary expansion of i− 1. Note that
the subsets V + vi in F2n are pair-wise disjoint.

Accordingly, we define the factor bases to be Fi = {P ∈ E(F2n) : t(P ) ∈ V + vi} for 1 ≤ i ≤ m,
where t(x, y) = x + y. The decomposition over the factor base of a point R will be a sum of the form
R = P1 + P2 + · · ·+ Pm where Pi ∈ Fi for 1 ≤ i ≤ m. Since we heuristically assume that #Fi ≈ 2l, we
expect the number of points in {P1 + · · · + Pm : Pi ∈ Fi} to be roughly 2lm. Note that there is no 1/m!
term here. The entire purpose of this definition is to break the symmetry and hence increase the probability
of relations. Hence, the probability that a uniformly chosen point R ∈ E(F2n) can be decomposed in this
way is heuristically 2lm/2n = 1/2n−lm.

There is almost a paradox here: Of course ifR = P1+· · ·+Pm then the points on the right hand side can
be permuted and the point T2 can be added an even number of times, and hence the summation polynomial
evaluated at t(R) is invariant under Dm. On the other hand, if the points Pi are chosen from distinct factor
bases Fi then one does not have the action by Sm, so why can one still work with the invariant variables
(e1, s2, . . . , sm)?

To resolve this “paradox” we must distinguish the computation of the polynomial from the construction
of the system of equations via Weil descent. The summation polynomial does have an action by Dm (and
Gm), and so that action should be exploited. When we do the Weil descent and include the definitions of
the factor bases Fi, we then introduce some new variables. As noted by Huang et al [19], expressing the
invariant variables with respect to the variables from the construction of the factor bases is non-trivial. But
it is this stage where we introduce symmetry-breaking.

When re-writing the system in terms of new variables, there is a penalty from the additional factors +vi.
For example, previously we had t2 = c2,0 + c2,1θ+ c2,2θ

2 + · · ·+ c2,l−1θ
l−1 but now we have (for the case

m = 4)

t1=c1,0 + c1,1θ + c1,2θ
2 + · · ·+ c1,l−1θ

l−1

t2=c2,0 + c2,1θ + c2,2θ
2 + · · ·+ c2,l−1θ

l−1 + θl

t3=c3,0 + c3,1θ + c3,2θ
2 + · · ·+ c3,l−1θ

l−1 + θl+1

t4=c4,0 + c4,1θ + c4,2θ
2 + · · ·+ c4,l−1θ

l−1 + θl + θl+1.

It follows that
e1 = t1 + t2 + t3 + t4 = d1,0 + d1,1θ + · · ·+ d1,l−1θ

l−1

can be represented exactly as before. But the other polynomials are less simple. For example,

s2 = (t21 + t1)(t
2
2 + t2) + · · ·+ (t23 + t3)(t

2
4 + t4)

previously had highest term d2,4l−4θ
4l−4 but now has highest terms d2,4l−4θ4l−4 + d2,4l−2θ

4l−2 + θ4l+2.
Hence, we require one more variable than the previous case, and things get worse for higher degree terms.
So the symmetry breaking increases the probability of a relation but produces a harder system of polynomial
equations to solve.

An additional consequence of this idea is that the factor base is now roughly m times larger than in the
symmetric case. So the number of relations required is increased by a factor m, and so the speedup over
previous methods is actually by a factor approximately m!/m = (m − 1)!. Also, the cost of the linear
algebra is increased by a factor m2 (though the system of linear equations is structured in blocks and so
some optimisations may be possible). When using a point of order 4 with binary Edwards curves, the linear
algebra cost is reduced (in comparison with the naive method) by a factor (m/8)2.
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For large q and small n, it seems that symmetry-breaking is not a useful idea, as the increase in number
of variables becomes a huge problem that is not compensated by the (m − 1)! factor. However, for small q
and large n the situation is less clear. To determine whether the idea is a good one, it is necessary to perform
some experiments (see Section 6).

5 SAT Solvers

Shantz and Teske [26] discuss a standard idea [30, 31, 2] they call the “hybrid method”, which is to partially
evaluate the system at some random points before applying Gröbner basis algorithms. They argue (Section
5.2) that it is better to just use the “delta method” (n−ml > 0), where m is the number points in a relation
and 2l is the size of the factor base. The main observation of Shantz and Teske [26] is that using smaller l
speeds-up the Gröbner basis computation at the cost of decreasing the probability of getting a relation. So,
they try to find such an optimal l value.

Our choice of coordinates for binary Edwards curves helps us lower the degree of our systems. As a result
we were able to make successful experiments for m = 4 and l ∈ {3, 4} using Gröbner basis algorithms, as
reported in Table 3. For l > 4, values such that n − ml > 0 suffered high running times as the result of
increased number of variables coming from our invariant variables.

To increase the range for these methods, we investigated other approaches to solving systems of mul-
tivariate polynomial equations over a binary field. In particular, we experimented with SAT solvers. We
used Minisat 2.1 [29], a version of Minisat [10, 28, 29], coupled with the Magma system for converting the
polynomial system into conjunctive normal form (CNF).

On the positive side, our experiments show that SAT solvers can be faster and, more importantly, handle
larger range of values for l. As is shown in Table 1, we can work with l up to 7 for some n, whereas Gröbner
basis methods are limited to l ∈ {3, 4} in our experiments.

However, on the negative side, the running time of SAT solvers varies a lot depending on many factors.
They are randomised algorithms, but more significantly they seem to be faster when there is a solution of
low hamming weight. They are even better when there is a solution of low Hamming weight and it is the
lower bits that are non-zero. The value of the curve parameter d1 also seems to effect the running time.
Finally, SAT solvers are usually slow when no solution exists. This behaviour is very different to the case of
Gröbner basis methods, which perform rather reliably and are slightly better when the system of equations
has no solution.

Hence, we suggest using SAT solvers with an “early abort” strategy: One can generate a lot of instances
and run SAT solvers in parallel and then kill all instances that are still running after some time threshold
has been passed (a similar idea is mentioned in Section 7.1 of [24]). This could allow the index calculus
algorithm to be run for a larger set of parameters. The probability of finding a relation is now decreased. The
probability that a relation exists must be multiplied by the probability that the SAT solver terminates in less
than the time threshold (we took an upper bound of 200 seconds for the execution time), in the case when a
solution exists. It is this latter probability that we estimate in the Psucc column of Table 1.

Note that all modern fast SAT solvers periodically restart the search for satisfiability or unsatisfiability
with “restarting strategies” [17]: a cutoff value in the number of backtracks. Minisat has a small first restart
(100), second restart (250), and the size of consecutive restarts grows geometrically. So an “early-abort”
mechanism is related to rejecting an instance when the number of backtracks becomes too large.

SAT solvers take an input in Conjunctive Normal Form (CNF): a conjunction of clauses where a clause is
a disjunction of literals, and a literal is a variable or its negation. The Magma interface with Minisat performs
the conversion from polynomial equations to CNF. The number of variables, the number of clauses, and the
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total length of all the clauses (that is, the total number of literals) determines the size of the CNF expression.
We list these numbers in Table 1. Although the running time of SAT solvers in the worst case is exponential
in the number of variables in the problem, practical running times may be shorter. It is beyond the scope of
this paper to discuss the relations between problem size and hardness for SAT solvers.

6 Experimental Results

We conducted several experiments using binary Edwards elliptic curves E over F2n . We always use the
m + 1-summation polynomial to find relations as a sum of m points in the factor base. The factor base is
defined using a vector space of dimension l. In our experiments we follow the approach of Huang et al [19]
and examine the effect of different choices of variables on the computation of intermediate results and degree
of regularity Dreg (as it is the main complexity indicator of F4 or F5 Gröbner basis algorithms: the time and
memory complexities are roughly estimated to beN3Dreg andN2Dreg respectively whereN is the number of
variables). Our hope is to get better experimental results resulting from exploiting the symmetries of binary
Edwards curves.

Experiment 1: For the summation polynomials we use the variables e1, e2, . . . , em, which are invariants
under the group Dm = (Z/2Z)m−1 o Sm. The factor base is defined with respect to a fixed vector space of
dimension l.

Experiment 2: For the summation polynomials we use the variables e1, s2, . . . , sm from equation (2), which
are invariants under the group Gm = (Z/4Z)m−1 o Sm. The factor base is defined with respect to a fixed
vector space V of dimension l such that v ∈ V if and only if v + 1 ∈ V .

Experiment 3: For the summation polynomials we use the variables e1, s2, . . . , sm, which are invariants
under the group (Z/4Z)m−1 × Sm. We use symmetry-breaking to define the factor base by taking affine
spaces (translations of a vector space of dimension l).

We denoted the set-up operations (lines 4 to 8 of Algorithm 1) by TInter, while TSAT and TGB denote the
time for line 9. Other notation includes Mem (the average memory used in megabytes by the Minisat SAT
solver or Gröbner basis), Dreg (the degree of regularity), Var (the total number of variables in the system)
and Pequ (the total number of equations). In Table 1 we also give a success probability Psucc the percentage
of times our SAT program terminated with solution within 200 seconds, TSAT the average of the running
times in seconds to compute step 9 using a SAT solver, and #Clauses and #Literals are the average number
of clauses and total number of literals (i.e., total length) of the CNF input to the SAT solver. All experiments
are carried out using a computational server (3.0GHz CPU x8, 28G RAM). In all our experiments, timings
are averages of 100 trials except for values of TGB + TInter > 200 seconds (our patience threshold), in this
case they are single instances. We stress that all the tables do not report experiments for the case when the
system of equations has no solution. As indicated in [19], the computational complexity is lower when the
system of equations has no solution.

Table 1 compares Minisat with Gröbner basis methods (experiment 2) for m = 4. The main observation
of this experiment is we can handle larger values of lwith Minisat in reasonable amount of time than Gröbner
basis methods. But the process has to be repeated 1/Psucc times on average, as the probability of finding a
relation is decreased by Psucc. We also observe that the memory used by Minisat is much lower than that of
the Gröbner basis algorithm. We do not report experiments using Gröbner basis method for values of l > 4
as they are too slow and have huge memory requirements.
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Table 1. Comparison of solving polynomial systems, when there exists a solution to the system, in experiment 2 using SAT solver
(Minisat) versus Gröbner basis methods for m = 4. #Var and #Pequ are the number of variables and the number of polynomial
equations respectively. Mem is average memory used in megabytes by the SAT solver or Gröbner basis algorithm. #Clauses,
#Literals, and Psucc represent the average number of clauses, total number of literals, and the percentage of times Minisat halts
with solutions within 200 seconds respectively.

Experiment 2 with SAT solver Minisat
n l#Var#Pequ#Clauses#Literals TInter TSAT Mem Psucc

173 54 59 46678 181077 0.35 7.90 5.98 94%
4 67 68 125793 485214 0.91 27.78 9.38 90%

193 54 61 55262 215371 0.37 3.95 6.07 93%
4 71 74 140894 543422 1.29 18.38 18.05 86%

233 54 65 61572 240611 0.39 1.53 7.60 87%
4 75 82 194929 760555 2.15 5.59 14.48 83%
5 88 91 394759 1538560 4.57 55.69 20.28 64%

294 77 90 221828 868619 3.01 7.23 19.05 87%
5 96 105 572371 2242363 9.95 39.41 32.87 67%
6 109 114 855653 3345987 21.23 15.87 43.07 23%
7 118 119 1063496 4148642 36.97 26.34133.13 14%

314 77 92 284748 1120243 3.14 17.12 20.52 62%
5 98 109 597946 2345641 11.80 33.48 45.71 57%
6 113 120 892727 3489075 26.23 16.45118.95 12%
7 122 125 1307319 5117181 44.77 21.98148.95 8%

374 77 98 329906 1300801 3.41 26.12 29.97 59%
5 100 117 755621 2977220 13.58 48.19 50.97 40%
6 119 132 1269801 4986682 41.81 42.85108.41 11%
7 134 143 1871867 7350251 94.28 40.15169.54 6%

414 77 102 317272 1250206 3.08 19.28 27.59 68%
5 100 121 797898 3146261 15.71 27.14 49.34 65%
6 123 140 1353046 5326370 65.25 31.69 89.71 13%

434 77 104 374011 1477192 2.97 17.77 28.52 68%
5 100 123 825834 3258080 13.85 29.60 54.83 52%

474 77 108 350077 1381458 3.18 11.40 29.93 59%
5 100 127 836711 3301478 14.25 27.56 61.55 43%

534 77 114 439265 1738168 11.02 27.88 32.35 75%
5 100 133 948366 3748119 14.68 34.22 64.09 62%
6 123 152 1821557 7200341 49.59 41.55123.38 11%
7 146 171 2930296 11570343192.2067.27181.20 4%

Experiment 2 with Gröbner basis: F4

n l#Var#PequTInter TGB Mem

173 54 59 0.29 0.29 67.24
4 67 68 0.92 51.79 335.94

193 54 61 0.33 0.39 67.24
4 71 74 1.53 33.96 400.17

233 54 65 0.26 0.31 67.24
4 75 82 2.52 27.97 403.11

293 54 71 0.44 0.50 67.24
4 77 90 3.19 35.04 503.87

313 54 73 0.44 0.58 67.24
4 77 92 3.24 9.03 302.35

373 54 79 0.36 0.43 67.24
4 77 98 3.34 9.07 335.94

413 54 83 0.40 0.54 67.24
4 77 102 3.39 17.19 382.33

433 54 85 0.43 0.53 67.24
4 77 104 3.44 9.09 383.65

473 54 89 0.50 0.65 67.24
4 77 108 3.47 9.59 431.35

533 54 95 0.33 0.40 67.24
4 77 114 11.4311.64 453.77
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Table 2 compares experiment 1 and experiment 2 in the case m = 3. Gröbner basis methods are used in
both cases. Timings are averages from 100 trials except for values of TGB + TInter > 200 seconds, in this
case they are single instances.

Experiments in [19] are limited to the case m = 3 and l ∈ {3, 4, 5, 6} for prime degree extensions

n ∈ {17, 19, 23, 29, 31, 37, 41, 43, 47, 53}.

This is due to high running times and large memory requirements, even for small parameter sizes. As shown
in Table 2, we repeated these experiments. Exploiting greater symmetry (in this case experiment 2) is seen
to reduce the computational costs. Indeed, we can go up to l = 8 with reasonable running time for some n,
which is further than [19]. The degree of regularity stays ≤ 4 in both cases.

Table 2. Comparison of solving our systems of equations, having a solution, using Gröbner basis methods in experiment 1 and
experiment 2 for m = 3. Notation is as above. ’*’ indicates that the time to complete the experiment exceeded our patience
threshold.

Experiment 1
n lDreg#Var#PequTInter TGB

17 5 4 42 44 0.08 13.86
195 4 42 46 0.08 18.18

6 4 51 52 0.18 788.91
235 4 42 50 0.10 35.35

6 4 51 56 0.21 461.11
7 * * * * *

295 4 42 56 0.11 31.64
6 4 51 62 0.25 229.51
7 4 60 68 0.60 5196.18
8 * * * * *

315 4 42 58 0.12 5.10
6 5 51 64 0.27 167.29
7 5 60 70 0.48 3259.80
8 * * * * *

375 4 42 64 0.18 0.36
6 4 51 70 0.34 155.84
7 4 60 76 0.75 1164.25
8 * * * * *

415 4 42 68 0.16 0.24
6 4 51 74 0.36 251.37
7 4 60 80 0.77 1401.18
8 * * * * *

435 4 42 70 0.19 0.13
6 4 51 76 0.38 176.67
7 3 60 82 0.78 1311.23
8 * * * * *

475 4 42 74 0.19 0.14
6 4 51 80 0.54 78.43
7 * * * * *
8 * * * * *

535 4 51 80 0.22 0.19
6 5 51 86 0.45 1.11
7 4 60 92 1.20 880.59
8 * * * * *

Experiment 2
n lDreg#Var#PeqTInter TGB

17 5 4 54 56 0.02 0.41
195 3 56 60 0.02 0.48

6 4 62 63 0.03 5.58
235 4 60 68 0.02 0.58

6 4 68 73 0.04 2.25
7 * * * * *

295 4 62 76 0.03 0.12
6 4 74 85 0.04 2.46
7 4 82 90 0.07 3511.14
8 * * * * *

315 4 62 78 0.03 0.36
6 4 76 89 0.05 2.94
7 4 84 94 0.07 2976.97
8 * * * * *

375 4 62 84 0.04 0.04
6 4 76 95 0.06 4.23
7 4 90 106 0.09 27.87
8 * * * * *

415 4 62 88 0.03 0.04
6 4 76 99 0.06 0.49
7 4 90 110 0.09 11.45
8 * * * * *

435 3 62 90 0.04 0.05
6 4 76 101 0.06 5.35
7 4 90 112 0.10 15.360
8 * * * * *

475 4 62 94 0.04 0.06
6 4 76 105 0.06 1.28
7 4 90 116 0.13 8.04
8 4 104 127 0.16 152.90

535 3 62 100 0.04 0.02
6 4 76 111 0.06 0.19
7 4 90 122 0.14 68.23
8 4 104 133 0.19 51.62

Table 3 considers m = 4, which was not done in [19]. For the sake of comparison, we gather some data
for experiment 1 and experiment 2. Again, exploiting greater symmetry (experiment 2) gives a significant
decrease in the running times, and the degree of regularity Dreg is slightly decreased. The expected degree
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of regularity for m = 4, stated in [25], is m2 + 1 = 17. The table shows that our choice of coordinates
makes the case m = 4 much more feasible.

Table 3. Comparison of solving our systems of equations, having a solution, using Gröbner basis methods in experiment 1 and
experiment 2 for m = 4. Notation is as above. The second tabular column already appeared in Table 1.

Experiment 1
n lDreg#Var#Pequ TInter TGB

173 5 36 41 590.11 216.07
4 * * * * *

193 5 36 43 564.92 211.58
4 * * * * *

233 5 36 47 1080.14 146.65
4 * * * * *

293 5 36 53 1069.49 232.49
4 * * * * *

313 5 36 55 837.77 118.11
4 * * * * *

373 5 36 61 929.82 178.04
4 * * * * *

413 4 36 65 1261.72 217.22
4 * * * * *

433 4 36 67 1193.13 220.25
4 * * * * *

473 4 36 71 1163.94 247.78
4 * * * * *

533 4 36 77 1031.93232.110
4 * * * * *

Experiment 2
n lDreg#Var#PequTInterTGB

173 4 54 59 0.29 0.29
4 4 67 68 0.92 51.79

193 4 54 61 0.33 0.39
4 4 71 74 1.53 33.96

233 4 54 65 0.26 0.31
4 4 75 82 2.52 27.97

293 4 54 71 0.44 0.50
4 4 77 90 3.19 35.04

313 4 54 73 0.44 0.58
4 4 77 92 3.24 9.03

373 4 54 79 0.36 0.43
4 4 77 98 3.34 9.07

413 4 54 83 0.40 0.54
4 4 77 102 3.39 17.19

433 4 54 85 0.43 0.53
4 4 77 104 3.44 9.09

473 4 54 89 0.50 0.65
4 4 77 108 3.47 9.59

533 4 54 95 0.33 0.40
4 4 77 114 11.43 11.64

Our idea of symmetry breaking (experiment 3) is investigated in Table 4 for the case m = 3. Some of
the numbers in the second tabular column already appeared in Table 2. Recall that the relation probability
is increased by a factor 3! = 6 in this case, so one should multiply the timings in the right hand column by
(m− 1)! = 2 to compare overall algorithm speeds. The experiments are not fully conclusive (and there are
a few “outlier” values that should be ignored), but they suggest that symmetry-breaking can give a speedup
in many cases when n is large.

For larger values of n, the degree of regularity Dreg is often 3 when using symmetry-breaking while it
is 4 for most values in experiment 2. The reason for this is unclear, but we believe that the performance we
observe is partially explained by the fact that the degree of regularity stayed at 3 as n grows.

7 Conclusions

We have suggested that binary Edwards curves are most suitable for obtaining coordinates invariant under
the action of a relatively large group. Faugère et al [12] studied Edwards curves in the non-binary case and
showed how the symmetries can be used to speed-up point decomposition. We show that these ideas are
equally applicable in the binary case. For large q and small n one would get the same result as in [12]:
that the FGLM complexity is reduced by a factor of 2m−1. We have studied small q and large (prime) n
and shown that one can get overdetermined systems and that the use of symmetries reduces the degree of
regularity.

The idea of a factor base that breaks symmetry allows to maximize the probability of finding a relation.
For large enough n (keeping m and l fixed) this choice can give a small speed-up compared with previous
methods.
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Table 4. Comparison of solving our systems of equations using Gröbner basis methods having a solution in experiment 3 and
experiment 2 when m = 3. Notation is as in Table 1. For a fair comparison, the timings in the right hand column should be
doubled.

Experiment 3
n lDreg#Var#PequTInter TGB

375 3 68 90 0.04 0.25
6 4 80 99 0.07 5.67
7 * * * * *

415 4 68 94 0.05 0.39
6 3 80 103 0.07 4.55
7 4 93 113 0.11 1905.21

435 4 68 96 0.05 0.21
6 4 80 105 0.08 4.83
7 3 94 116 0.12 100.75

475 4 68 100 0.05 0.17
6 3 80 109 0.08 3.88
7 3 94 120 0.11 57.61

535 3 68 106 0.06 0.08
6 4 80 115 0.09 12.75
7 3 94 126 0.14 11.38

595 4 68 112 0.06 0.05
6 4 80 121 0.10 0.59
7 4 94 132 0.16 13.60

615 4 68 114 0.06 0.04
6 4 80 123 0.11 0.46
7 4 94 134 0.16 8.61

675 3 68 120 0.07 0.02
6 3 80 129 0.11 0.17
7 4 94 140 0.16 121.33

715 3 68 124 0.07 0.02
6 3 80 133 0.12 0.12
7 4 94 144 0.18 2.06

735 3 68 126 0.08 0.02
6 3 80 135 0.12 0.11
7 4 94 146 0.18 1.47

795 3 68 132 0.08 0.02
6 4 80 141 0.12 0.07
7 4 94 152 0.19 0.62

835 3 68 136 0.08 0.02
6 4 80 145 0.13 0.04
7 3 94 156 0.21 0.29

895 3 68 142 0.09 0.02
6 3 80 151 0.14 0.03
7 3 94 162 0.21 0.17

975 3 68 150 0.09 0.02
6 3 80 159 0.14 0.03
7 4 94 170 0.22 0.10

Experiment 2
n lDreg#Var#PequTInter TGB

375 4 62 84 0.04 0.04
6 4 76 95 0.06 4.23
7 4 90 106 0.09 27.87

415 4 62 88 0.03 0.04
6 4 76 99 0.06 0.49
7 4 90 110 0.09 11.45

435 3 62 90 0.04 0.05
6 4 76 101 0.06 5.35
7 4 90 112 0.10 15.360

475 4 62 94 0.04 0.06
6 4 76 105 0.06 1.28
7 4 90 116 0.13 8.04

535 3 62 100 0.04 0.02
6 4 76 111 0.06 0.19
7 4 90 122 0.14 68.23

595 4 62 106 0.04 0.02
6 3 76 117 0.07 0.11
7 4 90 128 0.11 4.34

615 4 62 108 0.04 0.02
6 3 76 119 0.07 0.09
7 4 90 130 0.11 5.58

675 4 62 114 0.04 0.02
6 4 76 125 0.07 0.07
7 4 90 136 0.11 0.94

715 4 62 118 0.04 0.02
6 4 76 129 0.07 0.04
7 3 90 140 0.12 0.25

735 4 62 120 0.05 0.02
6 4 76 131 0.07 0.03
7 3 90 142 0.13 0.22

795 4 62 126 0.05 0.02
6 4 76 137 0.08 0.03
7 4 90 148 0.12 0.33

835 4 62 130 0.05 0.02
6 4 76 141 0.09 0.03
7 4 90 152 0.13 0.13

895 4 62 136 0.05 0.02
6 4 76 147 0.09 0.03
7 4 90 158 0.13 0.05

975 4 62 144 0.05 0.02
6 4 76 155 0.09 0.03
7 4 90 166 0.13 0.04
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SAT solvers often work better than Gröbner methods, especially in the case when the system of equations
has a solution with low hamming weight supported mainly on the lower bits. They are non-deterministic and
the running time varies widely depending on the inputs, including the curve parameter. Unfortunately, most
of the time SAT solvers are slow (for example, because the system of equations does not have any solutions).
We suggest an early abort strategy that may still make SAT solvers a useful approach.

We conclude by analysing whether these algorithms are likely to be effective for ECDLP instances in
E(F2n) when n > 100. The best we can seem to hope for in practice is m = 4 and l ≤ 10. Note that the
linear algebra cost is negligible for such parameters. Since the probability of a relation is roughly 2lm/2n,
so the number of trials (i.e., executions of polynomial system solving) needed to find a relation is at least
2n/2ml ≥ 2n−40 ≥

√
2n. Since solving a system of equations is much slower than a group operation, we

conclude that our methods are worse than Pollard rho. This is true even in the case of static-Diffie-Hellman,
when only one relation is required to be found. Hence, we conclude that elliptic curves in characteristic 2
are safe against these sorts of attacks for the moment, though one of course has to be careful of other “Weil
descent” attacks in this case, such as the Gaudry-Hess-Smart approach [15].
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